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Abstract. Oil well drilling is a complex process which frequently leads to 

operational problems. In order to deal with some of these problems, knowledge 
intensive case based reasoning (KiCBR) has clearly shown potential. An important 
problem in drilling is hole cleaning, in which a high number of observed parameters 
and other features are involved. This paper presents how to determine the root causes 
of poor hole cleaning episodes by means of KiCBR. The effect of general domain 
knowledge was demonstrated in a comparative study, in which improved results in 
terms of similarity assessment and explanation capability were achieved.  
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1 Introduction 

Drilling of oil wells is an expensive offshore operation, costing typically 200 000 US$ 
per day. Any loss of time caused by unwanted events is costly.  During drilling all 
material drilled out need to be removed, i.e. transported to the surface, a process 
which is referred to as hole cleaning. Often some of the material remains in the well, 
and hole cleaning is still among the most important problems to deal with during 
drilling. It is also one of the most studied phenomena within the petroleum industry. 
Insufficient hole cleaning can in extreme cases lead to loss of the well or a part of it, 
i.e. stop of the drilling process and blocking of the hole. Due to the number of 
parameters influencing hole cleaning and the complex mechanisms involved, the 
phenomenon has not yet been fully understood [1].   

Case-based reasoning (CBR) is an approach to problem solving and decision 
making where a new problem is solved by finding one or more similar previously 
solved problems, called cases, and re-using them in the new problem situation. 
Application-oriented research in the area of case based reasoning has moved mature 
research results into practical applications. Skalle et al [2] employed case based 
reasoning to improve efficiency of oil well drilling. Their focus was on lost 
circulation, which means that some of the drilling fluid that always fills the gap 
between the drill string and the well wall gets lost into fractures in the geological 
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formation. They built fifty cases on the basis of information from one North Sea 
operator. A general domain model was used to match non-identical features that were 
related in the model. Mendes et al [3] presented an application of CBR in offshore 
well design.  The result of that work was a formalization of the methodology for 
planning of an oil well in a case-based reasoning context. They used fuzzy set theory 
for the matching of index features. Popa et al [4] presented an application of CBR for 
planning and execution of well interventions, in order to improve the decision-making 
process. Abdollahi et al [5] explained the applicability of CBR for diagnosis of well 
integrity problems in order to reduce the risk of uncontrolled release of formation 
fluids into the well.  

In the above systems general knowledge has been used in the case retrieval 
process, for feature matching. None of the systems, or other CBR applications in this 
domain, have taken advantage of general knowledge in order to help identify a 
problem solution. In the study presented here a model-based method has been 
implemented as a complementary tool in order to determine the root cause of a hole 
cleaning problem. In addition, parts of the model are also used to enhance matching 
quality. An experiment has been undertaken to study the effect of the causal model 
combined with cases, in comparison with cases only. 

The rest of the paper is structured as follows: In chapter 2 we explain the hole 
cleaning problem in some more detail, related to the functionality of our system. 
Chapter 3 explains the case structure and similarity methods. In chapter 4 results from 
the study of the effect of the causal model is reported. The types of input to the 
reasoning system, and their relationships with causes of hole cleaning problems are 
described in chapter 5. The last chapter summarizes and concludes the paper.  

2 The hole cleaning problem 

A drilling process consists of many steps, of which the actual drilling into the 
geological formation and the continuous cleaning of the borehole are core 
subprocesses. Fig. 1 illustrates the process at an abstract level. The hole cleaning 
issues arise when the drilling direction moves from vertical to deviated and horizontal 
hole angles. Horizontal drilling is getting more and more common, due to the 
increasing distance from the rig to productive wells. (“All the easy wells are already 
drilled”, as the phrase goes). Accumulation of solids at a given depth is a common 
source of pack off, which is a serious situation indicated by the building up of 
material inside the hole wall, with reduced hole diameter as a result.  

Many studies have been carried out by other researchers related to the cleaning of 
deviated and horizontal holes [6], [7], [8], [9], [10], [11]. However, the results of the 
studies have so far not provided clear operational recommendations. One reason may 
be that such studies are focused on the role and effect of individual parameters. A 
CBR approach, on the other hand, allows us to view a larger set of parameters as a 
unit, without assuming particular restrictions on the parameters, such as parameter 
independence.  

Our application is targeted at reducing the risk of unwanted downtime (i.e. stopped 
drilling). The drill plan acts as guidance to expected drilling behavior. The real-time 
data from the drilling process is the main source of a situation description, which is 
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matched with a past case in order to identify possible hole cleaning problems ahead of 
the drill bit. When a sufficiently similar past case is found, the root cause for that 
problem is presented to the user. In KiCBR this is supported by the causal model, 
linking input features to root causes.  
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Fig. 1. Schematic drawing of an oil well being drilled.  

3 Knowledge assessment  

3.1 Case matching 

The system is an architecture for knowledge intensive case based problem solving. It 
is designed for finding the root cause of a hole cleaning problem based on either the 
case base or the general knowledge module alone – and in combination.  To build the 
system, three knowledge models are needed: 

-  A taxonomy:  extracting important terms from the domain. 
- A causal model:  building a model that describes causes and effects.  
- A set of cases:  concrete past problem solving experiences. 

A case’s features consist of administrative data, wellbore formation characteristics, 
plan data, static and variable drilling data, the drilling activity performed before case 
occurrence, response action and conclusion. The case structure is illustrated in Fig. 2.  
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The CBR cycle consists of four steps; retrieve, reuse, revise and retain. The 
retrieval task starts with a (partial) problem description, and ends when a best 
matching previous case has been found [12]. A similarity assessment process has been 
defined that can be run with or without the use of the causal model. The similarity 
method is an adaptation and extension of the Creek method [13]. Our method consists 
of two different similarity properties, one being direct or linear indexing, the other 
being concept abstraction. The latter is used when the model based module is utilized.  

 

 

Fig. 2. Case structure 

Basic similarity is computed by the following equation.  

,ூேܥሺ݉݅ݏ ோாሻܥ ൌ
∑ ∑ ௦௜௠൫௙೔,௙ೕ൯ൈ௥௘௟௘௩௔௡௖௘௙௔௖௧௢௥೑ೕ

೘
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೙
೔సభ
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೘
ೕసభ

   (1) 

CIN and CRE are the input and retrieved cases, n is the number of findings in CIN, m is 
the number of findings in CRE, fi is the ith finding in CIN, fj the jth finding in CRE, and 
sim(f1,f2) is simply given as: 

For symbolic concepts:  

ሺ݉݅ݏ ଵ݂, ଶ݂ሻ ൌ ൜
1 ݂݅  ଵ݂ ൌ ଶ݂

0 ݂݅  ଵ݂ ് ଶ݂
    (2) 

For linear concepts:  

ሺ݉݅ݏ ଵ݂, ଶ݂ሻ ൌ 1 െ ቚ ௙భି௙మ
ெ௔௫ିெ௜௡

ቚ    (3) 

The relevance factor is a number that represents the weight of a feature for a stored 
case. The linear approach explicitly computes the values of similarity according to the 
minimum and maximum values of each concept.  For example, minimum and 
maximum for true vertical depth has been set to zero and 8000 meter respectively. 
TVD for case 1 and 6 are 2869 and 2242 meter respectively, which provide 92 % 
similarity.  Some of the indexing attributes will have both a symbolic and a linear 
description. An example of the categorization of numerical values is shown in Table 
1. If a numerical value is available, linear similarity will be used and the symbolic 
terms will only be used in the model-based part.  
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Table 1. True Vertical Depth abstracted to symbolic entities. 

True Vertical Depth (TVD) 

Very shallow Well <1000 meter 
Shallow Well 1000‐2000 meter  
Medium Deep Well 2000‐3000 meter 
Deep Well 3000‐4000 meter 
Very Deep Well >4000 meter 

3.2 Root causes assessment 

The main objective is to determine the root cause starting out from three types of 
features:  Direct observations – i.e. measurements, inferred parameters – i.e. values 
derived from observations, and interpreted events – i.e. particular concepts describing 
important states which require particular awareness or action. The features and causes 
are related through intermediate state concepts, see Fig. 3. 

The model used is a semantic net-based model of entities linked by relations. Each 
relation is labeled. The root causes and the case features are all represented as entities 
in this model, and the model-based reasoner works by finding paths from the entities 
representing case findings to the entities representing root causes. Fig. 8 shows an 
example of two such paths.  

The goal of the model-based reasoner is to determine which root causes or 
intermediate states are entailed or likely provided the features. Only some paths 
provide support for such a conclusion. In order to determine legal paths, plausible 
inheritance was used. This method is a generalization of normal subclass inheritance 
that allows inheritance of relationships over other relation types than ‘subclass of’ 
relations. Plausible inheritance is governed by a set of rules declaring which relation-
types can be inherited over which relation-types. In this paper, causal relationships are 
transitive, and any relationship can be inherited over ‘subclass of ‘ relationships. For 
more information, see [13].  

Assume there is a legal path from a finding observations related to the root cause 
(see Fig. 3). Its strength is the product of the strength of each relation leading from 
finding to the target entity [14].  

݄ݐ݃݊݁ݎݐݏ ݄ݐܽܲ ൌ ∏ ௜݄ݐ݃݊݁ݎݐݏ ݊݋݅ݐ݈ܽ݁ݎ
௡
௜ୀଵ   (4) 

where n is the number of serial relations. Sometime there is more than one 
explanatory path from different finding to each target entity (the root cause entity). 
The total explanation strength for each target entity is determined with Eq. (5). This 
calculated explanation strength will be a good indicator of being the possible root 
cause. 

݄ݐ݃݊݁ݎݐݏ ݊݋݅ݐ݈ܽ݊ܽ݌ݔܧ ൌ 1 െ∏ ሺ1 െ ௜݄ݐ݃݊݁ݎݐݏ ݄ݐܽ݌ ൈ ሻ௠ݐ݄݃݅݁ݓ
௜ୀଵ   (5) 

where m is the number of paths. The strength of the indicating entities was decided 
based on a survey among five experts to reduce subjectiveness of these values. 
Weight of each indicating group observation parameter, inferred parameters and 
events are fourth, half and one respectively.  
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Fig. 3. Schematic model of the causal knowledge. 

Fig. 3 shows three different clusters, namely events e.g. ‘Pack Off’; inferred 
parameters e.g. ‘Open Hole Exposure Time’ (OHET); and observation e.g. ‘True 
Vertical Depth’ and ‘Mud Weight’ (density of the drilling fluid). The importance of 
each cluster on hole cleaning evaluation are 0.25, 0.5 and 1 for observation, inferred 
parameters and events respectively.  

Observation factors include well plan data (drilling fluid and drill string 
parameters, well geometry), formation characteristic and case occurrence description.   

In this section ‘Pack Off’ (of the event cluster) and ‘Open Hole Exposure Time’ (of 
the inferred parameter cluster) are exemplified.  

Fig. 4 shows a ‘Pack Off’ event interpreted from real time data. Observed data 
collected from sensors, like flow rate and stand pipe pressure, cannot explain the 
situation alone. They are more useful for case classification and for finding the root 
cause when combined. In the Explanations (right part of the figure), ‘Flow rate’ is the 
pump rate of drilling fluid for transportation of produced material from the bottom of 
the hole to the surface. ‘Stand Pipe Pressure’ is the pressure measured at the surface 
which may increase due to any obstacle inside the hole. Increasing of the ‘Stand Pipe 
Pressure’ will indicate a ‘Pack Off’ situation while the variables such as ‘Flow Rate’ 
are constant. 

 

Fig. 4. ‘Pack Off’ recognition from observed data 
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‘Open Hole Exposure Time’ (OHET) is one of the inferred parameters in this 
study. OHET is the time period when the formation is in contact with drilling fluid, 
which again may cause a problematic situation during the drilling operation. Higher 
exposure time can contribute to higher problems. This time is being updated for 
desired points as the position of the drill bit changes. Desired points, i.e. the points 
where the cases were tagged depicted by drilling time and drilling depth are shown in 
Fig. 5. 

 

Fig. 5. Computation of the ‘Open Hole Exposure Time’ (OHET) for case 1 and case 2 when bit 
has reached D3. 

4 Case matching results  

The case base contains cases related to poor hole cleaning problems experienced in 
North Sea wells. To simplify the discussion about quality and applicability of the 
KiCBR in solving hole cleaning problems, seven cases are presented in this section. 
As mentioned, a symbolic and linear similarity framework was utilized. The case 
matching results for the case based module alone (CBR), the model-based approach 
alone (Model-Based) and for the integrated model- and case-based reasoning 
(KiCBR) will be presented. To evaluate the methods, a standard cross-validation 
technique is used, taking one case at a time out the case base and matching against the 
6 remaining cases. Fig. 6 shows the case matching results for case 7 and case 5 as 
unsolved cases. For case 5, the retrieved case with highest similarity was case 2 with 
18% similarity using the CBR method. When the KiCBR method was applied instead, 
case 3 was retrieved with 39% similarity.  

In order to differentiate between the retrieved cases, they were grouped into three 
levels according to severity (how much drilling downtime they caused). The three 
levels of downtime are; insignificant, significant and highly significant repair time.  

For instance, evaluation of downtime for case 7 revealed that this case required 
highly significant repair time while cleaning the hole. However, the CBR method 
retrieved case 2, which had insignificant repair time. On the other hand, the KiCBR 
method retrieved case 3 which is more similar than case 7.  

In another example, the case matching process was run for case 5 as an unsolved 
case. When using the CBR matching method, case 2 was retrieved, while case 6 was 
retrieved using KiCBR. Case 2 and case 6 are grouped in the same class in terms of 
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the downtime during the drilling, but detail study showed that case 6 had significant 
downtime later in the operation around the same area, and this is similar to the 
situation in case 5. This means that case 6 is more similar than case 2.  
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Fig. 6. Case matching results (in %) for case based module alone and combined case based and 
model based module for case 2 (left) and case 5 (right), matched against the remaining 6 cases. 
Lines between points are only used for better illustration. 

The results show not only improvement for similarity assessment but also good 
prediction in problem solving. The effect of including general knowledge was 
monitored by changing not only the similarity but also the retrieved cases.  

Similarity assessments are summarized in Fig. 7. The similarity growth was 
fluctuating from about 20 % to 100 % or even higher. As shown in Fig. 7, the most 
similar case by means of case-based, model-based and KiCBR are:  

 
Unsolved case  Case  1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

Retrieved by Case-based Case 3 Case 6 Case 4 Case 3 Case 2 Case 2 Case 2 

Retrieved by Model-based Case 7 Case 7 Case 7 Case 5 Case 4 Case 4 Case 3 

Retrieved by KiCBR Case 3 Case 6 Case 7 Case 6 Case 6 Case 2 Case 3 

Bold items in the above table represent the best case for each unsolved case 
according to downtime and detail studies. KiCBR was able to retrieve the optimal 
case in 5 out of 7 cases, while model-based and case-based retrieved only 3 optimal 
cases. 

In summary, two important phenomena can be observed from the above tests. First, 
the general knowledge can generally increase the similarity for all cases in different 
rates. Second, general knowledge may also change which case obtains the highest 
similarity. 
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Fig. 7. Case matching using CBR without knowledge model (a) and with knowledge model (b). 

5 Determining root causes of drilling problems 

Many parameters are involved in the drilling process, and deviation of one factor may 
lead to hole cleaning issues and other problematic situations. Like in medicine, 
different diagnosis leads to different remedies, and as in medicine, finding the root 
cause of the problem from observable symptoms is a major challenge in drilling 
engineering.  

The general domain knowledge serves as explanatory support for the case retrieval 
and reuse processes, through a model-based reasoning (MBR) method. In this study, 
the failure type/main root causes were divided into seven groups e.g. ‘Hole Cleaning’, 
‘Hole Collapse’, ‘Swelling’, ‘Erosion of Weakened Wellbore’, ‘Thick Filter Cake’, 
‘Lost Circulation’, and ‘Dissolving’.  

Fig. 8 illustrate some of the parameters involved in hole cleaning. In this figure two 
of the plausible inheritance paths were highlighted with solid and dotted lines.  
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First plausible inheritance path:  
‘High Mud Weight’ implies ‘High Mud Solids Content’ causes occasionally 
‘Low ROP’ causes ‘Wear Of Shale’ subclass of ‘Erosion Of Weakened 
Wellbore’.  

The starting entity ‘High Mud Weight’ is an observed parameter. The strength of 
this explanatory path is 0.11 calculated by Eq. (4). 

Second plausible inheritance path:  
‘Open Hole Exposure Time’ has subclass ‘Long Exposure Time’ causes 
sometimes ‘Erosion Of Weakened Wellbore’.  

This link starts out from ‘Open Hole Exposure Time’ which is an inferred 
parameter. The path strength for this explanatory path is 0.5.  

 

Fig. 8. Part of the hole cleaning concepts with their relations. 

For each root cause, all plausible inheritance paths from each inferred or observed 
parameter in the cases is combined using Eq. (5), which determines the explanation 
strength. This calculation yields a number between 0 and 1 for each root cause, with a 
higher value indicating higher support for that root cause. Fig. 9 presents the value for 
each root cause for each of the seven cases.  
Textual sources written during or after the drilling operation (Daily Drilling Report 
(DDR) and End of well report (EWR)) as well as real-time sensor logs showed us that 
six of the seven cases were highly representative of hole cleaning problems. As 
shown in Fig. 9 derived path strength of all seven cases points at poor hole cleaning 
except for case 1. In case 1, no events and inferred parameters took place. Therefore, 
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explanation strength is based on just observed parameters, which results in a fairly 
low value of the path strength.   
 

 

Fig. 9. Path strength of 7 cases based on general model to determine level of the hole cleaning 
problem 

Once the root cause is found, it can be treated by applying a repair action. Each 
problem needs to be treated differently.  A preliminary assessment of well data was 
performed to determine the specific root cause. In figure 10, the results for two cases 
(case 2 and 4) are shown. The plausible inheritance model provides strongest support 
for the  ‘Hole Collapse’ and ‘Erosion Of Weakened Wellbore’ to be the specific root 
causes of poor hole cleaning for case number 2 and 4 respectively. Dissolving is zero 
for all the cases since there was not any salty rock in the studied holes. The presence 
of claystone (i.e. a type of rock) and about 26 days of ‘Open Hole Exposure Time’ 
caused the claystone to react with drilling fluid and the formation around the hole 
wall was eroded.  

One of the main purposes of introducing knowledge based system is to advise the 
user of how to modify the controllable drilling parameters with respect to the 
associated root cause. Whenever the cause of a problem is revealed, the proper 
remedy can be applied. ‘Hole Collapse’ is one of the major causes of poor hole 
cleaning, mostly resolved by adjusting the density of the drilling fluid (mud). 

Indications so far show that the KiCBR method may be better at retrieving the 
correct case, but even where this method is used, the explanation facilities of the 
model-based approach is valuable, as it allows the user to see what factors contribute 
to the problem by providing explanations. The model-based approach also calculates 
the support for different root causes independently, allowing it to conclude that 
multiple problems can be present. This is important as multiple problems requires 
multiple or complex remedies. For instance, for case 2 in Fig. 10 ‘Swelling’ has high 
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support, although ‘Hole collapse’ has even higher support. Chances are, both of these 
problems are present.  
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Fig. 10. Finding of root causes by means of knowledge model for case 2 (left) and 
case 4 (right). 

6 Conclusion 

The application of a relatively new methodology to reduce downtime during the oil 
well drilling has been considered. A combination of symbolic and linear similarity 
was utilized. Case similarity was changed by combining case based and model based 
reasoning. 

KiCBR obtained a higher similarity and accuracy than case based reasoning alone. 
Similarity between an unsolved case and cases in the case base increased in average 
by typically 50 % after introducing the knowledge module in the reasoning process.  

The most probable root cause could be determined on basis of the knowledge 
model. The root cause determined with the model-based approach had a good 
correlation with the expert analysis from real-time sensor data.  

Further work 

The results point out that combing knowledge intensive with case based reasoning 
improved the case matching routine. Furthermore, knowledge model serves as 
explanatory support for finding root causes. But in this study few cases were available 
and the results have to be tested out with many cases. Our aim is to implement this 
platform on more cases and perform a broader and more detailed assessment of the 
methodology. 
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