
Fig. 1. The conversational case retrieval process in CCBR 

CaseQuery := Case-Query-formalize(InitialProblemDescription); 
Repeat: 

CaseQuery:=Dialogue-Inference(CaseQuery); 
RankedRetrievedCases := CBR-Retrieve(CaseQuery); 
UnknownQuestions := Question-Identify(RankedRetrievedCases, CaseQuery); 
RankedUnknownQuestions := Question-Rank(UnknownQuestions); 
Display(RankedUnknownQuestions, RankedRetrievedCases); 
If (users find their desired cases or have no question to answer) then 

Exit loop; 
Else 

UserAnswer := User-Select-and-Answer-Question(); 
CaseQuery :=Case-Query-Update(CaseQuery, UserAnswer); 
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Abstract.  A core research concern in conversational case-based reasoning 
(CCBR) is how to select the most discriminative and natural questions to ask 
the user in the conversational process. There are two ways to realize this task: 
one is to remove the questions whose answers can be inferred from the 
information a user has provided, which is called dialogue inferencing; the other 
is to rank the questions to guarantee the most informative questions are asked 
first, which is referred to as question ranking. In this paper, we present a 
common explanation-boosted CCBR approach, which utilizes both general 
domain knowledge and case-specific knowledge to realize dialogue inferencing 
and question ranking. This approach provides a flexible meta-level knowledge 
representation model to be able to incorporate richer semantic relations. An 
application of this approach is illustrated in a car fault detection domain. 

1  Introduction 
Conversational case-based reasoning (CCBR) [1] is an interactive form of case-based 
reasoning (CBR)[2]. It uses a mixed-initiative dialog to guide users through a 
question-answer sequence to refine their problem description incrementally. CCBR 
applications have been successfully probed in the troubleshooting domain [3], and in 
the selection of products or services in E-Commerce [4]. 

As illustrated in Fig. 1, conversational CBR adds user-system interactions to the 
standard CBR cycle [2]. A user’s initial textual problem description is formalized into 
a structured case query (represented as <question, answer> pairs or <attribute, value> 
pairs). A CBR retrieve process is executed based on the case query and the knowledge 
base and a set of retrieved cases, sorted decreasingly by their similarities to the case 
query, are returned. 
Unknown questions are 
identified from the 
retrieved cases and ranked 
in a certain way. Both the 
sorted cases and ranked 
questions are displayed to 
the user. The user either 
find his desired cases, 
which means the CCBR 
process is completed, or 



select a question to answer, which is followed by a new round of retrieve and 
conversation based on the updated case query. 

A core concern in conversational CBR is how to minimize the cognitive load 
required by users to retrieve their desired cases [4], which requires to select the most 
discriminative [1, 5, 6] and natural [7] questions in the dialogue process. 

Up to now, several methods, such as the information gain [4, 8, 9], the occurrence 
frequency metric [1], and the information quality [5], have been proposed to realize 
question selection. However, all the methods mentioned above are basically 
knowledge-poor, that is, they only take the superficial statistical information into 
account. However, general domain knowledge also has a potential to play a positive 
role in selecting questions. For example, in a car fault detection system, if users have 
said that the fuel pipe is broken, the system should be able to infer that the fuel 
transmission system has a problem instead of still asking users “what is the status of 
the fuel transmission system”. Another example is that if the answer of question A is 
easier or cheaper to obtain than question B’s, or if the answer of question B can be 
inferred from that of question A, question A should be prompted to users before 
question B. The first example is referred to as dialogue inferencing [6] (see the 
underlined line in Fig. 1), which concerns inferring the potential knowledge from the 
current known knowledge, so the questions that can be answered implicitly by the 
current known knowledge would not be prompted to users. The second one is referred 
to as a knowledge-intensive question ranking [5, 10-13] (corresponding to the line in 
bold in Fig. 1), which ranks the candidate questions based on their semantic relations 
besides their statistical metrics.  

In this paper, we present an explanation-“boosted” reasoning approach to support 
knowledge-intensive question selection, in which general domain knowledge is 
captured and integrated as explanatory machinery to support dialogue inferencing and 
knowledge-intensive question ranking in the CCBR process. Here, what we mean by 
explanation-boosted reasoning is a particular method for constructing explanation 
paths that explore general domain knowledge for question selection tasks. These 
explanation paths can also be displayed to users to justify the involved intelligent 
actions. 

The rest of the paper is organized as follows. In Section 2, we identify several 
semantic relations relevant to question selection. In Section 3, our 
explanation-boosted question selection approach is introduced. In Section 4, an 
application of our approach is illustrated in a car fault detection domain. Related 
research is summarized in Section 5. Discussions and future work are given at the end 
(Section 6). 

2  Semantic Relations Related to Question Selection 
As we discussed in Section 1, general domain knowledge is useful for question 
selection. In this paper, we identify the following relations among concepts, which 
influence dialogue inferencing and knowledge-intensive question ranking: 

Concept abstraction One factor of a case can be described using concepts at 
different abstraction levels. The lower level a concept belongs to, the more 
specifically it can describe this factor. The appearance of a lower level concept can be 
used to infer the existence of its higher concepts. For example, the concept of “fuel 



transmission mistake” is a lower level concept than that of “fuel system mistake”. 
Here, we define a relation “subclass of” to express the relation of “concept 
abstraction”. “A is a subclass of B” means A is a lower level concept than B. When it 
comes to question selection, this relation can be used in two ways. In dialogue 
inferencing, if A is a subclass of B and we have A, then we can infer B (i.e. we need 
not ask the question about B).  In question ranking, if A is a subclass of B then a 
question about A should be asked after the question about  B [11, 12]. 

Dependency relations We say there is a dependency relation between two 
concepts if the appearance of one concept depends on the existence of the other.  For 
instance, the assertion that the fuel pump can pump fuel depends on that the car has 
fuel in its fuel tank. Here, we define a relation “depends on” to describe dependency 
relations. “A depends on B” means B is the necessary condition for A. This relation 
can also be used in question selection. In dialogue inferencing, if A depends on B and 
we have A, then we can infer B. In question ranking, if A depends on B, then a 
question about A should be asked after the question about  B [10, 11]. 

Causality relations The causality relation means one concept can cause the 
occurrence of another concept. For example, an electricity system mistake in a car can 
cause its engine not to start. Here, we define a relation “causes” to express the 
causality relation. “A causes B” means B is the result of A. We can make use of this 
relation in question selection. In dialogue inferencing, if A causes B and we have A 
then we can infer B. In question ranking, if A is caused by (“caused by” is the inverse 
relation of “causes”) B then a question about A should be asked after the question 
about B since if we get B from the question about B, we need not ask users the 
question about A. 

Correlation relations A particular relation, “correlates”, is defined to express the 
relationship between two concepts that they always happen together, even though we 
can not tell which one causes the other. This “correlates” relation can only be used in 
dialogue inferencing (from each of these two concepts, we can infer the other), but 
not in question ranking. 

Practical costs The costs to obtain answers to different questions are various. For 
instance, to test whether a switch has a mistake is more difficult than to test whether 
the battery has electricity. The relation “more costly than” is defined to represent that 
to obtain the answer to one question is more difficult than to obtain the answer to 
another question. This “more costly than” relation can be used in question ranking: if 
A is more costly than B, then A should be asked after B [5]. 

3  An Explanation-Boosted Question Selection Approach 
In this section, we introduce our explanation-boosted question selection approach 
from three perspectives: knowledge representation, explanation construction, and 
explanation-boosted reasoning. 

3.1  Knowledge Representation 

Knowledge is represented at two levels in our approach: the first one is the 
object-level, in which case-specific knowledge and general domain knowledge are 
represented within a single representation framework; the other is the meta-level, 



Fig. 2. The frame structure for the concept of car in 
CREEK 

which is used to express the 
inter-relations of the semantic relations 
introduced in Section 2. 

3.1.1  An Object-Level Knowledge 
Representation Model 
In our approach, a frame-based 
knowledge representation model, which 
is a part of the CREEK system [14-16], 
is adopted to represent the object-level 
knowledge.  In CREEK, both 
case-specific knowledge and general domain knowledge is represented as concepts, 
and a concept takes the form of a frame-based structure, which consists of a list of 
relationships. A relationship is described using an ordered triple <Cf, T, Cv>, in which 
Cf is the concept described by this relationship, Cv is another concept acting as the 
value of this relationship (value concept), and T designates the relationship type. The 
equation T=Cv can also be used to describe a relationship when Cf is default. Viewed 
as a semantic network, a concept corresponds to a node, and a relationship 
corresponds to a link between two nodes. 

Fig. 2 illustrates, in a frame view, how the car concept in the car fault detection 
domain is represented in CREEK. Fig. 3 shows, in a network view, a part of the 
knowledge base for that domain. As seen, the semantic relations identified in Section 
2 are represented as relationships connecting different concepts. Cases are integrated 
into the general domain model, since all case features are defined as concepts in it.  

The concepts whose instance concepts appear in the retrieved cases, but do not 
appear in the case query can be converted into discriminative questions. For example, 
the concept “fuel pumping status” has an instance concept “can pump fuel” appearing 
in the retrieved cases, but has no instance concepts appearing in the case query, so a 
discriminative question “what is the fuel pumping status of your car” is added to the 
discriminative questions list. 

In this paper, we define a function, Q: concepts set → questions set, to complete 
the operation of transforming from a concept into a question. On this function, we 
further define the following properties:  
− The question transformed from one concept is the same as the questions formed by its instance 

concepts. For example, Q(“fuel pumping status”)=Q(“can pump fuel”)=Q(“can not pump fuel”)= “what 
is the fuel pumping status of your car”. 

− A set of concepts that share the same transformed question are referred to as a SQCS (Same Question 
Concepts Set). We only predefine one question for each SQCS, which is connected with the 
super-concept within the SQCS. 

− The semantic relations that exist between two SQCSs are transferred to the two questions generated 
from these two SQCSs, for instance, the “depends on” relation that “can pump fuel” depends on “has 
fuel” is transferred to Q(“can pump fuel”) depends on Q(“has fuel”), that is, the question “what is the 
fuel pumping status of your car” depends on the question “is there any fuel in you fuel tank”. 

3.1.2  A Flexible Meta-Level Representation Model and Its Reflective 
Reasoning Method 
We define a basic relation “infers” for dialogue inferencing. The “infers” relation 
means that if A infers B, we can get B from the existence of A. This relation has the 



Fig. 4. The semantic relation hierarchy, for 
reflective reasoning, used to realize dialogue 

inferencing and question ranking 

property of transitivity that if A infers B and B infers C then A infers C. We define 
several semantic relations identified in Section 2, “subclass of”, “depends on”, 
“causes” and “correlates” as the subclasses of “infers” since all these relations can be 
used to infer the existence of a post-condition based on the appearance of the 
pre-condition. 

The other fundamental relation “follows” is defined for question ranking. So, “A 
follows B” means that Q(A) should be asked after Q(B). This relation also has the 
property of transitivity that if A follows B and B follows C, then A follows C. We 
define several relations identified in Section 2, “subclass of”, “depends on”, “caused 
by” and “more costly than” as the subclasses of “follows” because all these relations 
can rank the pre-condition question to be asked after the post-condition question. Fig. 
4 illustrates the meta-level structure for semantic relations described above. 

One type of reflective reasoning operation, basic subclass inheritance, is made 
explicit in this meta-level knowledge representation model. Subclass inheritance 
makes subclass relations inherit the properties and reasoning operations (i.e. the 
explanation construction introduced in next 
sub-section) defined on their parent relations. 
Thus we need only define the properties and 
reasoning operations once on the parent 
relations (“infers” and “follows”), and all 
their subclass relations, which express much 
richer domain-specific meanings, can inherit 
them automatically. The other benefit is that 
new semantic relations can be easily 
incorporated through defining them as the 
subclasses of “infers” or “follows”, and a 

Fig. 3. A part of the knowledge base in the car fault detection application in CREEK 



Fig. 5. A “follows” relation is transferred to the 
concept Q(“switch status”) using plausible 

inheritance 
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new application can be easily created through the same process. 

3.2  Explanation Construction 

Here, explanation construction is setting up a explanation path between two concepts 
and use it to explore solutions to question selection tasks. 

We have defined two levels of explanation construction operations on the “infers” 
and “follows” relations. The first level is called “Direct Explanation Construction”, 
which is suitable for the case that there is a direct relation between two concepts in 
the knowledge base. In dialogue inferencing, if concept A exists in a case query and 
there is a  relation “A infers B” in the knowledge base, concept B can be inferred 
directly and can be integrated into the case query (so Q(B) will be removed from the 
potential discriminative questions list). In question ranking, if there are two questions 
Q(A) and Q(B) and there is a relation “A follows B”, Q(A) is ranked after Q(B). 

 The second level is referred to as “Explanation Path Construction”, which is 
suitable when there is no direct relation between two concepts in the knowledge base, 
but we can set up the “infers” or “follows” relation between them through exploring 
other relations in the knowledge base. In our group we have developed an 
abduction-based inference method referred to as plausible inheritance[14, 15], which 
is adopted to build up the explanation path. 

Plausible inheritance is a general relation transitivity mechanism, based on which a  
relation on one concept can be transferred to another concept following not only the 
traditional “subclass of” and “instance of” relations, but also other relations, such as 
“is-part-of”, “depends on”, “causes” and so on. 

In our approach, we define that both the “infers” relation and “follows” relation 
can be inherited (plausible inheritance) over themselves. So the transitivity property 
of “infers” relation and “follows” relation is realized. Through combining the subclass 
inheritance defined on the meta-level knowledge representation model and the 
plausible inheritance, the “infers” relation and its subclass relations can be transferred 
over each other. The transitivity property on the “follows” relation and its subclass 
relations is realized in the same way. 

Fig. 5 illustrates an example of how to use plausible inheritance to build up an 
explanation path for question ranking. In Fig. 5, there are two relations: Q(“battery 
status”) is a subclass of Q(“electricity system status”), and Q(“switch status”) is more 
costly than Q(“battery status”), so following the “more costly than” relation, the first 
relation that Q(“battery status”) is a subclass of (follows) Q(“electricity system 
status”) is transferred to Q(“switch status”) that Q(“switch status”) follows 
Q(“electricity system status”). Thus the question ranking explanation path from 
Q(“switch status”) to Q(“electricity system 
status”) is constructed. Thus if we have two 
questions Q(“switch status”) and 
Q(“electricity system status”), we can rank 
them so that Q(“switch status”) should be 
asked after Q(“electricity system status”) 
through constructing the above explanation 
path using plausible inheritance. 

In our approach, each relation has a 
default explanation strength attached to it. 



The explanation strength of a constructed chain of linked relations, which constitute 
an explanation path, is calculated on the basis of these defaults (in the example shown 
in Section 4, we will simply use the product of these defaults to indicate the 
explanation strength of the constructed explanation path). 

3.3  Explanation-Boosted Reasoning 

The explanation-boosted reasoning process can be divided into three steps: 
ACTIVATE, EXPLAIN and FOCUS. ACTIVATE determines what knowledge 
(including case-specific knowledge and general domain knowledge) is involved in 
one particular task, EXPLAIN builds up different explanation paths to explore general 
domain knowledge related solutions for that task, and FOCUS is used to evaluate the 
generated explanation paths and identify the practical or best one/ones. A similar 
process is used in the retrieve phase in CREEK to explore the semantic similarities 
between a case query and stored cases. In this paper, this common 
explanation-boosted reasoning process is extended to support dialogue inferencing 
and knowledge-intensive question ranking tasks. The detailed reasoning steps will be 
illustrated in Section 4 using an example in a car fault detection application. 

4  Exemplified Dialogue Inferencing and Question Ranking 
In this section, the knowledge representation models, the explanation construction 
operations and the explanation-boosted reasoning process, introduced in Section 3, 
are combined together to illustrate how the dialogue inferencing and 
knowledge-intensive question ranking are completed in a car fault detection 
application (part of the domain knowledge used in this section can be found in Fig. 3). 

4.1  Explanation-Boosted Dialogue Inferencing 

In our approach, dialogue inferencing is tackled through using three steps 
ACTIVATE, EXPLAIN, and FOCUS. 

In the ACTIVATE step, all the relevant knowledge with dialogue inferencing is 
activated, which includes the case query knowledge and semantic dialogue 
inferencing relations related to this case query knowledge from the knowledge base. 
For instance, we have the following case query knowledge (CQK): 
− CQK1: Has fuel transmission status = Fuel transmission mistaken 
− CQK2: Has electricity system status = Electricity system mistaken 

The activated semantic dialogue inferencing relations (SDIR) include: 
− SDIR1: “Fuel transmission mistaken” is a “subclass of” “fuel system mistaken” (weight: 0.9) 
− SDIR2: “Fuel system mistaken” “causes” “engine not starting” (weight:  0.8) 
− SDIR3: “Electricity system mistaken” “causes” “engine not starting” (weight:  0.8) 

The EXPLAIN step uses the case query knowledge and activated semantic 
dialogue inferencing relations to reason or explain what knowledge can be inferred 
through using explanation construction operations. In this example, we get the 
following new case query knowledge (NCQK): 
− NCQK1: Has fuel system status = Fuel system mistaken (based on CQK1 and SDIR1, weight: 0.9)   
− NCQK2: Has engine status = Engine not starting (based on SDIR1, SDIR2, and CQK1, weight: 0.72) 
− NCQK3: Has engine status = Engine not starting (based on CQK2 and SDIR3, weight: 0.8) 



In the FOCUS step, all the inferred knowledge is evaluated, and the accepted 
knowledge is combined together with the current case query to form a new case 
query. In the evaluation process, only the knowledge whose weights surpass a 
particular threshold (say 0.8) is accepted, and the redundantly inferred knowledge is 
removed (the knowledge with the highest weight is kept). In our example, we get a 
new updated case query that includes CQK1, CQK2, NCQK1 and NCQK3. 

4.2  Explanation-Boosted Question Ranking 

Based on the updated case query, a retrieve process [16] is executed and the top 
ranked cases are returned. In this stage, if users can not find their desired cases, an 
explanation-boosted question ranking process is started, which is also divided into 
three steps. 

In the ACTIVATE step, the unanswered questions are identified (see Section 
3.1.1). All the semantic question ranking relations concerned with these identified 
questions are then activated from the knowledge base. 

For instance, from the retrieved cases and the updated case query, we identify the 
following unanswered questions (UQ) (we assume that retrieved cases include all the 
value concepts appearing in Fig.3): 
− UQ1: Q(“transmission pipe status”)  
− UQ2: Q(“fuel amount status”) 
− UQ3: Q(“fuel pumping status”) 
− UQ4: Q(“switch status”) 

− UQ5: Q(“battery status”) 
− UQ6: Q(“electricity transmission status”) 
− UQ7: Q(“wire status”) 
− UQ8: Q(“colour”) 

The activated semantic question ranking relations (SQRR) include: 
− SQRR1: Q( “Fuel pumping status”) “depends on” Q( “fuel amount status”) (weight: 0.8) 
− SQRR2: Q( “Wire status”) is a “subclass of” Q( “electricity transmission status”) (weight: 0.9) 
− SQRR3: Q(“switch status”) is “more costly than” testing Q( “battery status”) (weight: 0.75) 

The EXPLAIN step uses the identified unanswered questions and the activated 
semantic question ranking relations to reason or explain which questions should be 
asked before another one. For instance, we get the following question ranking 
knowledge (QRK) through using explanation construction operations: 
− QRK1: Q(“fuel amount status”) should be asked before Q(“transmission pumping status”) (based on 

UQ2, UQ3, and SQRR1, weight:  0.8) 
− QRK2: Q(“electricity transmission status”) should be asked before Q(“wire status”) (based on UQ6, 

UQ7, and SQRR2, weight: 0.9) 
− QRK3: Q(“battery status”) should be asked before Q(“switch status”) (based on UQ5, UQ4, and 

SQRR3, weight: 0.75) 
In the FOCUS step, the semantic ranking knowledge obtained in the EXPLAIN 

step is evaluated, and the questions are ranked combining the semantic question 
ranking knowledge and the superficial statistical metrics. In the evaluation process, 
only the ranking knowledge whose weights surpass one particular threshold (say 0.8) 
is accepted. In this case, the QRK3 is refused because its explanation strength is less 
than 0.8. In the question ranking process, all the questions are classified into two 
groups firstly: group one includes the questions whose ranking priorities are 
constrained by the question ranking knowledge (here, it has two questions: UQ3 
(constrained by QRK1), and UQ7 (constrained by QRK2)); and group two contains 
all the remaining questions (UQ1, UQ2, UQ4, UQ5, UQ6 and UQ8). Secondly, the 
questions in group two are further ranked based on their superficial statistical metrics 
such as information gain or occurrence frequency. The questions in group one are 
sorted according to their biggest explanation strength selected from all the question 



ranking explanation strengths each question gets increasingly. In this example, the 
questions in group one are ordered as UQ3, UQ7. And the ranked questions in group 
two are prompted to users followed by the sorted questions in group one. 

5  Related Research 
In [6], Aha, Maney and Breslow propose a model-based dialogue inferencing method. 
In their method, the general domain knowledge is represented in a library model 
(including object models and question models) taking the form of a semantic network. 
At run time, a set of rules are extracted from the library model using an implication 
rule generator, and the generated rules and the existing problem description are input 
to a PARKA-DB to infer potential knowledge. 

In [5], the authors try to eliminate the trivial and the repeated questions from users 
by accessing other information sources to answer them automatically. They take the 
cost factor into account when selecting a task (question) to execute instead of only the 
Information Quality metric. In this method, an execution plan is formulated for each 
question using a hierarchical task network (HTN). The estimated cost for each 
question is calculated through propagating cost values upward from leaves to the root 
using the mini-max algorithm. 

In [12], Gupta proposes a taxonomic conversational CBR approach to tackle the 
problems caused by the abstraction relations among features. In his approach, cases 
are described using one or more factors. On each factor, an independent subsumption 
taxonomy is created by the library designer in advance, and only the most specific 
feature on each factor taxonomy is selected to describe a case. The similarity between 
one <question, answer> pair in a case query and one in a case is calculated based on 
their relative positions in the taxonomy. The question generated from a higher level 
feature in one factor taxonomy is constrained to be asked before those that come from 
the lower level features. 

Aha, Gupta and Sandhu identify the dependency relation among features [10, 11]. 
In their method, dependency relations are only permitted to exist between the root 
nodes among various factor taxonomies, and the precedent node in one dependency 
relation is excluded from the case representation. In the question ranking step, the 
question generated from a precedent node in a dependency relation has higher priority 
to be asked than the question formalized by the dependent node. 

Comparing with the above knowledge-intensive question selection methods, our 
model contributes to the conversational CBR research in three ways: it provides a 
common explanation-boosted reasoning process to support both dialogue inferencing 
and knowledge-intensive question ranking; it can rank discriminative questions 
through combining both their semantic question ranking relations and their superficial 
statistical metrics; by creating a meta-level knowledge representation model, our 
model has the capability to be easily extended to support richer inferring or ranking 
relations, and to be transformed to other application domains. 

6  Discussion and Future Work 
We will here address two potential limitations in our approach that need to be tackled 
in our future work. One is conflicting knowledge correction. We store the general 



domain knowledge in the knowledge base, which explicitly express the relations 
among concepts. However, the knowledge provided by users, expressed in case 
queries, can be conflicting with this stored general domain knowledge. In this case, 
there should be an automatic mechanism to detect the knowledge conflicts in order to 
warn users to revise their new cases or help knowledge base designers to update the 
predefined mistaken knowledge. Another problem is the preference cycle generated 
by a set of question ranking relations. For example, there are three questions, A, B, 
and C, and three question ranking relations that A should be asked before B, B should 
be asked before C, and C should be asked before A, so a preference cycle appears 
following A, B, C, and A. An automatic preference cycle detecting mechanism in the 
knowledge input phase will be helpful. Another possible solution is directly ignoring 
the ranking relation with the least explanation strength in any preference cycle. 
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