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Abstract
A particular strength of case-based reasoning (CBR) over most other methods is its inherent
combination of problem solving with sustained learning through problem solving experience. This is
therefore a particularly important topic of study, and an issue that has now become mature enough
to be addressed in a more systematic way. To enable such an analysis of problem solving and
learning, we have initiated work towards the development of an analytic framework for studying
CBR methods. It provides an explicit ontology of basic CBR task types, domain characterisations,
and types of problem solving and learning methods. Further, it incorporates within this framework a
methodology for combining a knowledge-level, top-down analysis with a bottom-up, case-driven
one. In this article, we present the underlying view and the basic approach being taken, the main
components of the framework and accompanying methodology, examples of studies recently done
and how they relate to the framework.

1. Introduction
Over the last few years substantial progress has been made within the case-based reasoning (CBR)
field. The problems we are facing have become more clearly identified, research results have led to
improved methods for case retrieval as well as improved approaches to the harder problems of
adaptation and learning (see, e.g., the collection of recent papers in ICCBR-95: Veloso & Aamodt,
1995). In the course of this development it has also become clear that a particular strength of CBR

over most other methods is its inherent combination of problem solving with sustained learning
through problem solving experience. This is therefore a particularly important topic of study, and
an issue that has now become mature enough to be addressed in a more systematic way. To enable
such an analysis of problem solving and learning, a unified framework for describing, analysing, and
comparing various types and aspects of CBR methods is needed.

Integration of learning and problem solving may in general start out from different goals, and be
viewed from different perspectives. One example is ãconcept formationÒ as a goal, and the
formation and utilisation of operationalisation criteria related to the problem solving task, as the
perspective. Another example is ãimproved performanceÒ as a goal, and the improvement of total
problem solving speed - for computer and human together - as the perspective. A third example is
ãsustained learningÒ, i.e. continuous learning through problem solving experience, as a goal, and the
impact of the application problem task on the learning method as a perspective. Many more



examples may be given, and for each of them a particular area of overlap, an ãintersection spaceÒ
between machine learning (ML) and problem solving (PS) methods can be identified. Within this
space, dependencies and other relations between specific ML and PS methods may be described and
analysed in a systematic way, provided we have a suitable means to structure the space.

We have initiated work towards the development of a framework and a methodology which defines
and makes use of such a structure. Since we are studying CBR methods, the natural focus is on the
third of the above goals: Sustained and (continuous) learning from each problem solving experience
as a natural part of a problem solver's behaviour. Within a broader perspective of integrated learning
and problem solving, it is also natural to start a study of learning as close as possible to the source
of learning, namely a concrete experience. Our work is related to some earlier suggestions for
analytic CBR frameworks, such as the similarity-focused framework by Richter and Wess (Richter,
Wess, 1991), Althoff's analysis of systems for technical diagnosis (Althoff, 1992), Aamodt's
comparison of knowledge-intensive CBR methods (Aamodt, 1991), Armengol's and Plaza's analysis
of CBR system architectures (Armengol & Plaza,1993), and the INRECA framework for systems
comparison and evaluation (Auriol et. al, 1995). The framework we are developing extends these
previous suggestions in several respects. It provides an explicit ontology of basic CBR task types,
domain characterisations, and types of problem solving and learning methods. Further, it
incorporates within this framework a methodology for combining a knowledge-level, top-down
analysis with a bottom-up, case-driven one. In this article, we present the underlying view and the
basic approach being taken, the main components of the framework and accompanying
methodology, and examples of studies recently done and how they relate to the framework.

2. Basic approach
2.1. Knowledge-level analysis

A potentially useful way to describe problem solving and learning behaviour is in terms of the goals

to be achieved, the tasks that need to be solved, the methods that will accomplish those tasks, and
the knowledge of the application domain that those methods need. A description of a system along
these lines is often referred to as a knowledge level description, and more recent research in
knowledge acquisition (e.g. Steels, 1990; Wielinga, Van de Velde et al., 1993) has clearly
demonstrated the usability of this approach. The original knowledge-level idea has undergone some
modifications over the years, from Newell's highly intentional, purpose-oriented way of describing a
system (Newell, 1982), to a more structured and usable type of description. An incorporation of
the CBR perspective into knowledge-level modelling is discussed in Aamodt (1995).

Adopting a knowledge-level perspective to the analysis of integrated PS-ML systems enables the
description of methods and systems both from a general (intensional) and case-specific (extensional)
perspective. A general description relates a method to descriptive terms and relationships within a
general model of descriptive concepts - i.e. an ontology of task types, domain characteristics, and
method types. Through a case-driven description, methods can be understood by relating them to
already known methods within already described/implemented systems (e.g., CBR is combined with
rule- and model-based reasoning in the same way as in CREEK (Aamodt, 1994); a decision tree is
generated as in INRECA (Manago, Althoff et al., 1993); the similarity measure is adapted as in
PATDEX (Wess, 1993); partial determination rules are generated and used like the so called ãshortcut
rulesÒ in MOLTKE (Althoff 1992); etc.). After having developed/described a certain number of
systems, we will be able to select/instantiate a system description at the knowledge level by a
combined use of general and case-specific descriptors. What we are aiming at is an effective
combination of top-down and bottom-up analysis and modelling methods, based on an integration
of these two perspectives.



From an engineering point of view, this will enable a particular symbol-level architecture to be
chosen, and/or a chosen architecture to be instantiated, based on a thorough understanding of the real
world application task and its domain characteristics. However, a knowledge-level description in
itself will not provide a language detailed enough to describe or analyse system designs, or to arrive
at a symbol-level architecture specification. Our approach therefore incorporates a focusing
perspective and an analytic ãtoolÒ to help in the more detailed description that guides the
architectural specification based on a knowledge-level model.

2.2. Similarity  as a  focusing mechanism

The focus provided by this mechanism leads to a view of - in principle - all CBR methods as
operations related to similarity, in one sense or another. That is, problem solving can be described as
a process of initial assessment of similarity (case retrieval) followed by a more deliberate
assessment of similarity (case adaptation), and learning (case extraction, case indexing, and possibly
updates of general knowledge) can be described by relating it to later similarity assessment - i.e. to a
pragmatic learning goal. Along with Richter and Wess (1991) we view similarity as an a posteriori

criterion, and any attempt to assess similarity before a retrieved case has been found useful will
only result in a hypothesised similarity assessment. Our retrieval methods should of course try to
minimise the difference between the hypothesised similarity measure and the actual similarity
determined after the attempt has been made to use the case. A way to describe the role of general
domain knowledge, for example, is then as a means to reduce this uncertainty of the initial similarity
assessment with respect to the final similarity assessment made after having evaluated the success
of the (possibly modified) case in finding a solution to the input problem.

2.3. Tasks and domain characterisations

The types of application domains we address cover a wide spectrum, ranging from strong-theory
domains with rather well-defined relationships between domain concepts (e.g., diagnosis of purely
technical systems), to weak-theory and open domains with uncertain domain relationships (e.g.,
medical diagnosis). This is an important feature of the framework, since we particularly want to
relate characteristics of the task (the what-to-do) and the knowledge on which performance of the
task is based, to the methods (how-to-dos) that enable the problem solver to accomplish the task by
use of the knowledge. The starting point is always the real world setting in which the system is to
operate. Medical diagnosis, for example, in a real world setting, is far from a pure classification task
(Althoff & Bartsch-Sp�rl, 1996). If a system shall cover the major tasks involved in practical
diagnosis, it will have to include planning tasks (e.g., setting up and continuously revising an
examination protocol), as well as prediction tasks (assessing the consequences of a treatment).

The next section outlines the core components of the framework, with a focus on the knowledge-
level description and analysis and the combined top-down and bottom-up oriented methodology.
The incorporation of the similarity assessment mechanism is part of ongoing research.

3. Framework and methodological issues
3.1. Basic framework components

At the highest level of generality, a general CBR cycle may be described by four tasks (Aamodt &
Plaza, 1994): Retrieve the most similar case or cases, Reuse the information and knowledge in that
case to solve the problem, Revise the proposed solution, and Retain the parts of this experience
likely to be useful for future problem solving. See Figure 1.   



Note that the tasks referred to here are
internal reasoning tasks, and different from the
application problems tasks (e.g. diagnosis,
planning, etc.) referred to earlier. The four
CBR tasks each involve a number of more
specific sub-tasks. An initial description of a
problem (top of Fig. 1) defines a new case. In
the Retrieve task this new case is used to find
a matching case from the collection of
previous cases. The retrieved case is combined
with the input case - in the Reuse task - into a
solved case, i.e. a proposed solution to the
initial problem. The Revise task tests this
solution for success, e.g. by applying it to the
real-life environment or have it evaluated by a
teacher, and repaired if failed. This task is
important for learning, since the system needs
a feedback of how successful its proposed
solution actually was. Retain is the main
learning task, where useful experience is
retained for future reuse, by updating the
case-base and possibly also the general
domain knowledge. As indicated in the figure,
general knowledge usually plays a part in this

cycle, by supporting the CBR processes. This
support may range from very weak to very
strong,  depending on the type of CBR
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Figure 1 – The CBR Cycle

method. By general knowledge we here mean general domain-dependent knowledge, as opposed to
the specific domain knowledge embodied by cases. For example, in diagnosing a patient by retrieving
and reusing the case of a previous patient, a model of anatomy together with causal relationships
between pathological and other physiological states may constitute the general knowledge used by a
CBR system. A set of rules may have the same role.

Knowledge-level analysis, as previously described, is a general approach to systems analysis. It is
therefore applicable to the analysis of application tasks and domains - as manifested in the
knowledge acquisition methodologies referred to earlier - as well as internal reasoning tasks of a
problem solver and learner. In our framework we therefore take a ãtask Ð method Ð domain
knowledgeÒ approach both to the analysis of real-world application tasks, and to the analysis of the
CBR reasoning tasks themselves. The mapping between the two is as follows: Methods from the
application analysis (e.g. how to solve a technical diagnosis problem, or how to determine the next
test to be done) either decomposes an application task into sub-tasks, or it solves the task directly.
In both cases these methods set up tasks at the reasoning level (e.g. problem solving and learning
from experience). In the following, we concentrate on the reasoning tasks.
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Figure 2 – Task-method decomposition of CBR

The tasks from Figure 1 are further decomposed in Figure 2. The tasks have node names in bold
letters, while methods are written in plain text. The links between task nodes (bold lines) are task
decompositions, i.e. part-of relations. The links between tasks and methods (stippled lines) identify
alternative methods applicable for solving a task. The top-level task is problem solving and learning
from experience and the method to accomplish the task is a case-based reasoning method. This
splits the top-level task into the four major CBR tasks corresponding to Figure 1. All the four tasks
are necessary in order to perform the top-level task. The retrieve task is, in turn, partitioned in the
same manner (by a retrieval method) into the tasks identify features, search (to find a set of past
cases), initially match (the relevant descriptors to past cases), and select (the most similar case).
All task partitions in the figure are considered complete, i.e. the set of sub-tasks of a task are
intended to be sufficient to accomplish the task, at this level of description. The figure does not
show any control structure over the sub-tasks. The actual control is specified as part of the
problem-solving method. The actual retrieval method, for example (not explicitly indicated in the
figure), specifies the sequence and loop-backs for the sub-tasks of retrieve. A method specifies the
algorithm that identifies and controls the execution of sub-tasks, or solves the task directly, while
accessing and utilising the domain knowledge needed to do this. The methods shown in the figure are
high level method classes, from which one or more specific methods should be chosen. The method
set as shown is incomplete, i.e. one of the methods indicated may be sufficient to solve the task,
several methods may be combined, or there may be other methods that have not been mentioned.

The above structure provides the basis for the analytic framework. It needs to be elaborated and
described in more detail, characterisations of domain knowledge types need to be added, and
dependencies between the various knowledge types need to be identified.

3.2. Methodology

As previously stated, the basic methodological approach is to combine a top-down oriented analysis
of application tasks, domain knowledge descriptions, and methods with a bottom-up, case-driven



method of studying existing systems. The aim is to arrive at a coherent framework and description
language that specialises from the high-level analysis and generalises from the example systems
studied.

The baseline of the approach is as follows. We describe CBR systems as well as domains and
application tasks using two different kinds of criteria, namely criteria characterising the domain and
task at hand (domain/task criteria) and criteria describing the abilities and limitations of existing
systems and system components (technical/ergonomic criteria) (cf. Althoff & Bartsch-Sp�rl, 1996;
Althoff, Wess et al., 1995). Examples for domain/task criteria are size1, theory strength2, openness3,
change over time4, and complexity5, while case and knowledge representation, similarity assessment,
validation, and data acquisition and maintenance exemplify important technical/ergonomic criteria.
We analyse the underlying methods and domain/task characteristics by relating domain/task criteria
with technical/ergonomic criteria. Figure 3 gives an example of how CBR systems can be labelled
with domain criteria. Combining such a description with a general analysis based on the sub-task
structure of Figure 2, was shown to be useful during the final evaluation of the INRECA system
(Althoff, Auriol et al., 1995; Althoff, Wess et al., 1995).
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Fig. 3 – An example of domain criteria related to existing systems

From a software or knowledge engineering perspective, we try to arrive at non-functional system
properties as a systematic means for (CBR) system development. Since we focus on CBR systems
we can define more precise criteria than we could for software systems in general. Additionally, we
combine these system-oriented, more technical criteria with an analysis of application domains in

                                                
1 The size of a domain is characterised by the amount of different items representing the explicit knowledge.
2 The theory strength of a domain depends on the degree of certainty of the involved relationships.
3 The openness of a domain depends on its environmental dependencies.
4 The change over time of a domain means that a domain is called static if there are no expected changes and it is

called dynamic if it is clear that changes will appear in continuation.
5 The complexity of a domain means the amount of different taxonomic relations.



which we have experience. On the one hand, feedback from applications can be systematically
transformed in an evaluation based on domain and application task criteria. On the other hand,
methods extracted from CBR-related systems and tools can be labelled with the results of the
application of such criteria. Again, the aim is to close the gap between high level characterisations,
on the one side, and concrete systems on the other side. General knowledge level analysis and case-
driven analysis are merged in order to come up with application frameworks for particular types of
systems, based on a common terminology and a unified model. Here technical/ergonomic criteria are
combined with domain/task criteria.

The intended use of this framework both for analysis and development of integrated problem
solving and learning systems, can be described as providing answers to the following questions
related to the evaluation of AI research (cf. Cohen, 1989):

¥ How is the CBR method to be evaluated an improvement, an alternative, or a complement to
other methods? Does it account for more situations, or produce a wider variety of desired
behaviour, or is it more efficient in time or space, or does it model human behaviour in a more
useful way/detail?

¥ What are the underlying architectural assumptions? Are all design decisions justified? Does the
method rely on other integrated methods? Does it subsume other methods?

¥ What is the scope of the method? How extendible is it? Will it scale up?

¥ Why does the method work? Under which conditions would it not work?

¥ What is the relationship between the class of task, of which the current task is an example, and
the method used? Can this relationship be stated clearly enough to support a claim that the
method is general to the class of task?

4. Example studies
We will point to two small example studies where the framework as specified so far has been used.
They both illustrate a bottom-up approach (a case-oriented approach) to the study of CBR

methods, undertaken within the general, high level, analytic framework. The first example is a
description of the learning method (for the retain task), at a suitable level of abstraction, which was
derived by abstracting from a set of existing systems. The second example is related to the top-level
task of case-based problem solving and learning (see figure 2), and methods for integrating case-
based and generalisation-based reasoning.

A set of criteria for analysing and evaluating CBR methods was defined and applied within a study
of industrial CBR tools (Althoff, Auriol et al., 1995). These criteria were in turn generalised and
extended to CBR research systems (Althoff, Wess et al., 1995). Here the task-method
decomposition hierarchy (Fig. 2) was extended with methods that were abstracted from a set of
specific CBR algorithms. An abstracted version of these algorithms is shown in figure 4, for the CBR

task retain.
IF no_similar_past_case(current_case) 

THEN construct_new_case;
ELSE lazy_generalise(old_case);

IF current_case_successful
THEN integrate_into_successful_cases;
ELSE integrate_into_total_problem_cases;

DO adaptation UNTIL system_behaves_as_wanted

Figure 4 – Abstracted method for the retain task. Sources of the algorithm: The CREEK, MOLTKE and PROTOS systems



The THEN and ELSE sentences point to task decomposition methods of the retain task, i.e.
methods that in turn will lead to a particular selection and control over the integrate, index, and

extract tasks (figure 2).

The other example starts out from the top level CBR with the aim of studying methods that
integrate different reasoning strategies, in this case purely case-based reasoning and reasoning from
general domain knowledge. In Table 1 a set of methods, corresponding to some specific research
systems, are grouped into levels of integration according to the "tightness" of integration. The
different levels of integration are as follows (cf. Auriol, Manago et al., 1995).

BoLERO CASEY CCC+ CREEK INRECA MOLTKE PROTOS S3+/INRECA

toolbox level • • • • • • •
cooperative level • • • • • • •
workbench level • • • • •

seamless level • • •
Table 1. Task: Problem solving and learning from experience, Method: Combining case-specific and general knowledge.

At the toolbox level the integration is restricted to the common use of parts of the knowledge-base.
A reasoning method is initially chosen, and that method is then used as a single method. Exchange of
reasoning results between methods is not done. This is the weakest level of integration. At the
cooperative level  different reasoning methods can exchange intermediate results through a common
representation formalism. At the workbench level  different reasoning methods are aggregated into a
single combined method. For instance, a diagnostic system can carry out its classification sub-task
using a rule-based module, and the test selection sub-task based on a CBR component. The seamless

level is the highest level of integration. Different reasoning methods are integrated within a single
algorithm and are not viewed as separate methods. Thus, the change of reasoning methods during
reasoning is hidden for the user.

While CASEY applies model-based causal reasoning speeded up by CBR (Koton, 1989), BOLERO

combines case-based test selection and rule-based diagnostic reasoning (L�pez & Plaza, 1991). In
CREEK case-based reasoning is performed within a full-fledged semantic network knowledge model
integrating cases as well as general domain knowledge, which enables initial goal-driven context
focusing as well as knowledge-intensive, explanation-supported methods for the various CBR tasks
(Aamodt, 1994). MOLTKE focuses on rule-based diagnostic reasoning using CBR for exception
handling (Althoff, 1992). While INRECA combines CBR with integrated inductive k-d trees for case-
filtering, preference learning, and consultation (Althoff, Bergmann et al., 1995; Wess, 1995),
S3+/INRECA integrates INRECA with a service support system basing on general knowledge (Althoff,
Wess et al., 1995). CcC+ is a case-based classifier that can cooperate with other sub-systems of the
D3 toolbox for diagnostic reasoning (Goos, 1995). However, PROTOS is a stand-alone CBR system
for classification, knowledge acquisition, and learning (Bareiss & Porter, 1987).

5. Conclusion and further research
The long term goal of the research reported here is twofold. The first goal is related to AI as an
experimental science: To establish aÊdescriptive and analytic framework for improved understanding
of the PS-ML integration problem, starting out from a focus on CBR methods. An improved
understanding of the ãCBR spaceÒ will be the basis for extensions, such as into learning methods for
more eager generalisation. The resulting framework will serve as a ãlanguageÒ and a set of principles
for analytic and comparative studies of various systems across different ãtraditionsÒ and research



groups. The second goal is related to the needs of improved methods for knowledge-based systems
engineering: To specify ML-PS integration as an important task to be understood and handled by
the knowledge engineer, and to provide methods for dealing with this problem.

We have reasons to believe that we are on the right track, so far, even if only a high-level and general
version of the framework to some extent has been tested. At the core of the framework is the
combination of a top-level analysis, based on a task-method decomposition, and a bottom-up
analysis of specific systems. It is our intention that the systems descriptions resulting from this
analysis can be used by the ongoing efforts of creating an information server for CBR research and
development purposes (cf. Althoff & Bartsch-Sp�rl, 1995; 1996). An intelligent server should be
able to give advice based on a set of cases describing CBR systems and applications, embedded in a
generic methodology for CBR systems decomposition, analysis, and construction. Another use of
the framework which we are exploring is its use as a modelling ground for integration of knowledge-
based systems into information systems and data base systems in general, based on the different
roles these systems (or rather: sub-systems) have in a total decision-support system (Aamodt &
Nyg�rd, 1995). One of the major refinements of the framework will be to incorporate relevant parts
of the similarity model briefly described in Ch. 2.2.
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