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Abstract 

A challenge of future knowledge management and decision 
support systems is to combine the storage and effective 
reuse of data, systematically captured as process or system 
information, with user experience in dealing with problems 
and non-trivial situations. In CBR, situation-specific user 
experiences are typically captured in cases. In our approach, 
cases are linked within a semantic network of more general 
domain knowledge. In this paper we present a way to 
automate the construction and dynamical refinement of such 
a model of case-specific and general knowledge, on the 
basis of external process data continuously being generated. 
A data mining method based on a Bayesian Networks 
approach is used. We are also looking into how the notion 
of causality, being a central issue in both BNs and 
model-based AI, can be compared and better understood by 
relating it to such a combined model. 

1.  Background and motivation 

Our research is conducted within the subarea of 
knowledge-intensive case-based reasoning, i.e. the Creek 
approach (Aamodt, 1995; Grimnes & Aamodt, 1996). 
Within this approach we are currently studying and 
experimenting with statistical data mining methods, 
primarily Bayesian Networks (Jensen, 1996; Aamodt & 
Langseth, 1998). This is a means to automate the 
construction of a case-base or its supporting background 
knowledge, on the basis of data dynamically generated 
from processes and activities that are part of the task 
domain. Example processes and activities are industrial 
production processes, problem solving operations, 
maintenance actions, planning activities, etc. We are in the 
process of studying and experimentally comparing various 
approaches to this integration, within the domain of 
petroleum engineering – more specifically oil well drilling - 
in cooperation with the Norwegian oil company Saga. 
Some initial results are described in this paper. 
 
The motivation for the work reported here is two-fold, 
coming from the method side and the application side, 
respectively. At the method side there is a need for 
improved methods to dynamically modify and adapt the 
supporting general domain knowledge of 

knowledge-intensive CBR. So far, the Creek approach has 
been to learn by storing cases and linking them to the 
general domain knowledge, which in turn has been assumed 
static – or only subject to occasional manual updating. 
Since a major role of the general domain knowledge is to 
produce explanations to support and justify various CBR 
reasoning steps (two different approaches are described in 
(Sørum and Aamodt, 1999) and (Friese, 1999)), it is crucial 
that this knowledge is as updated as possible, always 
reflecting the current state of domain knowledge related to 
the task reality. In well-understood and static domains, this 
would introduce no problem, but since we are dealing with 
complex tasks within open-textured and changing domains; 
a static knowledge model will soon degrade and become 
less useful.  
 
The other motivation comes from the primary type of 
application targeted by our methods, which is interactive 
intelligent systems for knowledge management, decision 
support, and learning support. Here we see a clear need to 
better combine the implicit „experience‟ stored as data in 
databases with the more user-oriented experience that may 
be captured as cases. This is elaborated in the following 
section. 
 
Our research is done within the scope of the Noemie EU 
project (Aamodt et. al., 1998). Here data mining and CBR 
are combined in order to improve the transfer and reuse of 
industrial experience. The aim of the project is to develop 
methods that utilize the two techniques in a combined way 
for decision support and for targeted information focusing 
over multiple databases. Application problems dealing with 
technical maintenance and tool design, and the prevention 
of unwanted events, are addressed. The domain of the 
research reported in this paper is diagnosis and repair 
related to the loss of drilling fluid into a geological 
formation during drilling (the so-called “lost circulation” 
problem). 

2. User and Data Views 

Target systems for our methods are interactive systems 
aimed to support people in their daily job activities, by 
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storing potentially relevant information and data, and 
capturing or deriving valuable knowledge, in order to make 
this easily available for later reuse and elaboration. People 
involved in this type of decision making and 
information/knowledge management today typically use 
computers, at least to some extent. In such companies large 
amounts of data are captured and stored on a routine basis, 
but often not in a form that make them useful for work 
support.  
 
This growing store of data can be said to represent a certain 
view or slice of a real world description (sometimes 
referred to as the „task reality‟), determined by the type of 
data and the values registered. During oil well drilling, for 
example, a lot of data is continuously registered that 
describe state parameters such as bore hole pressure, fluid 
flow rate, lithology of the geological formation, operations 
being performed, drilling personnel involved, etc. The type 
and value of the data registered then represent a certain 
perspective or view to the reality being dealt with. Another 
view to this part of the real world is captured by the 
experiences that people gather as part of their daily 
information handling and problem solving effort. For 
example, whether a drilling process runs smoothly or has 
problems, what the actions available to deal with a critical 
situation are, and what competence people involved in an 
operation have or should have.  
 
Essentially, then, in computer-assisted environments, the 
information about the task reality captured in databases and 
the understanding of the phenomena by the people in job 
situations represent two complementary „views‟ to a task 
reality, as illustrated in Figure 1. A part of the two views, 
i.e. a part of the descriptors or submodels representing the 
two views, may be shared, other parts not. Note that the 
data bases pictured in the lower right of Figure 1 are 
standard company DBs, and different from, e.g. data bases 
storing experience cases or other knowledge bases. In the 
following section we will elaborate on this distinction 
between data and cases. 
 
Looking at things in this way opens up for studying how the 
two views can form a basis for integrated decision support 
systems where user experience and information from data 
are synergistically combined.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: User and Data views of a part of the real 
world. 

3. Data vs. Cases 

We are studying how data mining methods may contribute 
to the construction of CBR systems on the basis of the 
two-view perspective outlined in the last section. As 
previously mentioned, the notion of data, as in the „data 
view‟ reflects data of processes, state parameters, etc. as 
stored in standard company databases. Hence the notion of 
data in this sense does not include knowledge bases, 
containing cases or more general domain knowledge. This 
means that our view of a case is a user-oriented view, i.e. a 
case stores a past user experience. This is different from the 
view that a case is simply a data record. This latter view is 
adopted by some other CBR researchers, particularly those 
focusing on „instance-based‟ methods, characterized by 
large case bases, simple case structures, and little if any 
background knowledge. The user-oriented case view, on 
the other hand, is characterized by fewer cases, larger and 
more complex case structures, and usually a significant 
portion of general domain knowledge to support the CBR 
processes. A clear distinction of the case vs. data issue is 
necessary in order not to confuse the mutual roles of DM 
and CBR methods in integrated systems. 

4. Model representation 

As stated, the topic of our research is to investigate how the 
construction of knowledge-intensive CBR systems may be 
automated by updating the general domain model on the 
basis of data from company data bases. Within Creek, 
general domain knowledge is represented in a frame-based 
system, where the frames constitute a densely coupled 
semantic network. Domain entities as well as relations are 
first class concepts, each represented in their own frame. Of 
the various candidate methods from the machine learning 
field that could be applicable for learning in this model, we 
have picked Bayesian networks as our initial method of 
investigation. There are several reasons for that. One is that 
the network structure of BNs has similarities with a 
semantic network structure, although there are significant 
differences (see next section). This is an important 
motivation, since the explanation-driven approach of Creek 
facilitates combined explanations coming from both type of 
networks, in an integrated way. Another is that statistical 
learning through data mining nicely complements the 
manually generated domain model. A third is that while we 
now are studying learning of general domain knowledge, 
we will in the future also investigate the automated 
re-construction of past cases (i.e. user experiences) from 
data. Here the BN model also provides possible solutions. 
However, once the BN method is implemented and tested, 
it will be interesting to study other DM/ML methods for 
this purpose.  

5. Semantics of relations and links 

Motivated by interesting results on network learning 
(Heckerman et. al. 1995), we are using a Bayesian method 
to generate a network structure from data, and use this 
either as a substitute or in cooperation with a 
user-generated semantic network.  Several researchers 
have investigated different facets of this task. (Friedman, 
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1998) presents a method to learn BN structure when the 
data is prone to missing features. (Friedman and 
Goldszmidt 1997) offers a sequential method for structure 
refinement. (Koller & Pfeiffer, 1998) follow another path, 
as they extend the basic BN to a frame-based system. 
Hence, they are able to handle uncertain information in a 
structure that enlarges the expressive power of the 
graphical model. This construction raises hope that more 
complex structures than plain BNs can be extracted from 
data. 
 
Given that search structures may be learned, we are 
especially concerned about the level of integration between 
this construction and the semantic network. To integrate the 
two types of domain models at any level, we must be 
assured that the semantics of the two models, as seen from 
that particular level of integration, can be inter-related. 
 
Unfortunately, not all kinds of relations are simply learned 
from data. In fact, arcs in a BN are just carriers of statistic 
correlation, and it is – strictly speaking - the absence of an 
arc that can be given a semantic meaning. The BN 
semantics is defined by the joint statistical distribution 
function that it encodes, together with the conditional 
independencies that can be read directly from the graphical 
structure.  However, it has been somewhat common to 
regard the arcs in a BN as a kind of “generalized causality”. 
This definition is more loose than that traditionally used in 
AI, and is often defined as “A causes B if an atomic 
intervention of node A changes the probability distribution 
over node B”.  Important research has focused on whether 
such „causality‟ can be learned from empirical data, (see, 
e.g., (Pearl, 1995)) for the foremost example. Pearl‟s 
conclusion was negative. For a two–node network of 
correlated nodes, for instance, it is not possible to infer 
which of the two nodes that is the cause and which is the 
effect by only using empirical data. The direction of the arc 
between them can be changed without altering the 
semantics of the Bayesian network. It seems 
counter–intuitive to call such arcs „causal‟ in any way. 
Instead of labeling all arcs as „causal‟, one can use 
algorithms like Inferred Causation (Pearl & Verma, 1991) 
to specifically test each arc in the network. This algorithm 
takes an estimated probability distribution as input, and 
returns an annotated graphical model in which a subset of 
the arcs is marked „causal‟. These arcs are exactly those, 
whose direction can not be changed without altering the BN 
semantics. (Neopolitan et. al., 1997) reports experiments 
which show that small children tend to investigate and learn 
causality in a way that supports the psychological 
plausibility of Pearl and Verma‟s algorithm.  
 
From our work so far, we are reluctant to giving each arc in 
a BN a clear semantic meaning related to the semantic 
network relations. Therefore, it is not intuitively feasible to 
integrate the BN and the semantic network at the lowest 
level (i.e. the level of the meaning of single relations). 
However, when care is taken, i.e. a right suitable level of 
interpretation is found, we should be able to let the two 
domain models co-operate in a semantically meaningful 
way. For example, at the level of explanatory strength of a 

relation (semantic network notion) and, correspondingly, 
degree of belief (BN notion), the semantic mapping is 
easier. More research is needed to find an optimal level of 
integration. 

6.  Learning retrieval knowledge 

At present, we regard the BN as a submodel of statistical 
relationships, which lives its own life in parallel with the 
semantic net. The BN generated submodel is dynamic in 
nature; i.e. we will continuously update the strengths of the 
dependencies as new data are seen. In this way, the system 
will be able to improve its ability to retrieve the best 
matching case given the input. The dynamic model suffers 
from its less complete structure (we will only include a 
term in the BN if it is linked via an influence-relation such 
as causes, indicates, etc.) but has an advantage through its 
sound statistic foundation and its dynamic nature. Hence, 
we view the domain model as an integration of two parts, a 
“static” and a “dynamic” one. The first consists of relations 
assumed not – or seldom - to change (like has-subclass, 
has-component, has-subprocess, has-function, 
always-causes, etc). The latter part is made up of 
dependencies of a stochastic nature. In changing 
environments, the strengths of these relations are expected 
to change over time.  
 
The BN indexes its cases in a way quite different from how 
it is done in Creek. Cases are leaf nodes (i.e. they have no 
children), and they are sparsely connected to the case 
features. In Creek, a case frame is connected to the frames 
of all its features. In the BN on the other hand, effort is 
taken to minimize the number of arcs pointing to a case 
node. The BN inference mechanism works just as easily 
over long paths of influence as it does on a one-step path, 
hence the direct remindings are not necessary. This 
difference is illustrated in Figure 2. 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Case indexing in Bayesian and semantic 
networks. 

  
Each case is indexed by a binary feature link (ON or OFF, 
with probability). The standard Creek process of choosing 
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index features is adopted, taking both the predictive 
strength and necessity of a feature into account.  
 
As seen in the top of Figure 2, the BN does not index 
Case#2 directly from Feature#1, since the information flow 
from Feature#1 through Feature#2 already indicates 
Feature#1's influence over Case#2.  In the semantic net, 
however, both features are remindings to Case #2. If 
Feature#1 is observed, both Case#1 and Case#2 are 
affected in the BN according to the strength of the path 
from Feature#1 to the respective case. If Feature#2 is then 
observed, Feature#1 is no longer influencing the relevance 
of Case#2, since Feature#1 is independent of Case#2 
conditioned on Feature#2. In the semantic network, 
however, conditional independence does not come to play. 
When both features are observed, both the cases are 
affected. Case#2, having 2 remindings, is likely to be more 
strongly reminded, but this depends on the strength of the 
individual remindings. The case with the strongest 
combined reminding will be selected as first choice. 
 
Calculations within a BN are performed using a compiled 
structure referred to as a junction tree. This is basically a 
tree structured graphoid where the nodes are the cliques in 
the BN, i.e. the maximally connected subgraphs of an 
undirected version of the BN, see (Jensen, 1996) for 
details. Both the size and complexity of the compiled 
structure is depending on how densely connected the BN is. 
If the BN is very densely connected, the cliques grow 
larger, which will increase the computational costs of the 
BN inference. To avoid escalating memory requirements, 
arcs that are not necessary to link a case to its features are 
removed from the BN, resulting in a simpler structure as 
illustrated in Figure 2. We also employ a particular 
spreading activation algorithm (van de Stadt, 1995) to 
compile only those parts of the BN which are required for a 
given inference task, reducing the size of the memory 
required for the BN structures.   

7.  Experimental evaluation 

In this section we describe some initial results of the 
experimental evaluation of our method. In the experiment, 
we started off with a reasonably well elaborated semantic 
network describing the “lost circulation problem” of oil 
well drilling. The semantic network consisted of 2434 
relationships between a total of 1254 entities. The 
case-base consisted of 45 cases, which captured the whole 
recorded history of lost circulation incidents in the oil 
company.  

 

As a starting point for the BN construction, we used a 

subset of the semantic network. We extracted all 

relationships which could be regarded as describing 

generalized causality, i.e. the relations causes, 

has-consequence, enables, involves, occurs-with and indicates, 

together with the nodes on either side of these relations. 

This resulted in a BN consisting of 128 nodes and 146 

links. Simple statistical formulas were used to generate the 

local probability tables of the BNs from the strength of the 

relations. Afterwards, the complete case-base was indexed 

by the BN. The mean number of links to a case (average 

number of remindings) was 4.0 in the BN compared to 44.9 

in the semantic network. The semantic network uses 55 

different relations, in the BN we only have one. These 

numbers indicate that the BN is only reflecting a small part 

of this task reality, compared to the broader scope of the 

semantic network. 

 

Because of very strict confidentiality of the data for this 

domain, we could only access a small part of the total set of 

databases that are intended to be used in the final 

application for the company. The reduced data material 

made learning of the BNs network structure unfeasible, so 

we where not able to update the structure of the domain 

model through data mining. We were, however, able to 

fine-tune the parameters in the model, using an algorithm 

by (Binder et. al., 1997).  
 
Below, the two screen excerpts of Figure 3and Figure 4 
illustrate how an example case (Case-16) is indexed in the 
general domain model. Figure 3 indicates the sparsely 
connected structure of the BN, while Figure 4 shows that a 
case is more densely linked within a semantic network – 
corresponding to a more complex case structure than what 
is employed by the BN method. In the semantic network we 
find that both Induced-Fracture-Lc and Tripping-In are 
remindings to Case#16. From the general domain model 
(not shown) we know that Tripping-In causes Large-ECD 

causes Very-Small-Leak-Off/Mw-Margin-<0.02kg/L causes 

Induced-Fracture-Lc. Interpreting Bayesian inference as a kind of 

causal inference, it is not necessary to link Induced-Fracture-Lc 
directly to Case-16 in the BN model. 
 

 
 

Figure 3: Bayesian Model. Grey nodes are activated; 
white nodes are not. Current belief in Case#16 is 

32.1%. 
 
 
To look further into the behavior of the two domain models 
we have designed an experimental setup, where each of the 
two domain models retrieves cases separately, and the 
results are compared. As a measure for the success of a 
retrieval method, we use the difference in calculated 



 

 

similarities; i.e. we assess both the systems ability to give 
  
high score to the similar cases as well as to give the poor 
matches a low score. 

 

Figure 4: Semantic Network Model. Shows the features 

pointing to Case-16. Relation names and feature values 

are not shown. 

 
 
In the Appendix the main content of Case-16 is shown. In 
the initial experiment a subset of this case was entered as 
the “new case”, in order to compare how the to methods 
behaved on a simple, controlled retrieval task. As expected, 
both systems retrieved Case-16 as their best choice. On the 
second best choice there was a difference, however. The 
BN tends to give higher values of belief to cases than the 
semantic network-based retrieval does. The most prominent 
reason for this is that the domain expert has given stronger 
reminding strengths than what is justified by the data. 
Nevertheless, the BN-based system is capable of 
recognizing both a poor match as well as a good one.  

 

Figure 5: Histogram of the belief that the BN gives the 
cases during retrieve  

 
 
A histogram showing the distribution over the cases of the 
degree of belief in the retrieved case the over the cases is 
shown in Figure 5. 

8.  Conclusions and future research 

Initial research on the use of BNs to learn retrieval 
knowledge from data has been described. The retrieval 
knowledge is learned by updating a general domain model 
used to generate explanations in knowledge-intensive CBR. 
We are currently in a phase where we compare the abilities 
of the two different network models, both regarding 
retrieval and retain. It should be clear that both models 
have strong and weaker sides, and continued 
experimentation is needed in order to understand how they 
best should be combined into an integrated model. Future 
research should also include comparative studies of other 
machine learning methods for the purpose of updating the 
general domain knowledge as well as (re-)constructing 
experience cases from company data bases. The two views 
introduced early in the paper, the data and user views, has 
already shown to be a fruitful model for discussing possible 
ways of automating the construction of 
knowledge-intensive CBR systems.  
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APPENDIX 

Below the main contents of Case-16 is shown. Platform identification data has been removed for neutralisation reasons. 

 
case-16 
  instance-of                value    case  
  has-activity               value    tripping-in circulating  
  has-geological-formation   value    shetland-gp cromer-knoll-gp hegre-gp claystone-with-dolomitestringe 
                                      claystone-with-limestone-stringers sandstone mudstone  
  has-depth-of-occurrence    value   5318  

has-country-location       value   n  
  has-task                   value   solve-lc-problem  

has-observable-parameter   value   high-pump-pressure high-mud-density-1.41-1.7kg/l  
                                      high-viscosity-30-40cp normal-yield-point-10-30-lb/100ft2  
                                      large-final-pit-volume-loss->100m3 long-lc-repair-time->15h  
                                      low-pump-rate low-running-in-speed-<2m/s complete-initial-loss  
                                      decreasing-loss-when-pump-off very-depleted-reservoir->0.3kg/l  

                                      tight-spot high-mud-solids-content->20%  
                                      small-annular-hydraulic-diameter-2-4in  
                                      small-leak-off/mw-margin-0.021-0.050kg/l  
                                      very-long-stands-still-time->2h  
  has-well-section-position  value   in-reservoir-section  
  has-drilling-fluid         value   novaplus  
  has-failure                value   induced-fracture-lc  
  has-outcome                value   squeeze-job-acceptable  
  has-well-section           value   8.5-inch-hole  
  has-repair-activity        value   pooh-to-casing-shoe waited-<1h increased-pump-rate-stepwise  
                                      lost-circulation-again pumped-numerous-lcm-pills  
                                      no-return-obtained set-and-squeezed-balanced-cement-plug 

has-operators-explanation  value   “we tripped in and lost circulation.the mud was unstable and barite 
settled probly out and tended to pack around bha. we also know that 
depletion lowers fracture resistance and this combined is sufficient 
to explain the losses. we also probably crossed faults”  
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