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Abstract

The unclear distinction between data, information, and knowledge has impaired their combination and utilization
for the development of integrated systems. There is need for a unified definitional model of data, information, and
knowledge based on their roles in computational and cognitive information processing. An attempt to clarify these
basic notions is made, and a conceptual framework for integration is suggested by focusing on their different roles and
frames of reference within a decision-making process. On this basis, ways of integrating the functionalities of
databases, information systems and knowledge-based systems are discussed by taking a knowledge level perspective to
the analysis and modeling of systems behaviour. Motivated by recent work in the area of case-based reasoning related
to decision support systems, it is further shown that a specific problem solving episode, or case, may be viewed as
data, information, or knowledge, depending on its role in decision making and learning from experience. An outline
of a case-based system architecture is presented, and used to show that a focus on the retaining and reuse of past cases
facilitates a gradual and evolutionary transition from an information system to a knowledge-based system.
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1. Introduction

There is a continuously growing interest within the fields of databases, information systems, and
knowledge-based systems toward integrated systems. By integrated systems we will in this paper
understand systems that combine the functionality and technical properties of a knowledge-based
system with that of a database and/or information system. The respective scientific communities are
to an increasing degree focusing their research on principles and methods targeted at such an
integration. Intersection areas such as deductive databases [21, 35], knowledge base systems [26,
63], knowledge-based information retrieval [58], and intelligent decision support systems [12] are
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examples of this trend. Recent methodologies for knowledge acquisition and development of
knowledge-based systems  also follow this general path, by turning attention to methods and tools
that relate knowledge-based system components to other parts of an integrated system [53, 71].

In order to develop successful methods for this type of integration, a characterization of the
things to integrate is needed: How should data, information, and knowledge be characterized so that
their differences, and other relationships relevant for systems integration, are identified?
Unfortunately, the research directed toward integrated systems is most often based on a vague and
unclear view of what the relevant differences are. In particular, the relation between information and
knowledge is a source of much confusion and misunderstanding, as pointed out by several authors
(e.g. [13], pages 70-94 and [59], pages 365-372). This calls for a unified view to what the three
concepts stand for, and what their relevant similarities and differences are.

The objective of the work reported in this paper has been to gain a clearer understanding of the
fundamental issues related to systems integration in the above sense, and to point out a direction for
design of integrated systems on that basis. In that sense, the paper should be regarded partly as a
paper that presents a theoretical framework - a high level computational model - of the processing of
data, information and knowledge, and partly as a position paper that on this basis points out and
argues for a new approach to integrated systems. In particular, we will show how recent
improvements in AI, and particularly in the two subareas of knowledge modeling and case-based
reasoning, can lead to a novel and promising architecture for integrated systems. Given the increased
complexity of tasks and domains that future decision support systems will have to address, an
important motivation for the work presented here is the need for systems that are able to adapt to a
changing environment, i.e. to continually learn from their decision support experiences. Our research
is based partly on previous theoretical studies (e.g. [1, 4, 7, 41]), partly on experience from projects
on integrated systems development (e.g. [25, 42, 58, 71]).

In the next section we introduce the basic problems related to the distinction between data,
information, and knowledge, and define the context for the type of integrated systems discussed
throughout the paper. In the following two sections the theoretical framework that defines the
characteristics of data, information and knowledge, is presented: Section 3 describes a unified
definitional model, and discusses it from the perspective of roles in a decision making process, while
section 4 discusses the frame of reference issue. The latter is the issue of whether the referent (the
"owner") of the knowledge in a knowledge-based system, or the information in an information
system, is the computer system or a human user. This is followed in section 5 by describing a
knowledge level account of system behaviour, as a suitable framework for knowledge and
information modeling. In section 6 a novel approach to integrated system design is suggested,
centred around a combined case-based and generalization-based view of data handling, information
management, and knowledge-based problem solving. Section 7 summarizes and concludes the paper.

2. Fundamental issues of systems integration
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2.1. The need for a definitional  model

The development of a unified and coherent model that defines data, information, and knowledge
is far from a straightforward task. Attempts to resolve this issue in the general case, e.g. to answer
questions such as "What is knowledge?" and "What is information?", has been a major problem of
philosophers and scientists since ancient times. Seen on this basis, it is clearly beyond the scope of
computer science as a discipline to provide a general definition of these terms. What computer
science - leaning on its subarea of artificial intelligence - may provide is an answer to the more
limited question arising from addressing this problem from a particular perspective, namely that of a
computational information processing system.  This limits the task to a characterization of data,
information, and knowledge from the perspective of development and operation of this type of
systems. Adopting this particular perspective, however, does not mean that we completely de-couple
from a more general, and common sense oriented, understanding of terms. It only means that we are
operating within a specialized context subsumed by the more general one. Our definition of terms
should therefore be coherent (e.g. in the sense of [62]) with a global definition, but its scope or range
of cover will be less. That is, there may be some usage of the terms data, information, and
knowledge that will not be covered by our model. It should also be noted that our notion of a
computational information processing system includes symbol-processing computer systems as well
as information processing models of the human mind. We will not initially make an explicit
distinction between artificial and natural systems of this kind. Our focus is on computer systems,
although our general discussions will apply to some cognitive models of the human mind as well. In
fact, our framework is inspired by influential work in cognitive science ([46], [57])  as well as
computer science research.

The distinction between data and information has been discussed within the database and
information systems communities for many years, without having resulted in a final conclusion. A
possible reason is that several perspectives easily get mixed in discussions about definitions of
concepts that are polymorphic. A polymorphic concept is a concept which can not be defined by a
classical definition, i.e. as a set of necessary and sufficient features that are universally valid [50, 72].
Typical examples of polymorphic concepts are car, chair, orange, bird. Such concepts have very
complex definitions, or - more to the point - they have several definitions depending on the context
of interpretation. A car, for example, is not the same concept for a mechanical engineer as it is for a
logistics planner or for an environment protection activist. Complex abstract concepts, such as
information and knowledge, are clearly also of this kind. Mathematical concepts are counter
examples. Geometrical objects such as circles and triangles, for example, have precise classical
definitions. In order to get the meaning of a polymorphic (non-classical) concept, it has to be
understood within a particular context [19], i.e. related to some purpose or intended use, and seen
from a certain perspective. Hence, it is not surprising that the definition of information varies
depending on whether it originated within, e.g., electrical signal theory, database theory, library
science, or pragmatic decision making.
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The primary type of systems we address here is decision support systems in the wide sense, i.e.
including databases, information systems, and knowledge-based systems. An objective of our
research is to gain the necessary understanding, within the context of a decision-making process, of
the issues related to integration of data, information, and knowledge. We will show that by viewing
data and information within a scope that also includes knowledge, it becomes clearer what type of
meaningful distinctions that can be identified between the two. This is fed back into a clarification of
how data and information differ from knowledge, and what implications this may have for the future
development of integrated systems.

There is, in general, no known way to distinguish knowledge from information or data on a
purely representational basis. That is, when viewed solely as represented items or structures in a
machine, or on paper for that matter, they all "look" the same. Although knowledge structures
typically are more complex and more tightly inter-related than other structures, this does not always
have to be the case. Attempts to make distinctions based on size or complexity are therefore likely to
fail. Another option - and the one chosen here - is to identify how and for what purpose the
structures are used, i.e. what the various roles of data, information, and knowledge are in a
computational decision-making process. Hence, in addition to the represented structures themselves,
their interpretation within the contexts they are applied, and by whom they are interpreted and
applied, becomes important. The latter aspect leads to the frame of reference problem of data,
information, and knowledge [16], in which interpretation processes and the agents (humans or
machines) performing the interpretations are interrelated. By the term agent we mean a system with
the capability of reasoning and of taking actions on the basis of its reasoning. The crucial question
here is which agent a particular body of knowledge or information should be assigned to, or whether
knowledge and information can be regarded as objective and independent of a particular interpreter.
For example: Is the knowledge of a knowledge-based system actually that system's knowledge? Or
does it have another frame of reference, such as the system developer or user? What is the reference
of information in an information system, or in an integrated system? Is there something called
objective knowledge, independent of a local interpreter? And how does knowledge arise and get
updated in a system, i.e. how does a system learn? Although we will not go into a deep philosophical
discussion of these problems, we shall see that the answers to these questions have important
consequences for development methods and modes of operations of future integrated systems.

2.2. A modeling level

What we have motivated and briefly introduced so far, is the need for an integrated view of data,
information, and knowledge, and a model of their interdependencies based on their roles and frames
of reference in a computational decision making process. What is further needed, in order to describe
and analyse their relationships, is an expressive description language at a suitably abstract level.  In
order to describe properties of systems in an appropriate way, a knowledge level view [40, 65] is
adopted. At the knowledge level, a system is described as an agent having goals, an environment of
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action and interaction, and knowledge of how to achieve goals. Further, a principle of rationality is
assumed which says that an agent will use its knowledge in such a way that its goals are achieved,
provided it has the knowledge needed. We shall see how data and information, too, can be
meaningfully described from a knowledge level point of view. Recent advances within  the areas of
knowledge acquisition and knowledge modeling have made the knowledge level notion more
concrete and directly applicable for systems analysis and design, as exemplified by methodologies
such as KADS [70], Generic Tasks [15], and Components of Expertise [52]. The latter is the most
flexible one in the sense of being least biased by a particular system development view, and it is this
methodology that has been most influential to our work.

2.3. A role for specific cases

Until a few years ago, the domain knowledge explicitly encoded in knowledge-based systems was
almost exclusively of a general type. Examples are conceptual and relational models such as semantic
networks, frame systems or rules holding general concepts and their interrelations and mutual
dependencies. General domain knowledge may be shallow and associational - as the knowledge
normally contained in heuristic rules, or it may be deeper and more principled knowledge models -
such as a causal model in a semantic network. A different and more recent AI paradigm for problem
solving and learning is case-based reasoning [47, 29, 7], where knowledge is represented and
utilized primarily in the form of specific and non-generalized experiences - called cases.

A case-based reasoning process is a kind of analogical reasoning, where the system tries to find a
previous case in its case base similar to the current problem situation. A problem is solved by reusing
the solution of the previous case, directly or after some modification. A problem case just solved is
retained as a new case, or merged with another similar case, thus enabling the system to learn from
each problem solving experience. A case may take various forms. It may be a simple feature list
containing just a few items, or a large and rather complex structure. Our thesis is that a type of
knowledge-based system that uses cases as its major type of knowledge, favours an easier and more
natural integration with database and information system parts than systems based solely on
generalized forms of knowledge. In a case-based system, the knowledge is in a form that is normally
associated with data and information,  namely specific registrations of observations related to
particular events, episodes, or situations.

We will later discuss how the capturing of knowledge as concrete cases, and not only as
generalized expressions, may facilitate a gradual transition between a passive decision support
system, such as a type of database or information system, and a more active decision support system,
such as a knowledge-based system. The distinction between active and passive systems here refers to
the degree of active decision making support that a system is able to provide, such as suggesting
solutions to problems, critiquing a user's choices, pointing out useful information for a given
situation, identifying mistakes made, notifying important consequences, etc.
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3. Data, information, knowledge

In addition to providing a platform for the subsequent discussions on integration issues, the
purpose of this section is to contribute to a clarification of the confusion regarding the use of the
terms data, information, and knowledge within the computer science community in general. The
model presented is clearly an abstraction, in that it leaves out many details. It should be regarded as a
first approximation, and a basis for further discussions of possible extensions and refinements.

3.1. A perspective of general decision making

The perspective taken is that of a general decision-making process, irrespective of the type of
decision that is made. A multi-agent environment is assumed where a decision-making agent, also
referred to as a reasoning agent, receives input from and returns output to an environment external
to it. A reasoning agent may be a human being or a machine. Figure 1 illustrates the basic context.
The figure illustrates a decision step, which is performed by a reasoning agent in interaction with its
external environment. The environment typically contains other agents that supply the input and
receive the output. In a simple set-up, the external agent is a terminal user, and the primary agent
(grey area in the figure) is a terminal-based computer system.

In the following, a unified model of data, information, and knowledge is presented. The three
concepts are viewed from two complementary and interdependent perspectives: The roles they take
in a decision-making step, and their frame of reference. We will discuss the roles within a simple set-
up, involving a computer system and a terminal user (see Figure 1). A multi-agent process is viewed
as multiple single-agent processes, where each agent views the other reasoning agents as parts of its
environment.

 3.2. A definitional framework

In this subsection, the concepts of data, information, and knowledge are discussed within the
simplest possible context: That of a single agent decision-making process. The following three points
summarize the essential differences between the three concepts:

• Data are syntactic entities
- data are patterns with no meaning; they are input to an interpretation process, i.e. 

to the initial step of decision making.

• Information is interpreted data 
- information is data with meaning; it is the output from data interpretation as well

  as the input to, and output from, the knowledge-based process of decision making.

• Knowledge is learned information
- knowledge is information incorporated in an agent's reasoning resources, and
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made ready for active use within a decision process; it is the output of a learning
process.

 

Input

Decision 
Step

Output

ENVIRONMENT

• reasoning agent

• interactive world 
• reasoning agents 

Figure 1:  A decision-making process.

The distinction between data and information seems to be in accordance with several authors who
discuss this relationship. Silver [49], for example, although taking the perspective of a production
process where data is the raw material and information the product, ends up with a distinction that
maps well to ours. A difference is that we place more emphasis on the syntax vs. semantics
distinction. This makes the notion of interpretation central, since it is through an interpretation
process that a syntactic structure is transformed into a semantic, meaningful entity.

Our definition is also consistent with the version saying that "Information is data which is used in
decision-making", but goes beyond this 'standard' definition since it links the use of data to the
underlying interpretation process that enables this use. Knowledge, then, is what is needed in order
to perform the interpretation, and what gets learned from new information.

The role of knowledge, in general, is therefore to play the active part in the processes of
transforming data into information, deriving other information, and acquiring new knowledge - i.e. to
learn. This leads to the following summary of  knowledge roles:

  I To transform data into information - referred to as data interpretation
 II To derive new information from existing - referred to as elaboration 
III To acquire new knowledge - referred to as learning

Note that the term knowledge is used here in a very general sense. Hence, it does not distinguish
between 'true' and 'believed' knowledge. This is different from the influential branch of philosophy in
which the term knowledge is used exclusively for statements that are true in the world, and where
belief is used if truth cannot be ascertained (e.g. [23]). Other philosophical theories [61] have
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questioned this position, arguing that the logicist, or deductive-nomological philosophical view that
lies behind that view is unable to explain major philosophical problems such as analogical reasoning,
abduction, and scientific development).

The relationships between data, information and knowledge are illustrated in Figure 2. The grey
lines show essential roles of knowledge in data interpretation, information elaboration, and learning
of knowledge. The model illustrated will be explained throughout the remaining of this section.

Information

Knowledge

Data

Elaboration

Data 
Interpretation

Interpreted symbol structures 
- used to interpret data, elaborate on information, and learn 
- used  within decision steps

Interpreted symbols and symbol structures 
- input to a decision step 
- output from a decision step

Observed, uninterpreted symbols 
- signs, character sequences, patterns

Learning

Figure 2:  The Data-Information-Knowledge model.

3.2.1. Data interpretation
A distinction between data and information is that data are uninterpreted characters, signals,

patterns, signs, i.e. they have no meaning for the system concerned. Data becomes information after
having been interpreted to give meaning. This is illustrated in the figure by the Data Interpretation
arrow. In order to interpret data into information, a system needs knowledge. For example,
"´Q)9§?8$%@*¨&/", or a series of signals from a sensor, is data to most human beings, while the
data items "inflation rate", "decreased blood pressure", and "the Cuban crisis" have meaning, and
therefore are information. The meaning of these terms may be different for different people, and it is
our knowledge about particular domains - and the world in general - that enables us to get meaning
out of these data strings. Hence, for data to become information an interpreter is required.

Note that this notion of an interpreter refers to a process that is substantially more complex than
simple language interpreters as we know them from programming languages, linguistic grammar
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analysis, and formal semantics. The type of semantics needed to interpret data into information
within a decision process has to be strongly related to pragmatics [9], i.e. interpretation within a real-
world context and for a particular purpose, not only to a language-syntactical semantics. It is the
interplay between the data interpretation method, and the knowledge that a system brings to bear in
that process (the grey line in Figure 2 from the Knowledge box to the Data Interpretation arrow),
that determines a system's ability to derive information from data, i.e. to "understand" the data.

In a such data interpretation process, a human decision maker will typically use his cultural
background, unconscious intuitions, concrete memories of similar observations in the past,
expectations triggered by the specific context, as well as text book knowledge and domain dependent
heuristic rules, to determine the contextual meaning of data. Knowledge-based computer systems
have by far not reached this degree of sophistication yet - and maybe they never will - but that is an
issue of physical realizations of systems, and a different one than the principle issue of computational
processes we are concerned with here. (After all, the purpose of a decision-support system is to
actively support a human decision make, not to replace him).

It should also be noted that independently of the Data Interpretation process as such, the notion
of knowledge, by itself, always assumes an internal interpreter as a necessary part of the knowledge
representation (knowledge encoding) system. Knowledge - including its underlying interpreter - is
needed within the Data Interpretation process, as just described, as well as within the Elaboration
and Learning processes (see Figure 2 and the description below). To avoid confusion between an
interpreter in a general sense and the particular Data Interpretation process, we will consistently refer
to the latter as "data interpretation", unless this is clear from the context.

3.2.2. Elaboration of information
Once the data has been given an interpretation as information (an initial interpretation, at least) by

the process described above, it is elaborated upon in order to be better understood and for deriving
(inferring) new information. This is illustrated by the Elaboration arrow in Figure 2. Information that
may be inferred in this way includes additional problem features, generated hypotheses,
consequences of hypotheses, suggested solutions to problems, explanations and justifications of
suggestions, critiquing arguments, etc. The elaboration process is the actual problem solving process,
i.e. where the core decision-making takes place. Interpretation of data into information may be
viewed, simplified, as a kind of pre-processing with respect to the core of the decision making
process. However, frequent interaction with the environment during decision making blurs this
picture and illustrates the over-simplification of such a view. In a more realistic decision-making
process, elaboration and data interpretation are interleaved; initial interpretations get modified during
elaboration, elaboration leads to questioning of the environment, which in turn leads to new or
revised data being entered, or to revised interpretations of previous data.

Elaboration processes typically apply well-known inference methods such as  spreading
activation, associative memory retrieval, rule chaining, traversing of inheritance hierarchies,
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constraint propagation, etc. Elaboration typically involves both control level strategic reasoning and
object level inferencing. The elaboration process usually ends in a conclusion. This may be a final
decision, or just a temporary halt in order to pose a hypothesis or to question the environment for
more information. In both cases the system returns something to the environment which from its own
point of view is information, but which from the receiver's point of view is data. It will be turned into
appropriate information for the receiver if the receiver is able to interpret the data as intended by the
delivering agent. Hence, a common body of knowledge is crucial for meaningful communication
between agents.

As illustrated in Figure 2, the interpretation and elaboration processes require knowledge. They
may also require other information. But information and knowledge serve different roles in this
game: Information is something which serves as input to the elaboration process (after having been
interpreted from data), and something which is produced as output from it, while knowledge is
something which exists and is brought to bear within the decision process itself. Knowledge is an
inherent resource of a reasoning agent that enables inferring of new information from existing
information. The inferred information may, in turn, lead to the inferring of more information, and so
on. For example, if - in a medical decision support system - the information "temperature has
increased from 37 to 41.5 degrees during the last hour" is given, a system may use its knowledge to
infer "strongly and rapidly increased temperature", from which "possible life-threatening condition"
may be concluded, in turn leading to the action "check for life-threatening condition".

Given that knowledge is something that resides and is used inside a decision process, a relevant
question is what properties of the internal structures and processes is it that makes it knowledge,
instead of, say, data and algorithms in the usual computational sense. There are (at least) two types
of answers to this, one from the perspective of an external observer, the other taking an internal
method-oriented stance. From an observer's point of view, it is solely a matter of choice whether it is
meaningful/useful to describe a particular type of systems behaviour  in terms of knowledge or not.
This viewpoint is elaborated in the section 5, related to the discussion of the "knowledge level" as an
appropriate system description level.

From a method - or mechanism - point of view, on the other hand, to describe computational
methods in terms of knowledge and inference, instead of data and algorithms, usually implies some
assumptions on the type of underlying processing that is done. The notion of non-determinism is
central here. Non-deterministic processing is often the only means available when the input data,
and/or optimal ways to process them, are not well understood. The complexity that is involved in
this case, and which follows from the type of problems addressed,  calls for processing methods at a
level of flexibility that is not easily described and realized by strict algorithmic approaches. For this
type of computation, the cognition-inspired language of knowledge structures and inference methods
has, through years of AI research, shown to be more suitable for characterizing and realizing the
necessary processing methods.
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3.2.3. Learning of knowledge
A system's knowledge grows and gets modified through interaction with the environment. This

process is what we call learning. A widely shared view is that learning is the integration of new
information into an existing body of knowledge, in a way that makes it potentially useful for later
decision making. New knowledge may also come from inference processes within the knowledge
body itself. This is illustrated by the two Learning arrows in the figure, respectively. We here focus
on learning as the process that produces knowledge, this also says something important about what
knowledge is.

First of all, learning is viewed as an integration process, in which new information is integrated
into an existing knowledge structure. Knowledge should be viewed as an integrated totality, and it is
the tightly connected network of interrelated subcomponents that gives knowledge its power of data
interpretation, information elaboration, and learning. Second, knowledge as the outcome of a
learning process links knowledge to its potential use. Learning, as a process, is always related to a
purpose, a way to make future use of what is learned [19, 27]. Even if we, as humans, will try to
generalize our experiences into general patterns, and abstract our observations into universal
principles, there is always a purpose behind this. When we over-generalize during learning, we are
quick to specialize again - for example by noticing exceptions - when we realize the mistake [37].

The inherent property of learning as a generalization-making process points to a third
characteristic of its product, namely that  knowledge is flexible. Even when formed within a
particular context and for a particular type of use, it may be reused dynamically in future situations
that are different. The 'tension' within a body of knowledge to be both specific and related to the use
from which it originated, as well as being general and flexibly usable, is a feature that distinguishes it
from data and information.

4. Knowledge-based systems and the frame of reference

As computer scientists we frequently use the terms knowledge and information without making
clear whose knowledge or information we are talking about, i.e. what their reference is. For example,
does "knowledge" in the term "knowledge-based system" refer to knowledge of the system designer,
knowledge of the user, or the computer system's knowledge? This issue is of crucial importance in
order to thoroughly understand the individual properties and multi-agent roles of the components
that make up an integrated system. In the following, we will for simplification reasons discuss the
frame of reference of knowledge, and later relate the results to information and data. In order to get
the appropriate perspective on the problem, we begin with a brief review of the foundation of the
knowledge-based paradigm in AI.

4.1. The knowledge-based paradigm

At the very heart of the notion of knowledge-based systems, and a fundamental assumption of the
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knowledge-based systems paradigm,  is the conjecture that knowledge is something that can be
identified and explicitly represented. This is captured by the so-called "knowledge representation
hypothesis",  e.g. as expressed by Brian Cantwell Smith [51]:

The Knowledge Representation Hypothesis:

Any mechanically embodied intelligent process will be comprised of structural ingredients that 
a) we as external observers naturally take to represent a propositional account of the 

knowledge that the overall process exhibits, and 
b) independent of such external semantical contribution, play a formal but causal and 

essential role in engendering the behaviour that manifests that knowledge.

The hypothesis says that within an intelligent system there exist "structural ingredients" which we
as observers take to represent the system's knowledge, and that these structural ingredients not only
exists, but also play a causal role in producing the system's intelligent behaviour.

The capturing of knowledge in explicit symbol structures, based upon the knowledge
representation hypothesis, is tightly linked to the notion of a "physical symbol system" [39]. A
physical symbol system is a type of system - realizable as a physical system - which is able to
represent and manipulate symbols in a way that enables intelligent action to be produced. Humans
are examples of physical symbol systems, according to Newell, as are (or may be) knowledge-based
computer systems as well. To represent knowledge in computer systems therefore requires a
language in which all relevant concepts, propositions and complex relationships can be syntactically
expressed, and an internal interpreter (a coherent set of inference methods) which ensures that the
semantical contents of the representation - as viewed by the computer - is sufficiently close to the
real world semantics as viewed by the human designer/user.

Note that no claim is being made here that the knowledge structures within a computer are of the
same physical "kind" as the knowledge we ascribe to human beings. The only claim is that they
functionally serve the same role in the behaviour of artificial intelligence systems as they do in
humans. In essence, the knowledge-based systems paradigm assumes that explicit symbol structures
is an appropriate way to describe knowledge in general, and a suitable way to represent it within
computers.

4.2. The frame of reference of knowledge, information, and data

The "structural ingredients" that represent a system's knowledge contain or are associated with
inference methods, i.e. low level interpreters, that capture the semantical contents of the structures
within relevant reasoning contexts. Since these structures and interpreters in principle are local to
each reasoning agent, the knowledge of an agent will always have to be subjective. Hence, the
structures and interpreters have the local system itself as its frame of reference, and may therefore be
referred to as the system's knowledge. A knowledge-based system, per definition, has knowledge -
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it's "own" knowledge - and ways of processing that knowledge.
According to this view there is no such thing as objective knowledge in the strict sense, since a

collection of agents always will have different histories, experiences, environments of operations, etc.
However, it may still make sense to talk about 'common' or 'objective' knowledge, but then the
assumption has to be made that the agents are similar systems, that they have similar experiential
and/or cultural background, etc. Two mathematicians discussing a mathematical problem, for
example, share practically the same contextual background, and hence interpret data in a common
way. The same may be the case for two knowledge-based systems operating within an intensive care
unit, and whose tasks are to monitor patients and suggest actions on alarms. Therefore, when agents
share an interpretation context, the respective knowledge may be called objective with respect to
those agents. A way to make agents functionally similar with respect to interpretations is through
teacher-learner relationships, for example between a human teacher and a computer learner. Given
that we have established a frame of reference for knowledge, what does this tell us about the frame
of reference for information? The answer is rather trivial: Information is the result of a knowledge-
based data interpretation or elaboration process. The knowledge applied within these processes
determine the resulting information content. Hence information will have to have the same frame of
reference as knowledge.

As seen from the Data-Information-Knowledge model (Figure 2), a system cannot possess
information without having knowledge, i.e. without being what we here refer to as a knowledge-
based system. The term information system, however, is usually used for systems that do not
necessarily have knowledge and reasoning capabilities. They are systems intended to store and
process structures that are to be interpreted as information for the user. An important distinction
between a knowledge-based system and an information system is therefore that while the frame of
reference of information in an information system is the system user, the frame of reference of
knowledge in a knowledge-based system is the system itself.

From a system user's point of view this difference may not be very significant, since the data that
a system present to the user will be interpreted into information for the user, irrespective of whether
it has been processed by the computer system as information, knowledge or as mere data. There may
be differences in the flexibility and intelligibility of the dialogue and way of interaction, but not
necessarily so. The difference is significant, however, when it comes to methods for realizing the two
type of systems. Unfortunately, in the history of AI it has often been the case that knowledge-based
systems have been designed as systems that capture information and knowledge for which the user is
the only frame of reference, as pointed out by Dough Lenat, the designer of the CYC system [30],
among others.

Data, being a purely syntactic notion, can in general be regarded as global and neutral, and not in
the need for a particular frame of reference. (This neutrality only applies to a data item itself,
however, and not to the way data is produced and selected, which is a decision problems in its own
right, subject to pragmatic, social, and other contextual constraints.) Data is of little value in itself, it
is a source of information and knowledge which gets "elevated" through the successive steps of data
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interpretation, information elaboration, and learning (Figure 2). When databases contain data that are
readily interpreted as information by human users, the difference between a database and an
information system - from a frame of reference perspective - vanishes. An interesting type of system,
from an integration point of view, is a deductive database. Here, an inference method - deduction - is
applied within a database system to derive data from other data. Knowledge, often represented as a
set of logical axioms, is used in this process. According to our model, a deductive database can be
described as a knowledge-based system, which uses its knowledge to interpret data into information,
and applies knowledge-based inferencing to derive new information, which in turn is stored - as data
- in the database.

It may be interesting to note that an alternative view to the frame of reference problem has been
suggested by some AI researchers who question the physical symbol systems hypothesis, and - based
on a framework developed by Winograd and Flores [72] - advocates a 'situatedness' view to the
understanding of decision making and other cognitive processes (e.g. [16]). According to that view,
knowledge is not represented in explicit structures, but dynamically constructed in an interactive
process between an agent and the rest of the environment in which the agent is situated. Hence, the
frame of reference of knowledge is not a particular reasoning agent, but the total system containing
the environment and its interacting agents. We have elsewhere discussed, and argued against, this
view [5], as have others as well (e.g. [48, 69]).

Note that our definitions of data, information, and knowledge should imply that, strictly speaking,
it does not make sense to talk about "knowledge in a book", or "information in a library". That is,
unless the book or library has reasoning capabilities. To be precise, we should talk about data in a
book, and about books as sources of information and knowledge. Our common sense use of these
terms may therefore differ substantially from the definitions we have present here. This does not
necessarily mean that the common sense notions are nonsense. Firstly, this issue relates to our
previous comment about 'objective' knowledge as knowledge commonly shared among agents due to
a common scientific background, historical development or culture. Secondly, an explanation of the
different uses of terms should take into account the differences of contexts - the different purposes
and perspectives - of a common sense account and a computational one.

To sum up the last two sections, the roles and frame of reference of knowledge ascribe to a
particular agent the ownership of a certain body of knowledge. Knowledge is knowledge for that
particular agent, implying that the agent is able to generate intelligent behaviour based on it.
Correspondingly, information is data interpreted by and for a particular agent, and is therefore also
'owned' by that agent. Data is uninterpreted patterns, and has no particular frame of reference. By
arguing for the plausibility of the model, showing its consistency with respect to the characterization
of different system types, and indicating its robustness even with respect to some common sense
notions, we hope to have delivered a well-supported argument for the model.

As stated before, the main purpose of the model is to establish a sound platform for developing
integrated systems. To be able to perform the necessary analysis and conceptual level modeling of
the various type of components of such a system, a suitable modeling perspective and language is
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needed. In this next section a conceptual modeling framework is outlined, based on the definitional
model described in the last two sections.

5. A knowledge level framework for integrated systems

5.1. Knowledge acquisition background

Recent research in knowledge acquisition has produced several methodologies for analyzing and
modeling knowledge and information at a conceptual and implementation-independent level. Well
known examples are the KADS methodology [70], the Components of Expertise (CoE) framework
[52], and the Generic Tasks [15] approach. Adopting the view of knowledge acquisition as
constructive modeling [38] - as opposed to a "knowledge transfer" view - a growing part of
knowledge acquisition research is focusing on describing problem solving behaviour at this level.
Attempts to unify several existing viewpoints and methodologies are also under way, as exemplified
by the multiple perspective approach of the CoE methodology [54], and by CommonKADS [71].

A knowledge acquisition methodology establishes a certain perspective, and provides an
associated set of analysis and synthesis techniques to describe the essential classes and structures of
domain knowledge, problem solving methods, and application tasks, given a particular type of
application. This level of system description is often referred to as the knowledge level, after Newell's
influential paper [40]. In that paper the knowledge level was proposed as a distinct level of
description of computer systems, defined to lie above the level of data structures and programming
languages - which is referred to as the symbol level. There are also other description levels in
Newell's model, for example the register-transfer level, the logic circuit level, and the electronic
component level. Each level is characterized by a particular medium and a behavioural law. The
medium is what is being processed, and the behavioural law is the type of mechanism used to realize
a system behaviour from what is expressed through the medium. The logical circuit level, for
example, has zeroes and ones (logical on or off) as its medium and Boolean logic as it behavioural
law. At the symbol level, the medium is symbols and symbol structures (data structures and
programs), and the behavioural law is the sequential interpretation of procedures.

5.2. The knowledge level

The knowledge level has knowledge as its medium and the principle of rationality as its basic
behavioural law. A system is described at the knowledge level as an agent with its own goals and
with knowledge related to the achievements of these goals. The principle of rationality states that an
agent will always use its knowledge in a way that ensures the achievement of its goals - provided the
agent has the knowledge needed. Hence, the notion of rationality is an ideal one, that disregards any
pragmatic constraints of computational resources, time constraints, etc. This idealization has made
the original knowledge level notion difficult to use for practical systems description and modeling.
However, the notion of knowledge level has undergone some modification over the years, from
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Newell's highly intentional and purpose-oriented way of describing a system, to a more structured
and focused type of description (e.g. [3]). This transition has lead to various 'operationalizations' of
the knowledge level notion, associated with  terms such as the knowledge use level [52], a
knowledge level architecture [55], and the notion of bounded or tractable rationality [65]. The
original idea of the knowledge level has been extended by introducing high-level structural and
methodological constraints. This makes the knowledge level more practically applicable for
conceptual modeling purposes, while retaining its competence-oriented and implementation-
independent aspects. We will here refer to knowledge level modeling in this extended sense.

Although there are a variety of knowledge modeling methodologies, most of them start out from
the following three types of component structures:

•Tasks -  what are the goals of the system, what should it do?
•Problem solving methods -  by what methods will the system accomplish its tasks?
•Domain knowledge -  what knowledge is needed by the methods in order to 

            accomplish these tasks?

Tasks as well as methods and domain knowledge are structured in class hierarchies and inter-
related in various ways, depending on the modeling methodology being used. The structuring of the
model space into the three component types listed above, is analogous to the high level structuring of
information types made in many information systems methodologies.

As an example of a modern knowledge level modeling method, that also incorporates information
modeling, the Components of Expertise methodology (CoE), is summarized in the following, within
the context of the previous discussion. It should be noted that this methodology is still under
development. A workbench, called KREST, has been developed to support the methodology,
particularly by providing a library of reusable knowledge level modeling components, and a linking
mechanism between knowledge level models and symbol level programs [33].

A knowledge level description of a  system is made by splitting the analysis and design work in
three, basically corresponding to three perspectives of a knowledge level description. These
perspectives are within the CoE framework called tasks, methods, and models, respectively. In other
methodologies thay may have different names and slightly different borderlines.

Tasks are the tasks (and subtasks) identifying what to do in order to solve an application problem.
Methods are problem solving methods for decomposing a tasks into subtasks, or for solving a task
without further decomposition. There are two types of models: "Domain models" are general
knowledge models of a domain, for example associations between a set of possible findings and a set
of possible faults. A domain model may also be a set of decision rules, or models of functional
relationships between devices. Domain models correspond to models of general, object level domain
knowledge. The other model type is "case models". A case model is a description of an actual
problem that is being solved, for example a set of actual measurements and observations. It may also
be an instantiation of part of a domain model for a particular problem, e.g. an association between
the findings observed for a particular car that will not start, and the fault identified for that particular
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car. Case models, according to our previous definitions, correspond to information. Although our
definition of data, information, and knowledge is not an explicit part of the Components of Expertise
framework, the notion of a case model makes it a suitable knowledge level methodology from our
integrated systems point of view. (Note that the term "case" as used in case models does not quite
correspond to its use in case-based reasoning, where a case also denotes a permanent storage of a
past problem with its solution and possible annotations.) Domain models, correspondingly, may
describe information models as well as knowledge models.

Tasks, models, and methods are structured into task decompositions, model dependency
diagrams, and control structures, respectively. This is illustrated in Figure 3. In CoE, a task
decomposition relates tasks to their subtasks in a part-subpart hierarchy. For example, a task may be
to diagnose a car, with the subtasks to observe symptoms, to decide further tests, to perform tests,
and to identify likely faults. The leaf nodes in the hierarchy are tasks that are solved without further
decomposition.

domain 
model-1

user
domain 
model-2

case 
model-1

case 
model-2

model construction 
activity

Task Decomposition Model Dependency Diagram Control Diagram

Methods: 
• Decompose tasks 
• Execute tasks 
• Assign tasks to model 
   construction ativities 
• Impose control over tasks

Task-1 Task-2 Task-3
c1

c2

Figure 3:  Components of Expertise diagrams

Model dependency diagrams are used to inter-relate the various domain knowledge types that are
needed to construct a new case-model on the basis of existing case models. As shown in Figure 3
(middle part), an initial case model is constructed from information provided by the user together
with knowledge found in a domain model (e.g. a partial model that infers additional problem
descriptors).  The resulting case model - called case-model-1 in the figure - becomes input to another
construction activity, which takes another domain model (e.g. a causal model, or a combined
structural and associational model), and constructs a second case model. Model dependency
diagrams are organized into abstraction hierarchies. By expanding a model construction activity,
model dependencies at a more detailed level are described. This is therefore a suitable means to
relate knowledge and information types at different levels of details. Model construction activities
will typically be identical to tasks in the task decomposition.
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Problem solving methods are applied to tasks in order to accomplish them. There are two main
types of problem solving methods: Task decomposition methods - which return a decomposition of
the task it is applied to, and task execution methods - which execute a task directly without further
decomposition.

The power of using the three perspectives for knowledge level modeling lies in how the
perspectives interact. When making a description according to one perspective, the other two
perspectives may be used to make the description more detailed and application focused. As an
example of interacting perspectives, let us take a task perspective, and see how a task may be
decomposed. A task may be decomposed in two principle ways: By a method-oriented
decomposition, or by a model-oriented decomposition. In the former, subtasks of a task are
determined by the type of task decomposition method chosen for the task. For example, a method
called Cover-and-differentiate will decompose a task into two sets of subtasks: One which will try to
find solutions that cover for the observations made, and another that tries to differentiate between
possible solutions in order to find the best one. In a model-oriented decomposition, the subtasks of a
task are chosen according to what type of domain-models they relate to and the type of case-models
they produce, regardless of the problem solving method used to achieve the decomposition. An
example would be to decompose a task into one group that handles input of component information,
another that deals with process information, a third that deals with the acquisition and use of domain
knowledge in terms of functional relationships between subsystems, etc.

From an information system point of view, an analysis in order to specify functional requirements
for information systems in a conceptual, implementation-independent language, clearly corresponds
to a knowledge level analysis for a knowledge-based system. The perspective and focus are different
in the two types of methodologies, of course, since a conceptual information system model tries to
capture information so that it can be shared among human users, while an aim of a knowledge level
model for knowledge-based systems is the capturing and utilization of knowledge for reasoning by a
computer system. If these two perspectives are combined, however, a knowledge level description
can be viewed as an extension of a conceptual information model. In the Structured Analysis method
[22], for example, the top level components are processes, data flow, external entity, and data store.
Processes describe what to do, and map readily to task type components. Data flow specifies the
type of input and output to a process. This is included in the task description of a knowledge level
model. External entity and data source describe the content and form of what goes into and comes
out of a process, which can be viewed as analogous to a high-level domain knowledge model.
Specific modeling methods (e.g. OOP [17], PPP [59]) describe the content types and structures of
information system components at more detailed levels. Knowledge level modeling adds the
perspective of computer systems as goal-driven agents, and knowledge modeling methods enable the
description of task structures, methods, knowledge types, and information types needed for agents to
accomplish their goals.
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5.3. From the knowledge level to the symbol level

Given a knowledge level model in some state of development, the important next question is how
such a model can be used in the design and implementation of a computational system. That is, we
need methods which enable us to bridge the gap between a descriptive and a prescriptive knowledge
level model, and an operational computer system. In general, a knowledge level model should be
viewed as a basis for subsequent design and implementation of the artefact system, without
necessarily assuming that a complete transformation is possible - or even wanted.

Although we still have a substantial distance to go before we are able to realize all the types of
intelligent behaviour we would like to see in our systems, AI research is steadily producing new and
better methods along the way. AI methods are rapidly migrating into systems development
techniques and tools in general (for example database design systems [56]). The ability to implement
more comprehensive, more competent, more robust, and more adaptive knowledge-based systems -
i.e. systems capable of addressing increasingly complex real world applications - has been
significantly improved through recent advances within several areas of AI research. Increased
understanding of the problems we face has come out of research on intelligent architectures [66],
frame-based representation languages [67, 30, 37], case-based and mixed-paradigm reasoning
systems [45, 2, 8, 34], integrated learning methods [60, 43], and knowledge-intensive methods for
integrated problem solving and experiential learning [64, 10, 6]. These and other related results
enable us to develop knowledge-based systems that can deal with real world application domains and
problems that are substantially more complex than what we could with the previous generation of
basically rule-based techniques. This fact has also motivated the research on knowledge level
modeling, since the increased complexity and depth of symbol level models have made it more
important to make a thorough analysis at the conceptual level .

A number of tools have been - and are being - developed to support knowledge level modeling as
well as system design and implementation. They range from relatively general tool boxes, such as the
KEW system developed in the Acknowledge project [25], to strongly methodology-driven
workbenches, usually including libraries of reusable modeling components. Some of these
approaches are aimed at knowledge level modeling only  (e.g. [71]), while others attempt to provide
direct links to symbol level components, in order to support reusability of symbol level models (e.g.
[27, 54]). This is in line with the general trend in software engineering towards reusable
programming constructs and automatically generated programs from specifications.

5.4. A language for bridging the knowledge level to symbol level gap

In order to enable a computer to capture integrated information and knowledge models, a
coherent description language is needed at a more detailed level than what CoE offers. Knowledge
level modeling methodologies emphasize the analysis and description of types of knowledge and
information components, but are in general weak in representing the actual specific domain models
and their inference methods. For this type of modeling, we will also need a conceptual, knowledge
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level language, in order to express knowledge and information informally, to analyse their types,
constraints, and specific relationships (e.g. causality), and to perform some tests and comparisons. A
knowledge representation language in the normal sense is needed for symbol level implementation,
however. Given their different requirements, the languages may be realized as two separate
languages, or they may be combined into a single, unified language. A single representation language
does not imply that a knowledge level model can be directly used as the symbol level operational
system. As mentioned in section 4.3, transformation and rewriting will usually have to be done.
Anyhow, to work within the same representational environment both for knowledge level conceptual
modeling, and for system level design and implementation, has major advantages [68]. An object-
oriented frame system language, aimed to capture both knowledge level and symbol level models,
has been developed an used for this purpose [1]. Variations of this language has also been used as a
knowledge representation language in the KEW workbench of the Acknowledge project [25], and in
a knowledge-based front-end to an information retrieval system [58]. It is an example of a language
suitable for our purpose, since it emphasizes capturing knowledge content, and uses a procedural
semantics to achieve this. Its open nature makes it suitable for information modeling as well as
knowledge modeling and representation. Its most developed version is the CreekL language [4] for
integrating general domain knowledge with case-specific knowledge, as will be elaborated in the next
section. Its underlying assumptions and main characteristics are as follows:

concept (frame) 
relation (slot) valuevalue-type (facet)

patient
subclass-of  value person
has-identification value-class patient-id
has-history if-needed (patient-journal-lookup patient-id)
has-age value-range (0-120 years)

obstructive-respiratory-disease
subclass-of value pulmonary-disease
has-subclass value bronchitis, asthma, emphysema
causes value dyspnea

causes
instance-of value causal-relation, uncertain-relation, transitive-relation
has-inverse value caused-by
used-to-describe value physiological-state, disease
has-value-type value finding, physiological-state

Figure 4:  Example frames

A model of concepts defined by their inter-relationships constitutes a semantic network. In order
to be able to express each concept as a separate object with particular properties, value types, and
values, a frame-based description formalism is used. Frames are objects, and a frame representation
system is an object-oriented approach to knowledge representation, originally intended to capture
stereotypical concepts and situations [36]. A frame is an object which consists of a list of slots that
define a concept by relating it to other concepts. A slot consists of a slot name and a slot value.
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Referring to the semantic network view, a frame corresponds to a network node, a slot name
corresponds to the name of the link going out from the node, and a symbolic slot value corresponds
to the node at the other end of this bi-relational link.

Slots are typed according to what role the slot value serves. Slot value types are called facets.
Typical facets are regular values, default values, value constraints, procedural definitions. Three
example frame are shown in Figure 4. Note that explicit procedures, heuristic rules, and semantic
relations are regarded as concepts as well, and represented as frames.

A set of basic inference methods enables the interlinked frames to be interpreted as knowledge.
Abductive inference - often referred to as "inference to the best explanation" [24] - is the basic type
of inference in CreekL. Property inheritance, constraint propagation, frame matching, and plausible
concept chaining constitute the main inference methods. Inheritance is not absolute, however, and
unless otherwise specified an inherited property may get overridden by a specific, local property
(default inheritance). Property inheritance may be regarded as an inference method for retrieving a
value given a particular concept. Frame matching, on the other hand, infers a matching concept given
one or more property values. Constraints are specified as facets and used to check possible values, to
ensure storage of legal values, and to infer values if a local value is unknown. The "value-class"
facet, for example (see Figure 4), may be used to infer the superclass of a slot value if the local value
is missing.

In this section we have briefly presented and exemplified the knowledge level analysis approach
to systems modeling. We have also pointed out the problem of going from a knowledge level model
to a symbol level implementation. One way to do this is to relax the highly top-down oriented
development methodology and incorporate a more iterative knowledge modeling process. A useful
tool in this process is an expressive, object-oriented modeling language such as CreekL. To
emphasize on methods that enable systems to learn from experience is a way to achieve a continuos,
iterative development, where a system adapts and evolves as it is being regularly used. In the section
to follow we will focus on a method that seems particularly promising in this respect: Case-based
reasoning. A case-based approach is suitable for the type of integrated system we have previously
argued for, since it provides a means to develop systems that may gradually evolve from information
systems (where the user do the interpretation and reasoning from cases) to knowledge-based systems
(the computer do - part of - the case interpretation and reasoning).

6. Integrating information and knowledge - a case-based approach

6.1. Case-based decision support

The type of integration we aim at should combine the functionality of a clever assistant with that
of a competent discussion partner. A decision support system should be able to

• provide the user with the right information when it is needed,
• provide suggestions and criticism to the user in his decision making,
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• learn from its own experience and continually adapt to its environment.

The system's job is to increase the overall quality and effectiveness of the user's work. Therefore,
it is the total problem solving ability of the human user and the computer - in cooperation - which is
the factor to optimize, not that of the computer system itself. For many applications the information
system part would be the one to emphasize, while the knowledge-based part will be restricted to
handle just a few tasks. The task for the knowledge-based component in an information-oriented
system is to handle information in a meaningful and intelligent way, for example by deriving
expectations and consequences of the received information. Another important task is information
focusing and filtering, i.e. to find the type of information that is relevant in a particular context.
Given the huge amount of information available for most professional tasks, and the accelerating
increase of information, this is currently a problem that concerns many researchers in the information
system and AI fields [18].

Since they do not have to solve problems entirely on their own, knowledge-based decision
support systems that cooperate and interact heavily with their users are sometimes viewed as simpler
systems from an AI point of view, and easier to realize, than AI systems in general. This is not quite
correct, however, since a particular requirement is placed on these systems: They have to model and
represent their knowledge and information (i.e. knowledge and information for which the frame of
reference is the system) in a way that makes it intelligible to a human user. Facilities for explaining its
reasoning chain and its choices, for example, requires that a system's semantic and pragmatic
interpretation of represented terms is close to how a human user interprets them. This is difficult to
realize unless we apply methods that explicitly represent the terms that a system is to reason about in
a way that captures the appropriate context of these terms. A plain neural network approach, for
example, does not satisfy this requirement. Here the input and output terms are the only concepts
that are communicated, and there is therefore no way that an explanation facility, for example, can be
directly realized [14]. (What we refer to here is neural networks as a modeling paradigm. A neural
network may also be used to implement an explicit concept-representation system, but that is a
different issue.) This is a requirement which is also hard to fulfil in a first-order predicate logic
approach, where the basic semantics of terms is defined through strict deductive inference (modus
ponens) only. This leads to difficulties in capturing the semantics and pragmatics of real world
concepts, such as polymorphic and prototypical concepts and relationships [11]. A more flexible,
procedural semantics is a way out of this problem,  although the lack  of an explicitly defined
semantics may lead to problems.

The most common way to realize knowledge-based decision support systems has been, and still
is, as rule-based systems. Many such systems have been fielded and are doing their job well. Some
well known problems, however, include their brittleness - i.e. their inability to deal with problems not
pre-anticipated and captured in the rule set, their insufficient explanation capability, and their
maintenance difficulties [32]. Second generation expert systems [20] try to cope with the brittleness
problem by providing deeper and more principled knowledge in addition to rules. This does not help
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with the knowledge maintenance problem, however, which is how to update and modify the
knowledge base as the system is being used and experience is gained. This is serious because a
system then easily gets a static character, i.e. changing knowledge content is something that should
be avoided. What is needed in integrated systems is a much more dynamic view: Information is
added and gets modified continually, and as information changes, knowledge will change. Human
beings usually learn something by integrating new information into existing. If we want tightly
integrated, cooperative decision assistants, our computer systems should have this ability as well.
Case-based reasoning (CBR) [47, 29, 7], is an approach in this direction. It enables systems to
reason by retrieving and reusing previous problem cases, and to learn by updating their case
memories after each new experience.

A case-based system solves a problem by trying to 'remember' a previous similar case, and then
reusing the solution from that case - possibly after modification. By retaining the problem just solved
as a new case, or by other modifications to the case base, the system learns from its experience.
Figure 5 illustrates a simple model of the CBR cycle. Learning is facilitated in a case-based system,
since learning by retaining new cases is much easier than the updating of general knowledge. The
primary knowledge of a case-based system can be viewed as a large memory of past cases. While a
rule-based system derives conclusions by applying a set of general rules, a case-based system derives
its conclusions by retrieving and adapting specific cases. Previous experience is available in its most
direct form, instead of as abstracted and generalized associations. A case will typically contain a
description of the previous problem and its solution, but it may also contain other items, such as a
justification of the solution, an explanation of it, the results of having applied it, etc. Negative
experiences as well as positive ones may be kept, in order not to repeat earlier mistakes and to reuse
previous successes.

Cases are particularly interesting from an integrated systems point of view: A case description as
such can be viewed as data, ready to be interpreted by whatever agent has the ability to do so. For a
human decision maker a set of previous cases in a computerized case base is information, and
provides a means to gather and organize specific information that belong together. Cases which are
part of the human decision maker's own memory can be used as knowledge in a decision process -
through a human case-based or analogy-based reasoning method. Cases become information and
knowledge by interpreter mechanisms (of humans or computers) that are able to sufficiently
understand the items of a case description, to use this understanding in order to identify similar
cases, to adapt a previous case to the present context, etc. Case retrieval, reuse and learning may
also be regarded as knowledge-based processes in their own right, where a body of general and often
rather deep knowledge is utilized as part of the case-based reasoning method [6].
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Figure 5:  Main steps of the case-based reasoning cycle

The next section exemplifies the case-based approach, by briefly reviewing the system
architecture called CREEK (Case-based Reasoning through Extensive Explicit general Knowledge).
This architecture also incorporates models of general knowledge as support for, and alternatives to,
the case-based methods. In the final section of the section, case-based architectures for integrated
systems are discussed with respect to the different types of functionalities for active decision support
systems.

6.2. CREEK - a case-based system architecture

CREEK [4, 7] contains, at the top level, four modules integrated within a common conceptual
basis as depicted in Figure 6. Each module represents a particular sub-model of knowledge or
information. The four modules are an object-level domain knowledge model, a strategy level model
(for example a model of diagnostic problem solving), and two internal meta-level models - one for
combining case-based and other types of reasoning, and one for sustained learning. CREEK
integrates problem solving and learning into one functional architecture. The user is able to interact
with the system in all its phases of problem solving and learning.

The CREEK architecture is targeted at building knowledge-based system, hence its submodules
are usually interpreted as knowledge and information modules - where the frame of reference is the
computer. This is the perspective taken in this overview, since the extension from a knowledge-
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based systems architecture to including the information system perspective is simpler than the other
way around. For the purpose of integrated systems, what will be referred to below as knowledge
modules may be viewed as modules of information types where the user is the knowledgeable
interpreter and the frame of reference (see section 3.3.2).

           Conceptual
Knowledge Fundament

Object Level
Knowledge

ModelApplication 
Strategy
 Model

Combined
Reasoning

Model

Sustained
Learning 

 Model

Figure 6:  The knowledge modules in CREEK

Previously experienced cases and general knowledge of domain relationships are held in the
object level knowledge model. The other models contain general knowledge in the form of concept
models and/or rules. A use of cases also for control level reasoning is interesting (see [31] and [44]),
but has not been explored within the CREEK architecture. It is important to note that all the
concepts in this way get 'glued together' in a unified model. Diagnosis task concepts in medicine, for
example, such as "symptom" and "diagnostic-hypothesis" (part of the application strategy model),
and learning task concepts, such as "case-indexing" and "failure-generalisation" (part of the sustained
learning model), are defined within the same unified representation structure as general domain
concepts like "appendicitis" and "fever", and case-related domain terms as "Patient#123456" and
"current-radiation-dosage" (which all are part of the object level knowledge model).

All types of knowledge and information are encoded in the frame-based representation language
CreekL, briefly summarized at the end of the previous main section. Cases are separate object
structures integrated into the common knowledge network. This is illustrated in figure 7, where
cases are 'pulled out' of the semantic network structure for clarity, and where a few of the links from
cases into the general model are indicated. All symbolic terms that are part of a case description -
and object terms as well as relations - have a concept definition in the knowledge network.
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Below is an example case structure as described in a CreekL frame (the a.b.c notation means
frame a's slot b's value c). A case can be a rather complex structure, since it is often useful not only
to retain the association between a set of input findings and a solution, but also how the solution was
derived, for example in the form of an explanation path in the knowledge model justifying a
conclusion (see the has-diagnosis-explanation slot, where a partial explanation is illustrated as a nested
list structure).

The part shown explains how myocardial ischemia may lead to increased heart rate reserve, via
their relation with 'poor effort', which is an intermediate state in the diagnostic model and a concept
node in the network. The differential cases are closely related cases, but with different solutions, and
tried out if there is only a weak match between a new problem and case-334. The diagnosis of the
case shown was obtained by use of case-152, and no modification of that solution was needed.

case-334
instance-of value diagnostic-case
has-status value diagnosis-accepted diagnosis-not-confirmed
has-relevant-finding value mild-obstructive-pattern

PaO2-at-rest.has-value.low
heart-rate-reserve.has-state-change.increased
diffusion-capacity.has-value.decreased
---

has-diagnosis value myocardial-ischemia
has-explanation value (myocardial-ischemia.associated-with.poor-effort

  poor-effort.indicates
    .(heart-rate-reserve.has-state-change.increased))
---

has-differential-case value case-129   case-52  case-20  case-258
diagnosis-based-on value case-152
diagnosis-modified-by value none
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The interpreter in CREEK contains a three-step process of 1) activating relevant  parts of the
semantic network 2) generating and assessing (explaining) derived information within the activated
knowledge structure, and 3) focusing towards and selecting a conclusion that conforms with the
goal. This activate-explain-focus  cycle is a general mechanism that will normally have to be
specialized and instantiated for a particular goal and task type.

The process of remembering (retrieving) and reusing previous cases may be used extensively in all
three steps, but a more typical pattern is to use general knowledge in the activation step, cases for
generating hypotheses and in parts of the assessment process, and a limited number of cases together
with general knowledge for the focusing step. If no case can be found which matches the problem
description closely enough, rule-based reasoning will be tried. Finally, as a last resort, an attempt is
made to solve the problem entirely by use of the deep knowledge model. See Figure 8.

Select relevant 
features

 Learn 
from the 

experience 

Attempt  
CBR 

Attempt  
RBR 

Attempt  
MBR

Present 
conclusion 

Receive 
problem 

description 

Figure 8:  Combined reasoning in CREEK
CBR= case-based reasoning, RBR=rule-based reasoning, MBR=(deep) model-based reasoning.

The general algorithm of the case-based reasoning process in CREEK, i.e. an expansion of the
"Attempt CBR" box in Figure 8, is illustrated in Figure 9.
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Figure 9:  Case-based reasoning in CREEK

CREEK learns from every problem solving experience. If a successful solution was copied from,
or just slightly modified on the basis of, a previous case, the reminding to that case from each
relevant feature is strengthened. No new case is stored. If a solution was derived by significantly
modifying a previous solution, a new case is stored and difference links between the two cases are
established. A new case is also created after a problem has been solved from rules or from the deeper
knowledge model alone.

The main target for the learning process in CREEK is thus the case base. But a system may also
update its general knowledge through interaction with the user during problem solving. Since
heuristic rules are represented within the conceptual model, they are available for the same tasks as
the conceptual model in general. A rule is viewed as a shallow type of relationship, and may also be
used to support case-based problem solving as well as learning. Even if the explanatory strength of a
shallow relationship in general is low, it may add to other explanations for the same hypothesis and,
thus, contribute to a justification of a hypothesis.

Compared to other case-based reasoning methods, the problem solving and learning methods of
CREEK relies more heavily on general knowledge as support for the case-based processes. These
processes are explanation-driven [6], i.e. subprocesses such as the extraction of relevant features of
a problem, assessment of similarity between cases, decisions on whether and how a case solution
may be modified for a new problem, and the identification of what to learn from a case just solved,
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are all depending on sufficiently strong explanations produced as support by the general domain
knowledge. In addition, the user is asked for support or confirmation when needed.

6.3. Modes of integration

As previously mentioned, the processes of reusing and retaining case knowledge can be viewed as
human reasoning processes as well as computer-based ones. For a human user a case base is an
extended memory of previous episodes and situations. What use can an architecture such as CREEK
have for designing and implementing integrated decision support systems? A case-based architecture
for integrated systems enables several modes of integration, depending on the role of cases within the
computer system:

1. Cases are data for the computer system.
This is the simplest mode, where the system does not do case-based reasoning as such,

but applies case-based and other knowledge-based methods for case indexing and retrieval
only. Since the system views cases as data only, it does not have knowledge of the items
that describe case contents, only the items that index the cases.

This integration mode is close to a knowledge-based information retrieval system, where
the data base contains a collection of previous cases. The strength of computers as data
managers and information handlers (where the frame of reference for information is the
user) is combined with the strength of human beings for intelligent decision making [28].
Help desk systems, a fast growing application area for case-based reasoning exemplify this
type of integration.

These systems will not be able to learn, in the sense of updating its knowledge by
retaining new cases, since it is not able to interpret case contents as information or
knowledge. However, a weak type of learning can be said to occur, since the systems will
have the necessary knowledge about the case indexes in order to appropriately integrate
new cases into the index structure of the case base.

2. Cases are information for the computer system.
This mode of integration requires knowledge in the computer that is able to interpret and

utilize case contents as information. Any knowledge-based system approach will in principle
do, for example a rule-based case interpreter, or a deeper model-based one.

This mode has strong similarities with current approaches to integrated information and
knowledge systems, where all information items are related to knowledge models. The
difference is that a substantial part of the system's information is organized as cases.
Information that belongs together, in the sense of sharing the same local context, is stored
together.

The system learns cases in the sense that it can retrieve and interpret their contents as
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information input to a future reasoning process.

3. Cases are knowledge for the computer system.
This is the case-based reasoning approach, i.e. the case base is not merely a source of

information, but a knowledge base which is actively used in the system's reasoning
processes. The full flexibility of viewing a case as data, information, and/or knowledge is
therefore achieved. This is advantageous, since new cases containing data that the system is
not currently capable of meaningfully interpreting, can at least be kept as data to be
interpreted by the user.

Cases may be the only type of knowledge in the system - as in most current CBR systems
- or they may be combined with other knowledge types - as in CREEK.

These systems exhibit learning in the full sense, since they incorporate new cases in a way
that makes them immediately ready to be used in the solving of new problems.

From these different modes, we see that a case-based system architecture facilitates a gradual
transformation from a pure information system ('mode 0'), through a mode 1 and/or mode 2 system,
to a full-fledged mode 3 system. In this way a system will always have its data available in a non-
generalized form, and their active use can be incrementally put into effect by adding interpretation
and reasoning capabilities to the system as more cases are acquired, and as the use of the system
identifies what active decision support users really want. A major strength of the approach is the
combination of the automatic learning mechanism inherent in case-based reasoning, with manual
procedures for iterative system development.

7. Conclusion

This paper started out with the aim of achieving a better understanding of the fundamental issues
underlying the integration of data, information, and knowledge in computer-based decision-support
systems. A model defining the core terms within such a perspective was presented, and used as the
basis for discussing appropriate analysis and modeling methods for systems development. A basis for
achieving the synergy we want is found within recent developments of AI. At the conceptual level,
recent progress in knowledge level modeling provides us with a modeling perspective and a set of
techniques for implementation-independent description of systems. At the design and implementation
level, an object-oriented knowledge representation approach enables us to capture the richness of a
dense and multi-relational type semantic network. Case-based reasoning provides a way to solve
problems by reusing previous specific experience, and to learn from each such problem solving
session. Real world learning usually takes place at the 'fringe' of what is already known, and our
approach assures a strong guidance to the learning process both from the system's existing
knowledge and from its interaction with its environment. This enables a system to gradually refine
and extend its domain knowledge, and to become an increasingly active partner for a human decision



31

maker.
As a feedback to AI research, the view of intelligent systems as user-interactive agents that

integrate database, information systems and knowledge-based systems functionalities, provides a
focus which guides research in a sound way, namely in the direction of open, situated systems,
embedded within their environments of operation.

So far, the principal advantages of a case-based approach to incremental development and
evolution of integrated information and knowledge systems have not been met by other known
approaches. It is a challenge for future research to further investigate in what way the advantages
can be realized and brought into modelling and development methodologies for integrated systems.
What we have presented here is a framework within which this discussion hopefully can be
conducted in a fruitful and productive way.
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