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a  b  s  t  r  a  c  t

Objectives:  Balancing  the  trade-offs  between  solution  quality,  problem-solving  efficiency,  and  trans-
parency  is an  important  challenge  in  medical  applications  of  conversational  case-based  reasoning  (CCBR).
For example,  test  selection  in CCBR  is  often  based  on strategies  in which  the  absence  of a  specific  hypothe-
sis  (e.g.,  diagnosis)  to  be confirmed  makes  it difficult  to explain  the  relevance  of  test  results  that  users  are
asked  to  provide.  In this  paper,  we present  an  approach  to CCBR  in  medical  classification  and  diagnosis
that  aims  to  increase  transparency  while  also  providing  high  levels  of  accuracy  and  efficiency.
Methods:  We  present  an  algorithm  for CCBR  called  iNN(k)  in  which  feature  selection  is  driven by  the  goal
of  confirming  a target  class  and  informed  by  a  measure  of  a feature’s  discriminating  power  in  favor  of
the target  class.  As  we  demonstrate  in a CCBR  system  called  CBR-Confirm,  this enables  a CCBR  system  to
explain  the  relevance  of  any  question  it asks  the  user.  We  evaluate  the algorithm’s  accuracy  and  efficiency
on a selection  of  datasets  related  to medicine  and health  care.
Results:  The  performance  of iNN(k)  on a given  dataset  is shown  to  depend  on  the  value of  k and  on whether
local  or  global  feature  selection  is  used  in  the  algorithm.  The  combination  of these  parameters  for which
iNN(k)  is  most  effective  in  addressing  the  trade-off  between  accuracy  and efficiency  is identified  for  each
of the  selected  datasets.  For  example,  only  42%  and  51%  on  average  of features  in a complete  problem

description  were  needed  by iNN(k)  to provide  accuracy  levels  of 86.5%  and  84.3%  respectively  on  the
lymphography  and  SPECT  heart  datasets  from  the  UCI  machine  learning  repository.
Conclusion:  Our  results  demonstrate  the  ability  of iNN(k)  to provide  high  levels  of accuracy  on  most  of
the  selected  datasets,  while  often  requiring  the  user  to  provide  only  a small  subset  of  the features  in  a
complete  problem  description,  and  enabling  a CCBR  system  to  explain  the  relevance  of  any  question  it
asks  the  user.
. Introduction

In case-based reasoning (CBR), a new problem is solved by
etrieving a similar problem from a case base (i.e., a collection of
revious problems with known solutions referred to as cases) and
pplying its solution, following adaptation if necessary, to the new
roblem [1–3]. Bichindaritz [4] provides a concise overview of CBR
esearch in the health sciences, while Holt et al. [5] predict con-
inued growth in medical applications of CBR as decision support
ystems gain wider acceptance in clinical practice.

In CBR approaches to medical classification and diagnosis, an
bility to provide accurate and timely solutions is essential to build
ser trust and confidence. Another factor that may  influence a CBR
ystem’s acceptability to users is its ability to explain its reasoning

6–8]. Explanation has been a topic of interest to CBR researchers
or many years [6,9] and continues to attract significant research
nterest in the field (e.g., Refs. [10–16]), with most contributions
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related to classification and diagnosis tending to focus on the sys-
tem’s ability to explain or justify its conclusions. In this context,
an important benefit of CBR is the ability to justify the solution to
a given problem based on actual experience (e.g., by showing the
user a previous similar case in which the same solution was suc-
cessfully applied) [2–4,8,10]. In CBR systems that play an active role
in the selection of tests on which conclusions are based, as in con-
versational CBR (CCBR) [17,18],  users may  also expect the system
to explain the relevance of test results they are asked to provide.

In contrast to traditional CBR approaches, a description of the
problem to be solved is not assumed to be available in advance in
CCBR. Instead, a problem description (or query) is incrementally
elicited by the system with the aim of minimizing the number of
questions the user is asked before a solution is reached (e.g., Refs.
[17–34]). As shown in CCBR applications such as interactive fault
diagnosis and helpdesk support, guiding the selection of relevant
tests is an important benefit in situations where it may  be difficult

for users to provide a complete problem description and/or it is
important to avoid unnecessary tests.

However, balancing the trade-offs between accuracy, problem-
solving efficiency, and transparency is an important challenge in

dx.doi.org/10.1016/j.artmed.2011.04.007
http://www.sciencedirect.com/science/journal/09333657
http://www.elsevier.com/locate/aiim
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CBR approaches to medical classification and diagnosis. One rea-
on is that test selection in CCBR is often based on strategies (e.g.,
aximizing information gain) in which the absence of a specific

oal or hypothesis makes it difficult to explain the relevance of
uestions the user is asked (i.e., why they are considered useful
y the system). Most CCBR research has also tended to focus on
pplication domains in which the structure of the case base differs
n important ways from the traditional classification datasets that
re common in medical applications of CBR. In CCBR applications
uch as fault diagnosis, the case base is typically heterogeneous
i.e., different attributes are used to describe different cases) and/or
rreducible (i.e., each case has a unique solution) [17,18]. More-
ver, measures such as precision and recall are often used in the
valuation of CCBR systems rather than classification accuracy,
hich cannot be assessed by traditional methods for an irreducible
ataset.

Recently we  proposed a new approach to CCBR in medical clas-
ification and diagnosis that aims to increase transparency while
lso providing high levels of accuracy and efficiency [35]. Feature
election in iNN(k), our CCBR algorithm, is driven by the goal of
onfirming a target class and informed by a measure of a feature’s
iscriminating power in favor of the target class. Our approach to
eature selection has the important advantage of enabling a CCBR
ystem to explain the relevance of any question it asks the user
n terms of its current hypothesis. Moreover, the idea of select-
ng tests to confirm a diagnostic hypothesis, as in our proposed
pproach to CCBR, has been widely discussed in studies of diagnos-
ic reasoning in clinical medicine (e.g., Refs. [36–39]) and should
hus be familiar to clinicians. In this paper, we extend our analy-
is of iNN(k) to include new theoretical and empirical results and a
etailed study of the trade-off between the accuracy and efficiency
f CCBR dialogues in the approach.

In Sections 2 and 3, we describe our approach to CCBR in
NN(k) and demonstrate the approach in a CCBR system called CBR-
onfirm. In Section 4, we empirically investigate the performance
f iNN(k) on a selection of datasets related to medicine and health
are. Our conclusions are presented in Section 5.

. Conversational CBR in iNN(k)

In this section, we describe the basic concepts in our approach
o CCBR in medical classification and diagnosis, including: (1) the
imilarity measure used to construct the iNN(k) retrieval set, (2) the
ethod used to select a target class at each stage of a CCBR dialogue,

3) the measure of discriminating power used to select features that
re most useful for confirming the target class, and (4) the criteria
sed to decide when to terminate a CCBR dialogue. The example
ataset that we use to illustrate the approach is the contact lenses
ataset [40,41]. This small dataset contains only 24 cases and is
ased on a simplified version of the real-world problem of selecting

 suitable type of contact lenses for an adult spectacle wearer. The
ttributes in the dataset, all of which have nominal values, are:
ge, spectacle prescription, astigmatism, and tear production rate.
he classes to be distinguished, in order of their frequency in the
ataset, are no contact lenses (63%), soft contact lenses (21%), and
ard contact lenses (17%).

.1. Dataset structure

Our approach to CCBR in iNN(k) assumes that the same
ttributes are used to describe each case in the dataset (or case

ase), and that each class is represented by several cases in the
ataset. While this means that the dataset should be neither hetero-
eneous nor irreducible, there may  be missing values in the dataset.
ur current approach to feature selection in the algorithm also
in Medicine 52 (2011) 59– 66

requires all attributes in the dataset to be nominal/discrete with
limited numbers of values. We  denote by A the set of attributes
used to describe each case in the dataset. For each a ∈ A, we  denote
by domain(a) the set of all values of a in the dataset. A case C con-
sists of a case identifier, a problem description, and a solution. The
problem description is a list of features a = v, one for each a ∈ A, such
that v ∈ domain(a) ∪ {unknown}. For each a ∈ A, we denote by �a(C)
the value of a in C. The solution for the problem represented by C,
which we  denote by class(C), is a diagnosis or other class label.

An important role in iNN(k) is played by the notion of the sup-
porting cases of a given class.

Definition 1. A case C supports a given class G if class(C) = G.

2.2. Query elicitation and structure

In iNN(k), a description of the problem to be solved is called
a query. An initially empty query is incrementally extended in a
CCBR dialogue by asking the user questions that are most use-
ful for solving the problem according to the criteria described
later in this section. At each stage of a CCBR dialogue, the user
is asked for the value of a selected attribute (e.g., tear pro-
duction rate in the contact lenses dataset). If the user answers
unknown to any question, then the dialogue moves on to the
next most useful question. A non-empty query is represented as
a list of problem features Q = {a1 = v1,. . .,  an = vn}, where n ≤ |A| and
vi ∈ domain(ai) ∪ {unknown} for 1 ≤ i ≤ n. We  denote by AQ the set
of attributes in the current query Q. For each a ∈ AQ, we denote by
�a(Q) the value of a in Q.

2.3. Similarity measure

In contrast to CBR approaches to similarity assessment that
assign varying importance weights to case attributes [3],  all the
attributes in a given query are equally weighted in our approach to
CCBR. For any case C and non-empty query Q, we define the overall
similarity between C and Q as:

Sim(C, Q ) =
∑

a ∈ AQ
sima(C, Q )

|A| (1)

where for each a ∈ AQ, sima(C, Q) is a measure of the similarity
between the attribute’s value in the case and its value in the query
defined as:

sima(C, Q ) = 1 if �a(Q ) /= unknown and �a(C) = �a(Q ) (2)

and

sima(C, Q ) = 0 otherwise (3)

Definition 2. For an empty query Q, we  define Sim(C, Q) = 0 for
every case C.

2.4. The iNN(k) retrieval set

As in other CCBR algorithms, the set of most similar cases is
continually updated in iNN(k) as the user’s query (i.e., problem
description) is elicited. For k ≥ 1, we refer to the set of most similar
cases constructed by iNN(k) in each cycle of a CCBR dialogue as the
iNN(k) retrieval set. The iNN(k) retrieval set is used to identify the
target class that guides the selection of features that are most useful
for solving a given problem. It is also used to monitor the progress

of a CCBR dialogue and decide when to terminate the dialogue. In
contrast to CCBR approaches in which a similarity threshold is used
to identify the most similar cases, the iNN(k) retrieval set includes
any case for which the number of more similar cases is less than k.
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More formally, we define the iNN(k) retrieval set for a given
uery Q to be:

(Q, iNN(k)) = {C : |more-similar(C, Q )| < k} (4)

here

ore-similar(C, Q ) = {C∗ : Sim(C∗, Q ) > Sim(C, Q )} (5)

For example, 12 cases in the contact lenses dataset are equally
imilar (0.25) to the query Q = {tear production rate = normal}, and
ll other cases in the dataset have zero similarity. Thus even the
NN(k) retrieval set for k = 1 must include the 12 cases that are
qually good candidates for retrieval. A similar strategy used in
ome versions of k-NN is to include all ties for the kth most similar
ase in the set of cases on which the solution is based [42–45].

heorem 1. For the empty query Q at the start of a CCBR dialogue,
(Q, iNN(k)) is the set of all cases in the case base.

roof. It can be seen from Definition 2 that more-similar(C, Q) is
mpty for every case C, and so r(Q, iNN(k)) is the set of all cases in
he case base as required. �

Dynamic updating of the retrieval set as a problem description is
ncrementally extended is a feature that iNN(k) shares with the lazy
or demand-driven) approach to inductive retrieval used in many
CBR algorithms [18]. However, in contrast to inductive retrieval
ased on exact matching, the elimination of a case from the iNN(k)
etrieval set does not mean (in general) that it can never be read-
itted to the retrieval set as the problem description is further

xtended.

.5. Selecting a target class

Feature selection in iNN(k) is driven by the goal of confirming
 target class. At each stage of a CCBR dialogue, the target class
s the class G* that is supported by most cases in r(Q, iNN(k)), the
NN(k) retrieval set for the current query Q. If there is a tie for the
lass supported by most cases in the iNN(k) retrieval set, then the
ied class that is supported by most cases in the case base as a
hole is selected as the target class. We  know from Theorem 1 that

he iNN(k) retrieval set for the empty query at the start of a CCBR
ialogue is the set of all cases in the case base. So the target class is

nitially the class that is supported by most cases in the case base.
owever, the target class may  change at any stage of the dialogue
epending on the class distribution in the iNN(k) retrieval set.

.6. Measure of discriminating power

In iNN(k), the selection of features (and thus questions) that are
ost useful for confirming a target class is based on a simple mea-

ure of a feature’s discriminating power in favor of the target class.
or any class G, attribute a, and v ∈ domain(a), the discriminating
ower of a = v in favor of G is:

(a = v, G) = p(a = v|G) − p(a = v|¬G)
|domain(a)| (6)

In the contact lenses dataset, for example, the feature astigma-
ism = yes occurs in 8 of the 15 cases that support no contact lenses,
nd in 4 of the 9 cases that support soft or hard contact lenses. As
stigmatism has two values (yes, no) in the dataset, the discrim-
nating power of astigmatism = yes in favor of no contact lenses
s:

(astigmatism = yes, no contact lenses) = 1 ×
(

8 − 4
)
= 0.04
2 15 9
(7)

owever, the feature with most discriminating power (0.40) in
avor of no contact lenses is tear production rate = reduced.
n Medicine 52 (2011) 59– 66 61

In Theorems 2 and 3, we identify some basic properties of the
measure of discriminating power used in iNN(k).

Theorem 2. For any class G, attribute a, and v ∈ domain(a),
−0.5 ≤ d(a = v, G) ≤ 0.5.

Proof. Since 0 ≤ p(a = v|G) ≤ 1, 0 ≤ p(a = v | ¬G) ≤ 1, and
|domain(a)| ≥ 2, it follows that d(a = v, G) ≤ (1 − 0)/2 = 0.5 and
d(a = v, G) ≥ (0 − 1)/2 = −0.5 as required. �

Theorem 3. For any class G and attribute a with values v1,. . .,vr,∑r
1d(a = vi, G) = 0.

Proof.

r∑
1

d(a = vi.G)  =
r∑
1

p(a = vi|G) − p(a = vi|¬G)
r

= 1
r
×
(

r∑
1

p(a = vi|G) −
r∑
1

p(a = vi|¬G)

)
= 0

�

Corollary 1. For any class G and binary attribute a with values v1
and v2, d(a, v1, G) = −1 × d(a, v2, G).

2.7. Local and global feature selection

The integer k ≥ 1 used to construct the retrieval set is one impor-
tant parameter in iNN(k). Another is whether local or global feature
selection is used in the algorithm. In local feature selection, only
features that appear in one or more cases in the iNN(k) retrieval
set that support the target class are considered for selection. The
assessment of a feature’s discriminating power is also local (i.e.,
based only on cases in the iNN(k) retrieval set). In global feature
selection, any feature that appears in at least one case that sup-
ports the target class, whether or not the supporting case is in the
iNN(k) retrieval set, may  be selected. Also in contrast to local fea-
ture selection, the assessment of a feature’s discriminating power
is based on all cases in the case base.

We  will refer to the local and global versions of iNN(k), when
necessary to distinguish between them, as iNN(k)-L and iNN(k)-G
respectively. In Section 4, we  present empirical results which show
that the optimal choice of parameters in the algorithm depends on
the dataset, for example with iNN(2)-L giving the best performance
on the contact lenses dataset in our experiments.

2.8. Deciding when to stop asking questions

At each stage of a CCBR dialogue in iNN(k), the user is asked for
the value of a*, where a* = v* is the feature selected by the algorithm
as most useful for confirming the target class G*. Typically, a CCBR
dialogue continues until all cases in the iNN(k) retrieval set have
the same class label G. At this point, G is selected as the solution to
the current problem, and the dialogue ends with the solution being
presented to the user.

Alternatively, the dialogue may  reach a stage where all possible
questions have been asked and there are still cases with different
class labels in the iNN(k) retrieval set. In this situation, the solution
presented to the user is the class supported by most cases in the
iNN(1) retrieval set, whether or not k = 1. If there is a tie for the class
supported by most cases in the iNN(1) retrieval set, then the tied
class that is supported by most cases in the case base as a whole
is selected as the solution. It is also possible, though unlikely, for a

point in the dialogue to be reached where a most useful question
cannot be identified by iNN(k). In iNN(k)-L, for example, this occurs
when all cases in the iNN(k) retrieval set that support the target
class have missing values for all remaining attributes. When this
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appens, the solution is again the class supported by most cases in
he iNN(1) retrieval set.

.9. Overview of iNN(k)-L

Algorithm 1 is an informal description of iNN(k)-L, the version of
NN(k) that we use to demonstrate our approach to CCBR in Section
. Conditions for termination of the CCBR dialogue are tested in
ines 5, 7, and 11 of the algorithm. The class G* supported by most
ases in the iNN(k) retrieval set is selected as the target class in Line
0. The feature a* = v* with most discriminating power in favor of G*

s selected in Lines 15–18. As noted in Section 2.7,  the assessment
f discriminating power in iNN(k)-L is based only on cases in the
urrent retrieval set. The user is asked for the value of a* in Line
9. Finally, the user’s answer is used to extend the current query in
ine 20 before the CCBR cycle is repeated.

lgorithm 1. iNN(k)-L
Input: An integer k ≥ 1 and a case base with attributes A
Output: A solution class S

1 Q ← {}
2 S ← undecided
3 while S = undecided do
4 begin
5  if all cases in r(Q, iNN(k)) have the same class label G
6  then S ← G
7  else if AQ = A
8 then S ← class supported by most cases in r(Q, iNN(1))
9  else begin
10 G* ← class supported by most cases in r(Q, iNN(k));
11 if all cases in r(Q, iNN(k)) that support G* have missing values for
12  all a ∈ A − AQ

13 then S ← class supported by most cases in r(Q, iNN(1))
14  else begin
15 select the feature a* = v* with most discriminating power
16  in favor of G* over all features a = v  such that a ∈ A − AQ

17 and �a(C) = v for at least one C ∈ r(Q, iNN(k)) such that
18  class(C) = G*;
19 v ← askuser(a*);
20 Q ← Q ∪ {a* = v}
21 end
22 end
23 end
24 return S

. CBR-Confirm

CBR-Confirm is a CCBR system for classification and diagno-
is tasks based on iNN(k). As described in Section 2, an initially
mpty query (i.e., problem description) is incrementally extended
n iNN(k) by asking the user questions selected with the goal of
onfirming a target class, and the CCBR dialogue continues until
he target class is confirmed or another solution is reached. In this
ection, a brief discussion of our approach to explanation in CBR-
onfirm is followed by an example dialogue based on the contact

enses dataset [40,41] in which iNN(k) is used with k = 1 and local
eature selection (Algorithm 1).

.1. Explanation in CBR-Confirm

Before answering any question in CBR-Confirm, the user can ask
he system to explain why  the question is relevant. As described
n Section 2, feature selection in iNN(k) is informed by a measure
f discriminating power in favor of the target class. However, CBR-
onfirm does not attempt to explain the relevance of a selected
eature a* = v* in terms of its discriminating power, as the meaning

f this measure may  not be apparent to the user. Instead, it explains
he relevance of a selected feature (as far as possible) by “looking
head” one step to determine its effects on the class distribution
n the iNN(k) retrieval set. For example, if G* is the target class, Q
in Medicine 52 (2011) 59– 66

is the current query, and all cases in the iNN(k) retrieval set for
Q ∪ {a* = v*} support G*, then the effect of a* = v* will be to confirm
the target class.

Alternatively, the effect of a selected feature may be to elim-
inate all cases that support a competing class G from the iNN(k)
retrieval set. In contrast to inductive retrieval approaches based on
exact matching, this does not mean that such cases can never be
readmitted to the iNN(k) retrieval set as the user’s query is fur-
ther extended. However, it can be explained to the user that the
selected feature, if present, will provide evidence against the com-
peting class. If a selected feature has neither of these effects, then
CBR-Confirm’s explanation of its relevance is simply that it may help
to confirm the target class.

At each stage of a CCBR dialogue, CBR-Confirm also displays a
graph showing the percentage of cases in the iNN(k) retrieval set
that support each class. This provides a visualization of the reason-
ing process that enables the user to see immediately the effects of a
reported finding on the class distribution in the iNN(k) retrieval set.
Changes in the target class that the system is attempting to confirm
(i.e., the class currently supported by most cases in the retrieval set)
are also immediately visible to the user. A similar approach to visu-
alization of the reasoning process is used in CBR Strategist [7],  a
CCBR system based on inductive retrieval.

At the end of a CCBR dialogue, CBR-Confirm displays the class
G it has selected (based on the criteria described in Section 2) as
the solution to the problem described by the user. The system also
explains its conclusion by showing the user the most similar case
that supports G. If two  or more cases that support G are equally
similar to the problem described by the user (and more similar
than any other supporting case) then the first such case in the case
base is presented as the solution case. Also with the aim of increas-
ing transparency, features that match the problem described in the
user’s query are highlighted in the solution case.

3.2. Example dialogue in CBR-Confirm

Table 1 shows the questions asked, and the user’s answers, in a
CCBR dialogue in CBR-Confirm based on the contact lenses dataset
[40,41]. Feature selection is based on iNN(1)-L, and the target class
in each cycle of the example dialogue is shown. The table also shows
the explanation provided by CBR-Confirm, if requested by the user,
in each cycle of the CCBR dialogue. (As the task of contact lenses
selection is highly simplified in the dataset, the example dialogue
should not be regarded as a realistic example of decision making in
the domain.)

At the start of the example dialogue, CBR-Confirm selects the
majority class in the dataset (no contact lenses) as the target class.
The feature with most discriminating power in favor of the target
class (Section 2.6) is tear production rate = reduced, and so CBR-
Confirm asks the user for the tear production rate. In light of the
user’s answer (tear production rate = normal), the class now sup-
ported by most cases in the iNN(1) retrieval set is soft contact
lenses. CBR-Confirm therefore changes the target class to soft con-
tact lenses, and identifies astigmatism = no as the feature with most
discriminating power in favor of the new target class. There are no
further changes in the target class as the dialogue continues, and
soft contact lenses is finally confirmed as the solution even though
the spectacle prescription is unknown to the user in the third cycle.

At the end of the example CCBR dialogue, there are two cases
in the iNN(1) retrieval set, namely Cases 2 and 6. Both of these
cases have the same solution, and they are equally similar (0.75) to

the final query Q = {tear production rate = normal, astigmatism = no,
spectacle prescription = unknown, age = young}.  The first of the two
most similar cases is thus presented to the user as the solution case.
The solution case (Case 2) is shown in Table 2. Matching features in
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Table  1
Questions asked by CBR-Confirm, and the user’s answers, in a CCBR dialogue based on the contact lenses dataset with question selection guided by iNN(1)-L. The target class
in  each cycle of the CCBR dialogue is also shown, together with the explanations provided by CBR-Confirm if requested by the user.

Cycle no. Target class Question Explanation User’s answer

1 No contact lenses Tear production rate? If tear production rate = reduced this will confirm no contact lenses Normal
ism = 
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2 Soft contact lenses Astigmatism? If astigmat
3  Soft contact lenses Spectacle prescription? If spectacle
4 Soft contact lenses Age? If age = you

he solution case are indicated by a plus sign (+), and are similarly
ighlighted in CBR-Confirm.

. Experiments

In this section, we evaluate the performance of iNN(k) on a
election of datasets related to medicine and health care. The per-
ormance measures of interest in the evaluation are classification
ccuracy and problem-solving efficiency as measured by the aver-
ge number of questions required to reach a solution. We  expect to
nd that the algorithm’s accuracy and efficiency on a given dataset
epends on the value of k and also on whether local or global feature
election (Section 2.7) is used in the algorithm.

.1. Selected datasets

The datasets used in our experiments (all of which are available
rom the UCI machine learning repository [41]) are described in
able 3. All attributes in the selected datasets are nominal or dis-
rete, and there are missing values only in the breast cancer and
rimary tumor datasets. The number of attributes shown for each
ataset does not include the class attribute. The SPECT heart dataset
46] includes both the training and testing data provided in the UCI
epository.

.2. Experimental methodology

Leave-one-out cross validation [47] is used to evaluate each
lgorithm on the selected datasets. For this purpose, each case is
emporarily removed from the dataset and the problem features
n the left-out case are used to provide the description of a prob-
em to be solved by a CCBR system based on iNN(k). During the
roblem-solving process, features in the left-out case are revealed
y a simulated user in answer to questions selected by the CCBR
ystem. When asked for an attribute value that is missing in the left-
ut case, the simulated user answers unknown. At the end of each
ialogue, the number of questions asked by the system is recorded
s well as whether or not the solution is correct (i.e., the same as in
he left-out case). The problem description from the left-out case
s also presented to a basic k-NN classifier in which ties for the kth

ost similar case are broken by selecting the tied cases that occur
rst in the dataset.

.3. Classification accuracy

Table 4 shows the accuracy of k-NN for k = 1, 3, and 5 and iNN(k)-
/G for k = 1, 2, and 3 on each of the selected datasets. The best

ccuracy results are shown in bold for each dataset. Maximum lev-
ls of accuracy in iNN(k) can be seen to exceed those achieved
y k-NN on all datasets except primary tumor. For example, the
ighest accuracy on breast cancer (75.2%) was achieved by iNN(2)-

able 2
olution case presented to the user at the end of the example CCBR dialogue in CBR-Confi

Age Spectacle prescription Astig

Case 2: Young (+) myope No (
no this will be evidence against hard contact lenses No
ription = hypermetrope this will confirm soft contact lenses Unknown

is will confirm soft contact lenses Young

G  and iNN(3)-G. The highest levels of accuracy on lymphography
(86.5%) and SPECT heart (84.3%) were also achieved by iNN(2)-G,
while accuracy on contact lenses was  highest (83.3%) in iNN(1)-
L and iNN(2)-L. The best accuracy on primary tumor (41.3%) was
achieved by k-NN with k = 5.

The results support our hypothesis that the accuracy of iNN(k)
on a given dataset depends on the value of k and on whether local
or global feature selection is used in the algorithm. It is also worth
noting that accuracy does not always increase as k increases in
iNN(k). In iNN(k)-G, for example, accuracy can be seen to decrease
or remain the same for all datasets as k increases from 2 to 3.

4.4. Dialogue efficiency

Average lengths of iNN(k) dialogues on the selected datasets
are shown in Table 5. The number of attributes in each dataset (i.e.,
the maximum possible length of a CCBR dialogue) is also shown in
the table. The results support our hypothesis that the efficiency of
iNN(k) on a given dataset depends on the value of k, and on whether
local or global feature selection is used in the algorithm. They also
reveal some interesting patterns in the algorithm’s performance
in terms of dialogue efficiency. For example, the average length of
CCBR dialogues in iNN(k)-L/G can be seen to increase or remain
unchanged for all five datasets as k increases from 1 to 3. There is
also a clear tendency for average dialogue length to increase from
iNN(k)-L to iNN(k)-G for k = 1, 2, and 3.

The efficiency of CCBR dialogues in iNN(k) is most apparent
in the results for the two  datasets with the largest numbers of
attributes, namely lymphography (18) and SPECT heart (22). In lym-
phography, for example, less than 50% of features in a complete
problem description are required on average to reach a solution in
all six versions of iNN(k). However, lower levels of dialogue effi-
ciency were achieved on some of the other datasets, for example
with average dialogue lengths for breast cancer ranging from 70%
to 91% of the number of features (9) in a complete problem descrip-
tion.

4.5. Accuracy vs. efficiency

A trade-off between accuracy and efficiency can be seen, for
example, in the iNN(k)-G results for lymphography. An increase
in accuracy from 79.1% in iNN(1)-G to 86.5% in iNN(2)-G (Table 4)
is gained at the expense of an increase in average dialogue length
from 5.5 to 7.5 (Table 5). Nevertheless, the average number of fea-
tures (7.5) required for 86.5% accuracy in iNN(2)-G is much smaller
than the number of features (18) in a complete problem descrip-
tion. Average dialogue length required for maximum accuracy in

iNN(k) ranges from 42% to 84% of the numbers of attributes in the
five datasets, with an overall average of 62%.

Among the six versions of iNN(k) evaluated in our experiments,
iNN(2)-G was  most effective in addressing the trade-off between

rm.

matism Tear production rate Class

+) Normal (+) Soft contact lenses
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Table  3
Datasets used in the experiments.

No. of attributes No. of cases No. of classes Missing values

Contact lenses 4 24 3 No
Breast cancer 9 286 2 Yes
Primary tumor 17 339 21 Yes
Lymphography 18 148 4 No
SPECT heart 22 267 2 No

Table 4
Accuracy of k-NN and iNN(k)-L/G on the selected datasets. The best accuracy results for each dataset are shown in bold.

Dataset k-NN iNN(k)-L iNN(k)-G

k = 1 k = 3 k = 5 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

Contact lenses 75.0 62.5 70.8 83.3 83.3 70.8 70.8 70.8 70.8
Breast cancer 72.7 73.4 73.4 70.3 73.1 74.5 71.7 75.2 75.2
Primary tumor 33.0 36.6 41.3 34.8 40.4 40.4 36.6 39.5 39.5
Lymphography 78.4 79.7 81.8 74.3 79.1 83.1 79.1 86.5 85.8
SPECT  heart 73.0 74.9 78.7 77.5 82.4 82.0 79.0 84.3 83.5

Table 5
Average lengths of iNN(k) dialogues (i.e., average numbers of questions asked) on the selected datasets. The number of attributes in each dataset is also shown.

Dataset No. of attributes iNN(k)-L iNN(k)-G

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

Contact lenses 4 2.1 2.1 2.4 2.1 2.3 2.4
Breast cancer 9 6.3 6.9 7.5 6.8 7.6 8.2
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Primary tumor 17 9.9 

Lymphography 18 5.0 

SPECT heart 22 8.1 

ccuracy and efficiency on breast cancer, lymphography, and SPECT
eart, while iNN(2)-L gave the best iNN(k) results on contact lenses
nd primary tumor. We  now look more closely at the characteristics
f CCBR dialogues in the versions of iNN(k) that gave the best results
n the respective datasets. Fig. 1 shows the minimum, average, and
aximum lengths of CCBR dialogues in iNN(2)-G on breast cancer,

ymphography, and SPECT heart, and the corresponding results for
NN(2)-L on contact lenses and primary tumor.

An interesting feature of the results is that the maximum pos-
ible dialogue length (e.g., 18 on lymphography) is reached on all
atasets. This means that in some CCBR dialogues, the simulated
ser was asked to provide a complete description of the problem
or as near a complete description as possible). This applies equally
o the datasets (contact lenses, lymphography, and SPECT heart) in
hich the absence of missing values means that the simulated user

s never forced to answer unknown to any question. On the other

and, minimum dialogue length is less than 5 for all datasets.

Fig. 2 shows the cumulative frequencies, in percentages, of the
engths of CCBR dialogues in iNN(2)-G on breast cancer, lymphog-

ig. 1. Minimum, average, and maximum lengths of CCBR dialogues in iNN(2)-G on brea
rimary tumor.
 14.4 11.6 14.9 15.6
 7.3 5.5 7.5 8.6
 9.8 9.7 11.2 12.3

raphy, and SPECT heart, and the corresponding results for iNN(2)-L
on contact lenses and primary tumor. The results clearly show the
efficiency of iNN(2)-G on lymphography, with at most 5 of the 18
features in a complete problem description being used in more than
50% of CCBR dialogues. A high level of dialogue efficiency can also
be seen in the iNN(2)-G results for SPECT heart, with at most 7 of
the 22 features in a complete problem description being used in
more than 50% of dialogues. However, the steep rise in cumulative
frequency from 21 to 22 questions in SPECT heart shows that more
than 25% of dialogues extend to full length (22) on this dataset. It
can also be seen that CCBR dialogues in iNN(2)-G are much less effi-
cient on the breast cancer dataset, with the simulated user being
asked at least 8 of the 9 possible questions in more than 50% of
dialogues.

In iNN(2)-L, there is a marked contrast in the efficiency of CCBR
dialogues on contact lenses and primary tumor. For example, a solu-

tion is reached after only one question has been asked in 50% of
contact lenses dialogues, while more than 50% of primary tumor
dialogues extend to the maximum length of 17 questions. On the

st cancer, lymphography, and SPECT heart, and in iNN(2)-L on contact lenses and
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Fig. 2. Cumulative frequencies, in percentages, of the lengths of CCBR dialogues
in  iNN(2)-G on breast cancer, lymphography, and SPECT heart, and in iNN(2)-L on
contact lenses and primary tumor.
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ig. 3. Frequencies, in percentages, of the lengths of CCBR dialogues in iNN(2)-G on
he lymphography dataset.

ther hand, at most 8 questions are asked in 25% of primary tumor
ialogues.

Fig. 3 shows the frequencies, in percentages, of the lengths of
CBR dialogues in iNN(2)-G on the lymphography dataset. Again
he results clearly show the efficiency of iNN(2)-G on this dataset,
ith a modal dialogue length of 4 and dialogue lengths of 3, 4, and

 accounting for more than 50% of CCBR dialogues.

. Conclusions

In this paper, we presented and evaluated an approach to CCBR
n medical classification and diagnosis that aims to increase trans-
arency while also providing high levels of accuracy and efficiency.
eature selection in iNN(k), our CCBR algorithm, is driven by the
oal of confirming a target class and informed by a measure of

 feature’s discriminating power in favor of the target class. As
emonstrated in a CCBR system called CBR-Confirm, this enables

 CCBR system to explain the relevance of any question it asks the
ser. We  also presented the results of an empirical study in which

NN(k) was applied to a selection of datasets related to medicine
nd health care from the UCI machine learning repository [41].

The performance of iNN(k) on a given dataset was shown to
epend on the value of k and on whether feature selection is per-
ormed locally or globally in the dataset. We  investigated several
ombinations of these parameters and identified the version of
NN(k), among those studied, that was most effective in address-
ng the trade-off between accuracy and efficiency on each of the
elected datasets. Our results show the ability of iNN(k) to provide
igh levels of accuracy on most of the selected datasets, while often

equiring the user to provide only a small subset of the features in

 complete problem description. For example, only 42% and 51%
n average of the features in a complete problem description were

[

[

n Medicine 52 (2011) 59– 66 65

needed for the maximum levels of accuracy achieved by iNN(k) on
lymphography (86.5%) and SPECT heart (84.3%).

While our analysis of iNN(k) in this paper has focused on its
potential role as an algorithm for CCBR, a non-interactive version of
the algorithm could also be used to guide feature selection with the
aim of increasing accuracy in situations where a problem descrip-
tion is provided in advance, as in traditional CBR approaches to
medical classification and diagnosis. However, a limitation of our
current approach to feature selection in iNN(k) is the requirement
for all attributes in the dataset to be nominal or discrete. In future
research, we aim to address this issue by investigating alternative
approaches to feature selection in iNN(k) for datasets with contin-
uous attributes.
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