
Knowledge-Intensive Case-Based Reasoning in CREEK
Agnar Aamodt

Department of Computer and Information Science
Norwegian University of Science and Technology (NTNU)

NO-7491 Trondheim
Norway

agnar.aamodt@idi.ntnu.no

Abstract. Knowledge-intensive CBR assumes that cases are enriched with
general domain knowledge. In CREEK, there is a very strong coupling between
cases and general domain knowledge, in that cases are embedded within a
general domain model. This increases the knowledge-intensiveness of the cases
themselves. A knowledge-intensive CBR method calls for powerful knowledge
acquisition and modeling techniques, as well as machine learning methods that
take advantage of the general knowledge represented in the system. The
focusing theme of the paper is on cases as knowledge within a knowledge-
intensive CBR method. This is made concrete by relating it to the CREEK
architecture and system, both in general terms, and through a set of example
projects where various aspects of this theme have been studied.

1 Introduction

A knowledge-intensive case-based reasoning method assumes that cases, in some
way or another, are enriched with explicit general domain knowledge [1,2]. The role
of the general domain knowledge is to enable a CBR system to reason with semantic
and pragmatic criteria, rather than purely syntactic ones. By making the general
domain knowledge explicit, the case-based reasoner is able to interpret a current
situation in a more flexible and contextual manner than if this knowledge is compiled
into predefined similarity metrics or feature relevance weights. A knowledge-
intensive CBR method calls for powerful knowledge acquisition and modeling
techniques, as well as machine learning methods that take advantage of the general
knowledge represented in the system.

In the CREEK system [3,4,5], there is a strong coupling between cases and
general domain knowledge in that cases are submerged within a general domain
model. This model is represented as a densely linked semantic network. Concepts are
inter-related through multiple relation types, and each concept has many relations to
other concepts. The network represents a model of that part of the real world which
the system is to reason about, within which model-based reasoning methods are
applied. From the view of case-specific knowledge, the knowledge-intensiveness of
the cases themselves are also increased, i.e. the cases become more “knowledgeable”,
since their features are nodes in this semantic network.

The focusing theme of this paper is cases as knowledge within a knowledge-
intensive CBR method. This will be made concrete by relating it to the CREEK

agnar
Tekstboks
Peter Funk, Pedro A. Gonzalez Calero (eds.), Advances in case-based reasoning, 7th European Conference, ECCBR 2004, Proceedings. Madrid, Spain, August/September 2004. Lecture Notes in Artificial Intelligence, LNAI 3155, Spinger, 2004. pgs. 1-15.

architecture and system, both in general terms, and through a set of example projects
where various aspects of this theme have been studied. To give an initial hint at the
main issue, Fig. 1 characterizes some aspects of CBR methods along what may be

Fig. 1. The knowledge-intensiveness dimension of CBR methods

called the knowledge-intensiveness dimension. The early nearest-neighbour-based
methods are at the one end of the scale, while the CREEK system is illustrated closer
the other end. Some typical characterizations of knowledge-intensive CBR methods
(right part) and knowledge-empty or knowledge-lean methods (left part), are listed.

As Fig. 1 indicates, the notion of knowledge-intensiveness is not an either/or issue.
CBR systems may be more or less knowledge-intensive. The meaning of the term
“knowledge-intensive” may also vary, depending on what viewpoint to the concept of
knowledge that an author or research group has. Further, when we look at the contents
of a case, what some people refer to as knowledge may be referred to as information
by others – or even as data. This is not surprising, since a data structure, such as a
case, can serve several roles in a system. In order to get a better understanding of the
concept of knowledge, as it is interpreted in CREEK, we will therefore start by
clarifying what we see as the main distinction between knowledge, information, and
data, related to the different roles a case may have. The next chapter defines the three
terms from that perspective.

Explicit models of knowledge call for effective knowledge modeling methods and
tools, both for manual model development and automated methods, i.e. machine
learning. To support systems development within the CREEK architecture, some
assumptions on the nature of knowledge modeling has been made, and an assisting
tool has been developed to assist the knowledge modeling process. This is the topic of
chapter 3. In chapter 4 the CREEK architecture and system is summarized,
emphasizing knowledge content and how it is processed. Chapter 5 illustrates the
architecture and system through a summary of recent and ongoing research projects.
The paper is summarized and concluded in the final chapter.

The ”knowledge-intensiveness” scale of CBR

• No explicit gen. knowledge
• A lot of cases
• A case is a data record

• Simple case structures
• Global similarity metric
• No adaptation
• Learning is simple storage

• Substantial gen. knowledge
• Not very many cases
• A case is a user experience

• Complex case structures
• Sim. assessm. is an explanation
• Knowledge-based aptation
• Knowledge-based learning

CREEK

IBL/IBRMBR

2 What is knowledge in a CBR system?

There is, in general, no known way to distinguish knowledge from information or
data on a purely representational basis. Attempts to make distinctions based on size or
complexity are therefore likely to fail. Another option - and the one underlying the
CREEK architecture - is to identify how and for what purpose the structures are used,
i.e. what the various roles of data, information, and knowledge are in a case-based
reasoning process. Their interpretation within the contexts they are applied, and by
whom they are interpreted and applied, therefore become important. The latter aspect
leads to the frame of reference problem of data, information, and knowledge [6],
which is the problem of relating one of these entities to a subject of reference: Whose
knowledge is it? For a discussion of this topic within the broader context of databases,
information systems, and AI systems, see [7].

2.1 Data vs. information vs. knowledge

For any decision-making process, an environment is assumed in which a decision-
making agent (i.e. a reasoning agent) receives input from and returns output to an
environment external to it. In a simple set-up, the external environment is a user
communicating through a terminal, and the decision-making agent is a terminal-
based, advice-giving computer system. Within this context, the essential differences
between data, information and knowledge are as follows (see Fig. 2).

Data are syntactic entities, i.e. uninterpreted characters, signals, patterns, and signs
that have no meaning for the system (the subject of reference) concerned. Data are
input to an interpretation process. Data become information after having been
interpreted to give meaning. This is illustrated in Fig. 2 by the Data Interpretation
arrow. Taking a human being as the subject of reference, a series of signals from a
sensor, or the string "´Q)9§?8$%@*¨&/", is data to most of us, while "low interest
rate", "increased blood pressure", and "the Gulf war" have meaning, and therefore are
information. The meaning of these terms may be different for different systems (here:
people), and it is each individual’s knowledge about particular domains - and the
world in general - that enable us to get meaning out of these data strings.

Information is interpreted data, i.e. data with meaning. It is the output from a data
interpretation process, as just described. Once the data have been given an
interpretation as information (an initial interpretation, at least), it is elaborated upon in
order to be better understood, and in order to derive (infer) new information. This is
illustrated by the Elaboration arrow in Fig. 2. Hence, information is input to this
elaboration process, as well as output from it. The elaboration process is where the
core decision-making processes take place. Often, in a real setting, elaboration and
data interpretation processes are interleaved. Information is also the source of
learning, i.e. the input to a learning process.

Knowledge is learned information, i.e. information that has been processed and
incorporated into an agent's reasoning resources, and made ready for active use within
a decision process. A widely shared view is that learning is the integration of new
information into an existing body of knowledge, in a way that makes it potentially
useful for later decision-making. New knowledge may also come from inference

processes within the knowledge body itself. This is illustrated by the vertical and the
semi-circular Learning arrows in Fig.2, respectively. Knowledge, then, is the output
of a learning process, after which it becomes the internal resource within an
intelligent system that enables the system to interpret data to information, to elaborate
and derive new information, as well as to learn more (the gray lines in the figure).

Information

Knowledge

Data

Elaboration

Data
Interpretation

Interpreted symbol structures
- used to interpret data, elaborate on information, and learn
- used within decision steps

Interpreted symbols and symbol structures
- input to a decision step
- output from a decision step

Observed, uninterpreted symbols
- signs, character sequences, patterns

Learning

Fig. 2: The Data-Information-Knowledge model.

Note that the term knowledge is used here in a very general sense. It does not
distinguish between 'true' and 'believed' knowledge. This is different from the
influential branch of philosophy in which the term knowledge is used exclusively for
statements that are true in the world, and where belief is used if truth cannot be
ascertained (e.g. [8]). Other philosophical theories (e.g. [9]) have questioned this
position, arguing that the logicist, or deductive-nomological philosophical view that
lies behind that view is unable to explain major philosophical problems such as
analogical reasoning, abduction, and scientific development.

2.2. Case roles in CBR systems

In Fig.1 some discriminating characteristics of knowledge-lean and knowledge-
intensive methods were listed. CBR systems come in different shapes and fashions.
From the above discussion, we see that in order for a system to reason, in the sense of
interpreting data and deriving new information, it needs knowledge. Systems with no
knowledge can do no reasoning in this sense. CBR systems that are placed at the left
of the scale, will therefore typically be closer to information systems than knowledge-
based systems. Note the peculiarity in that for an “information system”, as the term is
commonly used, a human being is assumed to be the subject of reference, i.e. it is
information for the human interpreter (and data for the system). In a knowledge-based
system, however, knowledge as well as relevant parts of the information is with
respect to the system. Below, the three main roles of cases in various systems,
corresponding to their role as data, information, or knowledge, are highlighted, in
order to contrast the CREEK approach with other approaches.

Cases as data for the computer system is the simplest mode, in which the system
does not do case-based reasoning as such, but applies case-based methods for case
indexing and retrieval. Since the system views cases as data only, it does not have
knowledge of the items that describe case contents. The partial matching property of
CBR is used to improve database retrieval by producing a ranked list of matching
records rather than one exact match. The strength of computers as data managers and
information handlers, where the frame of reference for information is the user, is
combined with the strength of human beings for intelligent decision-making. Some
types of help desk systems are examples.

Cases as information for the computer system implies that there is knowledge in
the computer that is able to interpret and utilize case contents as information. If cases
are information only – and not knowledge – the knowledge-based methods must be of
some other kind, such as model-based or rule-based. The characteristic of a case-
based system of this kind is that a substantial part of the system's information is
organized as cases.

Cases as knowledge for the computer system, is the case-based reasoning
approach per se, i.e. the case base is not merely a source of information for the user,
but a knowledge base that is actively used in the system's reasoning processes. The
full flexibility of viewing a case as data, information, and/or knowledge is therefore
available. Cases may be the only type of knowledge in such a system or they may be
combined with other knowledge types - as in CREEK. These systems exhibit learning
in the full sense, since they incorporate new cases in a way that makes them
immediately ready to be used in the solving of new problems.

From these different case roles, we see that a case-based system architecture can
facilitate a gradual transformation from a pure database or information system, to a
full-fledged knowledge-based system. In this way a system will always have its data
available in a non-generalized form, and their active use can be incrementally put into
effect by adding interpretation and reasoning capabilities to the system as the use of
the system identifies what active decision support users really want.

3 Knowledge Modeling

Along with Clancey [10], a knowledge-based system can be viewed as a qualitative
model of that part of the real world that the system is to reason about. Knowledge
modeling, then, becomes the whole process that starts with a real world task
environment, through several steps realizes a (partial) model of it in a computer
system, and maintains that model over time. The knowledge of a system will to some
extend be biased by the methods through which that knowledge was acquired and
represented. A brief description of the high-level knowledge modeling framework
underlying CREEK systems is therefore given.

The knowledge modeling approach is based on the combination of a top-down
driven, initial knowledge acquisition process, and a bottom-up modeling process
represented by continuous learning through retaining problem solving cases. The
objective of the initial knowledge modeling task is to analyze the domain and task in
question, to develop the conceptual, mediating models necessary for communication

within the development team, and to design and implement the initial operational and
fielded version of the system. The knowledge maintenance task takes over where the
initial knowledge modeling ends, and its objective is to ensure the refinement and
updating of the knowledge model as the system is being regularly used. In Fig. 3 the
two outer, rounded boxes illustrate these two top-level tasks of the knowledge
modeling cycle. Within each of the two tasks, the major subtasks (rounded rectangles)
and models (sharp rectangles) taken as input and returned as output from these tasks
are shown. The modeling subtasks are indicated by their gray background.

MENTAL
MODEL

CONCEPTUAL
KNOWLEDGE
MODEL

COMPUTER
INTERNAL
MODEL

EXPERIENCE

Knowledge Level
Analysis and Modeling

Symbol Level Design
and Implementation

Knowledge
Revision

Problem
Solving

New Case

Sustained
Learning

Initial Knowledge
Modeling

Knowledge
Maintenance

Periodic

Fig. 3: The knowledge modeling cycle

Arrows indicate the main flow of knowledge and information, and show the most
important input/output dependencies between subtasks and models. As shown by the
area where the two large boxes overlap, the conceptual knowledge model and the
computer internal model are shared by subtasks of both initial knowledge modeling
and knowledge maintenance.

A knowledge modeling cycle typically starts with a high level specification (e.g.
functional specification) of the target computer system, at some level of detail. The
resulting submodels are structured into a conceptual knowledge model. The
knowledge is described at the knowledge level [11,12], where the emphasis is to
capture the goal-directed behavior of the system, and to model knowledge content
from the perspective of the application domain, without being constrained by
implementational limitations. A common starting point is to identify the main
categories of the three knowledge types: Task knowledge, Method knowledge, and
Domain knowledge. Task knowledge models what to do, usually in a task-subtask
hierarchy. Tasks are defined by the goals that a system tries to achieve. Method
knowledge describes how to do it, i.e. a method is a means to accomplish a task (e.g.
to solve a problem). Domain knowledge is the knowledge about the world that a
method needs to accomplish its task. Examples are facts, heuristics, causal
relationships, multi-relational models, and – of course – specific cases (see [13] for a
more elaborate discussion on knowledge level modeling for CBR systems). The
conceptual knowledge model forms the basis for designing and implementing the
computer internal model, i.e. the knowledge model of the operating target system.

This model is described at a level referred to as the symbol level, which deals not
only with intentional knowledge content, but also with manipulation of symbols that
represent knowledge in the computer.

The lower, partially overlapping box illustrates the main subtasks of knowledge
maintenance. Knowledge maintenance starts when a system has been put into regular
operation and use. The knowledge maintenance task has two optional subtasks as
indicated in the figure. One is sustained learning, i.e. the direct updating of the
computer internal model each time a new problem has been solved. The other is a
periodic and more substantial revision process. As illustrated, this revision task may
lead directly to the modification of the symbol level model (computer internal model),
but it may also go through an update of the knowledge level model (conceptual
knowledge model) first.

Fig. 4. The TrollCreek Knowledge Modeling Editor

To assist in the top-down modeling parts of the cycle described, a knowledge
modeling editor is used (Fig. 4). A CREEK system comes with a top-level ontology,
part of which is shown in the figure, from which the higher-level parts of the domain
model is grown. Concepts, relations, as well as cases, can be constructed and
manipulated in flexible manners through a knowledge map interface (to the left) or a
frame interface (right part of the figure). The knowledge representation is the topic of
the next chapter.

5 The CREEK system

The CREEK system is an architecture for knowledge-intensive case-based
problem solving and learning, targeted at addressing problems in open and weak-
theory domains [14]. CREEK contains several modules integrated within a common
conceptual basis: The General Domain Model (see Fig. 5). Each module represents a
particular sub-model of knowledge. The main modules are the object-level domain
knowledge model (real world entities and relationships), a strategy level model (for
example a model of diagnostic problem solving), and two reasoning meta-level
models, one for combining case-based and other types of reasoning, and one for
combined learning methods. CREEK integrates problem solving and learning into one
functional architecture.

Fig. 5. The CREEK functional Architecture

Situation-specific experiences are held in the case base of solved cases. All the
concepts are 'glued together' into a single, interconnected knowledge model.
Diagnosis task concepts, for example, such as "symptom" and "diagnostic-
hypothesis" (part of the diagnosis and repair strategy model), and learning task
concepts, such as "case-indexing" and "failure-generalization" (part of the combined
learning model), are defined within the same representation structure as general
domain concepts like "appendicitis" and "fever", and case-related domains terms as
"Patient#123456" and "current-radiation-dosage”.

A knowledge model represented in CREEK is viewed as a semantic network,
where each node and each link in the network is explicitly defined in its own frame.
Each node in the network corresponds to a concept in the knowledge model, and each
link corresponds to a relation between concepts. A concept may be a general
definitional or prototypical concept, a case, or a heuristic rule, and describe
knowledge of domain objects as well as problem solving methods and strategies. A
frame represents a node in the network, i.e. a concept in the knowledge model. Each

General Domain Model

Solved Cases

Sustained Learning

EBL CBL

Problem Solving

MBR
CBR

Diagnosis and Repair Stratery

Combined Reasoning Combined Learning

New problem Solved
problems +
Traces

data flow

concept is defined by its relations to other concepts, represented by the list of slots in
the concept's frame definition. Fig. 6 illustrates the three main types of knowledge in
CREEK, a top-level ontology of generic, domain-independent concepts, the general
domain knowledge, and the set of cases.

thing

case
039

case
112

case
76

generic concepts

cases

domain concepts
general

Fig. 6: Integrating cases and general knowledge

The case-based interpreter in CREEK contains a three-step process of 1)
activating relevant parts of the semantic network 2) generating and explaining derived
information within the activated knowledge structure, and 3) focusing towards and
selecting a conclusion that conforms with the goal. This activate-explain-focus cycle,
referred to as an 'explanation engine' [3], is a general mechanism that has been
specialized for each of the four CBR tasks described in section 4, although the Revise
task is not a system’s task in CREEK. (see Fig. 7).

Retrieve Reuse Revise

Activate

Explain

Focus Activate

Explain

Focus Activate

Explain

Focus

Activate

Explain

Focus

Retain

Fig. 7. The CBR process and the explanation engine

Similarity assessment is divided between the Activate and Explain steps of
Retrieve. Activate first determines a relevant broad context for the problem, by
spreading activation from goal concepts to relevant findings. Spreading-relations
include general taxonomic ones, causal relations, associational relations, and
application-specific relations. Only cases with activation strength above a certain
threshold will be considered for further matching. The activation strength is based on
the number of matched relations and their relevance factor, according to the following
formula [15]:

∑

∑∑

=

= ==
m

j
f

n

i

m

j
fji

REIN

j

j

factorrelevance

factorrelevanceffsim

CCsim

1

1 1

*),(

),(

CIN and CRE are the input and retrieved cases, n is the number of findings in CIN, m is
the number of findings in CRE, fi is the i

th finding in CIN, fj the j
th finding in CRE, and

sim(f1,f2) is simply given as:

 =

=
otherwise

ffif
ffsim

0

1
),(21

21

The relevance factor is a number that combines the predictive strength (degree of
sufficiency) and importance (degree of necessity) of a feature for a stored case.
Following Activate, Explain will attempt to improve the match between the input case
and the activated cases. Only unmatched findings need to be explained, since the
strength of the directly matched findings cannot be increased. Different explanation
paths are combined [16] into a matching strength for each activated case. The paths
have convergence points, i.e. explanatory concpets - such as causal concepts, for
which there exist an explanation path from both findings. Its strength is the product of
the strength of each relation leading from the finding to the convergence point:

∏
=

=
n

i
istrengthrelationcfstrengthpath

1

),(

Here, n is the number of relations. There may exist one or more parallel paths from
each finding to each convergence point. The resulting strength is based on the general
formula for adding contributions from n parallel elements, S1... Sn, into a total score:

parallel strength (S1,S2,..Sn) =1−
i=1

n

∏ (1− Si)

Thus, the total combined strength of all the paths leading from a finding f to a
convergence point c, with n being the number of paths between f and c, is computed
according to the following formula:

total path strength(f ,c) =1−
i=1

n

∏ (1− path strength(f ,c) i)

The strength of one explanation path (eps) leading from a finding f1 to a finding f2
via the convergence point c, is computed by multiplying the total path strength for
each of the findings to the convergence point, and the total explanation strength for
the two findings (f1 and f2) via several convergence points is finally computed by
using the parallel strength formula:

eps(f1, f2,c) = total path strength(f1,c) ⋅ total path strength(f2,c)

exp lanation strength(f1, f 2) =1−
i=1

n

∏ (1−eps(f1, f2,ci))

Here n is the number of convergence points between the findings, and ci is the i
th

convergence point.
 Focus selects the best case or rejects all of them, based on the explanatory justifi-
cation. It may adjust the ranking of the cases based on preferences or external constra-
ints. The explanatory power of the domain model is also utilized in Reuse and Retain.

This was implemented in the former Lisp version. Research related to the current Java
version – called TrollCreek - has focused on Retrieve, with Reuse in an early stage.

Fig. 8. Unsolved case (left) and the corresponding solved case (right) of Case LC 22.

The general domain knowledge is assumed to be extensive enough to provide
sufficient support to the case-based methods, but may also provide a back-up
capability of problem solving on its own, if no similar case is found. The general
domain knowledge is typically built up by rather 'deep' relationships - for example a
combination of causal, structural, and functional relations. It contains a simple model-
based casual reasoning method, in addition to the basic inference methods of frame
matching, constraint propagation, and plausible inheritance (see next chapter).

The TrollCreek tool allows running the case matching process at any time during
system development. To illustrate, assume that we are on an oil rig in the North Sea.
Drilling fluid losses have been observed, and the situation turns into a problem (so-
called Lost Circulation). See the case description to the left in Fig. 8. TrollCreek
produces first of all a list of similar cases for review of the user. Testing of Case LC
22 suggests that Case LC 40 is the best match, with case 25 as the second best, and
with a matching degree of 45% - as shown in Fig. 9. Examination of these cases
reveals that Case LC 40 and 25 are both of the failure type Natural Fracture (an
uncommon failure in our case base). By studying Case LC 40 and 25 the optimal

treatment of the new problem is devised, and a new case (Case LC 22) is stored in the
case base (right part, Fig. 8).

The user can choose to accept the delivered results, or construct a solution by
combining several matched cases. The user may also trigger a new matching process,
after having added (or deleted) information in the problem case. The user can also
browse the case base, for example by asking for cases containing one specific or a
combination of attributes. Figure 4 shows parts of the explanation of why Case LC 22
is a problem of the type Natural Fracture. The interactive graph displays the part of
the semantic network that was involved in the matching, either by direct or indirect
(explained) matches. A textual explanation of an indirect match is also displayed, as
shown to the middle right in Fig. 9.

Fig. 9. Results of matching a new case (Case LC 22 unsolved) with the case base.

6. Recent and ongoing research

The transition to the Java platform, from Lisp, led us to make a revision of the

knowledge representation and basic inference methods. An earlier idea of plausible
inheritance as an inference method for semantic networks [14] was generalized and
made into the core model-based inference method of CREEK [16]. The main
principle is that inheritance is extended to be applicable to any pair of a relationship
and a relation, as opposed to inheritance only along a subclass relation. A location
relationship may be inherited along a part-of relation, for example – assuming that
parts of things are in the same location as the thing itself. Fig 10. illustrates how an
initial frame, “epidemic case #3”, having a local subclass relationship with “bacterial
epidemic”, and a causal relationship with “dirty water”, inherits additional relation-
ships (the Ri set at the lower right), through as set of inheritance rules (the I set at the
lower left).

Fig. 10. Plausible inheritance example

Some current activities explore this method by designing systems where model-
based reasoning play a strong part in itself, rather than only as part of the CBR
process. Examples are two PhD projects where one is a method for generating and
evaluating explanations for intelligent tutoring [17], and the other a method for
generating explanations for gene–gene relationships and dependencies in order to
understand the development of diseases at the level of functional genomics [18]. Our
research into knowledge-intensive case-based explanation, studies the combined use
of case-specific and general domain knowledge from the perspective of user-targeted
explanations (the two projects just mentioned), as well from the perspective of the
system-internal explanation methods in CREEK. The transparency of the knowledge
representation system in CREEK favours studies of mutual explanation mechanism,
i.e. explanation methods serving both purposes. This is currently studied within a PhD
project on conversational case-based reasoning for software component reuse [19],
although the focus here is on internal explanations within a CCBR context. Quite
another issue is studied in a PhD research done within the EU project Ambiesense

bacterial
epidemic

dirty water

clean water
supply

associated
with

has solution

epidemic case
#3

caused by

subclass
of

bad hygiene

associated
with

caused by

subclass
of

used for

bacterial
infection

drinking

water

α = T

α={
caused by,
has solution }

α={
caused by,
has solution,
associated with }

α={
caused by,
has solution }

α={
associated with }

α=φ

α={
causes,
caused by,
used for,
has solution,
associated with }

Ri =
{(‘epidemic case#3’, subclass of, ‘bacterial epidemic’),
 (‘epidemic case#3 ’, caused by, ‘bacterial infection’),
 (‘bacterial epidemic’, associated with, ‘dirty water’),
 (‘bacterial infection’, caused by, ‘dirty water’),
 (‘dirty water’, has solution, ‘clean water supply’),
 (‘dirty water’, associated with, ‘bad hygiene’)}

I = ((subclass of, causes),
(subclass of, caused by),
(subclass of, associated with),
(subclass of, used for),
(subclass of, has solution),
(causes, causes),
(caused by, caused by),
(caused by, has solution)
(associated with, associated with))

[20], where an agent-based architecture is developed for CREEK, aimed to provide
contextualized information to mobile users on business or tourist travels. Agent-based
methods are also explored by others, which should lead to a generic distributed
architecture for CREEK. Cases are used to personalize the information provided. A
thorough study of context modeling was done in an earlier research applied to the
medical diagnosis area [21]. This work, as well as a study done in medical image
understanding [22], also made significant contributions to the knowledge-level
modeling approach within CREEK.

Additional methods for representing and reasoning with general domain
knowledge are also being explored. In particular, the studies of Bayesian Networks
within CREEK [23] has given additional insights to the knowledge modeling and
representation issues, as well as triggered studies on data mining methods for learning
of general domain knowledge. Examples of smaller project that have developed
additional demonstrators as part of MSc works, include an ANN system integrated
into CREEK [24], for face recognition, and a text mining system for extracting
general domain relationships from text [25]. Sometimes, it is also useful to lean back
and take a look at the more fundamental issues related to developing CBR systems
and other AI systems, such as relating current practice to totally different
development and modeling views, such as one suggested by an autopoietic analysis
[26].

7. Conclusion

The paper has described the knowledge-intensive CBR approach that is at the core of
the CREEK framework, architecture, and system. By starting out with the
fundamental issues related to the nature of knowledge, and the modeling-perspective
taken to the development of a CREEK knowledge base, the actual representation and
reasoning methods – as exemplified by Retrieve – hopefully become clearer.
The current and future directions of research focus more strongly on experimental
evaluation of the various methods of CREEK. Of special interest currently, are
experimentations related to the combined explanatory power of general domain
knowledge and cases. This includes more thorough studies of the representation and
basic inferencing methods. In addition, multi-agent architectures, text mining of
general and case-specific knowledge, and conversational CBR methods, are high up
on the research agenda. Finally, continued tool development, in connection with
development of real world applications, is a priority, for which we cooperate with the
company Trollhetta AS.

References

1. Díaz-Agudo, B., González-Calero, P.A.: An Architecture for Knowledge Intensive CBR
Systems. In Blanzieri, E., Portinale, L., (Eds.): Advances in Case-Based Reasoning
(Procs. of the 5th European Workshop on Case-Based Reasoning, EWCBR 2000), Lecture
Notes in Artificial Intelligence, 1898, Springer, 2000.

2. Aamodt A.: A Knowledge-Intensive Integrated Approach to Problem Solving and
Sustained Learning. PhD. Dissertation. University of Trondheim, Department of Electrical
Engineering and Computer Science, Trondheim (1991). [Downloadable from authors
publications homepage].

3. Aamodt, A. 1994: Explanation-driven case-based reasoning. In Topics in case-based
reasoning, edited by S. Wess et al., Springer Verlag, 274-288.

4. Jære, M.D., Aamodt, A., Skalle, P.: Representing temporal knowledge for case-based
prediction. Advances in case-based reasoning; 6th European Conference, ECCBR 2002,
Aberdeen, September 2002. Lecture Notes in Artificial Intelligence, LNAI 2416, Springer,
pp. 174-188.

5. Skalle, P., Aamodt, A.: Knowledge-based decision support in oil well drilling; Combining
general and case-specific knowledge for problem solving. To appear in Proceedings of
ICIIP-2004, International Conference on Intelligent Information Processing, Beijing,
October 2004.

6. Clancey, W.J.: The frame of reference problem in the design of intelligent machines, In K.
VanLehn (ed.), Architectures for Intelligence. Lawrence Erlbaum, 1991, p. 357-423.

7. Agnar Aamodt, Mads Nygaard: Different roles and mutual dependencies of data,
information, and knowledge - an AI perspective on their integration, Data and Knowledge
Enigneering 16 (1995), pp 191-222

8. C.G. Hempel, Aspects of scientific explanation., (Free Press, New York, 1965).
9. P. Thagard, Computational Philosophy of Science, (MIT Press/Bradford Books, 1988).
10. Clancey W.J.: Viewing knowldge bases as qualitative models. IEEE Expert, Vol.4, no.2.

Summer 1989. pp. 9-23.
11. Newell, A.: The knowledge level, Artificial Intelligence, 18 (1982) 87-127.
12. Van de Velde, W.: Issues in knowledge level modelling, In J-M. David, J-P. Krivine, R.

Simmons (eds.), Second generation expert systems (Spinger, 1993) 211-231.
13. Aamodt, A.: Modeling the knowledge contents of CBR systems. Proceedings of the

Workshop Program at the Fourth International Conference on Case-Based Reasoning,
Vancouver, 2001. Naval Research Laboratory Technical Note AIC-01-003, pp. 32-37.

14. Aamodt A.: A Knowledge Representation System for Integration of General and Case-
Specific Knowledge. Proceedings from IEEE TAI-94, International Conference on Tools
with Artificial Intelligence (1994). New Orleans, November 5-12.

15. Lippe, E.: Learning support by reasoning with structured cases. MSc Thesis, Norwegian
University of Science and Technology (NTNU), Department of Computer and Information
Science, 2001.

16. Sørmo F.: Plausible Inheritance; Semantic Network Inference for Case-Based Reasoning.
MSc thesis, Norwegian University of Science and Technology (NTNU), Department of
Computer and Information Science, 2000.

17. Frode Sørmo, Agnar Aamodt: Knowledge communication and CBR. 6th European
Conference on Case-Based Reasoning, ECCBR 2002, Aberdeen, September 2002.
Workshop proceedings. Robert Gordon University, pp. 47-59.

18. Waclaw Kusnierczyk, Agnar Aamodt and Astrid Lægreid: Towards Automated
Explanation of Gene-Gene Relationships. RECOMB 2004, The Eighth International
Conference on Computational Molecular Biology, Poster Presentations, E9, San Diego,
March 2004.

19. Gu, M., Aamodt, A., Tong, X.: Component retrieval using conversational case-based
reasoning. To appear in Proceedings of ICIIP-2004, International Conference on
Intelligent Information Processing, Beijing, October 2004.

20. Anders Kofod-Petersen, Agnar Aamodt: Case-based situation assessment in a mobile
context-aware system. Proceedings of AIMS2003, Workshop on Artificial Intgelligence
for Mobil Systems, Seattle, October, 2003.

21. Pinar Ozturk, Agnar Aamodt: A context model for knowledge-intensive case-based
reasoning. International Journal of Human Computer Studies. Vol. 48, 1998. Academic
Press. pp 331-355.

22. Morten Grimnes, Agnar Aamodt: A two layercase-based reasoning architecture for
medical image understanding. In Smith, I., Faltings, B. (eds). Advances in case-based
reasoning, (Proc. EWCBR-96), Springer Verlag, Lecture Notes in Artificial Intelligence
1168, 1996. pp 164-178.

23. Helge Langseth, Agnar Aamodt, Ole Martin Winnem: Learning retrieval knowledge from
data. In Sixteenth International Joint Conference on Artificial Intelligence, Workshop ML-
5: Automating the Construction of Case-Based Reasoners. Stockholm 1999. Sarabjot
Singh Anand, Agnar Aamodt, David W. Aha (eds.). pp. 77-82.

24. Engelsli, S.E.: Intergration of Neural Networks in Knowledge - Intensive CBR. MSc
thesis, Norwegian University of Science and Technology (NTNU), Department of
Computer and Information Science, 2003.

25. Tomassen, S.L.: Semi-automatic generation of ontologies for knowledge-intensive CBR.
MSc thesis, Norwegian University of Science and Technology (NTNU), Department of
Computer and Information Science, 2003.

26. Sverberg, P.: Steps towards an empirically responsible AI; A theoretical and
methodological framework. MSc thesis, Norwegian University of Science and Technology
(NTNU), Department of Computer and Information Science, 2004.

