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Some domains, such as real-time strategy (RTS) games, pose several challenges to traditional planning and ma-
chine learning techniques. In this article, we present a novel on-line case-based planning architecture that addresses
some of these problems. Our architecture addresses issues of plan acquisition, on-line plan execution, interleaved
planning and execution, and on-line plan adaptation. We also introduce the Darmok system, which implements
this architecture to play WARGUS (an open source clone of the well-known RTS game WARCRAFT II). We present
empirical evaluation of the performance of Darmok and show that it successfully learns to play the WARGUS game.
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1. INTRODUCTION

Computer games have been classified as the “Human-level Al’s Killer Application”
(Laird and van Lent 2000). State-of-the-art computer games re-create real-life environments
with a surprising level of detail. However, even though there have been enormous advances in
computer graphics, animation, and audio for games, most games contain very basic artificial
intelligence (Al) techniques. There are several reasons for this: first, there is a disconnect
between the goals of academic Al and game Al (where academic Al focuses in achieving
stronger Al and game Al focuses in achieving Al that is more fun to play with). Other
reasons include the low percentage of CPU allocated for the Al or the reluctance toward
Al techniques from game designers (because they lose control of the behavior of the game).
However, there is increasing interest in the game industry for some Al techniques such
as hierarchical planning, nominated one of the top five games Al trends for 2008. The 4/
Game Programming Wisdom series (Rabin 2002, 2004) provides a good overview of current
state-of-the-art Al techniques used in the game industry.

Al techniques have been successfully applied to several computer games such as chess,
backgammon, or checkers. However, traditional Al techniques fail to perform well in most
current commercial computer games because these games have vast search spaces in which
the Al has to make decisions in real time, rendering traditional search-based techniques inap-
plicable. Real-time strategy (RTS) games are one good example of such games. RTS games
have several characteristics that make the application of traditional planning approaches
difficult: they have huge decision spaces (Aha, Molineaux, and Ponsen 2005), they are ad-
versarial domains, they are nondeterministic, non-fully observable, and finally it is difficult to
define postconditions for operators (actions do not always succeed, or take different amount
of time, and have complex interactions that are difficult to model using typical planning
representation formalisms). Section 4 presents a more detailed explanation of the difficulties
of RTS games.

Machine learning cannot directly handle RTS games either, because the huge state
space of RTS games makes learning state-action mappings unfeasible. However, several
successful approaches exist that can learn small subproblems inside an RTS game (optimal
resource harvesting, optimal city location, etc.). A lot of knowledge engineering is required
to provide the system with a compact representation of the state space. However, even with
such knowledge, the problem is still not trivial. To apply machine learning techniques, we
need a method to classify actions as correct or incorrect to build training examples. This is
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not easy in a complex game, because a player might execute hundreds of actions over the
course of a game, and it is hard to determine which ones were “correct” and which ones were
“incorrect”— the well-known blame assignment problem.

Case-based reasoning (CBR), and in particular, case-based planning (CBP), is a promis-
ing family of techniques that combine aspects of planning with aspects of machine learning.
CBP techniques (Spalazzi 2001) work by reusing previous stored plans for new situations
instead of planning from scratch. Thus, CBP combines both planning and learning. However,
several issues also arise when trying to deal with RTS games using CBP. First, CBP systems
require a library of plans in order to plan. Second, RTS games require real-time interaction,
and thus planning must be interleaved with execution, monitoring the plan execution and
informing the planner of possible failures. Third, CBP techniques require plan adaptation
(sinceitis very unlikely that a plan will fit the solution exactly) and, due to the time constraints
imposed by RTS games, such adaptation techniques must be efficient.

In this article we propose a novel on-line case-based planning (OLCBP) architecture able
to deal with the complexity of RTS domains and propose an extension of the traditional CBR
cycle, which we call the OLCBP cycle. We explain in detail the issues that arise when trying
to deal with domains such as RTS games and propose solutions to these issues in our OLCBP
framework. In particular, we will present solutions to the case-acquisition problem in CBP
by analyzing expert demonstrations and extracting cases from them. We will introduce a new
CBP technique with interleaved planning and execution. We will also introduce a new CBP
adaptation technique that is domain independent and efficient. Finally, we will introduce
the idea of delayed adaptation. To demonstrate the feasibility of the proposed techniques,
we present the Darmok' system, a system that implements the proposed OLCBP cycle to
play WARGUS. We evaluate the Darmok system in a collection of maps, and show that the
proposed OLCBP architecture allows Darmok to successfully learn to play WARGUS.

The remainder of this article is organized as follows. Section 2 presents the previous
work on CBR, planning, and CBP. Section 3 analyzes the CBR cycle and presents a new
OLCBP cycle. Then, Section 4 introduces the issues that RTS games involve. Sections 5-10
present the Darmok system and how all the components of the OLCBP architecture are
instantiated on it. Finally, Section 11 presents an empirical evaluation of Darmok. The article
closes with conclusions and future work.

2. BACKGROUND

In this section, we introduce some background in CBR, CBP, real-time domains, and
computer games.

2.1. Case-Based Reasoning and Planning Approaches

CBR (Kolodner 1993; Aamodt and Plaza 1994) is a problem-solving methodology based
on reutilizing specific knowledge of previously experienced and concrete problem situations
(cases). The activity of a CBR system can be summarized in the CBR cycle (Aamodt and
Plaza 1994), as shown in Figure 1. The CBR cycle consists of four stages: retrieve, reuse,
revise, and retain. In the retrieve stage, the system selects a subset of cases from the case
base that are relevant to the current problem. The reuse stage adapts the solution of the cases

! Darmok is an episode of Star Trek: The Next Generation in which a race called the Children of Tamar makes appearance.
This race uses a metaphorical language that is reminiscent of CBR processes.
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FIGURE 1. The traditional case-based reasoning cycle.

selected in the retrieve stage to the current problem. In the revise stage, the obtained solution
is verified (either by testing it in the real world or by examination by an expert), which
provides feedback about the correctness of the predicted solution. Finally, in the retain stage,
the system decides whether to store the new solved case into the case base.

CBP is planning as remembering (Hammond 1990), and involves reusing previous plans
and adapting them to suit new situations. There are several motivations for CBP techniques
(Spalazzi 2001): first, it inherits the psychological plausibility from CBR, and second, they
have the potential to increase the efficiency with respect to generative planners. Although,
under certain conditions (Munoz-Avila and Cox 2008), reusing plans has the same or even
higher worst-case complexity than planning from scratch (Nebel and Koehler 1992), CBP
can exploit regularities in the problems being solved, and thus potentially greatly increase
the efficiency.

A large number of systems and approaches for CBP have been presented in the past (see
Spalazzi 2001 for a complete overview). One of the first CBP systems is CHEF (Hammond
1990), which works on the domain of Szechwan cooking, being able to build new recipes
based on user’s request for dishes with particular ingredients and tastes. CHEF makes use of
memory whenever possible. It contains a memory of past failures to warn of problems and
also a memory of successful plans from which to retrieve plans. Both memories are updated
after each planning episode, whether successful or failed. One of the novel capabilities of
CHEF with respect to classical planning systems is its ability to learn. Each time CHEF
experiences a planning failure, it means that understanding has broken down and it has to be
fixed. Thus, planning failures tell the system when it needs to learn. CHEF performs three
kinds of learning: plan learning (new plans), expectation learning (model of the world), and
critic learning (plan fixes). A key feature in CBP is how to perform plan adaptation, CHEF
performs this task by a set of domain-specific rules called TOPs.

Prodigy/analogy (Veloso et al. 1995) by Veloso et al. is an architecture that integrates
planning and learning. Specifically, the main difference between prodigy/analogy and other
CBP systems is that instead of reusing previous plans, it reuses previous planning decisions.
Prodigy/analogy stores the reasoning trace of planning episodes, including information of
which decisions were taken while planning and why other choices for the decision were
not considered. Then, when planning for a new problem, prodigy/analogy replays the stored
traces. This transforms the planner, from a module that performs expensive search through
the space of alternatives into a module that tests the validity of choices proposed by the past
experience and follows equivalent search directions.
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CHEF and prodigy/analogy illustrate the two approaches to plan adaptation (fransfor-
mational in the case of CHEF and derivational in the case of prodigy/analogy) typically
used in the CBR community. For an overview of case-based plan adaptation techniques see
Munoz-Avila and Cox (2008). Moreover, there has also been a considerable amount of work
on this topic coming from the planning community.

Domain-independent planning has been shown to be intractable (PSPACE-complete
when the set of operators is known in advance, and worse if they are given as the input of
the planning problem (Erol, Nau, and Subrahmanian 1991), and thus, approaches to improve
computational cost in planning in general are constantly pursued. One such approach is to
reuse previous plans instead of planning from scratch. PRIAR (Kambhampati and Hendler
1992) is a planner system designed to support plan reuse. PRIAR internally uses NONLIN
(Tate 1977), and works by annotating generated plans with a validation structure that contains
an explanation of the internal causal dependencies. The focus of PRIAR is only on plan
reuse, not on plan retrieval. However, the authors propose a heuristic that estimates the cost
of adaptation as a good basis for plan retrieval (see the work of Cesta and Romano 1992
for another proposal for case retrieval using PRIAR). Kambhampati and Hendler showed
speedups up to 79% in the blocks world domain using PRIAR compared to planning from
scratch.

Finally, Fasciano presented the MAYOR system (Fasciano 1996) for playing the popular
Sim City game, consisting of a collection of advocates that are responsible for different tasks
in the domain. Some of those advocates are case-based planners. One of the most interesting
aspects of MAYOR is the way it learns from failures. MAYOR has a concept net of all the
factors in the game (e.g., money, crime, and pollution) and how they are related. Each plan
in the plan library has some expectations on those factors (e.g., “decreased crime”). If the
expectations are not met, the concept net is used to locate “controllable factors” that could
be manipulated to satisfy the expectation failure. These fixes are stored with the plan in the
plan library, and the next time the plan is retrieved, the system will check to see whether any
of the fixes stored with the plan have to be executed.

2.2. CBR and Planning in Real-Time Domains

Traditionally, CBR or planning techniques have been applied to “static” domains, that
is, domains in which the system has unlimited amount of time to solve each problem, and
during this time, the “world state” does not change. However, most real-world domains are
dynamic. Systems have time constraints, and must deal with a dynamic environment that
changes over time. There have been several approaches both in the CBR community and
in the planning community to deal with this issue. Particularly interesting is the relation
between the CBP research coming from the planning community and the on-line planning
research because, in both areas, plan adaptation and reuse is a key capability.

A common application area is robotics, where typically fast and reactive techniques such
as Brooks’s subsumption architecture (Brooks 1985), are needed to successfully control the
robot. A good example of CBR approach to this domain is the continuous CBR (CCBR)
approach by Ram and Santamaria (1997) implemented in the SINS system. CCBR is char-
acterized by implementing continuous representations of the domain, having continuous
performance, and continuous learning. SINS controls the parameters of a navigation system
for a robot by continuously executing the CBR cycle to update such parameters. The cases
in SINS store sequences of observed inputs associated with observed outputs after executing
specific actions (parameter configurations). SINS uses a reinforcement-learning mechanism
to update the content of cases in the case base at each cycle by matching the current situation
with previous cases and analyzing whether cases properly predicted the current situation or
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not. The CCBR approach handles real-time domains by having a very quick CBR cycle,
continuously executed and monitoring the world to set the appropriate control parameters
for a robot’s navigation system.

In the planning community, the concept of a reactive planner was developed to deal
with dynamic domains. A reactive planner is a system that builds or changes its plans in
response to the shifting situations at execution time. Reactive action packages (RAPs) were
presented by Firby (1987) as a model of reactive planning. RAPs follow three principles:
(a) all decisions are taken based only in the current world state, (b) when a RAP finishes it
guarantees to have satisfied its goal, and (c) should a RAP fail it is because it has exhausted
every possible avenue of attack for the problem. A RAP consists of three things: a goal
success check, a validity check (whether a RAP is applicable or not), and a set of possible
task nets to achieve the goal. Firby presented an execution module that could plan to achieve
goals reactively using RAPs by hierarchically combining them (the task nets of a RAP might
decompose a task into other RAPs or into basic actions).

Related to planning in real-time domains is the relation between planning and execution,
explored by several authors, such as the NASL formalism by McDermott (1978) or the IPEM
architecture by Ambros-Inerson and Steel (1988). Other work on planning and execution
includes the work concerning replanning or plan reuse in the planning community, such as
the PRIAR system (presented in the previous section) or RepairSHOP (Warfield et al. 2007)
that can adapt hierarchical task network (HTN) plans.

In the following section, we discuss how all the ideas introduced about CBP and execution
in real-time domains affect the CBR cycle.

3. ON-LINE CBP: THE CBR CYCLE REVISITED

The CBR cycle, shown in Figure 1, makes two assumptions that are not suited for
strategic real-time domains involving on-line planning. The first assumption is that problem
solving is modeled as a single-shot process, that is, a “single loop” in the CBR cycle solves
a problem. In CBP, solving a problem might involve solving several subproblems, and also
monitoring their execution (potentially having to solve new problems along the way). The
second assumption is that execution and problem solving are decoupled; that is, the CBR
cycle produces a solution, but the solution execution is delegated to some external module.
In strategic real-time domains, executing a problem is part of solving it, specially when the
internal model of the world is not 100% accurate, and ensuring that the execution of the
solution succeeds is an important part of solving problems. For instance, while executing a
solution the system might discover low level details about the world that render the proposed
solution wrong, and thus another solution has to be proposed.

Of the systems presented in the previous section, only five consider execution failures
explicitly in their problem-solving cycle: RAPs, NASL, SINS, CHEE, and MAYOR. Other
systems (such as PRIAR) can handle execution failures by replanning, but in such cases,
the system itself does not incorporate execution failure handling. Using those systems as a
starting point and having the goals of our own Darmok system in mind, we redesigned the
original CBR cycle to incorporate functions needed for real-time strategic domains. Let us
present it in some detail and explain how some of the previously presented systems fit this
new version of the cycle.

Figure 2 presents an extension of the CBR cycle, called the OLCBP (on-line case-based
planning) cycle, with two added processes needed to deal with planning and execution of
solutions in real-time domains, and some other small variations. The two new added processes
are as follows:



ON-LINE CASE-BASED PLANNING 89

Subproblems Problem
J rm Adapted
W Solution
o

Retrieval Adaptation Expansion

Delayed
Adaptation

D Request
[Solution} [ ond }— World
Base

Retention

+<——— Revision «+——— Executon ——M
Case

FIGURE 2. The OLCBP cycle.

Expansion: This process takes the current solution proposed by the system for a problem
(i.e., the current plan) and tries to find open subproblems (subgoals) in it. If there are any,
these subproblems are sent to the retrieve process so that they can be solved. Another
responsibility of the expansion module is to monitor the world state for changes, and
send plans to the adaptation module again in case the world state changes enough so
that plans have to be changed. We call this a delayed adaptation, because adaptation is
delayed and performed at run time with the latest game state. This is an important feature
for systems working in dynamic environments as shown in Ontaiion et al. (2007).
Execution: This process is in charge of executing the current plan and updating its status
according to the result of execution. If a particular step in the plan fails when executed,
and that causes a particular subproblem to fail, then the execution process will update the
current plan to reflect this. When that happens the expansion module will be responsible
to find an alternative plan for such a subproblem.

The flow in the OLCBP cycle is as follows. Problems arrive to the expansion process

that decomposes it into subproblems if need be. Each of these subproblems is sent to the
retrieval process that retrieves relevant cases from the case base. The adaptation process
generates a solution to the subproblems by reusing and adapting the solutions in the retrieved
cases. These solutions are sent back to the expansion process, which incorporates them into
the current solution. At the same time that the expansion process constructs the solution,
the execution process executes the parts of the solution that have been fully expanded. As a
result of execution these solutions are sent to the revision process that verifies the solutions
proposed, based on their outcome in the world, and finally the retention process decides
whether to retain the new experiences.

There are four other refinements with respect to the original CBR cycle:

Problems “enter the cycle” through the expansion process. When a new problem arrives
to the system, this problem is set as the current plan; that is, the current plan consists of
a single open problem. Thus, the first thing the expansion module will do is to send this
problem to the retrieve process.

The CBR cycle is divided in two parts: a first part composed of retrieval and adaptation
(or reuse), and a second part composed of revision and retention. The first part is in
charge of finding solutions to new problems (i.e., it corresponds to the problem-solving
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capability of the CBR cycle), and the second part is responsible for learning from
experience. Revision takes as input the outcome of executing the solutions provided by
the system and revises them to verify they achieve their goals. Revised solutions are
handed to retention that will decide whether to retain new cases, and update any internal
indexes or similarity metrics when required.

3. The new cycle incorporates the world in its design, because it is an important part of any
real-time problem-solving process.

4. Thenew cycle features a new delayed adaptation cycle (notice that there is a loop between
adaptation and expansion). In a domain where the domain changes dynamically, we want
to delay adaptation till the last moment to ensure that plans are adapted with the latest
information. Thus, the expansion component may send back plans to adaptation if the
environment changed too much since the last time the plan was adapted. Moreover,
notice that for real-time domains it is important for adaptation techniques to be efficient.

Figure 3 presents an analysis of the OLCBP cycle. Figure 3(a) shows how the retrieval,
adaptation, revision, and retention boxes in the OLCBP cycle actually correspond to the
original CBR cycle, while the expansion and execution processes compose the on-line
planning and execution cycle. Figure 3(b) shows that the top three processes in the cycle
(retrieval, adaptation, and expansion) provide the problem-solving capabilities to the system,
while the retention plus revision processes provide for the learning capabilities. If we look
carefully at Figure 3(b), we can see that the OLCBP cycle breaks up nicely in three parts:
problem-solving, execution, and learning.

Let us show that the proposed cycle is representative of previous CBP approaches by
analyzing some of them using the proposed cycle. If we consider the CHEF, PRIAR, or
MAYOR systems, they share a common feature: when solving a new planning problem, they
retrieve a single plan and adapt it. Thus, in those systems solving a problem consists of a
“single loop” through the CBR cycle (with a highly computationally expensive adaptation
process in the case of PRIAR or SPA). Moreover, out of those systems only MAYOR
considers execution, thus the CHEF and PRIAR systems do not incorporate any expansion
or execution processes. Another system we might consider is the systematic plan adaptor
(SPA) (Hanks and Weld 1995), which like PRIAR, only considers one plan and does not
consider execution. The multi-plan adaptor (MPA) (Ram and Francis 1996) is an evolution
of SPA that combines pieces of multiple plans. One can think of MPA as a way to allow
SPA to contain an expansion process by merging several cases retrieved with the current
plan. MAYOR, however, incorporates an execution component that monitors the execution
of plans, and provides this information to the revise process that can properly learn from those
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experiences. The TOLTEC system does implement an expansion process, because it executes
the CBR cycle recursively, expanding the plan more and more each time. However, TOLTEC
does not contain an execution process, and thus does not deal with interleaved planning and
execution. Another system to be considered is SINS, which does not contain an expansion
process (because SINS does not perform planning) but does contain an execution process in
the form of the controller (that directly controls the robot) and the constant monitoring of the
environment to learn about the effects of the actions taken in the environment. A completely
different example is prodigy/analogy, where cases are used to remember previous planning
decisions. One could interpret prodigy/analogy as having an expansion process that is a
full planner, which constantly consults the case base to retrieve cases that contain similar
planning situations and are used to constrain the search space of the planner.

The rest of this article presents how this architecture has been implemented for the
particular problem of RTS games in the Darmok system.

4. ON-LINE CASE-BASED PLANNING IN REAL-TIME STRATEGY GAMES

RTS games have several characteristics that make the application of traditional planning
approaches difficult:

e They have huge decision space (i.e., the set of different actions that can be executed in
any given state is huge).

e Huge state space (the combination of the previous bullet and this bullet makes them not
suitable for search-based Al techniques (Buro 2003; Aha et al. 2005).

e They are nondeterministic.

e They are incomplete information games, where the player can only sense the part of the
map he has explored and include unpredictable opponents.

e They are real time. Thus, while the system is deciding which actions to execute, the game
continues executing and the game state changes constantly.

e They are difficult to represent using classical planning formalisms because postconditions
for actions cannot be specified easily.

For example, WARGUS (Figure 4) is a RTS game where each player’s goal is to remain
alive after destroying the rest of the players. Each player has a series of troops and buildings
and gathers resources (gold, wood, and oil) to produce more troops and buildings. Buildings
are required to produce troops, and troops are required to attack the enemy. In addition,
players can also build defensive buildings such as towers (or even use farms as walls to
block the enemy). Therefore, WARGUS involves complex reasoning to determine where,
when, and which buildings and troops to build. A standard playing strategy for a “standard”
map involves building up a resource infrastructure (gold, wood, and oil), developing some
defenses (towers, archers, or footmen), building some attacking units and finally sending
them to attack the enemy. However, standard strategies are not effective against a human
expert in most maps, because humans exploit the unique features of each map to come up
with interesting strategies. For example, the map shown in Figure 4 is a two-player version
of the classic map “nowhere to run nowhere to hide” (NWTR), with a wall of trees that
separates the players. The NWTR map is a popular map played by humans and recognized
by human experts as being highly strategic. Different strategies commonly employed are as
follows:
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FIGURE 4. A screenshot of WARGUS a popular real-time strategy game.

e Building long-range units (such as catapults or ballistae) to attack the other player before
the wall of trees has been destroyed.

e Tunneling early in the game through the wall of trees trying to catch the enemy by
surprise.

e Blocking the wood supplies of the opponent by defending the wall of trees with ranged
units.

e Even an air attack using flying units might be possible if resources are managed properly
and the player manages to block the enemy for the amount of time needed to produce
flying units.

Thus, a standard playing strategy will not work on this map against an expert player.

There are several reasons why traditional search-based planning approaches cannot be
directly applied to domains such as WARGUS. For instance, if we follow the analysis performed
in Aha et al. (2005); the approximate number of different commands that can be issued in
the situation depicted in Figure 4 is about 280,000. Thus, classical adversarial search using
a minimax kind of algorithm is not feasible.

Traditional Stanford Research Institute Problem Solver (STRIPS; Fikes and Nilsson
1971) planning cannot be directly applied because the problem space is too large. HTN
planning (Nau et al. 2005) can handle larger problems than traditional domain-independent
planning algorithms such as STRIPS. However, the benefit comes with the cost of having to
define a certain amount of domain knowledge (in the form of domain-dependent methods that
an HTN planner uses to decompose tasks in subtasks). Moreover, even if those techniques
were applicable, there is still the problem that WARGUS is an adversarial domain and, thus,
adversarial planning techniques should be used instead. Adversarial planning techniques
have the disadvantage that plans must be a tree of contingencies for all possible ordering of
the opponent actions (Blum and Langford 1999), thus greatly increasing the complexity of
the task with respect to traditional planning.

Moreover, even if the computational complexity of the planning algorithms was low
enough to be applied to WARGUS, classical planning algorithms assume deterministic do-
mains. WARGUS (as most RTS games) is nondeterministic. Thus, probabilistic planning
techniques are required. Probabilistic planning techniques are typically based on MDPs
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(Markov decision processes) or POMDPs (partially observable Markov decision processes)
(KAelbling, Littman, and Cassandra 1998). Such techniques provide a firm foundation for
planning in probabilistic domains but have the downside of being computationally expen-
sive. In addition, they model the problem as a synchronous interaction between an agent
and the world, whereas in RTS games such as WARGUS interactions are not synchronous.
Blum and Langford (1999) showed that planning in probabilistic domains can be done with
the same computational complexity as in deterministic domains if we sacrifice optimality.
However, even that is not enough to fully deal with domains such as WARGUS, because
that only states that we will have the same computational complexity as traditional planners
(PSPACE-complete). Finally, in addition to being nondeterministic, RTS games are also
non-fully observable domains. Most games feature the “fog-of-war,” that makes a player
only able to observe the subset of the map where he has units. Planners that support non-fully
observable domains exist (e.g., ZANDER; Majercik and Littman 1999), but their compu-
tational complexity makes them inapplicable to domains such as WARGUS unless we use
some level of abstraction both in the action space and in the state space. The IPEM system
(Ambros-Inerson and Steel 1988) can also deal with incomplete information domains by
means of sensing actions, but has also the problem of being a systematic planner, not suitable
for real-time domains.

Finally, there is a key difference that makes domains such as WARGUS difficult to deal with
using traditional planning techniques. This difference is that unlike in traditional planning
domains, it is very difficult to define the effect of actions in WARGUS using preconditions and
postconditions. In STRIPS-like planning representations, actions specify preconditions and
postconditions, so that a planner can match postconditions with preconditions using forward
or backward chaining and construct a plan. However, in complex domains, such matchings
are not easy to perform. Let us consider the action “attack” in the WARGUS domain. The
only postcondition that we can specify for the attack action is that if a unit is commanded to
attack, it will be in the “attack” mode afterward. However, it is difficult to determine if such
a unit will succeed in its attack, or if it will reach its goal, or how much time will the unit
take to destroy the target. Moreover, if we command several units to attack the same target,
the probability of success increases. If one of the conditions our planner has to satisfy at a
given moment is “destroy a particular enemy unit,” it will not find any operator, or action,
with postconditions “destroy enemy unit,” because such postcondition cannot be specified.

The previous example could be addressed using a probabilistic framework where the
possible different outcomes of an action will be assigned some probabilities (because in
this particular example we might just be interested in predicting whether a particular unit
would be killed, and thus there are only two possible outcomes). However, in general, the
number of possible outcomes is huge, thus none of the existing planning algorithms for
MDPs or nondeterministic planning domains would be able to handle this problem. A more
complicated example can be seen with the resource-gathering actions. If a precondition
states that we need to have “1,000 gold units” to perform a task, there is no operator with a
postcondition of “1,000 gold units,” because the “harvest” operators can only ensure that a
unit will start the resource-gathering process. Moreover, it will be difficult for the planner to
figure out how many units to assign for harvesting to have the resources “on time” (where
“on time” is also difficult to assess, because it depends on what the opponent actions are).

Our OLCBP cycle has been designed with domains such as RTS games in mind. This
approach has been implemented in the Darmok system, designed to play the full WARGUS
game. The only aspect of WARGUS still not covered by Darmok is the “fog-of-war” that has
been disabled in our experiments.
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5. DARMOK

In this section we will present the Darmok system that implements the previously
described architecture for CBP for the WARGUS domain. Darmok is an evolution of the
system reported in Ontafion et al. (2007) that did not consider plan adaptation or learning
from experience.

The Darmok system learns how to play WARGUS by observing how humans play. Darmok
learns what we call plan snippets by observing a human play, and stores those snippets in the
system in the form of cases. Such snippets are then retrieved and composed together to form
plans. A snippet is similar to the concept of a method in HTN (Nau et al. 2005) planning,
where methods are composed to satisfy tasks and subtasks in an HTN, and the whole network
corresponds to an abstract plan; however, as we will see later, there are several key differences
between HTN planning and Darmok. Figure 5 shows an overview of Darmok’s architecture.
Darmok’s execution can be divided in two main stages:

e Learning: During learning Darmok observes a game trace to learn plan snippets that
will be stored in the case base. In our experiments, an expert plays WARGUS to generate
a trace. However, notice that the system could learn from any trace, even from traces of
itself playing, or observing other systems play. Then, the trace is annotated by the expert,
explaining the goals he was pursuing with the actions he took while playing. Using those
annotations, a set of snippets are extracted from the trace and stored as a set of cases.
For each snippet, the situation in which it was executed, the goal it was pursuing, and its
success or failure are stored in the case base.

e Execution: Plan retrieval, plan adaptation, plan expansion, and plan execution are in
charge of maintaining a current plan to win the game. The plan execution module is in
charge of executing the current plan, and update its state (e.g., marking which actions
succeeded or failed). The plan expansion module is in charge of identifying open goals
in the current plan and expand them. To do that it relies on the plan retrieval module,
which given an open goal and the current game state retrieves the most appropriate plan
snippet to fulfill the open goal. Finally, we have the plan adaptation module in charge of
adapting the retrieved snippets according to the current game state.
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One of the key aspects of the system is that it interleaves planning with execution to
deal with dynamic domains. Moreover, unlike traditional HTN planning systems, Darmok
does not perform any search process (which is not suitable for real-time domains); instead,
Darmok uses a combination of case-based plan retrieval with search-free plan adaptation to
find suitable snippets to satisfy each of the goals in the plan. Additionally, another difference
with respect to HTN planning is the type domain knowledge that has to be provided to the
system. HTN planners require a set of tasks, a set of primitive actions, a vocabulary for
conditions (for preconditions and postconditions), and a collection of methods to decompose
each task. Darmok, on the other hand, requires a set of goals, a set of primitive actions,
a vocabulary for conditions, a set of features to represent the game state (used for plan
retrieval), a set of annotated expert traces, and (as we will explain later) a set of rules to
help the system perform precondition—postcondition matching. Notice that the knowledge
required by Darmok defines the characteristics of the domain and not the strategies to use
(corresponding to the methods in HTN planning), which are learned by Darmok.

In the remainder of this article we will present all the modules in detail. Sections 6
presents the language we use to represent plans. Then, Section 7 describes the learning stage,
including the revision process and the case learning process. Section 8 presents the plan
retrieval module. Section 9 describes the plan expansion and plan execution modules and
Section 10 presents the plan adaptation module.

6. PLAN REPRESENTATION IN DARMOK

In this section, we will present the plan representation formalism used by Darmok,
designed to allow a system to learn plans, represent them, and to reason about them and their
intended and actual effects. Our language is based on the classic STRIPS (Fikes and Nilsson
1971) planning language, but further extended to allow more expressiveness and reasoning
and learning capabilities over the language.

The basic constituent piece is the snippet. Snippets are composed of three elements:

e A setof preconditions that must be satisfied before the plan can be executed. For instance,
a snippet can have as preconditions that a particular peasant exists and that a desired
location is empty.

e A set of alive conditions that represent the conditions that must be satisfied during the
execution of the plan for it to have chances of success (also known as “maintenance
goals” in the planning literature). If at some moment during the execution, the alive
conditions are not met, the plan can be stopped, because it will not achieve its intended
goal. For instance, the peasant in charge of building a building must remain alive; if he
is killed, the building will not be built.

e The plan itself, which can contain the following constructs: sequence, parallel, action,
and subgoal, where an action represents the execution of a basic action in the domain
of application (a set of basic actions must be defined for each domain), and a subgoal
means that the execution engine must find another snippet that has to be executed to
satisfy that particular subgoal.

Also, snippets are associated with goals. A goal is arepresentation of the intended goal of
the snippet. For every domain, an ontology of possible goals has to be defined. For instance,
a snippet might have the goal of “having a tower.” Snippets are similar to the concept of
a macro-operator in planning. However, a snippet is a much simpler structure that simply
contains one possible decomposition of a goal, while traditionally a macro-operator is a more
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complicated structure that is able to internally select which is the right decomposition of a
goal in more primitive operators.

Notice that unlike classical planning approaches, postconditions cannot be specified for
snippets, because a snippet is not guaranteed to succeed. Thus, we can only specify the goal a
snippet pursues, that is, its success conditions. It is important to realize the difference between
a postcondition and a success condition. A postcondition is a condition that we can ensure
is going to be true after the execution of a snippet (or an action), while a success condition
is a condition that when satisfied we can consider the snippet (or action) to have completed.
For example, a side effect of an action is a postcondition but not a success condition:
“enemy killed” is a success condition of an attack, but not a postcondition because we
cannot ensure that after the attack is done the enemy would be killed. If the possible effects
of an action could be enumerated, they could be modeled using a probabilistic planning
framework such as MDPs. However, in complex RTS games the list of possible effects of an
action is huge (or even infinite), and thus not representable using such frameworks. Our use
of success conditions instead of postconditions defines an abstraction over the notion of a
nondeterministic action in planning handled by interleaving planning and execution.

Specifically, three things need to be defined for using Darmok in a particular domain:

e A setof basic actions that can be used in the domain. For instance, in WARGUS we define
actions such as move, attack, or build. For uniformity, in Darmok actions are treated as
standard snippets, and thus have a goal, preconditions, and alive conditions (so that the
system can reason about them too).

o A set of sensors that are used to obtain information about the current state of the world,
and are used to specify the preconditions, alive conditions, and goals of snippets. For
instance, in WARGUS we might define sensors such as numberOfTroops, or unitExists. A
sensor might return any of the standard basic data types, such as Boolean or integer.

e A set of goals. Goals can be structured in a specialization hierarchy to specify the
relations among them.

A goal might have parameters, and for each goal a set of success conditions is defined.
For instance, HaveUnits(TOWER) is a valid goal in our gaming domain and it has as success
condition: UnitExists(TOWER). Therefore, the goal definition can be used by the system to
reason about the intended result of a snippet, while the success conditions are used by the
execution engine to verify whether a particular snippet succeeds at run time. In the next
section, we will provide a more in-depth description of how goals are defined in our system.

7. PLAN ACQUISITION

CBP systems require a set of plans in its case base to function. However, there has not
been much emphasis in the previous work on how such a case base can be acquired. We
propose to acquire such cases by analyzing game traces. In Darmok, this is done in two
processes, as shown in Figure 5: trace annotation (revision) and case learning.

The first step in the process consists of the expert providing a demonstration to the system.
In our particular application domain, WARGUS, an expert, simply plays a game (against the
built-in Al or against any other opponent). As a result of that game, we obtain a game trace,
consisting of the set of actions executed during the game. Table 1 shows a fragment of a real
trace from playing a game of WARGUS. As the table shows, each entry contains the particular
cycle in which an action was executed, which player executed the action, and the action itself.
For instance, the first action in the game was executed at cycle 8, where player 1 made his
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TABLE 1. Snippet of a Real Trace Generated After Playing WARGUS

Cycle Player Action Annotation

8 1 Build (2,“pig-farm,” 26, 20) -

137 0 Build (5,“farm,” 4, 22) SetupResourcelnfrastructure (0, 5, 2)
WinGame (0)

638 1 Train (4, “peon”) -

638 1 Build (2, “troll-lumber-mill,” 22, 20) -

798 0 Train (3, “peasant”) SetupResourcelnfrastructure (0, 5, 2)
WinGame (0)

878 1 Train (4, “peon”) -

878 1 Resource (10, 5) -

897 0 Resource (5, 0) SetupResourcelnfrastructure (0, 5, 2)
WinGame (0)

1,118 1 Resource (12, 5) -

1,126 0 Build (11, “farm,” 6, 22) SetupResourcelnfrastructure (0, 5, 2)
WinGame (0)

unit number 2 build a “pig-farm” at the (26, 20) coordinates. As Figure 5 shows, the next
step is to annotate the trace (revision). Annotation consists of associating which goals were
being pursued by each of the actions executed by the expert. Annotation is needed because if
the system was to learn snippets simply by observing a human play, it will need to implement
plan recognition techniques to identify what the human is intending to do at every moment.
Thus, annotations provide a way to avoid complex plan recognition techniques. However, as
Section 13.1 explains, plan recognition is one of the ways we plan to extend the system in
the future to allow it to autonomously learn by simply observing people playing the game.
In our approach, a goal g = name(p1,..., p,) consists of a goal name and a set of
parameters. For instance, in WARGUS, these are some of the goal types we have defined:

e WinGame(player): Representing that the action had the intention of making the player
win the game.

e KillUnit(unit): Representing that the action had the intention of killing the unit unit.

e Resources(gold,wood,oil): The action had the intention of increasing the resource levels
to at least the specified levels in the parameters.

e SetupResourcelnfrastructure(player,peasants,farms): It indicates that the expert wanted
to create a good resource infrastructure for player player, which at least included peasants
number of peasants and farms number of farms.

The fourth column of Table 1 shows the annotations that the expert specified for his
actions. Because the snippet shown corresponds to the beginning of the game, the expert
specified that he was trying to create a resource infrastructure and, of course, he was trying
to win the game.

Finally, as Figure 5 shows, the annotated trace is processed by the case learning module,
which encodes the strategy of the expert in this particular trace in a series of cases. Tradi-
tionally, in the CBR literature cases consist of a problem/solution pair; in our system the case
base is composed of two structures: snippets and episodes. A snippet stores just a plan, and
an episode stores the outcome of having applied a particular snippet in a particular context
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FIGURE 6. Extraction of cases from the annotated trace.

to achieve a particular goal. See Section 8 for a more detailed explanation of our case base
formalism. In the following we will use the term “cases” when we want to refer to both
snippets and episodes without distinguishing between them.

The case learning module analyzes the annotated trace to determine the temporal rela-
tions among the individual goals appearing in the trace. For instance, if we look at the sample
annotated trace in Figure 6, we can see that the goal g2 was attempted before the goal g3, and
that the goal g3 was attempted in parallel with the goal g4. The kind of analysis required is
a simplified version of the temporal reasoning framework presented by Allen (1983), where
the 13 basic different temporal relations among events were identified. In our framework, we
are only interested in knowing if two goals are pursued in sequence, in parallel, or if one is
a subgoal of the other. Darmok determines those relations in the following way:

e If most (90%) of the actions associated with a goal g happen before the first action of
another goal g/, then g and ¢’ are considered to happen in sequence. Notice that Darmok
does not require 100% of the actions to happen before to recover from anomalies in the
expert traces (it is common in traces generated by humans that the first actions associated
with a goal are executed before the previous goal is finished).

e [Ifall the actions associated with a goal g are also associated with another goal g’ and the
goal g’ has some action not associated with g, then g is considered to be a subgoal of g’.

e Otherwise, two goals are considered to be in parallel.

For instance, in Figure 6, g2, g3, g4, and g5 happen during gl; thus they are considered
subgoals of g/.

From temporal analysis, procedural descriptions of the behavior of the expert can be
extracted. For instance, from the relations among all the goals in Figure 6, snippet number 1
(shown in the figure) can be extracted, specifying that to achieve goal g/ the expert first tried
to achieve goal g2, then attempted g3 and g4 in parallel, and after that g5 was pursued. Also,
we can construct an episode that says that the snippet number 1 was applied in the game state
in which the game was at cycle 137 and it succeeded. Then, for each one of the subgoals
a similar analysis is performed, leading to four more snippets and four more episodes. For
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FIGURE 7. Example of a snippet and an episode, extracted from an expert trace for the WARGUS domain.
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example, case 3 states that a possible way to achieve goal g2 is to execute basic actions a4
and a6 sequentially.

Darmok does not attempt any generalization of the expert actions: generalization is
delayed until the adaptation phase. Thus, using the learned snippets to play a new scenario
in WARGUS, the particular values of the parameters in the action might not be the most
appropriate for the new scenario. In Darmok, the plan adaptation component is in charge
of adapting the parameters of an action to a new scenario (see Section 10). Darmok might
extract multiple snippets associated with the same goal from the set of traces it has access
to. Each of these snippets will be kept as cases in the case base. During game play, the
retrieval module will be responsible of selecting the most appropriate case given the current
game state. If the number of cases in the case base increases, the cost of retrieving snippets
increases too (see Mishra, Ontanon, and Ram 2008 for a technique to improve the efficiency
of retrieval in large case bases applied to Darmok).

By increasing the complexity of annotations, we could make the learning process easier
for Darmok. For instance, the relation among goals could be specified directly by the expert,
and thus Darmok would have no need to infer it. Also, experts could annotate the features of
the map that helped them decide which strategy to use (so that Darmok could learn feature
weights or indexes for cases), or conditions under which they would consider a plan failed
or succeeded (to help learning alive conditions and success conditions). However, one of our
goals was to minimize the amount of annotation effort of the experts, thus we opted for a
simple annotation schema.

Finally, our plan learning component is not yet able to infer alive conditions and pre-
conditions for snippets, which is part of our future work (this might have the negative effect
that the adaptation module will have to do some extra work). Thus, the cases learned consist
only of the procedural information in the snippets and a goal, game state, and outcome in
the episodes, as Figure 7 shows.

8. PLAN RETRIEVAL

To solve a complex planning task, several subproblems have to be solved. For instance,
in our domain, the system has to solve problems such as how to build a proper base, how
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to gather the necessary resources, or how to destroy each of the units of the enemy. All
those individual problems are different in nature, and in the case base we might have several
cases that contain different snippets to solve each one of these problems under different
circumstances. Therefore, for any nontrivial planning task we will have a heterogeneous
case base, with snippets that are suited to solve different kind of goals. Additionally, some
snippets might work properly in some situations and not as well in other situations, thus
in our case base we will also have to include information concerning in which situations a
particular snippet has succeeded in the past. We propose to organize the case base using two
kinds of elements:

e Snippets: A snippet is a procedure composed of a collection of actions, and subgoals
composed in sequence or parallel.

e Episodes: An episode is a tuple e = (p, G, S, O), where e.p is a snippet, e.G is a goal,
e.S is a situation (i.e., a game state), and e.O is the outcome of applying e.p in e.S to
achieve e.G. In particular, e.O is a real number between 0 and 1 representing how well
the snippet achieved its goal in the situation e.S.

After the plan learning process, each snippet in the case base is associated with one
episode. Moreover, as the system plays, new episodes will be acquired, and a snippet might
be associated with an unbounded number of episodes, storing all the experiences of executing
such snippet in different situations. In that way, the system will learn from experience which
snippets are suited for which situations and goals.

Figure 7 shows an example of a snippet with an associated episode, with the four
elements: a goal (in this case, building the resource infrastructure of player “1”°), a procedure
to achieve the specified goal in the given map in the snippet, a game state (with general
features about the map and information about each players), and the outcome for the episode.
In particular, in Darmok, the game state is defined by 35 features that represent the state of a
WARGUS game. Twelve features represent the number of troops (number of fighters, number
of peasants, and so on), four features represent the resources the player owns (gold, oil, wood,
and food), fourteen features represent the number of the buildings (number of town halls,
number of barracks, and so on), and finally, five features represent the map (size in both
dimensions, percentage of water, percentage of trees, and number of gold mines).

Ideally, given a game state and a goal, we would like to retrieve the snippet that could have
the highest performance in such a goal in the given game state. To predict the performance
of a snippet p, the plan retrieval module uses the episodes in the case base associated with p.
To retrieve episodes, Darmok uses the episode relevance measure ER(e, S, G) that computes
the relevance of a given episode e given the current game state S and goal G, and is defined
as:

ER(e, S, G) = aGS(e.G, G) + (1 — a)SS(e.S, S),

where GS is the goal similarity of the goal in the snippet p and the goal G, and SS is the state
similarity. The parameter « has been set to 0.75 in our experiments.

The distance between two goals, g = name(p1,..., p,) and go = namez(qy,...,
qm), 1s measured as follows:
pi—qi\’
i .
GS(g1, g2) = _21: ( P, ) i name, = name;

1 otherwise
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where P; is the maximum value that the parameter i of a goal might take (we assume that all
the parameters have positive values). Thus, when name; = name,, the two goals will always
have the same number of parameters and the distance can be computed using an Euclidean
distance among the parameters. The distance is maximum (1) otherwise.

SS(gs1, gs2) computes the similarity between two given game states and returns a
number between 0 and 1 (where 0 means identical and 1 means totally different). SS is
computed as the inverse of a simple Euclidean distance among the game states, where each
feature is normalized between 0 and 1.

Finally, to predict the performance of a snippet, we define the set of relevant episodes
RE(p, S, G) ={ey, ..., ex}, as the set of k episodes associated with the snippet p, and that
have the maximum relevance ER. In our experiments, we have set k£ < 5; that is, if there is
fewer or equal to five episodes associated with p in the case base, then RE(p, S, G) contains
all of them, but if there is more than five, then only the best five episodes are included in
RE(p, S, G). Using that definition, we can now define the predicted performance of a snippet
as follows:

1+ ZeeRE(p’S,G)ER(e, S,G)xe.O

PP(p.S.G) =
@, 5, G) 243 cxeips ER(@ S, G)

In other words, the predicted performance is a weighted average of the outcomes that
snippet p has had in similar game states to .S for similar goals. We add 1 to the numerator
and 2 to the denominator following the Laplace probability estimation rule (which biases
the predicted performance toward 0.5 when the number of episodes we have to predict the
performance is small).

The result of the retrieval process is the snippet p that has the highest predicted per-
formance PP(p, S, G), that is, the snippet that has had the best performance in the past for
similar goals in a similar game state.

The snippet retrieved then needs to go through the adaptation process. However, real-time
domains require delayed adaptation. The game state changes with time and it is important
that adaptation is done with the most up-to-date game state (ideally with the game state just
before the snippet starts execution). For that reason, in Darmok, when the plan execution
module is just about to start the execution of a particular snippet, the snippet is sent to the
plan adaptation module for adaptation. Darmok cannot guarantee that the snippet is adapted
with the latest game state because in a real-time domain the domain changes continuously;
however, delaying adaptation as much as possible minimizes the adaptation error of Darmok.

9. ON-LINE PLAN EXPANSION AND EXECUTION

During execution, the plan expansion, plan execution, and plan adaptation occur in
parallel to maintain a current partial plan tree that the system is executing. A partial plan
tree (or simply the “plan”) is represented as a tree consisting of two types of nodes: goals
and snippets (following the same idea of the task/method decomposition; Chandrasekaran
1990 or HTNs Nau et al. 2005).

Initially, the plan consists of a single goal corresponding to the planning task at hand.
In particular, in Darmok the initial goal is always “win the game.” Then, the plan expansion
module asks the plan retrieval module to retrieve a snippet for that goal. That snippet might
have several subgoals, for which the plan expansion module will again ask the plan retrieval
module to retrieve snippets, and so on. For instance, at the top of Figure 8 we can see a
sample plan, where the top goal is to “win.” The snippet assigned to the “win” goal has
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FIGURE 8. Interleaved plan expansion and execution.

Function PlanExpansion(p, 5)
G = GetReadyOpenGoals(p)
For g € G Do
p, = RetrievePlan(g, 5)
= AdaptPlan(p,. g, 5)
p = InsertSnippetInPlan(p, g, j}l:r:l
EndFor
Return p
EndFunction

FIGURE 9. Plan expansion algorithm used in Darmok, where p is the current plan and § is the current game
state.

three subgoals, namely, “build base,” “build army,” and “attack.” The “build base” goal has
already a snippet assigned that has no subgoals, and the rest of subgoals still do not have an
assigned snippet. When a goal still does not have an assigned snippet, we say that the goal is
open.

Additionally, each snippet in the plan has an associated state. The state of a snippet can
be pending, executing, succeeded, or failed. A snippet is pending when it has still not started
execution, and its status is set to failed or succeeded after its execution ends, depending on
whether it has satisfied its goal or not. A goal that has a snippet assigned and where the
snippet has failed is also considered to be open (because a new snippet has to be found for
this goal).

Open goals can be either ready or waiting. An open goal is ready when all the snippets
that had to be executed before this goal have succeeded, otherwise, it is waiting. For instance,
in Figure 8, “snippet 0” is a sequential plan and therefore the goal “build army” is ready
because the “build base” goal has already succeeded and thus “build army” can be started.
However, the goal “attack™ is waiting, because “attack’ has to be executed after “build army”
succeeds.

Figure 9 shows the algorithm the plan expansion module executes at every execution
cycle given a plan p and a game state S. The plan expansion module is constantly querying
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Function PlanExecution(p, 5)
p = startReadySnippets(p,5)
p = sendActionsToExecution(p,S)
p = updateSnippetStatus(p,S)
p = updateActionStatus(p,S)
Return p
EndFunction

=

FIGURE 10. Plan execution algorithm used in Darmok, where p is the current plan and S is the current game
state.

the current plan to see if there is a ready open goal. When this happens, the open goal is sent
to the plan retrieval module to retrieve a snippet for it. Then, that snippet is sent to the plan
adaptation module, and then inserted in the current plan, marked as pending.

Figure 10 shows the algorithm that the plan execution module executes at each execution
cycle, composed of four steps:

e startReadySnippets: For each pending snippet, the execution module evaluates the pre-
conditions, and as soon as they are met, the snippet starts its execution. If the current
game state has changed since the time the plan retrieval module retrieved it, the snippet
is handed back to the plan adaptation module to make sure that the plan is adequate for
the current game state.

o sendActionsToExecution: If any of the executing snippets have any basic actions and
those actions have all its preconditions satisfied, then they are sent to WARGUS to be
executed. If the preconditions of the actions are not satisfied, the snippet is sent back to
the plan adaptation module to see if the plan can be repaired. If after a certain amount
of time #; (set to 2,000 game cycles in our experiments) it cannot, then the snippet is
marked as failed, and thus its corresponding goal is open again (thus, the system will
have to find another plan for that goal).

e updateSnippetStatus: The execution module periodically evaluates the alive conditions
and success conditions of each snippet. If the alive conditions of an executing snippet
are not satisfied, the snippet is marked as failed, and its goal is open again. If the success
conditions of a snippet are satisfied, the snippet is marked as succeeded.

e updateActionStatus: Whenever a basic action succeeds or fails, the execution module
updates the status of the snippet that contained it. When a basic action succeeds, the
executing snippet can continue to the next step. When a basic action fails, the snippet is
marked as failed, and thus its corresponding goal is open again.

The next section focuses on the plan adaptation algorithms.

10. PLAN ADAPTATION

Plan adaptation can be seen as two different subprocesses: parameter adaptation and the
structural plan adaptation. The former is in charge of adapting the parameters of the basic
actions, for example, the coordinates and specific units that will perform the actions, and
the latter is in charge of adapting the structure of a plan, for example, inserting or removing
actions in a plan. Some previous systems, such as PRIAR (Kambhampati and Hendler 1992)
combine these two processes in a single one by performing search in the space of plans.
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However, to perform plan adaptation efficiently, and on-line, we propose to break adaptation
into two processes, because efficient adaptation techniques can be designed if they are treated
separately.

10.1. Parameter Adaptation

In Darmok, the parameter adaptation process consists of a series of rules that are applied
to each one of the actions of a snippet so that it can be applied in the current game state.
Specifically, we have used two adaptation rules in our system:

e Unit adaptation: Each basic action sends a particular command to a given unit. For
instance, the first action in the snippet shown in Figure 7 commands the unit “2” to build
a “pig-farm.” However, when that case is retrieved and applied to a different map, that
particular unit “2” might not correspond to a peon (the unit that can build farms) or might
not even exist (the “2” is just an identifier). Thus, the unit adaptation rule finds the most
similar unit to the one used in the case for this particular basic action. To perform that
search, each unit is characterized by a set of five features: owner, type, position (x,y),
hit-points, and status (e.g., idle, moving, and attacking), and then the most similar unit
(according to an Euclidean distance using those five features) in the current map to the
one specified in the basic action is used.

e Coordinate adaptation: Some basic actions make reference to some particular coordi-
nates in the map (such as the move or build commands). Because the map in WARGUS
is represented as a grid, to adapt the coordinates, the parameter adaptation module gets,
from the case, how the map in the particular coordinates looked like by retrieving the
content of the map in a 7x7 window surrounding the specified coordinates. Then, it
looks in the current map for a spot that is the most similar to that 7x7 window, and uses
those coordinates.

Notice that parameter adaptation is a difficult problem if we want to solve it optimally,
because it involves computing the optimal placement of buildings, attacking locations, and so
on. For example, if the expert placed a tower in a “choke point,” Darmok has to understand
that, and also select a “choke point” in the current game as the placement of the tower
(detection of choke points is a computationally expensive problem), and not just any choke
point, but one that serves the same function as the one in the original map. However, these
two simple rules are enough for Darmok to adapt actions between similar maps with an
acceptable accuracy, using the parameters that the expert demonstrated as guidelines.

10.2. Structural Plan Adaptation

As said in Section 6, in our formalism, plans are composed of four basic types of
elements: primitive actions; parallel plans that consist of component plans, which can be
executed in parallel; sequential plans that consist of component plans, which need to be
executed in sequence; and subgoals that require further expansion. Darmok’s structural plan
adaptation module specifically considers plans that are only composed of actions, sequential
plans, and parallel plans. This implies that only those plans that are completely expanded
are considered. We do this because the plan adaptation technique we propose for on-line
plan adaptation relies on constructing a plan dependency graph among the basic actions that
compose a plan. To generate such a graph, a plan must be fully expanded.
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Function GeneratePlanDependencyGraph(p, D)
G=10
ForEach p' € p.subPlans
If p’ is sequential or parallel Then
¢ = G U GeneratePlanDependencyGraph(p’, D)
Elself p’ is a primitive action Then
' = U FindDependencies(p', D)
EndIf
If p is sequential Then D = DU p'.all PrimitiveActions
EndForEach
Return &
EndFunction

Function FindDependencies(p, D)
G=10
ForEach p’ € D
If p" statisfied any condition of p Then
G=GU(p,p)

EndIf
EndForEach
Return (¢

EndFunction

FIGURE 11. Algorithm for plan-dependency graph generation, where p is the plan to be adapted and D
is the set of actions on which any subplan in p might depend (and it is equal to ¢ in the first call to the
algorithm). p.subPlans refers to the set of subplans directly inside p in case p is sequential or parallel. And
p.allPrimitiveActions refers to all the primitive actions inside p or in any subplan inside p.

10.2.1. Plan Dependency Graph Generation. A plan dependency graph G is a directed
graph where each node in the graph is a primitive action and each link (p;, p;) indicates
that p; depends on p;. For simplicity, in the remainder of this section we will represent this
graph as a set of links.

Figure 11 shows the algorithm for plan dependency graph generation. Each action within
a plan has a set of preconditions and a set of success conditions. The plan dependency graph
generator analyzes the preconditions of each of these primitive actions. Let p’ be an action
in the plan, which contributes to satisfying the preconditions of another action p. Then, a
directed edge from p’ to p is formed (function FindDependencies, shown in Figure 11). This
directed edge can be considered as a dependency between p’ and p. Here, we assume that
actions in different parts of a parallel plan are independent of each other (a strong assumption,
subject to improvement in future work). A pair of actions might have a dependency between
them only if their closest common parent is a sequential plan. This is what is effectively
done by using the set of actions D, in Figure 11. For any action p’ when the function
FindDependencies is called, D contains exactly the set of actions on which p’ might be
dependent. The set of primitive actions contained in a subplan p’ of p are added to D only
if p is a sequential construct. The recursive call to GeneratePlanDependencyGraph ensures
that nested parallel and sequential constructs can be processed. This process results in the
formation of a plan dependency graph G with directed edges between actions that have
dependencies.

A challenge in our work is that simple comparison of preconditions of an action p with
success conditions of another action p’ is not sufficient to determine whether p’ contributes
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Function RemoveRedundantPlans (p. g)
B = GetDirect Actions(p, g)
(¢ = GeneratePlanDependencyGraph(p, 0)
A = BackPropagateActivePlans( B, G, (1)
remove from p all the actions not in A
Return p

EndFunction

Function BackPropagateActivePlans (B, G, A)
ForEach pe B
If p's success conditions are not satisfied Then
A= AU {p}
B' = GetParent ACtions(p, )
A = BackPropagateActivePlans(B’, G, A)
EndIf
EndForEach
Return A
EndFunction

FIGURE 12. Algorithm for removal of unnecessary actions, where p is the plan to be adapted and g is the
goal corresponding to p. GetParentActions (p, G) is a simple function that returns all the actions that have a
causal direction with a given action p, according to a plan-dependency graph G. GetDirectActions (p, g) is a
function that returns those actions in p that are direct actions.

to achievement of preconditions of p. This is because there is not necessarily a direct
correspondence between preconditions and success conditions. An example is the case
where p has a precondition testing the existence of a single unit of a particular type; p’
may have a success condition, testing the existence of a given number of units of the same
type. Another example is with attacking: the success condition of a goal might specify that
a particular enemy unit has to be killed, but the attack actions have no postcondition named
“killed,” because we cannot guarantee that an attack will succeed (the success condition of
the attack action is that a particular unit will be in the “attacking status™).

For that purpose, the plan graph generation component needs a precondition—success
condition matcher (ps-matcher). In our system, we have developed a simple rule-based ps-
matcher that incorporates a collection of rules for the appropriate condition matching. For
example, our system has six different conditions which test the existence of units or unit
types. Thus, the ps-matcher has rules that specify which conditions can be matched. In some
cases it is not clear whether a relation exists. However, it is necessary for our system to
capture all of the dependencies, even if some nonexisting dependencies are included. If a
dependency was not detected by our system, a necessary action in the plan might get deleted.
However, if our system adds extra dependencies that do not exist, the only thing that can
happen is that the system ends up executing some extra actions that would not be required.
Clearly, executing extra actions is better than missing some needed actions (notice that by
“extra actions” we do not mean that the adaptation module will insert extra actions, but that
some actions that were already in the retrieved snippet will not be removed when they could
have been removed).

10.2.2. Removal of Unnecessary Actions. Figure 12 shows the algorithm for the removal
of unnecessary or redundant actions. Every plan p has a root node that is always a goal g.
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Function AdaptForUnsatisfiedConditions(p)
C = GetUnsatisfiedPreconditions(p)
G=0
ForEach c € C

G = G U GetSatisfvingGoal(c)
EndForEach
Initialize g as an empty parallel plan
ForEach g € G

add SubGoalPlan(g) to ¢
EndForEach
insert g at the beginning of p
Return p

EndFunction

FIGURE 13. Algorithm for adding goals for unsatisfied preconditions, where p is the primary action to be
adapted. GetUnsatisfiedConditions (p) is a function, which returns the set of those preconditions of p that are
not satisfied. GetSatisfyingGoal (c¢) is a function, which returns a goal whose success satisfies the condition c.
SubGoalPlan (g) is a function which returns a subgoal plan with goal g.

The removal of unnecessary actions begins by taking the success conditions of the goal
g and finding out which of the actions in the plan contribute to the achievement of those
conditions. These actions are called direct actions for the subgoal and are obtained by the
function GetDirectActions as shown in Figure 12. Then the plan dependency graph for p is
generated using the GeneratePlanDependencyGraph function in Figure 11. The algorithm
works by maintaining a set of active actions A. At the end of the algorithm, all the actions
not in 4 will be removed from the plan. The removal of actions proceeds using the plan
dependency graph and the set of direct actions, B. The success conditions of each action in
B are evaluated for the game state at that point of execution. Each of these actions p with
unsatisfied success conditions is added to the list of active actions. The set of actions B’ on
which the action p has a dependency according to the dependency graph G are recursively
checked to see if they have to be activated. Such actions are obtained using the function
GetParentActions in the algorithm (that can be implemented to have constant time). The
result of this process is a set 4 of actions whose success conditions are not satisfied in the
given game state and which have a dependency to a direct action, which also has success
conditions not satisfied in the given game state. Actions that are not active (not in 4) are
removed from the plan.

10.2.3. Adaptation for Unsatisfied Preconditions. Figure 13 shows the algorithm for
adaptation for unsatisfied preconditions. If the execution of an action fails because one or
more of its preconditions are not satisfied, the system needs to act so that the execution of the
plan can proceed. To do this, each unsatisfied condition is associated with a corresponding
satisfying goal. A satisfying goal is such that when a plan to achieve the goal is retrieved
and executed, the success of the plan implies that the failed precondition is satisfied. Thus,
for every possible condition type that might fail, the adaptation component must know how
to define a corresponding satisfying goal (in Darmok, this is part of the domain knowledge).

Initially, all the unsatisfied preconditions of the plan p to adapt are computed, resulting
in a set C. For each condition ¢ € C, a satisfying goal is obtained, using the function
GetSatisfyingGoal. This gives a set of goals G that need to be achieved before the action p
can be executed. A parallel plan g is generated where each of the goals in G can be achieved
in parallel. The ¢ is inserted as the first step of plan p.
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FIGURE 14. “Nowhere to run, nowhere to hide” map.

After the modified plan is handed back to the plan execution module, it is inserted into
the current plan. In the next execution cycle, the plan expansion module will expand the
newly inserted goals in G.

Notice that the structural plan adaptation module performs two basic operations: delete
unnecessary actions (which is performed by an analysis of the plan dependency graph),
and insert additional actions needed to satisfy unsatisfied preconditions. This last process is
performed as a collaboration between several modules: the plan execution module identifies
actions that cannot be executed, the adaptation component identifies the failed preconditions
and generates goals for them, and the plan expansion and plan retrieval modules expand the
inserted goals.

11. EXPERIMENTAL RESULTS

To evaluate our on-line CBP techniques, we implemented them in Darmok and evaluated
them in a suite composed of 12 WARGUS maps. Eleven of them are different variations of the
map known as “nowhere to run, nowhere to hide” (NWRT1 to NWTRI11) and one of them
is a variation of the map known as “garden of war” (GoW1). Both NWTR and GoW are
well-known maps from battlenet, popular among human players. Figures 14 and 15 show
the NWTR1 and GoW1 maps, respectively. We selected these two kinds of maps because
we wanted maps with a high strategic component; that is, maps where a good strategy is the
key for winning, rather than micro-management. NWTR maps feature a wall of trees that
separates the two players, and that feature allows for multiple interesting strategies as we
mentioned in Section 4. Thus, NWTR is interesting strategy-wise. GoW, on the other hand,
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FIGURE 15. “Garden of war” map.

represents the standard WARGUS maps: large terrain with trees and open areas, the enemy is
far away at the start, etc. However, it also has an interesting strategic component: there are
two unclaimed gold mines in the center of the map. The first player to claim them has a huge
advantage.

Moreover, the different variations of each map are key to the strategy to be applied in that
map. Some of the variations in the NWTR maps include changing the width and shape of the
wall of trees (that makes some of the strategies useless), having a hole in the barrier, changing
the size of the map, or even partially substituting the wall of trees by a rock wall. These are
key modifications that the system has to be aware of to pick the appropriate strategy.

To evaluate our system, we generated 10 demonstrations in some of the maps. Each
demonstration shows a different strategy: rushing, towering, ballistae attack, air-attack, and
variations. To generate a demonstration, a member of our team played the game using a
particular strategy, and then annotated each action with the goals being pursued at each
point. In average, the time required to generate a demonstration is less than 30 minutes:
between 10 and 15 minutes to play a game (in the maps we use for our experiments), and
about 10 minutes to annotate a trace with a proper trace annotation tool (plus 5 minutes of
time spent in launching the game, opening the annotation tool, saving the files in the proper
folders, etc.). Thus, generating a demonstration is a very easy process. The 12 maps plus 10
demonstrations constitute our experimental setup.

Table 2 summarizes the results of our experiments. Each row of the table shows the
results of the system playing from a different number of expert traces. In the first row, we
show the performance of the system learning from one expert demonstration, the second
from two expert demonstrations, and so on. For each row, we run the system in the 12 maps
four times (a total of 48 games per row). Each row is split in two parts: results with structural
plan adaptation on and with structural plan adaptation off. The number of wins, draws, and
losses (W, D, and L) are shown. At the end of each row, we emphasize the percentage of wins
(WP). Finally, the bottom row summarizes the results. Let us analyze the results.
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TABLE 2. Performance of Darmok with and without Structural Plan Adaptation Playing against the Built-In
Al of WARGUS

Adaptation No Adaptation

NT w D L WP w D L WP
1 17 4 27 35.42% 9 7 32 18.75%
2 16 5 27 33.33% 15 2 31 31.25%
3 18 6 24 37.5% 10 6 32 20.83%
4 19 3 26 39.58% 8 4 36 16.67%
5 11 6 31 22.91% 7 6 35 14.58%
6 14 2 32 29.17% 3 5 40 6.25%
7 20 0 28 41.67% 9 6 33 18.75%
8 15 3 30 31.25% 6 3 39 12.50%
9 21 4 23 43.75% 7 3 38 14.58%
10 20 0 28 41.67% 2 0 10 16.67%

171 33 276 35.63% 82 42 356 17.08%

The first result we observe in Table 2 is that learning from 10 expert demonstrations and
turning on structural plan adaptation the system wins about 41% of the times against the
built-in Al. This number might not look impressive, but we have to take into account that
Darmok is playing the game at the same level of detail that a human would (i.e., it takes every
single decision in the game), and that Darmok barely has any domain knowledge built-in
(only the two simple coordinate and unit adaptation rules and the set of features used for
case retrieval). Looking at the numbers it might seem that Darmok achieves a similar level
of play to the built-in Al; however, a more detailed analysis of the behavior of Darmok is
needed to understand the results.

There are several strengths and weaknesses between Darmok and scripted Al techniques
such as the built-in Al of WARGUS. The main strength of the built-in Al is its tactics. The
built-in Al has a very fast and reactive low-level unit control loop that makes sure that units
are attacking the appropriate enemies and that attacked units are defended. In contrast, the
built-in Al has very limited strategic abilities. It uses a very similar strategy for every single
map (because it just executes a script) that is not adaptive. Darmok, on the other hand, has a
very poor low-level tactical unit control (that could be improved by making Darmok sit on top
of a scripted lower level tactical layer), and thus often loses games due to poor low-level unit
control (to win a battle, Darmok usually needs double the number of units over the built-in
Al). However, Darmok compensates that with a much stronger strategic ability. Darmok can
plan ahead and retrieve strategies observed by humans, it can attempt different strategies in
the same map when other strategies fail, etc. For instance, Darmok uses ranged attacks when
there is a wall of trees separating the enemy from our base, and attempts a rush when the
wall does not exist. However, the main aim of Darmok is to capture strategic knowledge of
humans and reuse it using CBP. Therefore, we consider Darmok a success in the sense that
only using strategic knowledge it is able to make up for poor tactics and win 41% of the
games.

Let us analyze the results in Table 2 in more detail. If we compare the results obtained
with and without structural adaptation, we can see that structural plan adaptation multiplies
by a factor of two the average number of wins of Darmok: 35.63% versus 17.08% in average,
and 41.67% versus 16.67% in the scenario with 10 expert demonstrations. Moreover, this
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FIGURE 16. Average number of wins with (WR-A) and without adaptation (WR) versus the number of
expert traces observed by Darmok.

difference increases with the number of traces that Darmok learns from. When Darmok
learns from a few expert demonstrations, the gains achieved by structural plan adaptation are
smaller. This can be clearly seen in Figure 16, which shows a visualization of the percentage
of wins with and without adaptation as the number of demonstrations that the system learns
from increases. The effect can be explained by the fact that when Darmok has learned from a
few demonstrations, it is very likely that individual snippets will fit together; however, when
Darmok learns cases from different demonstrations, these cases are unlikely to fit together,
and they will need adaptation. Thus, adaptation provides Darmok with a way to glue different
plan snippets learned from different demonstrations into a sound strategy.

We can also see that the performance of the system varies as Darmok observes more
expert demonstrations. Specifically, the performance goes up when there is plan adaptation,
and down when there is not. Performance goes down to 16.67% of wins with no adaptation
and 10 expert demonstrations and up to 41.67% with adaptation. This result can be explained
by understanding that the performance of Darmok depends on a number of factors. Two of
those factors are the selection of proper plan snippets to achieve goals and the ability to glue
different plan snippets together into a single plan. When the system has few expert demonstra-
tions, selecting which plan snippet to use is an easy task, because there is only a few of them,
and splicing together plan snippets is an easy task, because all of them come from the same
expert demonstration. However, when there are more expert demonstrations, the problem of
selecting plan snippets and splicing them together becomes harder. Plan adaptation can solve
the second problem, but not the first. As an overall effect, the performance of Darmok goes
slightly up with more expert demonstrations. However, the expected effect would have been
the performance to increase more than observed. The explanation for this (after a careful
observation of the replays of the games) is that the set of features that Darmok uses to retrieve
plan snippets is not good enough. Thus, the selection of an appropriate strategy for the map
is not excellent. Darmok still does a good job putting together different plan snippets into a
meaningful plan, but it might not be the best for a given map. The conclusion is that to boost
the performance of Darmok, a better subset of features has to be found (for instance, we
observed that a key feature in the maps we used is whether there is a path between Darmok’s
base and the enemy base, if we add that feature to the cases, the performance would greatly
increase). As mentioned in the next section, we are already performing experiments to solve
that issue, and in early runs we have observed the performance of Darmok to multiply by a
factor two when the appropriate features are used for case retrieval.
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TABLE 3. Performance of Darmok in Different Maps Using Different Expert Traces

Map Tla T1b Tlc T3 T6 T7 T10 T11 TGa TGb
NWTR1 0 1 1 0 1 0.5 0 1 0 0
NWTR2 1 1 0 0 0 0.5 0 0 0 0
NWTR3 0 1 0 1 0 0.5 0 0 0 0
NWTR4 0 0 1 0 1 0.5 0 0 0 0
NWTRS5 0 0 1 0 0 0 0 0 1 0
NWTR6 0 1 0 1 1 0.5 0 0.5 0 0
NWTR7 1 1 1 1 0 0 0 1 0 0
NWTRS 1 1 1 1 0 1 0 0 0 0
NWTRO9 0 1 0 1 0 0 0 0 0 0
NWTRI10 0 0 0 0 0 0 0 0 0 0
NWTRI11 0 0 0 0 0 0 0 0 0 0
GoW 0 0 0 0 0 0 0 0 1 0
Average 0.25 0.58 0.42 0.42 0.25 0.29 0.00 0.20 0.17 0.00

To have a better insight on the performance results presented before, we performed a
more detailed analysis by running Darmok with each possible combination of expert trace
and map we had. That is, we run the system learning from each one of the 10 expert traces
we have (one at a time) and we made it play each of the 12 maps we had. The results are
presented in Table 3, which shows maps in the vertical axis versus traces in the horizontal
axis. Each cell contains a 1 if the game was won, 0 if it was lost, and 0.5 if it was drawn. The
bottom row shows an average score of each trace (1.00 would mean that the trace wins all
the maps, and 0.00 would mean that it loses all the maps). The name of the traces represents
the map in which they were demonstrated, so traces Tla, T1b, and T1c where all played in
map NWTRI, T3 in NWTR3, etc. The traces labeled as TGa and TGb were demonstrated in
the GoW map.

The first thing that can be observed in Table 3 is that some traces are clearly better than
others. For instance, while trace T1b (that demonstrates a strategy that combines towers and
ballistas) wins on 58% of the maps (i.e., average score 0.58), trace TGD (that encodes a quick
footmen rush) does not win in any map. Thus, it is clear that the performance of Darmok
depends on the quality of the traces presented to it. It is interesting to see that some strategies
do not win even in the maps they were demonstrated. For example, TGb loses in the GoW
map. This is so, because the strategy demonstrated in TGb is very similar to the one the
built-in Al uses (which relies on the simple idea of sending units quickly to the opponent
to outnumber him), thus, it comes down to whoever has the better low level unit control
(in which Darmok performs poorly, as mentioned earlier). The same situation happens with
trace T10 (which also encodes a kind of rushing strategy).

The previous explanation can be applied to explain why Darmok cannot win any game
in the maps NWTR10 and NWTR11. Those maps have a hole in the wall of trees, and thus
require a totally different strategy than the rest. However, the maps are small enough, so that a
long-term rush (such as the “knights rush” demonstrated in trace TGa) does not work either.
This leads again to a low-level control battle, in which Darmok is not good. Moreover, when
Darmok plays learning from all the expert traces, we saw that it managed to win some games
in maps NWTR10 and NWTR11, thus showing that Darmok is able to combine different
demonstrations to come up with new strategies.
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If we analyze the matrix in Table 3, we can see that, when learning from a single expert
trace, Darmok wins 50.00% of the times when it plays in the same map where the trace was
demonstrated. Whereas it wins only 25.83% of the time in a different map. If we analyze
how many times Darmok wins in a “similar” map (assuming NWTR maps are similar among
each other, and GoW is different) than the one in the trace, then Darmok wins 41.47% of the
times. Thus, clearly, the similarity between the map in which Darmok plays and the one for
which it has a trace plays a key role in its performance.

Finally, we performed an additional experiment where we selected by hand three expert
traces that we thought would work together: T1b, Tlc, and TGa and trained Darmok with
those traces. The result is that Darmok managed to win 66.67% of the games (a higher
percentage than when Darmok learns from all 10 traces). The explanation is that the current
version of Darmok still does not learn from experience (i.e., episode retention is switched
off). Therefore, case retrieval is done purely based on goal and game state similarity (without
taking into account previous experiences of applying different strategies to different maps).
Because of this Tla and T1b are almost indistinguishable for Darmok, and thus, when the
map being played looks like NWTR1 (where those two traces were demonstrated), Darmok
selects at random the strategy in T1a or the one in T1b (when clearly T1b is a better strategy).
Therefore, when Darmok contains in the case base good and bad strategies mixed, and that
were demonstrated in similar game states, it cannot properly select which is the right one
to apply. Both learning preconditions for plans and learning from experience should help
solving this problem, which are part of our future work.

12. RELATED WORK

Several areas are related to our work, in particular, CBP, plan reuse, the relation of
planning and execution, and the problem of learning plans from expert traces.

Concerning CBP, we presented a small overview in Section 2.1, but see Spalazzi (2001)
for a more comprehensive review. However, there are several systems related to Darmok that
are worth mentioning in this section. The TOLTEC planner (Tsatsoulis and Kashyap 1993)
is a case-based planner inspired on the dynamic memory (Schank 1999) theory by Roger
Schank. As such, TOLTEC stores previous planning experiences as scenes, scripts, MOPs
(memory organization packages), and TOPs (thematic organization packages). TOLTEC
recursively refines the plan it is generating by retrieving new cases and inserting them
into the plan. It uses MOPs to predict previous failures during planning, and thus select the
appropriate expansions. Moreover, TOLTEC can also learn “soft constraints” that reflect user
preferences. Darmok performs a similar plan expansion to the one presented by TOLTEC.
The main difference being that Darmok uses a more advanced plan adaptation, and can
backtrack its decisions (TOLTEC performs no backtracking) based on execution failures.

CaPER Kettler et al. (1994) is a CBP system that focuses on improving the plan retrieval
phase. Previous CBP systems used indexing techniques to store cases in the case base. Kettler
et al. argue that indexing techniques might limit the ways in which cases can be retrieved.
For example, they argue that in CHEF cases are not indexed by time; thus, CHEF cannot
understand queries of the type “I want a recipe that takes less than 10 minutes to cook.”
CaPER (Kettler et al. 1994) uses a frame-based representation for the cases, and cases can be
accessed by any concept or relation in them. However, these generic techniques for retrieval
have a high computational cost. To solve the potential computational cost of this operation,
they propose to use parallel computing to increase the efficiency of retrieval. Darmok could
greatly benefit from such complex case representation, although the high computational cost
makes them not suitable for real-time domains.
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In Section 2.1, we presented the PRIAR (Kambhampati and Hendler 1992) system
(based in NONLIN), a planner that was designed to exploit plan reuse. In the same line of
PRIAR, the SPA (systematic plan adaptor) system by Hanks and Weld (1995) is also based
on NONLIN. The key highlights of SPA is that it is complete and systematic, while PRIAR
is complete but not systematic and CHEF is neither complete nor systematic (CHEF uses a
set of heuristic rules for adaptation that are very efficient but not complete).

Extending SPA, Ram and Francis (1996) present MPA (multi-plan adaptor) that extends
SPA with three mechanisms: a goal deriver that extracts goal statements, a plan clipper
that prepares plans for merging, and a plan splicer that can merge two plans. MPA’s main
capability is the ability to combine several plans into one by splicing them into pieces and
merging them. The main difference between PRIAR, SPA and MPA, and Darmok is that they
are off-line planners, while Darmok is an on-line system that plans and executes plans in
real time. Additionally, neither PRIAR, SPA nor MPA address the problem of plan learning,
or plan retrieval (MPA was connected to the NICOLE system for retrieval; Ram and Francis
1996).

Another relevant work is the logical treatment of plan reuse by Koehler (1992) (they refer
to it as “planning from second principles”) where they define a four-stage process, analogous
to the CBR process, consisting of determination (retrieve a plan specification from the plan
library), interpretation (analyze the retrieved plan in terms of the new goal), refitting (adapt
the plan using a planner), update (incorporate the new plan into the plan library). However,
Koehler only focuses in off-line plan reuse, not addressing plan learning, retrieval, or on-line
planning.

Concerning the relationship between planning and execution, an early formalization
of this problem is McDermott’s NASL (McDermott 1978), focusing on how planning and
execution are interleaved, and how errors in both planning and execution affect the process.
An important consideration is that if there is a model of the world, and the “state of the world”
is thought of as an internal data structure, then search can be done. Otherwise, it cannot be
done. Because advancing in a branch of the search tree changes the state, it is not possible to
go back to a previous state to do backtracking. Another important consideration introduced
by McDermott is the differentiation between planning failures and execution failures, which
we will also make in our system.

The IPEM system (integrated planning, execution and monitoring) (Ambros-Inerson and
Steel 1988) by Ambros and Steel is another framework for integrated planning and execution.
In IPEM, execution is delegated to a scheduler that considers decisions such as “when to
start an action” part of the normal scheduling process. One interesting characteristic of
IPEM is that it does not assume that the planner knows the complete state of the world, and
can deal with “information gathering actions.” Moreover, [IPEM assumes a classic STRIPS
planning representation framework with preconditions and postconditions of operators that
is not adequate for domains such as RTS games.

Finally, concerning the problem of learning cases from traces, the work on learning
in HTN planning and learning macro operators is specially relevant. Hogg, Muioz-Avila,
and Kuter (2008) present the HTN-MAKER algorithm, that given a set of solved planning
problems and a set of tasks is able to generate HTN methods for them. Notice that Darmok’s
snippets are very similar to HTN methods, and thus an HTN-MAKER-like algorithm could
be used to improve Darmok’s snippet learning method (allowing Darmok to also learn the
preconditions of snippets), which is part of our future work.

Konik and Laird present a relational learning from observation technique (Konik and
Laird 2006) able to learn how to decompose a goal into subgoals based on observing
annotated expert traces (with the same annotation schema used by Darmok). Kénik and
Laird’s technique uses relational machine learning techniques to learn how to decompose
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goals, and the output is a collection of rules (that would be executed by the SOAR architecture;
Laird, Newell, and Rosenbloom 1987). The main differences between Konik and Laird’s
technique and Darmok’s learning methods are that Darmok uses lazy learning to decide
which snippet to use for each goal (it delegates the decision to problem-solving time), while
Konik and Laird’s technique does it using induction during learning time, generating a set
of rules. Also, Darmok learns sequences of actions in snippets, while Konik and Laird’s
technique learns rules that spawn subgoals or individual actions one by one when their head
is satisfied by the current state of the world.

Other work on learning macro operators focuses on speeding up planning: assuming that
we have a system that can already solve a problem, the goal is to learn macros that can be
used at planning time to reduce the amount of search needed. For example, Langley and Choi
(2006) propose to learn such macros as teleoreactive logic programs that can be run by the
ICARUS architecture (Choi et al. 2004). They propose to store a new macro every time the
system performs a search process to solve a new problem containing the resulting search.
They call these macros “skills” (in opposition to “primitive-skills”). Botea et al. (2005)
propose to learn macro operators as a way to speed up planners by both analyzing the domain
description and also analyzing solutions to sample problem instances. Both approaches differ
from Darmok’s learning process in that they assume that there is an existing system that can
solve problems from scratch even if macros are not present (the goal is only speedup). The
only way Darmok can solve problems is by retrieving and adapting snippets, so without
snippets, Darmok cannot solve any problem, and thus these techniques are not directly
applicable to Darmok unless a generative planner is added to the architecture as a backup
for when no snippet is available.

Most of the work on CBP does not focus on how to learn the cases in the case base.
So for instance, systems like MAYOR or CHEF use a predefined case base, while Darmok
attempts to solve the case acquisition problem.

13. CONCLUSIONS AND FUTURE WORK

In this article we have proposed a novel architecture for on-line CBP, captured in the
OLCBP cycle. To illustrate the proposed OLCBP cycle, we presented a system, Darmok, that
implements such a cycle. Darmok implements several key ideas. First, the case acquisition
problem is solved by observing human demonstrations, from which the case base is populated.
Second, Darmok contains a heterogeneous case base where cases are indexed both by the
goal they achieve and by the particular context in which they are applicable. Third, Darmok
interleaves planning and execution on-line to achieve efficient on-line planning that is reactive
to the current situation. Fourth, we introduced the idea of delayed adaptation where the
adaptation of plan snippets retrieved from the case base is delayed until they have to be
executed, to ensure they are adapted with the most up-to-date information from the domain.
Finally, Darmok implements plan adaptation techniques that are efficient to be executed on-
line. Darmok also has learning-from-experience capabilities (it is able to retain new episodes
from experience), but the evaluation of this capability will be subject of future work.

In our experimental evaluation, we compared the performance of Darmok against the
built-in Al of WARGUS. That evaluation pointed out which are the strengths and weaknesses
of the system. First of all, we can conclude that the on-line CBP approach of Darmok
succeeds, because the system is able to play the game in real time (it can actually play the
game more than 10 times the default speed without performance loss) while taking every
single decision in the game. We saw that by observing some human demonstrations, the
performance of Darmok can easily reach that of the built-in Al of WARGUS. The merit being
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that Darmok “learned” and “planned” how to play WARGUS by itself, while the built-in Al
is hard coded and fixed (it is actually the responsibility of the author of a particular map
to make sure that the built-in Al will not execute nonsensical actions in that map, because
it simply executes a fixed script, selected while authoring a map, while Darmok will select
an adequate strategy by itself). The results showed that Darmok has very strong strategic
abilities, but is weak at the lower level tactical control. This is in contrast with other systems
presented in the literature. For instance, the case-based tactician (CaT) (Aha et al. 2005) or
CARL (Sharma 2007) use hand-coded scripts as a lower level layer to execute the low-level
unit control, and thus they are expected to have better tactical control than Darmok. However,
such low-level layer could easily be integrated in Darmok too. Moreover, one of Darmok’s
strengths is the ability to train the system with virtually no effort (by just exposing the system
to some annotated expert demonstrations).

Finally, we would like to comment on the applicability of the techniques presented in this
article to domains other than WARGUS. Darmok itself could be adapted with few changes
to play any RTS game given that the adequate knowledge structures are defined (goals,
actions, etc.). Moreover, the same ideas should be applicable to any strategic real-time task
for which expert demonstrations can be easily captured and annotated. Moreover, because
Darmok’s planner performs a very limited amount of backtracking (only when plans fail
during execution), Darmok will not be suitable for domains where the individual snippets
that compose a plan interact in ways that force the system to perform extensive search to
find the right combinations. Darmok assumes that the retrieval mechanism will retrieve a
good enough snippet, and that the adaptation module can solve the remaining conflicts of the
retrieved snippet (because it was designed to run under tight real-time constraints). Another
characteristic of the techniques presented in this article is that they are aimed at domains
that are big enough so that finding optimal plans is not feasible, and the only aim is to obtain
plans that are good enough.

13.1. Future Work

Darmok is the first step toward a large number of future lines of research. Specifically, we
would like to develop CBP algorithms that can plan with more general plan representations.
For instance, the current plan representation used by Darmok cannot represent conditional
plans or loops. We are currently designing improved learning and planning modules that can
learn generic petri nets from human demonstrations, being able to capture richer behaviors
than the current representation used by Darmok.

Learning from demonstrations gives Darmok the ability to easily incorporate domain
knowledge. Currently, Darmok requires the demonstrations to be annotated. We plan to
investigate plan recognition techniques applied to the case extraction process to avoid the
annotation step. This will allow the system to learn from merely observing humans playing
games (i.e., Darmok could potentially be observing on-line games and accumulating cases
continuously without any authoring effort). Also related to learning, we want to explore the
learning from experience capabilities of the Darmok architecture.

The selection of the appropriate plan snippets is a key step in Darmok. As the experi-
mental evaluation showed, the set of features used currently in Darmok (that was never fine
tuned) is not good enough. In CBP systems, case retrieval has to take into account three
factors: if the retrieved case will satisfy the goal at hand (goal similarity), if it is adequate
for the current situation (game state similarity), and if the case can be adapted successfully
(adaptation cost). Currently, Darmok only takes into account the first two factors. We en-
vision two lines of future work to improve this process: first, there is existing research in
case retrieval for CBP using the adaptation cost as a guideline, we would like to incorporate



ON-LINE CASE-BASED PLANNING 117

those techniques into our system. To achieve that goal, the learning system of Darmok will
have to be enhanced to be able to learn preconditions, because they can be used to estimate
the adaptation cost. We are currently investigating similar techniques to the ones reported
in Hogg et al. (2008) to achieve this goal. Second, we are exploring situation assessment
techniques that will perform retrieval as a two-step process. During the first step the system
will try to figure out in which “situation” it is in (attacking, defending, etc.), and then from
the situation, an extended set of relevant features will be selected with which to perform
the final case selection (early experiments with this technique show a twofold increase in
performance with a limited computational cost increase).

The planning system will also be subject of future research. Merging multiple plan
snippets into a single one, to achieve a goal for which we had no good plan in the library,
using techniques similar to those ones in MPA (Ram and Francis 1996) or considering
scheduling (Gervasio and Dejong 1992) are two of the techniques we want to explore.
Scheduling is important in RTS games, because the timing in which actions are performed
might have a big influence in the final result. In several games we observed that Darmok lost
a game because of simple bad timing (sending attack actions one by one instead of several
in a block or suboptimal coordination of parallel plans are some examples).

Another aspect that we want to improve in our Darmok architecture is the reactivity.
Currently, Darmok blindly executes a plan as long as the preconditions and postconditions
of all the goals, subgoals, and primitive actions in the plans are being satisfied. However, in
RTS games, is is very important to observe the opponent actions to be able to react before
some part of our plan fails. We are envisioning a simulator module inside the architecture that
will allow the system to estimate what will be the outcome of applying a particular plan so
that the failures can be detected beforehand. Such simulator requires Darmok to incorporate
world model learning and opponent model techniques, which will automatically learn an
internal model of the domain that Darmok can use to improve its planning abilities.
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