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Abstract
In many domains Case-based Reasoning (CBR) has become a successful technique
for knowledge-based systems. In medical domains, attempts to apply the complete
CBR cycle are rather exceptional. Some systems have recently been developed,
which on the one hand use only parts of the CBR method, mainly the retrieval, and
on the other hand enrich the method by a generalisation step to fill the knowledge
gap between the specificity of single cases and general rules. So, in this paper we
discuss the appropriateness of CBR for medical knowledge-based systems, point
out problems, limitations and possibilities how they can partly be overcome.

1. Introduction

Case-based Reasoning (CBR) has become a successful technique for knowledge-based
systems in many domains, while in medical domains some more problems arise to use this
method. We are going to discuss the appropriateness of CBR for medical knowledge-based
systems, point out problems, limitations and possibilities how they can partly be overcome.

Case-based Reasoning means to use previous experience in form of cases to understand
and solve new problems. A case-based reasoner remembers former cases similar to the
current problem and attempts to modify their solutions to fit for the current case (Fig.1.
shows the Case-based Reasoning cycle developed by Aamodt [1]). The underlying idea is
the assumption that similar problems have similar solutions. Though this assumption is not
always true, it holds for many practical domains.

CBR consists of two main tasks [1, 2]: The first is the retrieval, which is the search for or
the calculation of most similar cases. If the case base is rather small, a sequential calculation
is possible, otherwise faster non-sequential indexing [2, 3] or classification algorithms (e.g.
ID3 [4] or Nearest Neighbor match [5]) should be applied. For this task much research has
been undertaken in the recent years and actually it has become correspondingly easy to find
sophisticated CBR retrieval algorithms adequate for nearly every sort of application
problem.

The second task, the adaptation (reuse and revision) means a modification of solutions of
former similar cases to fit for a current one. If there are no important differences between a
current and a similar case, a simple solution transfer is sufficient. Sometimes only few
substitutions are required, but sometimes the adaptation is a very complicated process. So
far, no general adaptation methods or algorithms have been developed; the adaptation is still
absolutely domain dependent.



Why Case-based Reasoning for medical decision making ?
Especially in medicine, the knowledge of experts does not only consist of rules, but of a
mixture of textbook knowledge and experience. The latter consists of cases, typical and
exceptional ones, and the reasoning of physicians takes them into account [6]. In medical
knowledge based systems there are two sorts of knowledge, objective knowledge, which
can be found in textbooks, and subjective knowledge, which is limited in space and time and
changes frequently.
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Figure 1. The Case-based Reasoning cycle developed by Aamodt

The problem of updating the changeable subjective knowledge can partly be solved by
incrementally incorporating new up-to-date cases [6]. Both sorts of knowledge can clearly
separated: Objective textbook knowledge can be represented in forms of rules or functions,
while subjective knowledge is contained in cases.

So, the arguments for case-oriented methods are as follows:

1. Reasoning with cases corresponds with the decision making process of physicians.
2. Incorporating new cases means automatically updating parts of the changeable
knowledge.
3. Objective and subjective knowledge can be clearly separated.
4. As cases are routinely stored, integration into clinic communication systems is easy.

2. Medical Case-based Reasoning systems

In medicine, CBR has mainly been applied for diagnostic and partly for therapeutic tasks.
Related methods have been used in further fields, case-oriented methods for tutoring (e.g.
D3 [7]) and retrieval methods to search for similar images (e.g. MACRAD [8]). So, here we
first present three diagnostic and systems; further systems are mentioned in [9].

One of the earliest medical expert systems that uses CBR techniques is CASEY [10]. It
deals with heart failure diagnosis. The system uses three steps: A search for similar cases, a
determination process concerning differences and their evidences between a current and a
similar case, and a transfer of the diagnosis of the similar to the current case or - if the
differences between both cases are too important - an attempt to explain and modify the
diagnosis. If no similar case can be found or if all modification attempts fail, CASEY uses a
rule-based domain theory. The most interesting aspect of CASEY is the ambitious attempt
to solve the adaptation task by general adaptation operators. However, as many features
have to be considered in the heart failure domain and as consequently many differences



between cases can occur, not all differences between former similar and current cases can be
handled by the developed general adaptation operators.

The FLORENCE system [11] deals with health care planing in a broader sense, for
nursing, which is a less specialised field. It fulfils all three basic planing tasks: diagnosis,
prognosis, prescription. Diagnosis is not used in the common medical sense as the
identification of a disease, but it seeks to answer the question: „What is the current health
status of this patient?“ Rules concerning weighted health indicators are applied. The health
status is determined as the score of the indicator weights. Prognosis seeks to answer the
question: „How may the health status of this patient change in the future?“ Here a Case-
based approach is used. The current patient is compared to a similar previous patient for
whom the progression of the health status is known. Similar patients are searched for first
concerning the overall status and subsequently concerning the individual health indicators.
As the further development of a patient not only depends on his situation (current health
status, basic and present diseases), but additionally on further treatments, several individual
projections for different treatments are generated. Prescription seeks to answer the question
„ How may the health status of this patient be improved?“ The answer is given by utilising
general knowledge about likely effects of treatments and also by considering the outcome of
using particular treatments in similar patients. That means it is a combination of a rule-based
and a case-based approach.

The most interesting aspect of MEDIC [12] is its memory organisation. MEDIC is a
schema-based diagnostic reasoner on the domain of pulmonology. Schemata represent the
problem solvers knowledge. These are packets of procedural knowledge about how to
achieve a goal or a set of goals. The memory does not only consist of schemata, but
additionally of diagnostic memory organisation packets of individual cases of diagnosis and
of scenes. A scene represents an instantiation of a schema in a particular case. This memory
organisation and retrieval allows a reasoner to find the most specific problem-solving
procedures available.

3. Problems of Case-based Reasoning for medical applications

To use Case-based Reasoning a few problems have to be solved: A representation form for
cases has to be determined, an appropriate retrieval algorithm has to be selected and an
infinite growth of the case base has to be avoided e.g. by clustering cases into prototypes
and removing redundant cases or by restricting the case base to a fixed number of cases and
updating the case base during an expert consultation session [8], but the main problem of
Case-based Reasoning is the adaptation task. Little research has been undertaken on this
topic and only formal adaptation models [13], but no general methods have been developed
so far. The adaptation still depends on domain and application characteristics. Sometimes no
adaptation is necessary, because e.g. the field and the cases are as unspecialised as in
FLORENCE, sometimes the adaptation is a simple solution transfer or only a little bit more,
sometimes just a few constraints have to be checked (e.g. GS.52), but sometimes many
differences between current and former similar cases have to be considered (e.g. CASEY).
The latter situation is not only a problem for medical applications. However, in medicine it
increases, because cases often consist of an extremely large number of features. In non-
medical CBR applications, the adaptation is usually solved by a set of specific adaptation
rules, which usually have to be acquired during expert consultation sessions. As these rule
sets have to consider all possible important differences between current and former similar
cases, for medical applications it is mostly impossible to generate such sets. So, some
adaptation solutions have been developed that are not limited to, but are rather typical for
medical domains.
Focusing on retrieval. An idea to avoid the adaptation problem is to build retrieval-only



systems. These are programs that only retrieve similar cases and present them as information
to the user. Some of them additionally point out important differences between current and
similar cases. The justification for giving up the adaptation task is that in some application
domains it is much too complicated or even impossible to acquire adaptation knowledge
[14] and that physicians are interested to get information about former similar cases, but
wish to reason for current patient themselves [8]. Examples of succesful retrieval-only
systems are mainly in the fields of images [8] and of organ function courses [15].

A similar idea is to combine CBR with rule-based methods. In CASEY [10] this
combination is extremely lose: If no similar case can be found or if not all adaptation
problems can be solved, a separate rule-based program is applied. However, in some
systems there are much closer relations between a CBR component and other components.
In CARE-PARTNER [16] CBR retrieval is used to search for similar cases to support
evidences for a rule-based program. In a program for decision making for insulin dependent
diabetic mellitus patients [17] a CBR part and a rule-base are applied in parallel, the results
and the co-ordination of further steps is handled by meta-rules. However, these systems do
not perform the complete CBR cycle, but only incorporate CBR retrieval.
Generalised cases. As one reason for the adaptation problem is the extreme specificity of
single cases, a different idea is to generalise from single cases into abstracted prototypes
[18] or classes [19]. Though the main ideas for this generalisation are to structure the case
base, to decrease the storage amount by erasing redundant cases, to speed-up the retrieval
and sometimes to learn more general knowledge, additionally it can at least partly help to
solve the adaptation problem. An example is the diagnostic system for dysmorphic
syndromes (GS.52), where each case is characterised by a list of features, which usually
contains between 40 and 130 symptomes and syndromes. This means, there are so many
differences between a current and a similar case that an adaptation that takes all of them into
account is impossible. So, for all cases with the same dysmorphic syndrome a prototype is
created, which contains the most frequent observed features of these cases. Such an
abstracted prototypical case represents a dysmorphic syndrome and usually contains only up
to 20 features. For a current case the most similar prototypes are calculated. Subsequently,
for the adaptation only few constraints have to be checked.

The idea to partly solve the adaptation task by generalising can only work for diagnostic
tasks where abstracted typical cases represent diagnoses and additional specific features of
former single cases can be neglected. Abstracted cases fill the gap between general rules and
specific cases. If a hierarchy of abstracted cases exists (as in MEDIC), adaptation can be
seen as a top down search to find the most specific case that fits the current problem [13].

4. Examples

4.1. Retrieval-Only: Time Course Prognoses of the Kidney Function

As intensive care patients are often no longer able to maintain adequate fluid and electrolyte
balances due to impaired organ functions or because they are ventilated, physicians need
objective criteria for the monitoring of the kidney function and to diagnose therapeutic
interventions as necessary. At our intensive care unit the renal function monitoring system
NIMON [21] was developed that daily prints a renal report that consists of 13 measured and
33 calculated parameter values. However, the interpretation of all reported parameters is
quite complex and needs special knowledge of the renal physiology. Our aim was to develop
a system, called ICONS [15], that gives an automatic interpretation of the renal state to
elicit impairments of the kidney function on time. In the domain of fluid and electrolyte
balance, neither prototypical courses in ICU settings are known nor exists complete
knowledge about the kidney function. So we had to design our own method to deal with



course analyses of multiple parameters without prototypical courses and without a complete
domain theory.

The method consists of three main steps: Two data abstractions plus CBR retrieval. We
have got the idea of abstracting many parameters into one single parameter from RÉSUMÉ
[22] where the course of this single parameter is analysed by means of a complete domain
theory. The comparison of parameter courses with well-known course pattern is performed
in some medical knowledge based systems (e.g. by Haimowitz and Kohane [23] and in VIE-
VENT [24]). As no such pattern are yet known for the kidney function, we use single
courses and incremently learned prototypes instead of well-known course pattern to
compare with. We attempt to learn course pattern by structuring the case base by
prototypes.

As the interpretation of all NIMON parameters is too complex, we decided to abstract
them. For this data abstraction we have defined states of the renal function which determine
states of increasing severity starting with a normal kidney function and ending with a renal
failure. Based on these definitions, we ascertain the appropriate state of the kidney function
per day. Based on the sequence of assessments of transitions of the state of a day to the state
of the respectively next day, we generate four different trends. These trends describe courses
of states. Subsequently, we use Case-Based Reasoning retrieval to search for similar
courses. We present the current course in comparison to similar ones to the user, the course
continuations of the similar courses serve as prognoses (Fig.2.). As there may be too many
different aspects between both patients, the adaptation of a similar to the current course is
not done automatically. ICONS [15] offers only diagnostic and prognostic support, the user
has to decide about the relevance of all displayed information (e.g. additional renal
syndromes and courses of single kidney function parameter values).

Retrieval

The parameters of the trend descriptions are used to search for similar courses. As the aim is
to develop an early warning system, a prognosis is needed. As there are many different
possible continuations for the same previous course, it is necessary to search for similar
courses and different projections. Therefore, we have divided the search space into nine
parts corresponding to the possible continuation directions within three days. Each direction
forms an own part of the search space. During the retrieval these parts are searched
separately and each part may provide at most one similar course. The retrieval consists of
two steps for each projection part. First we search with an activation algorithm [25]
concerning qualitative features. Subsequently, we check the retrieved cases with an
adaptability criterion that looks for sufficient similarity, since even the most similar course
may differ from the current one significantly. If several courses are selected in the same
projection part, in a second step a sequential similarity measure concerning the quantitative
features is used. It is a variation of TSCALE [26] and goes back to Tversky [27].



Figure 2. Comparative presentation of a current and a similar course. In the lower part of
each course the (abbreviated) kidney function states are depicted. The upper part of each
course shows the deduced trend descriptions.



4.2. Dysmorphic Syndromes

GS.52 [20] is a prototype-based expert system which is routinely used in the children's
hospital of the University of Munich for many years. It is a diagnostic support system for
dysmorphic syndromes. Such a syndrome means a non-random combination of different
disorders. The major problems are the high variability of the syndromes (hundreds), the high
number of case features (between 40 and 130) and the continuous knowledge modifications
of dysmorphic syndromes. Each syndrome is represented by a prototype that contains its
typical features (Table 1).

The prototypes are acquired by an expert consultation session. The physician selects a
new or an existing syndrome and typical cases for this syndrome. Subsequently, GS.52
determines the relevant features and their relative frequencies.

The diagnostic support occurs by searching for the most adequate prototypes for a
current case. A similarity value between each prototype and the current case is calculated
and the prototypes are ranked according to these values.

_________________________________________________________________________
Diminished postnatal growth rate 77% Anteverted nares 63%
Hypercalcaemia 30% Prominent lips 17%
Prenatal onset 75% Long philtrum 17%
Mild microcephaly 67% Fullness of peri-o. region 75%
Full cheeks 46% Medial eyebrow flare 25%
_________________________________________________________________________

Table 1. Portion of an example of a generated prototype. The numbers are the relative
frequency in percentages the features occured in the cases of the prototype.

We evaluated the similarity measure of Tversky and the measure of Rosch and Mervis.
Tversky  [27] determines the similarity between a case and a prototype by adding up the
number of shared features and subtracting the number of features of the prototype which the
case does not share and subtracting the number of features the case does not share with the
prototype. In contrast to him Rosch and Mervis [28] ignore those case features which the
prototype does not share. Our experiment with both measures (Fig. 3.) shows that their
measure performed better than Tversky's, which indicates to ignore those features of the
current case the prototype under consideration does not share.

The result additionally indicates to present more probable syndromes rather than to
produce the one and only diagnosis. For both measures the correct diagnosis was always
among the first ten, mostly among the first five and majoritiely the first position. GS.52
contains about 230 diagnoses and more than 800 symptoms.
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GS.52 differs from typical CBR systems, because cases are clustered into prototypes, which
represent diagnoses, and the retrieval searches only among these prototypes. The sequential
retrieval considers every prototype, calculates a similarity value for each prototype and ranks
them according to these values. The adaptation consists of two examinations of the probable
prototypes: A plausibility check with general rules (constraints) and a check of evidences for
specific syndromes (some syndromes are nearly a proof for or against some diagnoses).

5. Conclusion

Case-based Reasoning seems to be a suitable technique for medical knowledge based
systems. However, the adaptation task is the bottleneck that has to be solved. Though
adaptation is sometimes a rather easy task (as in FLORENCE), in medical application it may
become an insurmountable difficulty. In this paper we have presented three possible
solutions, all of them are justified for specific applications and none of them is an ultimate
solution. Retrieval-only systems are especially useful for visualisation tasks, e.g. of images
or organ function courses, because the users wish to see and interpret all specific details
themselves [8]. Solving the adaptation by generalising is restricted to diagnostic problems
where the condition holds that: The more abstracted a case the more typical are its features.
This means to adapt by searching top down in a hierarchy of abstracted cases, the further
down the cases are placed in the hierarchy, the more specific and less typical are their
additional features [13]. Combining CBR with rule-based components should not really be
seen as a solution for the adaptation problem, but as an opportunity to incorporate CBR
subtasks (mainly the retrieval) into rule-based programs instead of applying the complete
CBR cycle.
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Abstract. Case-based reasoning is a problem solving method that uses previous 

experiences to solve new problems.  It comes up with new solutions by adapting old 

ones that have successfully solved previous problems similar to the given ones.  Most 

current CBR systems use context -dependent adaptation knowledge to do case adaptation; 

no general methods or algorithms have been proposed for case adaptation so far.  

Adaptation is still one of the main bottlenecks in case-based reasoning.  This paper 

proposed a general framework to do case adaptation.  It contains two modules, namely, a 

case selection and a case adaptation.  The case selection module induces an induction 

tree from the features of the retrieved candidate cases and employs decision theory to 

calculate the expected utility for each feature.  Feature adaptability is also solved in the 

calculation of utility.  Thus, higher utility implies higher adaptability.  It employs the 

knowledge-based planning mechanism to create a case adaptation plan consisting of a set 

of adaptation methods form the library.  Execution of the plan generates solution adapted 

to the given problem.  The case adaptation architecture can work as a subsequent 

component of any case retrieval component to constitute a complete case-based reasoning 

system. 

 

 

1. Introduction 

 

Medical diagnosis from surface etiology is difficult since there involve lots of 

complications.  A clinician has to carefully investigate a patient's symptoms, chief 

complaints, and pathology examination in order to decide possible diseases.  It takes 

years of training and practice for a physician to make correct decisions.  This worsens 

when the related etiology is hard to discern or multiple diseases suffered.  The rapidly 
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growing medical knowledge and new patient cases make the diagnosis process even 

more difficult.  Updating the medical knowledge incrementally in a traditional medical 

diagnosis system to cope with this is not that easy [3].  It can be made easier and 

reliable, however, if supplied with a system that contains and provides 

recommendations from the past diagnosis cases of different morbidity, since the 

clinician can benefit a lot from these prior cases.  This implies that the case-based 

reasoning (CBR) approach is appropriate to the problem.   

CBR is a problem solving method that uses previous experiences to solve new 

problems [3].  It has long been applied in medicine [1, 2, 5, 6].  It comes up with new 

diagnosis by adapting old ones that have successfully solved previous cases similar to 

the given patient data.  Most CBR systems, however, use context-dependent adaptation 

knowledge to do case adaptation.  So far, no general methods or algorithms for case 

adaptation have been proposed.  Adaptation is still one of the major bottlenecks in 

CBR. 

This paper proposes a general framework to do case adaptation.  It contains two 

modules, namely, a case selection and a case adaptation.  The case selection module 

creates an induction tree from the morbid features of the retrieved candidate cases and 

calculates the expected utility for each morbid feature.  We elaborately include feature 

adaptability in the calculation of utility.  Thus, higher utility implies higher adaptability.  

The utility is used to conduct pruning on the induction tree.  The case adaptation 

module then follows the pruned induction tree to create a case adaptation plan 

consisting of a set of feature adaptation plans.  Execution of the case adaptation plan 

proposes a new diagnosis. 

 

 

2. System Architecture 

 

Fig. 1 is the architecture of case adaptation.  It contains two modules, i.e., case 

selection and case adaptation.  The case selection uses induction tree to classify 

candidate cases and induces feature values.  First, it induces an induction tree from the 

features of the candidate cases.  It also calculates expected utility for each feature to 

analyze the usefulness of each feature.  It then prunes the induction tree according to 

the expected utility and solves the constraints and causal relations.   

The case adaptation module does actual adaptation by following the induction tree, 



 - 3 - 

supported by the adaptation plan library.  The basic adaptation strategy is as follows.  

It first creates a subtree from the induction tree, called adaptation tree, that covers all the 

problem features, satisfies all the relevant constraints, and contains no nodes whose 

expected utilities are below a threshold.  It also checks for those features that contain 

no values in the candidate case.  It then selects a feature adaptation plan for each node 

in the adaptation tree from the adaptation plan library.  It finally produces an adapted 

case severing as the diagnosis for the patient data by executing the case adaptation plan.  

This may involve the manipulation of feature values that appear in multiple paths, i.e., 

multiple diseases.  The following detail each module. 

 

 

Case selection

Case
adaptation

Candidate
cases

Query
problem

Diagnosed
diseases

1. Create induction tree
2. Compute expected utility
3. Prune tree
4. Solve constraints and causal relations

1. Create adaptation tree
2. Plan feature adaptation
3. Generate solution

 
Fig. 1 System architecture 

 

 

3. Case Selection 

 

The case selection module does refinement on the retrieved candidate cases, which 

all contain some features that are somewhat related to the characteristics of the given 

patient data.  Inducing all candidate cases into an induction tree, which is a decision 

tree with constraint links, provides a tool for guiding the selection of most possible 

diagnoses.  Fig. 2 exemplifies an induction tree with 3 candidate cases (Table 1) for 

respiratory disease diagnosis.  Note that each non-terminal node represents a morbid 

feature of the candidate cases.  Each outgoing link from a node represents a value for 

the represented feature.  The case selection component then goes to analyze the 
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usefulness of the features by calculating their expected utilities.  The calculation, 

basically, compares the difference of the context of the feature value with the given 

patient data and estimates the adaptability of the morbid feature accordingly.  The 

adaptability is then used to calculate an expected utility (EU) by Equ. (1) for the feature.  

EU serves as a metric for selecting cases for adaptation. 

∑
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where Ajk stands for the kth child node of feature node Aj , n is the number of children 

of feature node Aj , AD(Aj→ Ajk) is the adaptability value of the feature value 

represented by link Aj→Ajk [4], and P(Aj→ Ajk) stands for the probability of the feature 

value represented by link Aj→Ajk defined in Equ. (2). 
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where N(Aj→Ajk) is the occurrences of Aj→Ajk, n is the number of siblings, and k is the 

kth sibling of Aj, 1≤ k ≤ n. 

 

Table 1 Example candidate cases 

 Case #1 Case #2 Case #3 
Personal history 1 (PH1) Pneumonia Asthma N/A 
Personal history 2 (PH2) Typhoid Emphysema N/A 

Chief complaint (CC) Cough Cough Cough 
Present illness 1 (PI1) Sputum Hemoptysis  Hemoptysis  
Present illness 2 (PI2) Fever Fever Dyspnea 
Present illness 3 (PI3) Chest pain Weight loss Chest pain 
Present illness 4 (PI4) Chill Night sweating Weight loss 
Temperature (Temp) 39.1°C 38.2°C N/A 

Pulse rate (PR) 68 (/min) 72 (/min) N/A 
Respiratory rate (RR) 18 (/min) 20 (/min) N/A 
Blood pressure (BP) 130/85 (mmHg) 120/80 (mmHg) N/A 

Hb (HB) 16 (g/dl) 15 (g/dl) N/A 
RBC (RBC) 4.3*106 4.5*106 N/A 

WBC (WBC) 20*103 18*103 N/A 
Thoracentesis (TH) N/A N/A Effusion 
Effusion protein (EP) N/A N/A 4.6 (g/dl) 
Specific gravity (SG) N/A N/A 1.4 

Cultures (CU) Haemophilus M. tuberculosis  N/A 
Cytology (CY) Negative Negative N/A 

Chest x-ray (CXR) Normal Cavitation N/A 
Disease type (DT) Respiratory Respiratory Respiratory 

Affected organ (AO) Pulmonary Pulmonary Pulmonary 
Diagnosis (DI) Bacterial pneumonia Tuberculosis  Pleural effusion 
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CC PI1

PI2 PH12

PI12

PI13

PH11 PH21

C11

for feature node

for case node

for feature value link

for constraint link

CY1 C1

CY2 C2

PI21

CY3 C3

Temp1

TH3 EP3

C31

 
Fig. 2 Induction tree 

 

The calculation process of expected utility starts by setting the expected utility of the 

leaf node Ci to Ci's similarity, i.e., EU(C i)=Si, where Si represents the similarity of case 

Ci to the given problem p [8].  EU(C i) is then backed up to its father node by Equ. (1) 

to compute its father's expected utility.  This process repeats until it reaches the root 

node.  Fig. 3 exemplifies the computation.  Note that each leaf of the induction tree 

stores the surface feature similarity of each candidate case.  One interesting 

characteristic of this tree is that feature values that appear in more candidate cases are 

grouped more closely to the root for easy and fast subsequent inspection. 

 

 

B

A

D1 D2

E1 E2
E

V21

V12 V11

V32

V42

V32 V31

V44

V41V43

C2 C4 C3 C1

C41

C21

EU(C2)
= U(C2)
= 0.5

EU(C4)
= U(C4)
= 0.8

EU(C3)
= U(C3)
= 0.7

EU(C1)
= U(C1)
= 0.7

EU(E)
= 0.1

EU(E1)
= 0.64

EU(E2)
= 0.4

EU(D1)
= 0.05

EU(D2)
= 0.39

EU(A)
= 0.27

EU(B)
= 0.27

  

 

 

Link Value Adaptability Probability 

B → A V21 1.0 1.0 

A → D1 V12 0.6 0.33 

A → D2 V11 1.0 0.67 

D1→ E V32 0.5 1.0 

D2→ E1 V32 0.8 0.57 

D2→ E2 V31 0.6 0.43 

E → C2 V42 0.2 1.0 

E1 → C4 V44 0.8 1.0 

E2 → C3 V43 0.6 0.67 

E2 → C1 V41 0.5 0.33 

      

Fig. 3 Example of expected utility computation 
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Finally, it prunes the nodes whose EU are below a threshold and re-arranges the 

nodes that are under constraints into a proper causal sequence [7].   

 

 

4. Case Adaptation 

 

The basic strategy to do case adaptation contains three steps, namely, adaptation 

tree creation, adaptation plan generation, and adaptation plan execution.  First, it 

creates a subtree from the induction tree, called adaptation tree, that covers all the 

problem features, satisfies all the relevant constraints, and contains no nodes whose 

expected utilities are below a threshold.  It also checks for those features that contain 

no values in the candidate case.  It computes and uses the following closeness 

measurement to decide how to adapt the case.    

)AA(PR*)AA(P)AA(Closness jkjijkjjkj →→=→ , 

where P(Aj? Ajk) is the occurrence probability of the feature value Aj? Ajk and PRi(Aj?

Ajk) is the proximity of the feature value Aj? Ajk to the disease type i.  If the closeness 

is above a threshold, the corresponding feature value in the candidate case is 

considered to be relevant to the new problem and retained in the adaptation tree.  In 

this case, the judged disease is stated to be true “under the condition that the feature 

value Aj? Ajk occurred, i.e., IF (Aj? Ajk) THEN (diseases)”.  If the closeness is below 

the threshold, the corresponding feature value as well as the associated constraints is 

removed.  This strategy of handling null feature values in adaptation can reduce most 

user intervention.  Fig. 4 shows the adaptation tree created from Fig. 2.  

 

CC PI3

PH11

PH13

PH21

PH23

PI11

PI13

. . .

. . .

C1

C3  
Fig. 4 Adaptation tree 

 

Second, the adaptation process develops a case adaptation plan from the 

adaptation tree with the help of a feature adaptation plan library by creating a feature 

adaptation plan for each one.  A feature adaptation plan specifies how to adapt a 
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feature value.  If none of such feature adaptation plan exists, a partial-order planning 

planner is called to produce a new feature adaptation plan from the general adaptation 

operators of the plan library for the feature.  Fig. 5 illustrates the feature adaptation 

plan for the culture feature, which adapts the value from haemophilus to 

pneumocuccus.   

 

Start CU_1 CU_2 Finish

 
Step # Start CU_1 CU_2 Finish 
Feature name CU1 CU1 CU1 CU1 
Feature value Haemophilus VCU1 Pneumocuccus Pneumocuccus 

Adaptation operator N/A Problem abstraction Problem 
refinement 

N/A 

Fig. 5 Feature adaptation plan for the “culture” feature 

 

Finally, the adaptation process follows the case adaptation plan to adapt the 

feature values in the adaptation tree to meet the patient data in order to produce a new 

diagnosis.  If there are multiple paths in the adaptation tree, each path has to be 

visited in order to take care of multiple solutions.   

 

 

5. Conclusions 

 

We have proposed a general case adaptation mechanism that can be used in 

medical diagnosis based on the induction tree technique to handle the adaptation 

problem in CBR.  It features the integration of induction technology with utility 

theory in case selection, which helps a lot in hammering out valuable morbid features 

for the target case from existent ones and in pruning unnecessary search space.  It 

also employs the general planning technique to create a case adaptation plan that 

contains a set of general adaptation methods form the library.  The diagnosis for the 

given case is obtained by executing the case adaptation plan.  This general 

adaptation architecture can work as a subsequent component of any case retrieval 

component to constitute a complete CBR system.     

In summary, the proposed general adaptation architecture exhibits the following 

interesting features.  First, the case adaptation is effective with the help of feature 
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expected utilities.  It also dynamically tackles multiple cases with the help of the 

adaptation tree.  Second, the adaptation process is a planning-based mechanism, 

which is thus unlikely to be performance-degraded.  It can select the adaptation plan 

automatically without any domain-dependent heuristics to specify the adaptation 

methods.  Finally, the general adaptation plan library can support the planning-based 

adaptation process and also assimilate adaptation plan to enhance the adaptation 

ability. 
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Abstract 
 
We propose a Multi Modal Reasoning (MMR) methodology meant to provide physicians with knowledge 
management and decision support functionality in the context of Insulin Dependent Diabetes Mellitus care. 
The MMR system performs a tight integration of Case Based Reasoning (CBR), Rule Based Reasoning 
(RBR) and Model Based Reasoning (MBR), with the aim of suggesting a therapy properly tailored on the 
patient’s needs, overcoming the single approaches limitations. This methodology allows the exploitation of 
the implicit knowledge embedded in patients’ visits (past cases) and in monitoring data, respectively through 
Case Based retrieval and model identification. On the other hand the explicit domain knowledge is 
formalised in a set of production rules, and in the resulting model itself. The system has been preliminary 
tested on real patients’ data. 
 
 
1. Introduction 
 
The introduction of Hospital Information Systems (HIS) into clinical practice has led to the 
memorisation of large amounts of data, extracted from day by day experience, thus making 
available a new type of knowledge, which can be exploited together with the general 
domain one. In the field of chronic diseases, and in particular of Insulin Dependent 
Diabetes Mellitus (IDDM) care, the quantity of data is huge, since the illness is a life-long 
condition. IDDM patients suffer from an impaired functionality of the pancreatic beta cells, 
and need to inject themselves exogenous insulin 3 to 4 times a day to regulate blood 
glucose metabolism. Such an intensive therapy may lead to hypoglicemic episodes: Blood 
Glucose Level (BGL) has therefore to be frequently tested and logged. In order to improve 
the quality of care, this implicit knowledge about patients’ histories (and physicians’ 
expertise) needs to be kept, managed and distributed across the institution, and to be 
integrated with the other available knowledge sources, i.e. the explicit domain knowledge, 
formalised in knowledge bases or rule sets. A proper Knowledge Management (KM) 
approach seems a valuable way for supporting the complex process of IDDM patients 
management. In particular it seems interesting to provide instruments for supporting 
decisions in therapy planning, since revising insulin administration is a complex task, that 
can be correctly afforded only by customising general indications on the basis of the single 
patient’s features [1]. 
To this end, we propose a Multi Modal Reasoning (MMR) methodology, that performs a 
tight integration of Case Based Reasoning (CBR), Rule Based Reasoning (RBR) and 
Model Based Reasoning (MBR), with the aim of suggesting a therapy properly tailored on 
the patient’s needs, overcoming the single approaches limitations. The methodology allows 
the exploitation of the implicit knowledge embedded in patients’ visits (past cases) and in 
monitoring data, respectively through Case Based retrieval and model identification. On 
the other hand the explicit domain knowledge is formalised in a set of production rules, 
and in the resulting model itself. 



 
2. The Multi Modal Reasoning paradigm 
 
The backbone structure of the decision support procedure we have implemented is based 
on the following reasoning tasks:  
 
1. identification of metabolic problems; 
2. generation of a set of suggestions, able to cope with the identified metabolic problems, 

and selection of the most suitable ones;  
3. application of the selected suggestions to the current insulin protocol;  
4. selection of additional library protocols that could also fit the situation at hand. 
 
The reasoning paradigm described above is completed resorting to the combination of a 
rule system, a Case Based retrieval system, and a model of the glucose-insulin interaction. 
In particular, the RBR system is able to schedule the tasks execution, invoking the different 
methods to be exploited. In the following subsections, the tasks execution is described in 
detail.  
 
2.1 Identification of metabolic problems 
 
The RBR system fires some specialised procedures for data analysis and metabolic 
indicators extraction. All the data collected during daily home monitoring by diabetic 
patients are classified as belonging to one of seven non-overlapping time slices, in which 
the day is subdivided, i.e. breakfast, mid-morning, lunch, mid-afternoon, dinner, bed time, 
night time. The data are then analysed through a Temporal Abstractions (TA) technique 
[2]. The basic principle of TA methods is to move from a time-point to an interval-based 
representation of the data. Given a sequence of time stamped data (events), the adjacent 
observations which follow meaningful patterns are aggregated into intervals (episodes). In 
particular, basic abstractions can be used to extract states (episodes of low, high, normal 
values) from a time series. When detecting state patterns in time series of numerical 
variables, a preliminary qualitative abstraction is carried out. The mapping between the 
qualitative abstractions and the quantitative levels of each numerical variable depends on 
the time slice and on the specific patient’s characteristics. For example, the BGL normal 
range is wider in the morning than around lunch, and it is wider in paediatric patients than 
in adult ones. Then, the BGL state abstractions are derived, moving from the original time 
scale to a new scale obtained from the sequence of relevant patterns detected in the data. 
In our application, five BGL state abstractions have been defined: severe hypoglycemia, 
mild hypoglycemia, normoglycemia, mild hyperglycemia, and severe hyperglycemia. 
From these episodes, the so-called BGL modal day can be calculated [2]. The BGL modal 
day is an indicator able to summarise the average response of the patient to a certain 
therapy. By applying the Bayesian updating scheme described in [3], in each time slice we 
derive an interval probability estimate for the marginal distributions of the five BGL states.  
The difference between the lower and upper probability bounds is proportional to the 
number of missing data, i.e. the number of days in which the patient did not collect the data 
in a certain time slice, over a certain monitoring period. The formulas for calculating the 
probability bounds of the l-th qualitative level of BGL in a certain time slice are given 
below: 
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where psup and pinf are the upper and lower bounds, respectively, dl is the number of days in 
which the episode corresponding to the l-th level is verified, N is the total number of 
monitoring days, and M is the total number of missing data. It is worthwhile noticing that 
the upper and lower probability bounds coincide when N=0, and are equal to 1/5, 
corresponding to a uniform probability distribution over the 5 levels. 
Problems are identified when pinf > α and psup < β , being α and β  two parameters that by 
default are equal to 0.3 and 0.8 respectively, when RBR is applied with no integration. 
Through the Case Based retrieval tool, the problem identification task can be specialised, 
by setting the two parameters to more proper values, depending on the case features. In 
more detail, Case Based retrieval is implemented as a two-step procedure: a classification 
step, and an actual retrieval step. In the problem identification task, only classification is 
exploited. The input case is classified relying on a taxonomy of prototypical classes, that 
describe the most common situations a paediatric diabetic patient may incur in (see figure 
1). α and β  assume the values associated to the most probable class for the case at hand, 
identified by resorting to a Naive Bayes technique [4], that makes the hypothesis of 
conditional independence among the features given a certain class. Although this approach 
makes such a strong assumption, it is known to be quite robust in a variety of situations 
[5].  Prior probabilities have been derived through the collaboration with the diabetologists 
of the Paediatric Department of Policlinico S. Matteo in Pavia, while posterior probabilities 
were learnt from the available case base (145 cases from the histories of 29 pediatric 
patients) by using a standard Bayesian updating technique [4].  
 
 

 
Figure 1: the taxonomy of prototypical situations that may occur to paediatric diabetic 
patients  

 
 
2.2 Suggestion generation and selection 
 
A number of rules is applied to propose solutions to the problems derived in task 1. Among 
all the alternative suggestions generated, only the most suitable are selected. Suggestion 
selection consists in identifying the most effective ones, and in adapting them to the 



patient’s lifestyle. Insulin modification suggestions effectiveness is calculated relying on 
the concept of Insulin Activity; the effectiveness at time t of an insulin dose given at time 0 
is: 
 
S=IA(t) 
 
where IA(t) is the residual Insulin Activity at time t obtained as in figure 2. The IA is 
calculated using the model proposed by Hovorka [6] and depends only on the specific 
insulin type chosen for the patient at hand. 
The suggestion generation and selection reasoning task is completely performed by the 
RBR tool (see [7] for further details). 

 
Figure 2: Comparing Insulin Activities for two insulin types: Regular (fast acting) and NPH 
(slower acting) insulin. For a problem at dinner, a suggestion proposing an adjustment of 
NPH insulin at breakfast is more effective than one dealing with Regular insulin, injected at 
the same time slice. 
 
2.3 Application of the selected suggestions to the current insulin protocol  
 
The RBR system typically suggests default solutions that consists in small variations of the 
current protocol insulin doses, as it is meant to be conservative enough to be safely 
applicable in a variety of different situations. However, when possible, a model is used to 
calculate the optimal insulin doses related to the daily schedule obtained by applying the 
suggestions derived during reasoning task 2. To this end, we have exploited the stochastic 
version of the model proposed in [8]. This model assumes that a patient reaches a daily 
cyclo-stationary behaviour in response to a certain insulin protocol. The change in the 
steady state BGL values is described by a differential equation, that has the following 
solution: 
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where BGL(ti,Rj,j=1,2) is the steady state value of BGL at day time i, in response to 
insulin therapy R1 or R2, Iarel is the change of the daily insulin activity profile moving 
from insulin therapy R1 to R2, r(t) is a function that expresses the different insulin 
resistance that may occur during each day, and K and S are the patient specific model 
parameters. One problem of this model is the need to extract a point estimate that describes 
the daily behaviour of a diabetic patient. This means to obtain a single daily profile as a 
summary of the patient’s response to a certain therapy (i.e. the modal day). For this reason, 
the estimate of the BGL modal day has been carried out by resorting to the probabilistic 
approach described in the previous section. At each measurement time the probability 
distribution of BGL, discretised in the five qualitative levels already presented, is 
calculated according to formulas (1). Such distribution is then propagated by resorting to 
the model (2). The overall procedure results in the Markov model described in figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: The Markov model describing the propagation of the BGL probability distributions 
 
 
Rather interestingly, this model has a deterministic transition matrix (given by the model) 
and a stochastic representation of the BGL state. 
The performance of a certain insulin regimen can be therefore measured by calculating its 
expected utility: 
 
 

where Ck is a suitable cost associated to each BGL qualitative level. Figure 4 shows the 
cost function C in dependence on the BGL values. 
This scoring function allows to determine the best insulin protocol modification, according 
to the decision theory. The expected utility function is maximum for normoglycemia and 
minimum for hypos and hypers; the doses that maximise it are chosen.  
Unfortunately, not always the model turns out to give reliable predictions. This problem 
may be easily detected during the model parameters identification. When this situation 
holds, the MMR system performs the CBR retrieval step, restricted to the most probable 
classes identified during reasoning task 1. In more detail, the physician is allowed to 
choose whether to retrieve only cases belonging to the most probable class, or to a set of 
very probable classes. In both situations, cases are retrieved by resorting to metrics able to 
cope with the problem of missing data, and to treat both symbolic and numeric variables 
[9]. When dealing with a very large case library, it is possible to perform a non exhaustive 
search procedure, exploiting a pivoting algorithm [10], that greatly reduces the retrieval 
time [4]. Some simple statistics are calculated on the retrieved cases, to set the insulin 
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adjustments width that will then be applied to the current protocol. Therefore, MBR and 
Case Based retrieval are used in a mutual exclusive way to specialise the rules behaviour. 
 

 
Figure 4: The cost function C in dependence on the BGL values 
 
2.4 Selection of additional library protocols 
 
After having adapted the current therapeutic protocol to the problem at hand, similar 
protocols can be retrieved from a library of past protocols. The final choice is then left to 
the physician, who is also allowed to edit a different therapy, if she/he believes that the 
proposed ones are unreliable. 
 
3. First evaluation results 
 
A first evaluation procedure of the MMR methodology described in this paper was carried 
out resorting to a real patients’ data set, provided by the Paediatric Department at 
Policlinico S. Matteo. 
The results may be summarised as follows: 
 
1. it is usually possible to obtain a model that leads to reliable predictions when dealing 

with “simple” situations (i.e. cases in which the correct therapeutic strategy can be 
easily identified). Obviously, when the model can be exploited, it provides the optimal 
insulin doses adjustments. In particular, “simple” situations correspond to all situations 
in which a clear causal effect of insulin dosages on the BGL can be detected in the 
data. 

2. on more complex situations (such as “brittle control” or “Somogyi effects” [11]), the 
model cannot be effectively used; in these examples, the possibility of exploiting past 
cases similar to the current one, retrieved through the CBR methodology, is very 



helpful for the definition of a proper therapy. In comparison to the application of RBR 
with no integration, the exploitation of retrieval results leads to a sharper and more 
suitable insulin doses adjustment, customised for the patient at hand; 

3. on the other hand, when the case library content is poor, the retrieval results may lead 
to an unfit rule specialisation. In this condition, only RBR can provide a reliable (even 
if maybe too conservative) solution. Nevertheless, the CBR methodology enables an 
easy knowledge storing and upgrading. The overall system will automatically improve 
its competence during routine clinical practice, as new cases will be stored in the HIS 
without requiring an additional work load to physicians, and will contribute to reduce 
the competence gaps. Through the memorisation of new information, the system is 
therefore able to learn how to cope with more and more complex situations. 

 
4. Conclusions 
 
We have presented a MMR system that integrates RBR, CBR and MBR, with the aim of 
supporting patients management and therapy revision in the IDDM domain. This MMR 
methodology can also be seen in a KM perspective, as a valuable instrument for 
knowledge sharing, distributing and reusing. As a matter of fact, through case 
classification and retrieval, the tool is able to contextualise and categorise cases, 
transferring the implicit knowledge into an explicit form, and making it immediately 
exploitable by the physician. When successful, model identification enables to extract from 
the data the available information, by exploiting the explicit knowledge contained in the 
model itself.  
Moreover, defining a new therapy scheme for the situation at hand, as it would happen 
without the use of the MMR system, would be an activity of implicit knowledge creation: 
the new information would be just stored in the HIS, in a form not ready for reuse. The 
MMR methodology, instead, enables the physician comparing her/his own decision with 
the therapy automatically suggested: this decision assessment procedure transforms the 
new therapy into explicit knowledge, already analysed in the light of both formalised 
information (due to the model and to the RBR component application) and past experience 
(due this time to model identification and to the CBR component exploitation).  
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Abstract. Some methodological aspects of the process of the integration of Biomedical Technology, 
Information Technology, and Medical Decision Making that result in Computer Supported Case Based 
Reasoning in Medicine are examined. 
 
 
1. Introduction 
 

The purpose of this paper is to deal with some methodological aspects of the process of the 
integration of Biomedical Technology, Information Technology and Medical Decision Making, 
that result in Computer Supported Case Based Reasoning in Medicine. The multi-faceted 
character of the human organism has always led physicians to employ a casuistic approach to 
clinical practice. Attempting a generalization of the experience accumulated during related recent 
research and development activities, some important aspects of this agendum will be presented, 
concerning Medical Inference and Case Based Reasoning, examining the employment of 
electronic Patient Records, in various Decision Supporting Systems, and touching questions 
regarding Case Based Reasoning,  as an important  medium to promote Interdisciplinary Medical 
Education. 
 
 
2. Some Historical Remarks on the Development of Medical Reasoning 
 

The concepts, the classificatory schemata and the methods involved in diagnosis and treatment 
are subject to the prevalent at the time theoretical model of disease. Pre-Hippocratic medicine 
had a religious, a magical and even a mystical character. Hippocratic medicine changed the 
approach to illness. Diseases were explained in terms of intra-corporeal causes, and 
consequently, treatment was the reestablishment of the proper balance. The Galenic system 
introduced a symptoms-based diagnosis and a general principle of treatment , the contraria 
contrariis curantur (cure by contraries), which, led to the stagnation of medicine by becoming a 
dogma. The introduction of the notion of the necessity of experimentation in medicine by the 
Arabs and especially by Ibn Sina (Avicenna) was the only noteworthy development in the fifteen 
centuries of Hippocratic-Galenic dominance of the field.  

 



The development of medical practice from Paracelsus to the middle of the nineteenth century, 
comprises of, first, the attempt to formulate a taxonomy and a strict aetiology of diseases,  
second, the placement of bodily phenomena exclusively in the realm of natural phenomena, third, 
the systematic examination of the structure and the function of the body and its organs, and finally, 
the impact of the natural sciences such as physics, chemistry and biology on medical practice [1]. 

 
Two events may be considered as marking the birth of contemporary biomedical technology. 

The first was the discovery of x-rays by Roentgen in 1895, an event which fulfilled the wish of all 
physicians since antiquity to "see" the inside of the human body. Roentgen's discovery allowed the 
non-invasive imaging of the human body and thus induced a revolution in medical practice. 
Einthoven, on the other hand, in 1901, measured for the first time the bio-electrical potentials 
(ECG) of the heart's action, on the body, contributing thus to the rejection of views associated 
with the notion of vis vitalis. These two events led to a close collaboration of physicists and 
physicians which resulted in the development of a methodology common to both the natural 
science and to medicine which, in turn, led to an impressive growth of biomedical technology.  

 
Contemporary diagnostic procedures entail the use of biomedical technology and are intimately 

related to its development. These procedures consist of the collection of diagnostic information 
and the evaluation and assessment of the individual patient. The evaluation of the data collected 
and the individual assessment of the patient depend on the theoretical models of disease adopted 
at the time, and on the difficulty of establishing criteria of normality and abnormality in human 
biology. 
 
 
3. Medical Inference and Case Based Reasoning. 
 

Every activity entails decision making. Decisions are the basic components of scientific, 
professional and private life, and Medical Reasoning [4],[5] constitutes the essence of Differential 
Diagnosis, which actually forms the “hard core” of Medical Sciences. The typical methodological 
approach to obtain a diagnostic conclusion, is the comparison of the “data”-set collected from 
the patient with a similar "reference"-set of data, which represents the "normal"  condition and 
which is defined in a more or less arbitrary manner being based on previous, collective 
experience. The difference of the sets constitutes the "symptoms" -set,  which is intended to lead 
to the successful diagnosis. An implicit assumption in the above procedure is that a pathogenetic 
process leads to a "nosos"  [disease]. This disease is manifested through an alteration of 
morphological and functional features, which are exhibited as parameters, detected (or are 
expected to be detected) through the clinical information, the in vivo signals, the in vitro values 
and the medical images obtained during the diagnostic procedure. 

 
It is further assumed, that there is a well defined variation range of the above mentioned data, 

which is empirically known to correspond to a "normal"  status of the human individual (health-
state) and that the data exceeding this variation interval, indicate the appearance of an 
"abnormal"  status of the individual (disease state). An additional implicit assumption made is that 
the detection of an adequately large set of disturbed data ("symptoms"- set) allows for to 
conclude that a certain disease is present which is induced by the same pathogenetic factors such 
as have been observed to result in the same or similar disturbance (symptoms) in a "reference" 
case. These assumptions are not always valid and it is often very difficult or even impossible to 
satisfy them mainly be cause of the huge number of parameters influencing the health condition of 
a certain individual and the criteria by which the elements of the corresponding sets are selected. 



 
However, the diagnostic procedure might be successfully completed because the lack of 

information is substituted by a "diagnostic feeling", developed by the physician and which is based 
on the length of his practice and a belief in the uniformity and regularity of phenomena. The step 
from diagnosis to treatment is based on the expectation that the human body will behave in an 
identical manner under similar conditions. The above discussion presupposes that there is a 
certain "property" of some individuals which can be referred to as "medical expertise". This 
"property" entails, first, medical information which is organized according to some taxonomic 
schemata. Second, it contains criteria for the logical evaluation of the inferences made and, third, 
selection rules which allow the appropriate use of the acquired knowledge. Finally, a fundamental 
component of medical expertise is that which was referred earlier as "diagnostic feeling". 
 
 
4. Creating computer-supported Case Based Reasoning 
 

The question, at this point, is whether "medical expertise" can be formalized and transferred into  
an appropriate computer system. This transfer, however, must satisfy certain conditions, the first 
of which is the formation of a knowledge base  which comprises of codified and classified medical 
information. Further, it should provide a set of algorithms, which allow the formal-mathematical 
interpretation of the criteria employed in an evaluation,  and selection rules, which are applied in 
medical praxis. Third, it must attempt to incorporate "diagnostic feeling".  

 
There are various sources of medical information which constitute the knowledge base. The 

cognitive framework of the processing, and the constraints which arise in the context of each 
given situation, are expressed through the formation of functions and sets, that represent the 
classified and codified medical knowledge. An additional aspect is the definition of the operations 
and the operators that lead to the evaluation of the medical information and the implementation of 
the selection criteria and the decision making rules. Finally, there is the selection of the boundaries 
that set implicitly the demarcation criteria between "health" and "disease" and which allow for the 
quantification of the extent of the action to be taken when such an action is deemed necessary. 

 
The various aspects of processing of medical information are structured as reasoning models 

which enable the apparatus to make inferences and reach conclusions. Such a model  can be 
expressed in a generalized form by a function: 

 
F = F {f1(x11, x12, …x1n), f2(x21, x22, …x2n), … fk(xm1, xm2, …xmn)} 

 
where, fi and xjl stand for various logical or analytical functions and the corresponding 

parameters of terms which constitute the individual patient “case”. A the case-based reasoning 
model,  is that, where the function F and its components are compared to a number of cases, 
which have been already evaluated by experts.  The number of such cases, which can be steadily 
increasing, allows for the selection and definition of a "measure" of comparison between the case 
at hand and the other cases. On the basis of that "measure", the case which most approximates 
the case under consideration is selected and constitutes the basis of the diagnosis and treatment 
proposal : 

 
|| F - Fe|| → 0   

 



where e = 1,2,3,...E, and E represents the evaluated and saved cases at the given time. The 
operator || || is individually defined differently in each case-based reasoning system and sets 
implicitly the boundaries of its application. Case-based reasoning is possible only insofar, as the 
experience and the corresponding "diagnostic feeling" of several experts can be incorporated in 
the system and the cases treated by them can be reproduced. 

There are two groups of major difficulties in the application of case-based reasoning systems, in 
complex medical situations. The first set concerns the difficulties in providing functions and values, 
because the input data must be available in a standardized form, something which is not always 
possible, at least today,  especially in the case of medical images. In real world applications, we 
attempt to solve this problem, first,  by introducing feasible approximations, thus, reducing the 
number of the employed parameters, and, second, by employing several data conditioning 
preliminary stages, which simplify the model, however, they reduce the sensitivity and the overall 
performance of the model.  

 
The second source of uncertainty, is the required evaluative calculus,  in order to assign a 

relative importance to the items of information, included in the knowledge base, since all the data 
concerning a case, do not have equal weight in the diagnostic and treatment process decided 
upon. Numerous powerful  methods, such as neural networks, fuzzy sets, statistical techniques 
etc. [2], [3], [8], [9] combined to signal and image processing algorithms, are presently applied. 
They primarily attempt to simulate the human diagnostic procedures, by incorporating at least 
fragments of the interaction between patient and physician, by adopting the public inferential 
principles employed, and by replicating the private principles of several experts. 

 
The casuistic approach, allows for a flexible approach to diagnosis and emphasizes the 

individual aspects of treatment. Thus, case-based reasoning systems in medicine, may provide an 
adequate approximation of the function F, which describes the state of the patient. Further, it 
enables the physician to detect and evaluate the abnormality region in each value domain,  
provided that  the subject-matter of a problem group in a clinical specialty, is thoroughly defined, 
the knowledge and experience concerning it, is  adequately founded, on the basic medical 
sciences, and, finally, there is plenty of  relevant clinical data available.  
 
 
5. The employment of Medical Records in Computer Supported Reasoning. 
 

Medical records usually include, first, clinical information obtained by the case history, and by 
the physical examination, second, data acquired through various diagnostic procedures, third, 
information related to various therapeutic interventions and, lastly, data which are of administrative 
and of  financial importance such as insurance, costs of medical treatment, cost of hospitalization 
etc. [11]. 

 

Medical records are used in a variety of ways and they serve a multiplicity of purposes. The 
first of these functions, is that of the use of the records in the treatment process. On the basis of 
information included in the record, the physician reaches a diagnosis and charters the course of 
the intervention, and, on the basis of the record, a patient is enabled to make informed decisions, 
concerning the proposed treatment. The second important point is,  that the education and the 
training of physicians, nurses and other health care specialists, necessitates their acquaintance, 
with data derived from clinical practice, in addition to their formal education and the information 
they derived from textbooks and other publications. Information registered in patient’s records 



must be precise and comprehensive, since data concerning clinical trials of novel therapeutic 
schemata and statistical data involved in epidemiological research, derive from these records.  

 
Knowledge bases, used in various decision supporting systems, are composed by the selective 

employment of components of the records, and consequently, various research programs and 
their methods, are bound to the structure, the availability and the handling of the medical records. 
Most of these data can be found primarily, only in medical records. However, the dissemination 
of data deriving from medical records in the medical networks, poses the danger of eliminating the 
individual characteristics of the specific patient, and the only thing which remains in any specific 
Computer Supported Reasoning application, is an abstract, conceptual and impersonal condition.  
 
 
6. Medical Education and Case Based Reasoning. 
 

The optimization of the decision making processes in Medicine, requires continuous training. On 
the job training, contributes to the promotion of interdisciplinary research, by addressing, through 
specific case handling, in an effective manner,  the problem on intra-specialty communication. On 
the other hand, hypertext and multimedia courseware,  are gaining importance in Medical 
Education [6], [7], [10] and they can be used in order to offer clinical-practice oriented training. 
Web-based and other emerging technological alternatives promise to reach various groups, 
offering them continuous education services. These groups may comprise also of  those,  who are 
already engaged in professional work, such as physicians, nurses, engineers, physicists, 
technicians etc.  

 
Case based reasoning systems can play an additional role, in Medical Education,  that of 

contributing to the acquisition and dissipation of clinical expertise since, first, they familiarize the 
trainee with a rich empirical content,  often not available in individual clinics, second, by relating 
this content to the theoretical aspects of the specific cases, and third, by revealing the " diagnostic 
feeling" involved in diagnosis and treatment. This supporting role and, especially, the important 
function,  which case based reasoning systems should have in the structure, the methods and the 
content of medical education, underscore the need of further research in the theoretical aspects 
and the actual development of such systems 

 
 

7. Concluding Remarks  
 

Concerning the attempts to improve the diagnostic significance, emerging out of measured 
biological parameters, related to several bodily functions, we have to point out, that the nature of 
Medical decision making must be examined presently in order to determine the special 
characteristics of its components, i.e. the reasons, the method of inference and the ensuing 
actions.  

 
These  reasons refer usually both, to biological functions, and to the aspects which are unique to 

the problem in question, that is they express the specific parameters which allow for the 
instantiation of the specific problem. Decision making concerning the real patient, can be assisted 
by decision supporting systems, relying on case-based reasoning models, like the ones described 
above.  

 



Finally, pertaining to the development of case based on-line educational means, addressing 
needs which stem out of the theoretical and practical aspects of medical decision-making, it 
should be kept in mind, that  medical data, disseminated in the Web or available in other digital 
forms, constitute cost-effective and practical means, augmenting equality in medical training, 
however, they may result in a new type of fragmentation and compartmentalization of the 
patient’s body and personality, thus endangering the interpersonal relation between him and the 
physician, if  the social and ethical premises are neglected, in the mode of the presentation of the 
medical inferences employed.  
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