
The Master Algorithm
How the Quest for the Ultimate Learning
Machine Will Remake Our World

Pedro Domingos

A Member of the Perseus Books Group
New York

9780465065707-text.indd 3 7/16/15 12:44 PM

www.allitebooks.com

http://www.allitebooks.org

ix

Contents

Prologue xi
Chapter 1 The Machine-Learning Revolution 1
Chapter 2 The Master Algorithm 23
Chapter 3 Hume’s Problem of Induction 57
Chapter 4 How Does Your Brain Learn? 93
Chapter 5 Evolution: Nature’s Learning Algorithm 121
Chapter 6 In the Church of the Reverend Bayes 143
Chapter 7 You Are What You Resemble 177
Chapter 8 Learning Without a Teacher 203
Chapter 9 The Pieces of the Puzzle Fall into Place 235
Chapter 10 This Is the World on Machine Learning 263
Epilogue 291

Acknowledgments 295
Further Readings 297
Index 313

9780465065707-text.indd 9 7/16/15 12:44 PM

www.allitebooks.com

http://www.allitebooks.org
Agnar Aamodt

Agnar Aamodt

177

C HA P T E R S E V E N

You Are What You Resemble

Frank Abagnale Jr. is one of the most notorious con men in history.
Abag nale, portrayed by Leonardo DiCaprio in Spielberg’s movie Catch
Me If You Can, forged millions of dollars’ worth of checks, imperson-
ated an attorney and a college instructor, and traveled the world as a fake
Pan Am pilot—all before his twenty-first birthday. But perhaps his most
jaw-dropping exploit was to successfully pose as a doctor for nearly a
year in late-1960s Atlanta. Practicing medicine supposedly requires
many years in med school, a license, a residency, and whatnot, but Abag-
nale managed to bypass all these niceties and never got called on it.

Imagine for a moment trying to pull off such a stunt. You sneak into
an absent doctor’s office, and before long a patient comes in and tells
you all his symptoms. Now you have to diagnose him, except you know
nothing about medicine. All you have is a cabinet full of patient files:
their symptoms, diagnoses, treatments undergone, and so on. What do
you do? The easiest way out is to look in the files for the patient whose
symptoms most closely resemble your current one’s and make the same
diagnosis. If your bedside manner is as convincing as Abagnale’s, that
might just do the trick. The same idea applies well beyond medicine.
If you’re a young president faced with a world crisis, as Kennedy was

9780465065707-text.indd 177 7/16/15 12:44 PM

178 | T H E M A ST E R A LG OR I T H M

when a US spy plane revealed Soviet nuclear missiles being deployed in
Cuba, chances are there’s no script ready to follow. Instead, you look for
historical analogs of the current situation and try to learn from them.
The Joint Chiefs of Staff urged an attack on Cuba, but Kennedy, having
just read The Guns of August, a best-selling account of the outbreak of
World War I, was keenly aware of how easily that could escalate into
all-out war. So he opted for a naval blockade instead, perhaps saving the
world from nuclear war.

Analogy was the spark that ignited many of history’s greatest scien-
tific advances. The theory of natural selection was born when Darwin,
on reading Malthus’s Essay on Population, was struck by the parallels
between the struggle for survival in the economy and in nature. Bohr’s
model of the atom arose from seeing it as a miniature solar system, with
electrons as the planets and the nucleus as the sun. Kekulé discovered
the ring shape of the benzene molecule after daydreaming of a snake
eating its own tail.

Analogical reasoning has a distinguished intellectual pedigree. Ar-
istotle expressed it in his law of similarity: if two things are similar, the
thought of one will tend to trigger the thought of the other. Empiricists
like Locke and Hume followed suit. Truth, said Nietzche, is a mobile
army of metaphors. Kant was also a fan. William James believed that
“this sense of sameness is the very keel and backbone of our thinking.”
Some contemporary psychologists even argue that human cognition in
its entirety is a fabric of analogies. We rely on it to find our way around a
new town and to understand expressions like “see the light” and “stand
tall.” Teenagers who insert “like” into every sentence they say would
probably, like, agree that analogy is important, dude.

Given all this, it’s not surprising that analogy plays a prominent role
in machine learning. It got off to a slow start, though, and was initially
overshadowed by neural networks. Its first algorithmic incarnation ap-
peared in an obscure technical report written in 1951 by two Berke-
ley statisticians, Evelyn Fix and Joe Hodges, and was not published in
a mainstream journal until decades later. But in the meantime, other
papers on Fix and Hodges’s algorithm started to appear and then to

9780465065707-text.indd 178 7/16/15 12:44 PM

YOU A R E W HAT YOU R E SE M BL E | 179

multiply until it was one of the most researched in all of computer sci-
ence. The nearest-neighbor algorithm, as it’s called, is the first stop on
our tour of analogy-based learning. The second is support vector ma-
chines, an idea that took machine learning by storm around the turn of
the millennium and was only recently overshadowed by deep learning.
The third and last is full-blown analogical reasoning, which has been
a staple of psychology and AI for several decades, and a background
theme in machine learning for nearly as long.

The analogizers are the least cohesive of the five tribes. Unlike the
others, which have a strong identity and common ideals, the analogiz-
ers are more of a loose collection of researchers, united only by their
reliance on similarity judgments as the basis for learning. Some, like the
support vector machine folks, might even object to being brought under
such an umbrella. But it’s raining deep models outside, and I think they
would benefit greatly from making common cause. Similarity is one of
the central ideas in machine learning, and the analogizers in all their
guises are its keepers. Perhaps in a future decade, machine learning will
be dominated by deep analogy, combining in one algorithm the effi-
ciency of nearest-neighbor, the mathematical sophistication of support
vector machines, and the power and flexibility of analogical reasoning.
(There, I just gave away one of my secret research projects.)

Match me if you can

Nearest-neighbor is the simplest and fastest learning algorithm ever in-
vented. In fact, you could even say it’s the fastest algorithm of any kind
that could ever be invented. It consists of doing exactly nothing, and there-
fore takes zero time to run. Can’t beat that. If you want to learn to recog-
nize faces and have a vast database of images labeled face/not face, just
let it sit there. Don’t worry, be happy. Without knowing it, those images
already implicitly form a model of what a face is. Suppose you’re Facebook
and you want to automatically identify faces in photos people upload as a
prelude to tagging them with their friends’ names. It’s nice to not have to
do anything, given that Facebook users upload upward of three hundred

9780465065707-text.indd 179 7/16/15 12:44 PM

180 | T H E M A ST E R A LG OR I T H M

million photos per day. Applying any of the learners we’ve seen so far to
them, with the possible exception of Naïve Bayes, would take a truckload
of computers. And Naïve Bayes is not smart enough to recognize faces.

Of course, there’s a price to pay, and the price comes at test time. Jane
User has just uploaded a new picture. Is it a face? Nearest-neighbor’s an-
swer is: find the picture most similar to it in Facebook’s entire database
of labeled photos—its “nearest neighbor”—and if that picture contains a
face, so does this one. Simple enough, but now you have to scan through
potentially billions of photos in (ideally) a fraction of a second. Like a
lazy student who doesn’t bother to study for the test, nearest-neighbor is
caught unprepared and has to scramble. But unlike real life, where your
mother taught you to never leave until tomorrow what you can do today,
in machine learning procrastination can really pay off. In fact, the entire
genre of learning that nearest-neighbor is part of is sometimes called “lazy
learning,” and in this context there’s nothing pejorative about the term.

The reason lazy learners are a lot smarter than they seem is that their
models, although implicit, can in fact be extremely sophisticated. Con-
sider the extreme case where we have only one example of each class.
For instance, we’d like to guess where the border between two coun-
tries is, but all we know is their capitals’ locations. Most learners would
be stumped, but nearest-neighbor happily guesses that the border is a
straight line lying halfway between the two cities:

9780465065707-text.indd 180 7/16/15 12:44 PM

YOU A R E W HAT YOU R E SE M BL E | 181

The points on the line are at the same distance from the two capitals;
points to the left of the line are closer to Positiville, so nearest-neighbor
assumes they’re part of Posistan and vice versa. Of course, it would be a
lucky day if that was the exact border, but as an approximation it’s prob-
ably a lot better than nothing. It’s when we know a lot of towns on both
sides of the border, though, that things get really interesting:

Nearest-neighbor is able to implicitly form a very intricate border, even
though all it’s doing is remembering where the towns are and assigning
points to countries accordingly! We can think of the “metro area” of a
town as all the points that are closer to it than to any other town; the
boundaries between metro areas are shown as dashed lines in the dia-
gram. Now Posistan is just the union of the metro areas of all its cities,
as is Negaland. In contrast, a decision tree (for example) would only be
able to form borders running alternately north–south and east–west,
probably a much worse approximation to the real border. Thus, even
though decision tree learners are “eager,” trying hard at learning time
to figure out where the border lies, “lazy” nearest-neighbor actually
wins out.

The reason lazy learning wins is that forming a global model, such
as a decision tree, is much harder than just figuring out where specific

9780465065707-text.indd 181 7/16/15 12:44 PM

182 | T H E M A ST E R A LG OR I T H M

query points lie, one at a time. Imagine trying to define what a face is
with a decision tree. You could say it has two eyes, a nose, and a mouth,
but what is an eye and how do you find it in an image? What if the
person’s eyes are closed? Reliably defining a face all the way down to in-
dividual pixels is extremely difficult, particularly given all the different
expressions, poses, contexts, and lighting conditions a face could appear
in. Instead, nearest-neighbor takes a shortcut: if the image in its data-
base most similar to the one Jane just uploaded is of a face, then so is
Jane’s. For this to work, the database needs to contain an image that’s
similar enough to the new one—for example, a face with similar pose,
lighting, and so on—so the bigger the database, the better. For a simple
two-dimensional problem like guessing the border between two coun-
tries, a tiny database suffices. For a very hard problem like identifying
faces, where the color of each pixel is a dimension of variation, we need
a huge database. But these days we have them. Learning from them may
be too costly for an eager learner, which explicitly draws the border be-
tween faces and nonfaces. For nearest-neighbor, however, the border is
implicit in the locations of the data points and the distance measure,
and the only cost is at query time.

The same idea of forming a local model rather than a global one ap-
plies beyond classification. Scientists routinely use linear regression to
predict continuous variables, but most phenomena are not linear. Luck-
ily, they’re locally linear because smooth curves are locally well approx-
imated by straight lines. So if instead of trying to fit a straight line to all
the data, you just fit it to the points near the query point, you now have
a very powerful nonlinear regression algorithm. Laziness pays. If Ken-
nedy had needed a complete theory of international relations to decide
what to do about the Soviet missiles in Cuba, he would have been in
trouble. Instead, he saw an analogy between that crisis and the outbreak
of World War I, and that analogy guided him to the right decisions.

Nearest-neighbor can save lives, as Steven Johnson recounted in The
Ghost Map. In 1854, London was struck by a cholera outbreak, which
killed as many as one in eight people in parts of the city. The then-pre-
vailing theory that cholera was caused by “bad air” did nothing to

9780465065707-text.indd 182 7/16/15 12:44 PM

YOU A R E W HAT YOU R E SE M BL E | 183

prevent its spread. But John Snow, a physician who was skeptical of the
theory, had a better idea. He marked on a map of London the locations
of all the known cases of cholera and divided the map into the regions
closest to each public water pump. Eureka: nearly all deaths were in the
“metro area” of one particular pump, located on Broad Street in the
Soho district. Inferring that the water in that well was contaminated,
Snow convinced the locals to disable the pump, and the epidemic died
out. This episode gave birth to the science of epidemiology, but it’s also
the first success of the nearest-neighbor algorithm—almost a century
before its official invention.

With nearest-neighbor, each data point is its own little classifier, pre-
dicting the class for all the query examples it wins. Nearest-neighbor
is like an army of ants, in which each soldier by itself does little, but
together they can move mountains. If an ant’s load is too heavy, it can
share it with its neighbors. In the same spirit, in the k-nearest-neighbor
algorithm, a test example is classified by finding its k nearest neighbors
and letting them vote. If the nearest image to the new upload is a face
but the next two nearest ones aren’t, three-nearest-neighbor decides
that the new upload is not a face after all. Nearest-neighbor is prone
to overfitting: if we have the wrong class for a data point, it spreads
to its entire metro area. K-nearest-neighbor is more robust because it
only goes wrong if a majority of the k nearest neighbors is noisy. The
price, of course, is that its vision is blurrier: fine details of the frontier
get washed away by the voting. When k goes up, variance decreases, but
bias increases.

Using the k nearest neighbors instead of one is not the end of the
story. Intuitively, the examples closest to the test example should count
for more. This leads us to the weighted k-nearest-neighbor algorithm.
In 1994, a team of researchers from the University of Minnesota and
MIT built a recommendation system based on what they called “a de-
ceptively simple idea”: people who agreed in the past are likely to agree
again in the future. That notion led directly to the collaborative filter-
ing systems that all self-respecting e-commerce sites have. Suppose that,
like Netflix, you’ve gathered a database of movie ratings, with each user

9780465065707-text.indd 183 7/16/15 12:44 PM

184 | T H E M A ST E R A LG OR I T H M

giving a rating of one to five stars to the movies he or she has seen.
You want to decide whether your user Ken will like Gravity, so you find
the users whose past ratings correlate most highly with his. If they all
gave Gravity high ratings, then probably so will Ken, and you can rec-
ommend it to him. If they disagree on Gravity, however, you need a
fallback point, which in this case is ranking users by how highly they
correlate with Ken. So if Lee’s correlation with Ken is higher than Meg’s,
his ratings should count for correspondingly more. Ken’s predicted rat-
ing is then the weighted average of his neighbors’, with each neighbor’s
weight being his coefficient of correlation with Ken.

There’s an interesting twist, though. Suppose Lee and Ken have very
similar tastes, but Lee is grumpier than Ken. Whenever Ken gives a
movie five stars, Lee gives three; when Ken gives three, Lee gives one,
and so on. We’d like to use Lee’s ratings to predict Ken’s, but if we just
do it directly, we’ll always be off by two stars. Instead, what we need to
do is predict how much Ken’s ratings will be above or below his average,
based on how much Lee’s are. And now, since Ken is always two stars
above his average when Lee is two stars above his, and so on, our pre-
dictions will be spot on.

You don’t need explicit ratings to do collaborative filtering, by the
way. If Ken ordered a movie on Netflix, that means he expects to like
it. So the “ratings” can just be ordered/not ordered, and two users are
similar if they’ve ordered a lot of the same movies. Even just clicking
on something implicitly shows interest in it. Nearest-neighbor works
with all of the above. These days all kinds of algorithms are used to rec-
ommend items to users, but weighted k-nearest-neighbor was the first
widely used one, and it’s still hard to beat.

Recommender systems, as they’re also called, are big business: a
third of Amazon’s business comes from its recommendations, as does
three-quarters of Netflix’s. It’s a far cry from the early days of near-
est-neighbor, when it was considered impractical because of its memory
requirements. Back then, computer memories were made of small iron
rings, one per bit, and storing even a few thousand examples was tax-
ing. How times have changed. Nevertheless, it’s not necessarily smart to

9780465065707-text.indd 184 7/16/15 12:44 PM

YOU A R E W HAT YOU R E SE M BL E | 185

remember all the examples you’ve seen and then have to search through
them, particularly since most are probably irrelevant. If you look back
at the map of Posistan and Negaland, you may notice that if Positiville
disappeared, nothing would change. The metro areas of nearby cities
would expand into the land formerly occupied by Positiville, but since
they’re all Posistan cities, the border with Negaland would stay the
same. The only cities that really matter are the ones across the border
from a city in the other country; all others we can omit. So a simple way
to make nearest-neighbor more efficient is to delete all the examples
that are correctly classified by their neighbors. This and other tricks en-
able nearest-neighbor methods to be used in some surprising areas, like
controlling robot arms in real time. But needless to say, they’re still not
the first choice for things like high-frequency trading, where computers
buy and sell stocks in fractions of a second. In a race between a neural
network, which can be applied to an example with only a fixed number
of additions, multiplications, and sigmoids and an algorithm that needs
to search a large database for the example’s nearest neighbors, the neu-
ral network is sure to win.

Another reason researchers were initially skeptical of nearest-
neighbor was that it wasn’t clear if it could learn the true borders between
concepts. But in 1967 Tom Cover and Peter Hart proved that, given
enough data, nearest-neighbor is at worst only twice as error-prone as
the best imaginable classifier. If, say, at least 1 percent of test examples
will inevitably be misclassified because of noise in the data, then near-
est-neighbor is guaranteed to get at most 2 percent wrong. This was a
momentous revelation. Up until then, all known classifiers assumed
that the frontier had a very specific form, typically a straight line. This
was a double-edged sword: on the one hand, it made proofs of correct-
ness possible, as in the case of the perceptron, but it also meant that the
classifier was strictly limited in what it could learn. Nearest-neighbor
was the first algorithm in history that could take advantage of unlimited
amounts of data to learn arbitrarily complex concepts. No human being
could hope to trace the frontiers it forms in hyperspace from millions of
examples, but because of Cover and Hart’s proof, we know that they’re

9780465065707-text.indd 185 7/16/15 12:44 PM

186 | T H E M A ST E R A LG OR I T H M

probably not far off the mark. According to Ray Kurzweil, the Singu-
larity begins when we can no longer understand what computers do.
By that standard, it’s not entirely fanciful to say that it’s already under
way—it began all the way back in 1951, when Fix and Hodges invented
nearest-neighbor, the little algorithm that could.

The curse of dimensionality

There’s a serpent in this Eden, of course. It’s called the curse of dimen-
sionality, and while it affects all learners to a greater or lesser degree, it’s
particularly bad for nearest-neighbor. In low dimensions (like two or
three), nearest-neighbor usually works quite well. But as the number of
dimensions goes up, things fall apart pretty quickly. It’s not uncommon
today to have thousands or even millions of attributes to learn from.
For an e-commerce site trying to learn your preferences, every click you
make is an attribute. So is every word on a web page, and every pixel on
an image. But even with just tens or hundreds of attributes, chances are
nearest-neighbor is already in trouble. The first problem is that most at-
tributes are irrelevant: you may know a million factoids about Ken, but
chances are only a few of them have anything to say about (for example)
his risk of getting lung cancer. And while knowing whether he smokes
is crucial for making that particular prediction, it’s probably not much
help in deciding whether he’ll enjoy seeing Gravity. Symbolist methods,
for one, are fairly good at disposing of irrelevant attributes. If an attri-
bute has no information about the class, it’s just never included in the
decision tree or rule set. But nearest-neighbor is hopelessly confused
by irrelevant attributes because they all contribute to the similarity be-
tween examples. With enough irrelevant attributes, accidental similar-
ity in the irrelevant dimensions swamps out meaningful similarity in
the important ones, and nearest-neighbor becomes no better than ran-
dom guessing.

A bigger problem is that, surprisingly, having more attributes can be
harmful even when they’re all relevant. You’d think that more informa-
tion is always better—isn’t that the motto of our age? But as the number

9780465065707-text.indd 186 7/16/15 12:44 PM

YOU A R E W HAT YOU R E SE M BL E | 187

of dimensions goes up, the number of training examples you need to lo-
cate the concept’s frontiers goes up exponentially. With twenty Boolean
attributes, there are roughly a million different possible examples. With
twenty- one, there are two million, and a corresponding number of ways
the frontier could wind between them. Every extra attribute makes the
learning problem twice as hard, and that’s just with Boolean attributes. If
the attribute is highly informative, the benefit of adding it may exceed the
cost. But if you have only weakly informative attributes, like the words in
an e-mail or the pixels in an image, you’re probably in trouble, even though
collectively they may have enough information to predict what you want.

It gets even worse. Nearest-neighbor is based on finding similar
objects, and in high dimensions, the notion of similarity itself breaks
down. Hyperspace is like the Twilight Zone. The intuitions we have
from living in three dimensions no longer apply, and weird and weirder
things start to happen. Consider an orange: a tasty ball of pulp sur-
rounded by a thin shell of skin. Let’s say 90 percent of the radius of an
orange is occupied by pulp, and the remaining 10 percent by skin. That
means 73 percent of the volume of the orange is pulp (0.93). Now con-
sider a hyperorange: still with 90 percent of the radius occupied by pulp,
but in a hundred dimensions, say. The pulp has shrunk to only about
three thousandths of a percent of the hyperorange’s volume (0.9100). The
hyperorange is all skin, and you’ll never be done peeling it!

Another disturbing example is what happens with our good old
friend, the normal distribution, aka a bell curve. What a normal dis-
tribution says is that data is essentially located at a point (the mean of
the distribution), but with some fuzz around it (given by the standard
deviation). Right? Not in hyperspace. With a high-dimensional normal
distribution, you’re more likely to get a sample far from the mean than
close to it. A bell curve in hyperspace looks more like a doughnut than
a bell. And when nearest-neighbor walks into this topsy-turvy world,
it gets hopelessly confused. All examples look equally alike, and at the
same time they’re too far from each other to make useful predictions. If
you sprinkle examples uniformly at random inside a high-dimensional
hypercube, most are closer to a face of the cube than to their nearest

9780465065707-text.indd 187 7/16/15 12:44 PM

188 | T H E M A ST E R A LG OR I T H M

neighbor. In medieval maps, uncharted areas were marked with drag-
ons, sea serpents, and other fantastical creatures, or just with the phrase
here be dragons. In hyperspace, the dragons are everywhere, including
at your front door. Try to walk to your next-door neighbor’s house, and
you’ll never get there; you’ll be forever lost in strange lands, wondering
where all the familiar things went.

Decision trees are not immune to the curse of dimensionality either.
Let’s say the concept you’re trying to learn is a sphere: points inside it
are positive, and points outside it are negative. A decision tree can ap-
proximate a sphere by the smallest cube it fits inside. Not perfect, but
not too bad either: only the corners of the cube get misclassified. But in
high dimensions, almost the entire volume of the hypercube lies outside
the hypersphere. For every example you correctly classify as positive,
you incorrectly classify many negative ones as positive, causing your ac-
curacy to plummet.

In fact, no learner is immune to the curse of dimensionality. It’s the
second worst problem in machine learning, after overfitting. The term
curse of dimensionality was coined by Richard Bellman, a control theo-
rist, in the fifties. He observed that control algorithms that worked fine
in three dimensions became hopelessly inefficient in higher-dimensional
spaces, such as when you want to control every joint in a robot arm or
every knob in a chemical plant. But in machine learning the problem
is more than just computational cost—it’s that learning itself becomes
harder and harder as the dimensionality goes up.

All is not lost, however. The first thing we can do is get rid of the
irrelevant dimensions. Decision trees do this automatically by com-
puting the information gain of each attribute and using only the most
informative ones. For nearest-neighbor, we can accomplish something
similar by first discarding all attributes whose information gain is be-
low some threshold and then measuring similarity only in the reduced
space. This is quick and good enough for some applications, but un-
fortunately it precludes learning many concepts, like exclusive-OR: if
an attribute only says something about the class when combined with

9780465065707-text.indd 188 7/16/15 12:44 PM

YOU A R E W HAT YOU R E SE M BL E | 189

others, but not on its own, it will be discarded. A more expensive but
smarter option is to “wrap” the attribute selection around the learner
itself, with a hill-climbing search that keeps deleting attributes as long
as that doesn’t hurt nearest-neighbor’s accuracy on held-out data. New-
ton did a lot of attribute selection when he decided that all that matters
for predicting an object’s trajectory is its mass—not its color, smell, age,
or myriad other properties. In fact, the most important thing about an
equation is all the quantities that don’t appear in it: once we know what
the essentials are, figuring out how they depend on each other is often
the easier part.

To handle weakly relevant attributes, one option is to learn attribute
weights. Instead of letting the similarity along all dimensions count
equally, we “shrink” the less-relevant ones. Suppose the training exam-
ples are points in a room, and the height dimension is not that impor-
tant for our purposes. Discarding it would project all examples onto the
floor. Downweighting it is more like giving the room a lower ceiling.
The height of a point still counts when computing its distance to other
points, but less than its horizontal position. And like many other things
in machine learning, we can learn attribute weights by gradient descent.

It may happen that the room has a high ceiling, but the data points
are all near the floor, like a thin layer of dust settling on the carpet. In
that case, we’re in luck: the problem looks three dimensional, but in
effect it’s closer to two dimensional. We don’t have to shrink height
because nature has already shrunk it for us. This “blessing of nonuni-
formity,” whereby data is not spread uniformly in (hyper) space, is often
what saves the day. The examples may have a thousand attributes, but
in reality they all “live” in a much lower-dimensional space. That’s why
nearest-neighbor can be good for handwritten digit recognition, for
example: each pixel is a dimension, so there are many, but only a tiny
fraction of all possible images are digits, and they all live together in
a cozy little corner of hyperspace. The shape of the lower-dimensional
space the data lives in may be quite capricious, however. For example,
if a room has furniture in it, the dust doesn’t just settle on the floor;

9780465065707-text.indd 189 7/16/15 12:44 PM

190 | T H E M A ST E R A LG OR I T H M

it settles on the tabletops, chair seats, bed covers, and whatnot. If we
can figure out the approximate shape of the blanket of dust covering the
room, then all we need is each point’s coordinates on it. As we’ll see in
the next chapter, there’s a whole subfield of machine learning dedicated
to, so to speak, discovering blanket shapes by groping around in the
darkness of hyperspace.

Snakes on a plane

Up until the mid-1990s, the most widely used analogical learner was
nearest-neigbhor, but it was overshadowed by its more glamorous
cousins from the other tribes. But then a new similarity-based algo-
rithm burst onto the scene, sweeping all before it. In fact, you could say
it was another “peace dividend” from the end of the Cold War. Support
vector machines, or SVMs for short, were the brainchild of Vladimir
Vapnik, a Soviet frequentist. Vapnik spent most of his career at the In-
stitute of Control Sciences in Moscow, but in 1990, as the Soviet Union
unraveled, he emigrated to the United States, where he joined the leg-
endary Bell Labs. While in Russia, Vapnik had been mostly content
to do theoretical, pencil-and-paper work, but the atmosphere at Bell
Labs was different. Researchers were looking for practical results, and
Vapnik finally decided to turn his ideas into an algorithm. Within a
few years, he and his colleagues at Bell Labs had developed SVMs, and
before long they were everywhere, setting new accuracy records left
and right.

Superficially, an SVM looks a lot like weighted k-nearest-neighbor:
the frontier between the positive and negative classes is defined by a set
of examples and their weights, together with a similarity measure. A test
example belongs to the positive class if, on average, it looks more like the
positive examples than the negative ones. The average is weighted, and the
SVM remembers only the key examples required to pin down the fron-
tier. If you look back at the Posistan/Negaland example, once we throw
away all the towns that aren’t on the border, all that’s left is this map:

9780465065707-text.indd 190 7/16/15 12:44 PM

YOU A R E W HAT YOU R E SE M BL E | 191

These examples are called support vectors because they’re the vectors
that “hold up” the frontier: remove one, and a section of the frontier
slides to a different place. You may also notice that the frontier is a jag-
ged line, with sudden corners that depend on the exact location of the
examples. Real concepts tend to have smoother borders, which means
nearest-neighbor’s approximation is probably not ideal. But with SVMs,
we can learn smooth frontiers, more like this:

9780465065707-text.indd 191 7/16/15 12:44 PM

192 | T H E M A ST E R A LG OR I T H M

To learn an SVM, we need to choose the support vectors and their
weights. The similarity measure, which in SVM-land is called the ker-
nel, is usually chosen a priori. One of Vapnik’s key insights was that not
all borders that separate the positive training examples from the nega-
tive ones are created equal. Suppose Posistan and Negaland are at war,
and they’re separated by a no-man’s-land with minefields on either side.
Your mission is to survey the no-man’s-land, walking from one end of it
to the other without stepping on any mines. Luckily, you have a map of
where the mines are buried. Obviously, you don’t just take any old path:
you give the mines the widest possible berth. That’s what SVMs do, with
the examples as mines and the learned border as the chosen path. The
closest the border ever comes to an example is its margin of safety, and
the SVM chooses the support vectors and weights that yield the max-
imum possible margin. For example, the solid straight-line border in
this figure is better than the dotted one:

The dotted border separates the positive and negative examples just fine,
but it comes dangerously close to stepping on the landmines at A and B.
These examples are support vectors: delete one of them, and the maxi-
mum-margin border moves to a different place. In general, the border
can be curved, of course, making the margin harder to visualize, but we
can think of the border as a snake slithering down the no-man’s-land,

9780465065707-text.indd 192 7/16/15 12:44 PM

YOU A R E W HAT YOU R E SE M BL E | 193

and the margin is how fat the snake can be. If a very fat snake can slither
all the way down without blowing itself to smithereens, then the SVM
can separate the positive and negative examples very well, and Vapnik
showed that in this case we can be confident that the SVM didn’t overfit.
Intuitively, compared to a thin snake, there are fewer ways a fat snake
can slither down while avoiding the landmines; and likewise, compared
to a low-margin SVM, a high-margin one has fewer chances of overfit-
ting by drawing an overly intricate border.

The second part of the story is how the SVM finds the fattest snake
that fits between the positive and negative landmines. At first sight, it
might seem like learning a weight for each training example by gradient
descent would do the trick. All we have to do is find the weights that
maximize the margin, and any examples that end up with zero weight
can be discarded. Unfortunately, this would just make the weights grow
without limit, because mathematically, the larger the weights, the larger
the margin. If you’re one foot from a landmine and you double the size
of everything including yourself, you are now two feet from the land-
mine, but that doesn’t make you any less likely to step on it. Instead, we
have to maximize the margin under the constraint that the weights can
only increase up to some fixed value. Or, equivalently, we can minimize
the weights under the constraint that all examples have a given margin,
which could be one—the precise value is arbitrary. This is what SVMs
usually do.

Constrained optimization is the problem of maximizing or minimiz-
ing a function subject to constraints. The universe maximizes entropy
subject to keeping energy constant. Problems of this type are wide-
spread in business and technology. For example, we may want to max-
imize the number of widgets a factory produces, subject to the number
of machine tools available, the widgets’ specs, and so on. With SVMs,
constrained optimization became crucial for machine learning as well.
Unconstrained optimization is getting to the top of the mountain, and
that’s what gradient descent (or, in this case, ascent) does. Constrained
optimization is going as high as you can while staying on the road. If
the road goes up to the very top, the constrained and unconstrained

9780465065707-text.indd 193 7/16/15 12:44 PM

194 | T H E M A ST E R A LG OR I T H M

problems have the same solution. More often, though, the road zigzags
up the mountain and then back down without ever reaching the top.
You know you’ve reached the highest point on the road when you can’t
go any higher without driving off the road; in other words, when the
path to the top is at right angles to the road. If the road and the path
to the top form an oblique angle, you can always get higher by driving
farther along the road, even if that doesn’t get you higher as quickly as
aiming straight for the top of the mountain. So the way to solve a con-
strained optimization problem is to follow not the gradient but the part
of it that’s parallel to the constraint surface—in this case the road—and
stop when that part is zero.

In general, we have to deal with many constraints at once (one per
example, in the case of SVMs). Suppose you wanted to get as close as
possible to the North Pole but couldn’t leave your room. Each of the
room’s four walls is a constraint, and the solution is to follow the com-
pass until you bump into the corner where the northeast and northwest
walls meet. We say that these two walls are the active constraints be-
cause they’re what prevents you from reaching the optimum, namely
the North Pole. If your room has a wall facing exactly north, that’s the
sole active constraint, and the solution is a point in the middle of it.
And if you’re Santa and your room is already over the North Pole, all
constraints are inactive, and you can just sit there pondering the opti-
mal toy distribution problem instead. (Traveling salesmen have it easy
compared to Santa.) In an SVM, the active constraints are the support
vectors since their margin is already the smallest it’s allowed to be; mov-
ing the frontier would violate one or more constraints. All other exam-
ples are irrelevant, and their weight is zero.

In reality, we usually let SVMs violate some constraints, meaning
classify some examples incorrectly or by less than the margin, because
otherwise they would overfit. If there’s a noisy negative example some-
where in the middle of the positive region, we don’t want the frontier
to wind around inside the positive region just to get that example right.
But the SVM pays a penalty for each example it gets wrong, which en-
courages it to keep those to a minimum. SVMs are like the sandworms

9780465065707-text.indd 194 7/16/15 12:44 PM

YOU A R E W HAT YOU R E SE M BL E | 195

in Dune: big, tough, and able to survive a few explosions from slithering
over landmines but not too many.

Looking around for applications, Vapnik and his coworkers soon
alighted on handwritten digit recognition, which their connectionist
colleagues at Bell Labs were the world experts on. To everyone’s sur-
prise, SVMs did as well out of the box as multilayer perceptrons that
had been carefully crafted for digit recognition over the years. This set
the stage for a long-running, wide-ranging competition between the
two. SVMs can be seen as a generalization of the perceptron, because
a hyperplane boundary between classes is what you get when you use
a particular similarity measure (the dot product between vectors). But
SVMs have a major advantage compared to multilayer perceptrons: the
weights have a single optimum instead of many local ones and so learn-
ing them reliably is much easier. Despite this, SVMs are no less expres-
sive than multilayer perceptrons; the support vectors effectively act as
a hidden layer and their weighted average as the output layer. For ex-
ample, an SVM can easily represent the exclusive-OR function by hav-
ing one support vector for each of the four possible configurations. But
the connectionists didn’t give up without a fight. In 1995, Larry Jackel,
the head of Vapnik’s department at Bell Labs, bet him a fancy dinner
that by 2000 neural networks would be as well understood as SVMs.
He lost. But in return, Vapnik bet that by 2005 no one would use neural
networks any more, and he also lost. (The only one to get a free din-
ner was Yann LeCun, their witness.) Moreover, with the advent of deep
learning, connectionists have regained the upper hand. Provided you
can learn them, networks with many layers can express many functions
more compactly than SVMs, which always have just one layer, and this
can make all the difference.

Another notable early success of SVMs was in text classification,
which proved a major boon because the web was then just taking off. At
the time, Naïve Bayes was the state-of-the-art text classifier, but when
every word in the language is a dimension, even it can start to overfit.
All it takes is a word that, by chance, occurs in, say, all sports pages in the
training data and no others, and Naïve Bayes starts to hallucinate that

9780465065707-text.indd 195 7/16/15 12:44 PM

196 | T H E M A ST E R A LG OR I T H M

every page containing that word is a sports page. But, thanks to margin
maximization, SVMs can resist overfitting even in very high dimensions.

Generally, the fewer support vectors an SVM selects, the better it
generalizes. Any training example that is not a support vector would be
correctly classified if it showed up as a test example instead because the
frontier between positive and negative examples would still be in the
same place. So the expected error rate of an SVM is at most the fraction
of examples that are support vectors. As the number of dimensions goes
up, this fraction tends to go up as well, so SVMs are not immune to the
curse of dimensionality. But they’re more resistant to it than most.

Practical successes aside, SVMs also turned a lot of machine-
learning conventional wisdom on its head. For example, they gave the
lie to the notion, sometimes misidentified with Occam’s razor, that
simpler models are more accurate. On the contrary, an SVM can have
an infinite number of parameters and still not overfit, provided it has
a large enough margin.

The single most surprising property of SVMs, however, is that no
matter how curvy the frontiers they form, those frontiers are always just
straight lines (or hyperplanes, in general). The reason that’s not a con-
tradiction is that the straight lines are in a different space. Suppose the
examples live on the (x,y) plane, and the boundary between the positive
and negative regions is the parabola y = x2. There’s no way to represent
it with a straight line, but if we add a third coordinate z, meaning the
data now lives in (x,y,z) space, and we set each example’s z coordinate
to the square of its x coordinate, the frontier is now just the diagonal
plane defined by y = z. In effect, the data points rise up into the third
dimension, some rise more than others by just the right amount, and
presto—in this new dimension the positive and negative examples can
be separated by a plane. It turns out that we can view what SVMs do
with kernels, support vectors, and weights as mapping the data to a
higher-dimensional space and finding a maximum-margin hyperplane
in that space. For some kernels, the derived space has infinite dimen-
sions, but SVMs are completely unfazed by that. Hyperspace may be the
Twilight Zone, but SVMs have figured out how to navigate it.

9780465065707-text.indd 196 7/16/15 12:44 PM

YOU A R E W HAT YOU R E SE M BL E | 197

Climbing the ladder

Two things are similar if they agree with one another in some respects.
If they agree in some respects, they will probably also agree in others.
This is the essence of analogy. It also points to the two main subprob-
lems in analogical reasoning: figuring out how similar two things are
and deciding what else to infer from their similarities. So far we’ve
explored the “low power” end of analogy, with algorithms like near-
est-neighbor and SVMs, where the answers to both these questions are
very simple. They’re the most widely used, but a chapter on analogical
learning would not be complete without at least a whirlwind tour of the
more powerful parts of the spectrum.

The most important question in any analogical learner is how to
measure similarity. It could be as simple as Euclidean distance between
data points, or as complex as a whole program with multiple levels of
subroutines whose final output is a similarity value. Either way, the sim-
ilarity function controls how the learner generalizes from known ex-
amples to new ones. It’s where we insert our knowledge of the problem
domain into the learner, making it the analogizers’ answer to Hume’s
question. We can apply analogical learning to all kinds of objects, not
just vectors of attributes, provided we have a way of measuring the
similarity between them. For example, we can measure the similarity
between two molecules by the number of identical substructures they
contain. Methane and methanol are similar because they have three
carbon-hydrogen bonds in common and differ only in the replacement
of a hydrogen atom by a hydroxyl group:

9780465065707-text.indd 197 7/16/15 12:44 PM

198 | T H E M A ST E R A LG OR I T H M

However, that doesn’t mean their chemical behavior is similar.
Methane is a gas, while methanol is an alcohol. The second part of an-
alogical reasoning is figuring out what we can infer about the new ob-
ject based on similar ones we’ve found. This can be very simple or very
complex. In nearest-neighbor or SVMs, it just consists of predicting
the new object’s class based on the classes of the nearest neighbors or
support vectors. But in case-based reasoning, another type of analogi-
cal learning, the output can be a complex structure formed by compos-
ing parts of the retrieved objects. Suppose your HP printer is spewing
out gibberish, and you call up their help desk. Chances are they’ve seen
your problem many times before, so a good strategy is to find those
records and piece together a potential solution for your problem from
them. This is not just a matter of finding complaints with many similar
attributes to yours: for example, whether you’re using your printer with
Windows or Mac OS X may cause very different settings of the system
and the printer to become relevant. And once you’ve found the most
relevant cases, the sequence of steps needed to solve your problem
may be a combination of steps from different cases, with some further
tweaks specific to yours.

Help desks are currently the most popular application of case-based
reasoning. Most still employ a human intermediary, but IPsoft’s Eliza
talks directly to the customer. Eliza, who comes complete with a 3-D
interactive video persona, has solved over twenty million customer
problems to date, mostly for blue-chip US companies. “Greetings from
Robotistan, outsourcing’s cheapest new destination,” is how an out-
sourcing blog recently put it. And, just as outsourcing keeps climbing
the skills ladder, so does analogical learning. The first robo-lawyers that
argue for a particular verdict based on precedents have already been
built. One such system correctly predicted the outcomes of over 90 per-
cent of the trade secret cases it examined. Perhaps in a future cyber-
court, in session somewhere on Amazon’s cloud, a robo-lawyer will beat
the speeding ticket that RoboCop issued to your driverless car, all while
you go to the beach, and Leibniz’s dream of reducing all argument to
calculation will finally have come true.

9780465065707-text.indd 198 7/16/15 12:44 PM

YOU A R E W HAT YOU R E SE M BL E | 199

Arguably even higher up in the skills ladder is music composition.
David Cope, an emeritus professor of music at the University of Cal-
ifornia, Santa Cruz, designed an algorithm that creates new music in
the style of famous composers by selecting and recombining short
passages from their work. At a conference I attended some years ago,
he played three “Mozart” pieces: one by the real Mozart, one by a hu-
man composer imitating Mozart, and one by his system. He then asked
the audience to vote for the authentic Amadeus. Wolfgang won, but
the computer beat the human imitator. This being an AI conference, the
audience was delighted. Audiences at other events were less happy. One
listener angrily accused Cope of ruining music for him. If Cope is right,
creativity—the ultimate unfathomable—boils down to analogy and re-
combination. Judge for yourself by googling “david cope mp3.”

Analogizers’ neatest trick, however, is learning across problem do-
mains. Humans do it all the time: an executive can move from, say, a
media company to a consumer-products one without starting from
scratch because many of the same management skills still apply. Wall
Street hires lots of physicists because physical and financial problems,
although superficially very different, often have a similar mathemati-
cal structure. Yet all the learners we’ve seen so far would fall flat if we,
say, trained them to predict Brownian motion and then asked them to
predict the stock market. Stock prices and the velocities of particles
suspended in a fluid are just different variables, so the learner wouldn’t
even know where to start. But analogizers can do this using structure
mapping, an algorithm invented by Dedre Gentner, a psychologist at
Northwestern University. Structure mapping takes two descriptions,
finds a coherent correspondence between some of their parts and rela-
tions, and then, based on that correspondence, transfers further prop-
erties from one structure to the other. For example, if the structures are
the solar system and the atom, we can map planets to electrons and the
sun to the nucleus and conclude, as Bohr did, that electrons revolve
around the nucleus. The truth is more subtle, of course, and we often
need to refine analogies after we make them. But being able to learn
from a single example like this is surely a key attribute of a universal

9780465065707-text.indd 199 7/16/15 12:44 PM

200 | T H E M A ST E R A LG OR I T H M

learner. When we’re confronted with a new type of cancer—and that
happens all the time because cancers keep mutating—the models we’ve
learned for previous ones don’t apply. Neither do we have time to gather
data on the new cancer from a lot of patients; there may be only one,
and she urgently needs a cure. Our best hope is then to compare the
new cancer with known ones and try to find one whose behavior is sim-
ilar enough that some of the same lines of attack will work.

Is there anything analogy can’t do? Not according to Douglas Hof-
stadter, cognitive scientist and author of Gödel, Escher, Bach: An Eternal
Golden Braid. Hofstadter, who looks a bit like the Grinch’s good twin,
is probably the world’s best-known analogizer. In their book Surfaces
and Essences: Analogy as the Fuel and Fire of Thinking, Hofstadter and
his collaborator Emmanuel Sander argue passionately that all intelligent
behavior reduces to analogy. Everything we learn or discover, from the
meaning of everyday words like mother and play to the brilliant insights
of geniuses like Albert Einstein and Évariste Galois, is the result of anal-
ogy in action. When little Tim sees women looking after other children
like his mother looks after him, he generalizes the concept “mommy”
to mean anyone’s mommy, not just his. That in turn is a springboard
for understanding things like “mother ship” and “Mother Nature.” Ein-
stein’s “happiest thought,” out of which grew the general theory of rel-
ativity, was an analogy between gravity and acceleration: if you’re in an
elevator, you can’t tell whether your weight is due to one or the other
because their effects are the same. We swim in a vast ocean of analogies,
which we both manipulate for our ends and are unwittingly manipu-
lated by. Books have analogies on every page (like the title of this sec-
tion, or the previous one’s). Gödel, Escher, Bach is an extended analogy
between Gödel’s theorem, Escher’s art, and Bach’s music. If the Master
Algorithm is not analogy, it must surely be something like it.

Rise and shine

Cognitive science has seen a long-running debate between symbolists
and analogizers. Symbolists point to something they can model that

9780465065707-text.indd 200 7/16/15 12:44 PM

YOU A R E W HAT YOU R E SE M BL E | 201

analogizers can’t; then analogizers figure out how to do it, come up with
something they can model that symbolists can’t, and the cycle repeats.
Instance-based learning, as it’s sometimes called, is supposedly better
for modeling how we remember specific episodes in our lives; rules are
the putative choice for reasoning with abstract concepts like “work” and
“love.” But when I was a graduate student, it struck me that these two are
really just points on a continuum, and we should be able to learn across
all of it. Rules are in effect generalized instances where we’ve “forgotten”
some attributes because they didn’t matter. Conversely, instances are very
specific rules, with a condition on every attribute. As we go through life,
similar episodes gradually become abstracted into rule-based structures,
like “eating at a restaurant.” You know that going to a restaurant involves
ordering from a menu and leaving a tip, and you follow those “rules of
conduct” every time you eat out, but you probably don’t remember the
specific restaurants where you first became aware of them.

In my PhD thesis, I designed an algorithm that unifies instance-based
and rule-based learning in this way. A rule doesn’t just match entities
that satisfy all its preconditions; it matches any entity that’s more similar
to it than to any other rule, in the sense that it comes closer to satisfying
its conditions. For instance, someone with a cholesterol level of 220 mg/
dL comes closer than someone with 200 mg/dL to matching the rule
If your cholesterol is above 240 mg/dL, you’re at risk of a heart attack.
RISE, as I called the algorithm, learns by starting with each training
example as a rule and then gradually generalizing each rule to absorb
the nearest examples. The end result is usually a combination of very
general rules, which between them match most examples, with more
specific rules that match exceptions to those, and so on all the way to
a “long tail” of specific memories. RISE made better predictions than
the best rule-based and instance-based learners of the time, and my ex-
periments showed that this was precisely because it combined the best
features of both. Rules can be matched analogically, and so they’re no
longer brittle. Instances can select different features in different regions
of space and so combat the curse of dimensionality much better than
nearest-neighbor, which can only select the same features everywhere.

9780465065707-text.indd 201 7/16/15 12:44 PM

202 | T H E M A ST E R A LG OR I T H M

RISE was a step toward the Master Algorithm because it combined
symbolic and analogical learning. It was only a small step, however, be-
cause it doesn’t have the full power of either of those paradigms, and
it’s still missing the other three. RISE’s rules can’t be chained together
in different ways; each rule just predicts the class of an example directly
from its attributes. Also, the rules can’t talk about more than one entity
at a time; for example, RISE can’t express a rule like If A has the flu and B
was in contact with A, B may have the flu as well. On the analogical side,
RISE just generalizes the simple nearest-neighbor algorithm; it can’t
learn across domains using structure mapping or some such strategy. At
the time I finished my PhD, I didn’t see a way to bring together in one
algorithm the full power of all the five paradigms, and I set the problem
aside for a while. But as I applied machine learning to problems like
word-of-mouth marketing, data integration, programming by example,
and website personalization, I kept seeing how each of the paradigms
provided only part of the solution. There had to be a better way.

And so we have traveled through the territories of the five tribes,
gathering their insights, negotiating the border crossings, wondering
how the pieces might fit together. We know immensely more now than
when we started out. But something is still missing. There’s a gaping
hole in the center of the puzzle, making it hard to see the pattern. The
problem is that all the learners we’ve seen so far need a teacher to tell
them the right answer. They can’t learn to distinguish tumor cells from
healthy ones unless someone labels them “tumor” or “healthy.” But hu-
mans can learn without a teacher; they do it from the day they’re born.
Like Frodo at the gates of Mordor, our long journey will have been in
vain if we don’t find a way around this barrier. But there is a path past
the ramparts and the guards, and the prize is near. Follow me . . .

9780465065707-text.indd 202 7/16/15 12:44 PM

PEDRO DOMINGOS is a professor
of computer science at the Univer-
sity of Washington. He is a winner of
the SIGKDD Innovation Award, the
highest honor in data science. A fellow of the Association for the
Advancement of Artificial Intelligence, he lives near Seattle.

9780465065707-text.indd 330 7/16/15 12:44 PM

	Prologue
	CHAPTER ONE: The Machine-Learning Revolution
	CHAPTER TWO: The Master Algorithm
	CHAPTER THREE: Hume’s Problem of Induction
	CHAPTER FOUR: How Does Your Brain Learn?
	CHAPTER FIVE: Evolution: Nature’s Learning Algorithm
	CHAPTER SIX: In the Church of the Reverend Bayes
	CHAPTER SEVEN: You Are What You Resemble
	CHAPTER EIGHT: Learning Without a Teacher
	CHAPTER NINE: The Pieces of the Puzzle Fall into Place
	CHAPTER TEN: This Is the World on Machine Learning
	Acknowledgments
	Further Readings
	Index

