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Abstract: As single-paradigm reasoning methods become more mature and understood, research activities 

targeted at combining them become more frequent. Methods that combine case-based reasoning with a 

model-based component are attracting a growing number of researchers within the case-based 

reasoning community. There is clear evidence of synergy effects, in that the resulting systems become 

both more competent and more efficient than if only a single reasoning method is used. The catch is 

that the burden on the knowledge engineer and domain expert is increased, due to the need for 

developing an explicit model of general domain knowledge. Methods developed within the knowledge-

acquisition and modelling communities, however, as well as work on reusable ontologies, can provide 

some help. In particular, the notion of knowledge-level modelling has proved to be a useful one in this 

context. The type of application targeted in our research is decision making in complex environments, 

such as oil well drilling. Building application systems in such domains further calls for a clarification of 

basic terms such as “data”, “information”, and “knowledge”, related to their roles in cognitive and 

computational information processing. For case-based reasoning this becomes particularly relevant, 

since a case can hold structures of various basic kinds. In the Creek system, developed in our group, 

there is a strong coupling between cases and general domain knowledge, in that cases are embedded 

within a general domain model, and the general domain knowledge is used to explain the similarity 

between two cases that are semantically similar. We are exploring a particular knowledge-level 

modelling approach for the development of Creek applications. The focusing theme of the talk will be 

on the utilization of the both case-specific and general domain knowledge, through a combined case-

based and model-based reasoning method. This will be made concrete by summarizing the Creek 

architecture and system, exemplifying its use, and briefly describe a set of recent and ongoing projects 

where various aspects of this theme are studied. 
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1. INTRODUCTION 

A knowledge-intensive case-based reasoning method assumes that cases, in some way or another, are 

enriched with explicit general domain knowledge [1,2]. The role of the general domain knowledge is to 

enable a CBR system to reason with semantic and pragmatic criteria, rather than purely syntactic ones. By 

making the general domain knowledge explicit, the case-based reasoner is able to interpret a current 

situation in a more flexible and contextual manner than if this knowledge is compiled into predefined 

similarity metrics or feature relevance weights. A knowledge-intensive CBR method calls for powerful 

knowledge acquisition and modeling techniques, as well as machine learning methods that take advantage 

of the general knowledge represented in the system. 

 In the CREEK system [3,4,5], there is a strong coupling between cases and general domain knowledge 

in that cases are submerged within a general domain model. This model is represented as a densely linked 

semantic network. Concepts are inter-related through multiple relation types, and each concept has many 

relations to other concepts. The network represents a model of that part of the real world which the system 

is to reason about, within which model-based reasoning methods are applied. From the view of case-

specific knowledge, the knowledge-intensiveness of the cases themselves are also increased, i.e. the cases 

become more “knowledgeable”, since their features are nodes in this semantic network.  

 The focusing theme of this paper is cases as knowledge within a knowledge-intensive CBR method. 

This will be made concrete by relating it to the CREEK architecture and system, both in general terms, and 

through a set of example projects where various aspects of this theme have been studied. To give an initial 

hint at the main issue, Fig. 1 characterizes some aspects of CBR methods along what may be 

  

Fig. 1. The knowledge-intensiveness dimension of CBR methods 

called the knowledge-intensiveness dimension. The early nearest-neighbour-based methods are at the 

one end of the scale, while the CREEK system is illustrated closer the other end. Some typical 

characterizations of knowledge-intensive CBR methods (right part) and knowledge-empty or knowledge-

lean methods (left part), are listed. 

As Fig. 1 indicates, the notion of knowledge-intensiveness is not an either/or issue. CBR systems may be 

more or less knowledge-intensive. The meaning of the term “knowledge-intensive” may also vary, 

depending on what viewpoint to the concept of knowledge that an author or research group has. Further, 

when we look at the contents of a case, what some people refer to as knowledge may be referred to as 

information by others – or even as data. This is not surprising, since a data structure, such as a case, can 

serve several roles in a system. In order to get a better understanding of the concept of knowledge, as it is 

interpreted in CREEK, we will therefore start by clarifying what we see as the main distinction between 

knowledge, information, and data, related to the different roles a case may have. The next chapter defines 

the three terms from that perspective.  

 Explicit models of knowledge call for effective knowledge modeling methods and tools, both for 

manual model development and automated methods, i.e. machine learning. To support systems 

development within the CREEK architecture, some assumptions on the nature of knowledge modeling has 

been made, and an assisting tool has been developed to assist the knowledge modeling process. This is the 

topic of chapter 3. In chapter 4 the CREEK architecture and system is summarized, emphasizing 

knowledge content and how it is processed. Chapter 5 illustrates the architecture and system through a 

summary of recent and ongoing research projects. The paper is summarized and concluded in the final 

chapter. 

The Óknowledge-intensivenessÓ scale of CBR

 No explicit gen. knowledge

 A lot of cases

 A case is a data record

 Simple case structures

 Global similarity metric
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 Substantial gen. knowledge
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 A case is a user experience
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 Knowledge-based learning
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2   What is knowledge in a CBR system? 

 There is, in general, no known way to distinguish knowledge from information or data on a purely 

representational basis. Attempts to make distinctions based on size or complexity are therefore likely to 

fail. Another option - and the one underlying the CREEK architecture - is to identify how and for what 

purpose the structures are used, i.e. what the various roles of data, information, and knowledge are in a 

case-based reasoning process. Their interpretation within the contexts they are applied, and by whom they 

are interpreted and applied, therefore become important. The latter aspect leads to the frame of reference 

problem of data, information, and knowledge [6], which is the problem of relating one of these entities to a 

subject of reference: Whose knowledge is it? For a discussion of this topic within the broader context of 

databases, information systems, and AI systems, see [7]. 

2.1 Data vs. information vs. knowledge 

 For any decision-making process, an environment is assumed in which a decision-making agent (i.e. a 

reasoning agent) receives input from and returns output to an environment external to it. In a simple set-up, 

the external environment is a user communicating through a terminal, and the decision-making agent is a 

terminal-based, advice-giving computer system. Within this context, the essential differences between 

data, information and knowledge are as follows (see Fig. 2). 

 Data are syntactic entities, i.e. uninterpreted characters, signals, patterns, and signs that have no 

meaning for the system (the subject of reference) concerned. Data are input to an interpretation process. 

Data become information after having been interpreted to give meaning. This is illustrated in Fig. 2 by the 

Data Interpretation arrow. Taking a human being as the subject of reference, a series of signals from a 

sensor, or the string "´Q)9§?8$%@*¨&/", is data to most of us, while "low interest rate", "increased blood 

pressure", and "the Gulf war" have meaning, and therefore are information. The meaning of these terms 

may be different for different systems (here: people), and it is each individual’s knowledge about particular 

domains - and the world in general - that enable us to get meaning out of these data strings.  

 Information is interpreted data, i.e. data with meaning. It is the output from a data interpretation process, 

as just described. Once the data have been given an interpretation as information (an initial interpretation, 

at least), it is elaborated upon in order to be better understood, and in order to derive (infer) new 

information. This is illustrated by the Elaboration arrow in Fig. 2. Hence, information is input to this 

elaboration process, as well as output from it. The elaboration process is where the core decision-making 

processes take place. Often, in a real setting, elaboration and data interpretation processes are interleaved. 

Information is also the source of learning, i.e. the input to a learning process. 

 Knowledge is learned information, i.e. information that has been processed and incorporated into an 

agent's reasoning resources, and made ready for active use within a decision process. A widely shared view 

is that learning is the integration of new information into an existing body of knowledge, in a way that 

makes it potentially useful for later decision-making. New knowledge may also come from inference 

processes within the knowledge body itself. This is illustrated by the vertical and the semi-circular 

Learning arrows in Fig.2, respectively. Knowledge, then, is the output of a learning process, after which it 

becomes the internal resource within an intelligent system that enables the system to interpret data to 

information, to elaborate and derive new information, as well as to learn more (the gray lines in the figure).  
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Fig. 2:  The Data-Information-Knowledge model. 
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 Note that the term knowledge is used here in a very general sense. It does not distinguish between 'true' 

and 'believed' knowledge. This is different from the influential branch of philosophy in which the term 

knowledge is used exclusively for statements that are true in the world, and where belief is used if truth 

cannot be ascertained (e.g. [8]). Other philosophical theories (e.g. [9]) have questioned this position, 

arguing that the logicist, or deductive-nomological philosophical view that lies behind that view is unable 

to explain major philosophical problems such as analogical reasoning, abduction, and scientific 

development.  

2.2. Case roles in CBR systems 

 In Fig.1 some discriminating characteristics of knowledge-lean and knowledge-intensive methods were 

listed. CBR systems come in different shapes and fashions. From the above discussion, we see that in order 

for a system to reason, in the sense of interpreting data and deriving new information, it needs knowledge. 

Systems with no knowledge can do no reasoning in this sense.  CBR systems that are placed at the left of 

the scale, will therefore typically be closer to information systems than knowledge-based systems. Note the 

peculiarity in that for an “information system”, as the term is commonly used, a human being is assumed to 

be the subject of reference, i.e. it is information for the human interpreter (and data for the system). In a 

knowledge-based system, however, knowledge as well as relevant parts of the information is with respect 

to the system. Below, the three main roles of cases in various systems, corresponding to their role as data, 

information, or knowledge, are highlighted, in order to contrast the CREEK approach with other 

approaches.  

 Cases as data for the computer system is the simplest mode, in which the system does not do case-based 

reasoning as such, but applies case-based methods for case indexing and retrieval. Since the system views 

cases as data only, it does not have knowledge of the items that describe case contents. The partial 

matching property of CBR is used to improve database retrieval by producing a ranked list of matching 

records rather than one exact match. The strength of computers as data managers and information handlers, 

where the frame of reference for information is the user, is combined with the strength of human beings for 

intelligent decision-making. Some types of help desk systems are examples.  

 Cases as information for the computer system implies that there is knowledge in the computer that is 

able to interpret and utilize case contents as information. If cases are information only – and not knowledge 

– the knowledge-based methods must be of some other kind, such as model-based or rule-based. The 

characteristic of a case-based system of this kind is that a substantial part of the system's information is 

organized as cases.  

 Cases as knowledge for the computer system, is the case-based reasoning approach per se, i.e. the case 

base is not merely a source of information for the user, but a knowledge base that is actively used in the 

system's reasoning processes. The full flexibility of viewing a case as data, information, and/or knowledge 

is therefore available. Cases may be the only type of knowledge in such a system or they may be combined 

with other knowledge types - as in CREEK. These systems exhibit learning in the full sense, since they 

incorporate new cases in a way that makes them immediately ready to be used in the solving of new 

problems. 

 From these different case roles, we see that a case-based system architecture can facilitate a gradual 

transformation from a pure database or information system, to a full-fledged knowledge-based system. In 

this way a system will always have its data available in a non-generalized form, and their active use can be 

incrementally put into effect by adding interpretation and reasoning capabilities to the system as the use of 

the system identifies what active decision support users really want.  

3   Knowledge Modeling 

Along with Clancey [10], a knowledge-based system can be viewed as a qualitative model of that part of 

the real world that the system is to reason about. Knowledge modeling, then, becomes the whole process 

that starts with a real world task environment, through several steps realizes a (partial) model of it in a 

computer system, and maintains that model over time. The knowledge of a system will to some extend be 

biased by the methods through which that knowledge was acquired and represented. A brief description of 

the high-level knowledge modeling framework underlying CREEK systems is therefore given. 

 The knowledge modeling approach is based on the combination of a top-down driven, initial knowledge 

acquisition process, and a bottom-up modeling process represented by continuous learning through 

retaining problem solving cases. The objective of the initial knowledge modeling task is to analyze the 
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domain and task in question, to develop the conceptual, mediating models necessary for communication 

within the development team, and to design and implement the initial operational and fielded version of the 

system. The knowledge maintenance task takes over where the initial knowledge modeling ends, and its 

objective is to ensure the refinement and updating of the knowledge model as the system is being regularly 

used. In Fig. 3 the two outer, rounded boxes illustrate these two top-level tasks of the knowledge modeling 

cycle. Within each of the two tasks, the major subtasks (rounded rectangles) and models (sharp rectangles) 

taken as input and returned as output from these tasks are shown. The modeling subtasks are indicated by 

their gray background. 
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Fig. 3: The knowledge modeling cycle 

 

Arrows indicate the main flow of knowledge and information, and show the most important input/output 

dependencies between subtasks and models. As shown by the area where the two large boxes overlap, the 

conceptual knowledge model and the computer internal model are shared by subtasks of both initial 

knowledge modeling and knowledge maintenance. 

A knowledge modeling cycle typically starts with a high level specification (e.g. functional 

specification) of the target computer system, at some level of detail. The resulting submodels are structured 

into a conceptual knowledge model. The knowledge is described at the knowledge level [11,12], where the 

emphasis is to capture the goal-directed behavior of the system, and to model knowledge content from the 

perspective of the application domain, without being constrained by implementational limitations. A 

common starting point is to identify the main categories of the three knowledge types: Task knowledge, 

Method knowledge, and Domain knowledge. Task knowledge models what to do, usually in a task-subtask 

hierarchy. Tasks are defined by the goals that a system tries to achieve. Method knowledge describes how 

to do it, i.e. a method is a means to accomplish a task (e.g. to solve a problem). Domain knowledge is the 

knowledge about the world that a method needs to accomplish its task. Examples are facts, heuristics, 

causal relationships, multi-relational models, and – of course – specific cases (see [13] for a more elaborate 

discussion on knowledge level modeling for CBR systems). The conceptual knowledge model forms the 

basis for designing and implementing the computer internal model, i.e. the knowledge model of the 

operating target system. This model is described at a level referred to as the symbol level, which deals not 

only with intentional knowledge content, but also with manipulation of symbols that represent knowledge 

in the computer.  

The lower, partially overlapping box illustrates the main subtasks of knowledge maintenance. 

Knowledge maintenance starts when a system has been put into regular operation and use. The knowledge 

maintenance task has two optional subtasks as indicated in the figure. One is sustained learning, i.e. the 

direct updating of the computer internal model each time a new problem has been solved. The other is a 

periodic and more substantial revision process. As illustrated, this revision task may lead directly to the 

modification of the symbol level model (computer internal model), but it may also go through an update of 

the knowledge level model (conceptual knowledge model) first. 

To assist in the top-down modeling parts of the cycle described, a knowledge modeling editor is used 

(Fig. 4). A CREEK system comes with a top-level ontology, part of which is shown in the figure, from 

which the higher-level parts of the domain model is grown. Concepts, relations, as well as cases, can be 

constructed and manipulated in flexible manners through a knowledge map interface (to the left) or a frame 

interface (right part of the figure). The knowledge representation is the topic of the next chapter. 
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Fig. 4. The TrollCreek Knowledge Modeling Editor 

5 The CREEK system 

 The CREEK system is an architecture for knowledge-intensive case-based problem solving and 

learning, targeted at addressing problems in open and weak-theory domains [14]. CREEK contains several 

modules integrated within a common conceptual basis: The General Domain Model (see Fig. 5). Each 

module represents a particular sub-model of knowledge. The main modules are the object-level domain 

knowledge model (real world entities and relationships), a strategy level model (for example a model of 

diagnostic problem solving), and two reasoning meta-level models, one for combining case-based and 

other types of reasoning, and one for combined learning methods. CREEK integrates problem solving and 

learning into one functional architecture.  

 

 

Fig. 5. The CREEK functional Architecture 

Situation-specific experiences are held in the case base of solved cases. All the concepts are 'glued 

together' into a single, interconnected knowledge model. Diagnosis task concepts, for example, such as 

"symptom" and "diagnostic-hypothesis" (part of the diagnosis and repair strategy model), and learning task 
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concepts, such as "case-indexing" and "failure-generalization" (part of the combined learning model), are 

defined within the same representation structure as general domain concepts like "appendicitis" and 

"fever", and case-related domains terms as "Patient#123456" and "current-radiation-dosage”.  

 A knowledge model represented in CREEK is viewed as a semantic network, where each node and each 

link in the network is explicitly defined in its own frame. Each node in the network corresponds to a 

concept in the knowledge model, and each link corresponds to a relation between concepts. A concept may 

be a general definitional or prototypical concept, a case, or a heuristic rule, and describe knowledge of 

domain objects as well as problem solving methods and strategies. A frame represents a node in the 

network, i.e. a concept in the knowledge model.  Each concept is defined by its relations to other concepts, 

represented by the list of slots in the concept's frame definition. Fig. 6 illustrates the three main types of 

knowledge in CREEK, a top-level ontology of generic, domain-independent concepts, the general domain 

knowledge, and the set of cases. 

 
thing

case
039

case
112

case
76

generic concepts

cases

domain concepts
general

 

Fig. 6:  Integrating cases and general knowledge 

 

 The case-based interpreter in CREEK contains a three-step process of 1) activating relevant parts of the 

semantic network 2) generating and explaining derived information within the activated knowledge 

structure, and 3) focusing towards and selecting a conclusion that conforms with the goal. This activate-

explain-focus cycle, referred to as an 'explanation engine' [3], is a general mechanism that has been 

specialized for each of the four CBR tasks described in section 4, although the Revise task is not a 

system’s task in CREEK. (see Fig. 7).  
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Activate

Explain

Focus Activate
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Focus Activate
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Fig. 7. The CBR process and the explanation engine 

 

 Similarity assessment is divided between the Activate and Explain steps of Retrieve. Activate first 

determines a relevant broad context for the problem, by spreading activation from goal concepts to relevant 

findings. Spreading-relations include general taxonomic ones, causal relations, associational relations, and 

application-specific relations. Only cases with activation strength above a certain threshold will be 

considered for further matching. The activation strength is based on the number of matched relations and 

their relevance factor, according to the following formula [15]: 

 

sim(CIN ,CRE )

sim( f i, f j )* relevance factorf j

j 1

m

i 1

n

relevance factorf j

i 1

m
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CIN and CRE are the input and retrieved cases, n is the number of findings in CIN, m is the number of 

findings in CRE, fi is the i
th

 finding in CIN, fj the j
th

 finding in CRE, and sim(f1,f2) is simply given as: 

 

otherwise

vvif
ffsim

0

1
),(

21

21

 

 

The relevance factor is a number that combines the predictive strength (degree of sufficiency) and 

importance (degree of necessity) of a feature for a stored case. Following Activate, Explain will attempt to 

improve the match between the input case and the activated cases. Only unmatched findings need to be 

explained, since the strength of the directly matched findings cannot be increased. Different explanation 

paths are combined [16] into a matching strength for each activated case. The paths have convergence 

points,  i.e. explanatory concpets - such as causal concepts, for which there exist an explanation path from 

both findings. Its strength is the product of the strength of each relation leading from the finding to the 

convergence point:  
n

i

istrengthrelationcfstrengthpath
1

),(  

Here, n is the number of relations. There may exist one or more parallel paths from each finding to each 

convergence point. The resulting strength is based on the general formula for adding contributions from n 

parallel elements, S1... Sn, into a total score: 

parallel strength(S1,S2,..Sn ) 1
i 1

n

(1 Si)
 

Thus, the total combined strength of all the paths leading from a finding f to a convergence point c, with 

n being the number of paths between f and c, is computed according to the following formula: 

total path strength( f ,c) 1
i 1

n

(1 path strength( f ,c)i)
 

The strength of one explanation path (eps) leading from a finding f1 to a finding f2 via the convergence 

point c, is computed by multiplying the total path strength for each of the findings to the convergence 

point, and the total explanation strength for the two findings (f1 and f2) via several convergence points is 

finally computed by using the parallel strength formula: 
 

eps( f1, f2,c) total path strength( f1,c) total path strength( f2,c)  

exp lanation strength( f1, f2) 1
i 1

n

(1 eps( f1, f2,c i))
 

Here n is the number of convergence points between the findings, and ci is the i
th

 convergence point.  

 Focus selects the best case or rejects all of them, based on the explanatory justification. It may adjust 

the ranking of the cases based on preferences or external constraints. The explanatory power of the domain 

model is also utilized in Reuse and Retain.  

This was implemented in the former Lisp version. Research related to the current Java version – called 

TrollCreek - has focused on Retrieve, with Reuse in an early stage.  

The general domain knowledge is assumed to be extensive enough to provide sufficient support to the 

case-based methods, but may also provide a back-up capability of problem solving on its own, if no similar 

case is found. The general domain knowledge is typically built up by rather 'deep' relationships  - for 

example a combination of causal, structural, and functional relations. It contains a simple model-based 

casual reasoning method, in addition to the basic inference methods of frame matching, constraint 

propagation, and plausible inheritance (see next chapter).  

 The TrollCreek tool allows running the case matching process at any time during system development. 

To illustrate, assume that we are on an oil rig in the North Sea. Drilling fluid losses have been observed, 

and the situation turns into a problem (so-called Lost Circulation). See the case description to the left in 

Fig. 8. TrollCreek produces first of all a list of similar cases for review of the user. Testing of Case LC 22 

suggests that Case LC 40 is the best match, with case 25 as the second best, and with a matching degree of 

45% - as shown in Fig. 9. Examination of these cases reveals that Case LC 40 and 25 are both of the failure 

type Natural Fracture (an uncommon failure in our case base). By studying Case LC 40 and 25 the optimal 

treatment of the new problem is devised, and a new case (Case LC 22) is stored in the case base (right part, 

Fig. 8). 

The user can choose to accept the delivered results, or construct a solution by combining several 

matched cases. The user may also trigger a new matching process, after having added (or deleted) 

information in the problem case. The user can also browse the case base, for example by asking for cases 

containing one specific or a combination of attributes. 
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Fig. 8. Unsolved case (left) and the corresponding solved case (right) of Case LC 22. 

  

Figure 9 shows parts of the explanation of why Case LC 22 is a problem of the type Natural Fracture. 

The interactive graph displays the part of the semantic network that was involved in the matching, either 

by direct or indirect (explained) matches. A textual explanation of an indirect match is also displayed, as 

shown to the middle right in Fig. 9. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Results of matching  

a new case (Case LC 22 unsolved)  

with the case base. 
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6. Recent and ongoing research 

The transition to the Java platform, from Lisp, led us to make a revision of the 

knowledge representation and basic inference methods. An earlier idea of plausible inheritance as an 

inference method for semantic networks [14] was generalized and made into the core model-based 

inference method of CREEK [16]. The main principle is that inheritance is extended to be applicable to 

any pair of a relationship and a relation, as opposed to inheritance only along a subclass relation. A 

location relationship may be inherited along a part-of relation, for example – assuming that parts of things 

are in the same location as the thing itself. Fig 10. illustrates how an initial frame, “epidemic case #3”, 

having a local subclass relationship with “bacterial epidemic”, and a causal relationship with “dirty water”, 

inherits additional relationships (the Ri set at the lower right), through as set of inheritance rules (the I set at 

the lower left). 

 

Fig. 10. Plausible inheritance example 

 Some current activities explore this method by designing systems where model-based reasoning play a 

strong part in itself, rather than only as part of the CBR process. Examples are two PhD projects where one 

is a method for generating and evaluating explanations for intelligent tutoring [17], and the other a method 

for generating explanations for gene–gene relationships and dependencies in order to understand the 

development of diseases at the level of functional genomics [18]. Our research into knowledge-intensive 

case-based explanation, studies the combined use of case-specific and general domain knowledge from the 

perspective of user-targeted explanations (the two projects just mentioned), as well from the perspective of 

the system-internal explanation methods in CREEK. The transparency of the knowledge representation 

system in CREEK favours studies of mutual explanation mechanism, i.e. explanation methods serving both 

purposes. This is currently studied within a PhD project on conversational case-based reasoning for 

software component reuse [19], although the focus here is on internal explanations within a CCBR context. 

Quite another issue is studied in a PhD research done within the EU project Ambiesense [20], where an 

agent-based architecture is developed for CREEK, aimed to provide contextualized information to mobile 

users on business or tourist travels. Agent-based methods are also explored by others, which should lead to 

a generic distributed architecture for CREEK. Cases are used to personalize the information provided. A 

thorough study of context modeling was done in an earlier research applied to the medical diagnosis area 

[21]. This work, as well as a study done in medical image understanding [22], also made significant 

contributions to the knowledge-level modeling approach within CREEK. 

 Additional methods for representing and reasoning with general domain knowledge are also being 

explored. In particular, the studies of Bayesian Networks within CREEK [23] has given additional insights 

to the knowledge modeling and representation issues, as well as triggered studies on data mining methods 

for learning of general domain knowledge. Examples of smaller project that have developed additional 

demonstrators as part of MSc works, include an ANN system integrated into CREEK [24], for face 

recognition, and a text mining system for extracting general domain relationships from text [25]. 

Sometimes, it is also useful to lean back and take a look at the more fundamental issues related to 
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associated with }

=

={

causes,

caused by,

used for,

has solution,

associated with }

Ri = 

{(Ōepidemic case#3 Õ, subclass of, Ōbacterial epidemic Õ), 

  (Ōepidemic case#3 Õ, caused by, Ōbacterial infection Õ),

  (Ōbacterial epidemic Õ, associated with , Ōdirty water Õ),

  (Ōbacterial infection Õ, caused by, Ōdirty water Õ),

  (Ōdirty water Õ, has solution, Ōclean water supply Õ),

  (Ōdirty water Õ, associated with , Ōbad hygiene Õ)} 

I =   ((subclass of, causes),
(subclass of, caused by),
(subclass of, associated with),
(subclass of, used for),
(subclass of, has solution),
(causes, causes),
(caused by, caused by),
(caused by, has solution)
(associated with, associated with))
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developing CBR systems and other AI systems, such as relating current practice to totally different 

development and modeling views, such as one suggested by an autopoietic analysis [26]. 

7. Conclusion 

The paper has described the knowledge-intensive CBR approach that is at the core of the CREEK 

framework, architecture, and system. By starting out with the fundamental issues related to the nature of 

knowledge, and the modeling-perspective taken to the development of a CREEK knowledge base, the 

actual representation and reasoning methods – as exemplified by Retain – hopefully become clearer.  

The current and future directions of research focus more strongly on experimental evaluation of the 

various methods of CREEK. Of special interest currently, are experimentations related to the combined 

explanatory power of general domain knowledge and cases. This includes more thorough studies of the 

representation and basic inferencing methods. In addition, multi-agent architectures, text mining of general 

and case-specific knowledge, and conversational CBR methods, are high up on the research agenda. 

Finally, continued tool development, in connection with development of real world applications, is a 

priority, for which we cooperate with the company Trollhetta AS. 
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