
Extending Google Android’s Application as an Educational Tool

 1Bian Wu;1Alf Inge Wang;1Anders Hartvoll Ruud
1Norwegian University of Science and Technology,

1Norway
1bian,alfw,anderru@idi.ntnu.no

2Wan Zhen Zhang
2Guilin University of Electronic Technology,

2China
2zwan_zer@163.com

Abstract—This paper introduces how to extend Google android
platform as a game development tool to learn software
architecture based on the double stimulation method. It starts
with the motivation to choose the android platform since most
of students in software architecture course from NTNU
(Norwegian University of Science and Technology) have
experiences of using java and eclipse platform before they
starts this course. And then it describes the design and
construct of extended android platform, called “Sheep”
framework. Further, it presents the application of the Sheep
framework as second stimulus means integrated in the game
exercises in the software architecture course. Finally, the paper
discusses the contribution from the aspects of technology, game
ideas and pedagogy.

Keywords- Google Android; Higher Education; Double
Stimulation; Software Architecture; XNA; iphone SDK

I. INTRODUCTION
The rapid development of electronic devices and network

communication provides a foundation for improving the
learning and teaching environments through technology. A
common phenomenon is that new game ideas grow up with
distinctive technology or novel equipments used in learning,
and it also brings a challenge to educational games, how we
could integrate games in lectures, exercises, day life with
recent technologies, such as 3G[11], PSP [10], iphone [3] or
youtube, etc, to enrich the teaching or training environment
and achieve better learning life.

However, when we live in and start to deliberate our
learning and teaching in technology rich learning
environments, we are facing some challenges and
opportunities that arise from introducing technology into
learning and teaching. Most of the theoretical literature on
learning and teaching has not yet incorporated a perspective
on technology as to how perceive learning and teaching,
especially on game-based learning. As such, we would
discuss it by present cases of how game technology to
perceive the learning in this paper.

This paper’s idea was inspired by the work on using
XNA [13] successfully in teaching software architecture
through students’ teamwork on game projects [1]. Similarly
we want to see if we could use other development
frameworks than XNA for teaching software engineering and
computer science. Currently, most attractive choices are the
Google android [2] and iphone SDK [3], both are issued in
2007 and free to download from their official websites. After
two years, these SDKs become more matured, the newest

version of iphone SDK is 3.1, and android is 1.6. Both of
them have potential power to enrich the learning life through
diverse ways based on the various educational purposes.

This paper is organized as follows: Section 2 describes
the theoretical context, previous works and investigates the
features of Google android and iphone SDK. Section 3
introduces why and how to extend android platform as a
game development tool for teaching purpose. Section 4
explains design issues and results. Section 5 presents how to
integrate game development into teaching context based on
our extended android platform for software architecture
course. Section 6 presents a discussion of the teaching
method from different aspects, and Section 7 concludes the
paper.

II. RELATED WORKS

A. Theoretical Context
In schools, learners face a challenge, a problem, or a task

that has been designed for a particular pedagogical purpose
or they face situations that are likely to appear in work and
public life. In both cases the purpose of exploiting tools is
for learners to respond to such diverse challenges. Our focus
is on the construct of the relationship between the
educational tasks and the material artefact. This relationship
is at the heart of Vygotsky’s notion of double stimulation
[14], a method for studying cognitive processes and not just
results. In a school setting, typically the first stimulus would
be the problem, challenge, task, or assignment to which
learners are expected to respond. The second stimulus
would be the available mediating tools. However, it is
important to note that Vygotsky described this relationship
in dynamic terms and where the second stimulus is not a
discrete end point for this process but, “Rather, we
simultaneously offer a second series of stimuli that have a
special function. In this way we are able to study the process
of accomplishing a task by the aid of specific auxiliary
means” (p. 74, emphasis in the original). Note that
Vygotsky identifies the second stimulus in the plural—a
series. We take this to be most important when approaching
the second stimulus in the form of digital tools [15].

Based on this point, we have a case design of learning
environment present as below to describe how to construct
the double stimulation in software architecture course. Also
the design of the first stimulation (tasks) and criteria to

2010 IEEE International Conference on Digital Game and Intelligent Toy Enhanced Learning

9780769539935/10 $26.00 © 2010 IEEE

DOI 10.1109/DIGITEL.2010.38

23

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on July 17,2010 at 13:50:46 UTC from IEEE Xplore. Restrictions apply.

choose second stimulation (game development tools) are also
given.

B. Previous works – Student projects based on XNA in
software architecture course
In NTNU (Norwegian University of Science and

Technology), the software architecture course is a post-
graduate course offered to computer science students for
one semester. Students were grouped in 3-4 persons and
spent most time on the implementation phase (6 weeks) to
finish game projects. The goal of the project is for the
students to apply the methods and theory from the course to
design software architecture and to implement a system
(game) based on Microsoft XNA framework [4, 8]. The
project consists of the following tasks:

1) COTS (Commercial Off-The-Shelf) exercise: Learn
the technology to be used through developing a simple
game.

2) Design pattern: Learn how to use and apply design
pattern by making changes in an existing system.

3) Requirements and architecture: List functional and
quality requirements and design the software architecture
for a game.

4) Architecture evaluation: Use the ATAM
(Architecture Trade off Analysis Method) evaluation
method to evaluate the software architecture of project in
regards to the quality requirements.

5) Implementation: Do a detailed design and implement
the game based on the created architecture and on the
changes from the evaluation.

6) Project evaluation: Evaluate the project as a whole
using a PMA (Post-Mortem Analysis) method [12].

The second stimulus is chosen based on Malone’s “What
makes things fun to learn?” [16] and our own teaching
experiences. The following are the criteria:

• Easy to learn and allow rapid development;
• Providing an open development environment to

attract students’ curiosity;
• Supporting programming languages familiar to the

students;
• Not in conflict with the educational goals of the

course;
• A stable implementation;
• Have sufficient documentation;
• Low costs to use and acquire. From our previous

experiences, we found XNA to be a suitable tool in
the software architecture course according to overall
positive feedback from the students [1].

C. Features of the Google android and iphone SDK
This section compares the differences between android

and iphone SDK. Table 1 is the summary features of the
Google android and iphone SDK. Also, in order to get the
overall understanding of game development platform, we
also list the XNA’s features for the comparison in the Table.

Both android and iphone SDK have strong support and
market share. From technical perspective, they all have the
potential value that could be extended as game development
tools since most of their applications in the market are about
games.

From the evaluation of the two SDKs [17], we decided to
go for the android SDK to be used in the software
architecture course to learn the syllabus through a project.
However, we found that before android could be used, we
had to tailor it for our educational purpose.

III. EXTENSION OF ANDROID FOR AN EDUCATIONAL
PURPOSE

This section gives motivation of improving the android
for teaching purpose and direction of how to extend it.

Due to the different educational environments and
teaching aims, there could be various extending methods
and directions. Under this situation, we will give a case
study on how to improve Google android platform under the
direction of learning software architecture through game
projects.

A. Motivation
From our experiences of using XNA in software

architecture course, the survey of students’ context in NTNU
are nearly 90% have background of java programming [4],
and less than 20% have the background of C# or even more
less have the Objective C experiences. Most of students face
the time consuming of learning new programming languages
if they choose the game project in software architecture
course. This point is very important, since they have only 6
weeks for the implementation, and they also involve in other
courses. As such, Google android could give one more
choice for students with java background and enrich the
resources for the second stimulus (game development tools)
during teaching process. Moreover, using android to develop
mobile games also could attract students’ attention. So, our
goal is as follows:

• Extend the android platform as a game development
framework to match the first stimulus (tasks) based
on the double stimulation;

• Save students game programming time, let them
have more time focus on the course theory.

B. Direction of improving android
From our knowledge, there is no paper that describes

extending android or iphone SDK’s application as a game
development tool for an educational purpose, so not much
previous experiences are available. We must start from
validating which of the desired characteristics are present in
the extended android platform--we called it “Sheep”
framework. According to our goal, Sheep both enhances the
students' learning experience and helps them achieving their
goal faster by saving game development time.

While the android development kit provides a huge
programming interface for general application development,
the Sheep framework should not only focus on game

24

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on July 17,2010 at 13:50:46 UTC from IEEE Xplore. Restrictions apply.

development, but also on game development for the purpose
of learning software architecture to meet the tasks design in
the first stimulus in further.

C. Method
The method we used to get inputs for the required

features of the Sheep framework was a survey of previous
students’ exercises in the software architecture course.

This section presents a survey of student projects based
on XNA submitted in the software architecture course in
spring 2008, and investigates games types the students
made, game components they used in their games projects,
and architectural patterns and design pattern they used the
most. In total, 15 projects are analyzed. The use frequency
of game components are list as follows:

• 100% of the groups chose to make a 2D game. The
complexity of a game can be significantly reduced
by developing a 2D game rather than a 3D game.
Many of the architectural challenges which are
present in 3D game creation still apply in 2D games.

• 100% of the groups used fonts and text to some
extent in their game.

• 93% of the projects utilize collision detection. Many
groups use simple rectangle or circle collision
detection, some use per-pixel collision maps, and a
few use collision detection with advanced geometry.

• 93% of the games contained graphics in multiple
layers.

• 87% used graphical user interfaces to some extent.
• 87% also used game state logic in their games. Most

games had at least a initial state with a menu, and a
running state.

• 87% used sound and two variants are relevant:
background music, which enhances the atmosphere,
and sound effects, which are triggered when some
events occurs in the game.

• 40% of the projects used tiled graphics. Tiled
graphics makes sense in many contexts, especially
role-playing games, strategy games and platformers.

• 27% of the projects used frame-by-frame
animations.

• 20% used persistent data storage in their game, such
as saving/loading of progress, or a simple high-
score.

• Only 7% used particle effects, which are used to
achieve certain visual effects like fire, smoke, snow,
and so forth.

Certain elements, which we take for granted in any game
have been omitted from above lists, such as input. This is
simply to avoid inflating the list with entries of 100%
frequency. These omitted parts will not be neglected in the
design of the framework.

Also, the patterns that students used in game projects are
also useful references for the requirements and design for
the Sheep framework. The Model-View-Controller (MVC)
[5, 6] is by far the most popular architectural pattern, with
46% of the groups use it. Other favourites include Pipes
and Filters (23%), Layered (11%), Strategy (8%) and
Client-Server (8%), showing in Figure 1. And the Figure 2
shows that Observer, Abstract factory, State and Singleton
pattern are the most popular design pattern. All these
patterns are the key concept in practice of software
architecture.

TABLE I. FEATURES OF GOOGLE ANDROID, IPHONE SDK AND XNA

Criteria Google Android iPhone SDK XNA
Development
Environment

Eclipse recommended by Google Xcode provided by Apple Visual Studio and XNA Game Studio
provided by Microsoft

Operating Systems for
Development

Windows, Mac OS X, Linux Mac OS X Windows

Documentation Official developer website
provided

Official developer website provided Official developer website provided

Emulator Provided Provided Provided
Programming Language Java Objective-C C#

Mobile
Devices

Phone Google phone is available in most
countries.

iPhone is available in most countries. No mobile phones type.

Digital
player

No digital player type. iPod touch is a great developer
device, no SIM card required.

ZunePlayer accepts partly XNA
games, no SIM card required.

Programming Interface API contains key high-level
abstractions which short

development time.

Mainly rely on the low-level
standards, like OpenGL ES and

OpenAL.

Contains high level abstractions to
ease the game programming.

Share of Applications Publish/sell the applications on
Google android Market.

Publish/sell the applications on
iTunes apple store.

Publish on the XNA creator club
websites.

25

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on July 17,2010 at 13:50:46 UTC from IEEE Xplore. Restrictions apply.

Figure 1. The distribution of chosen architectural patterns for game

projects

Figure 2. Distribution of usage of design patterns for game groups

D. Student expectations — requirements for sheep
framework
As main criteria, the components with higher frequency

will take a higher priority than the ones with lower
frequency, but we must also take the usage frequency of
patterns into account.

Under this point, we formed requirements as following
for what the students expected to be able to use with the
Sheep framework:

1) Graphics. The framework should be able to draw
images, primitives and text on screen.

2) Math. The framework should be able to perform
collision detection, and transformations on the graphics.

3) Audio. The framework should be able to play sound
effects (non-streaming) and music (streaming).

4) Timing. The framework should be able to determine
the timing of frames.

5) Storage. The framework should provide means to
store persistent data.

6) Networking. It should be possible to transfer data
over the network.

7) Resource Management. The framework should
provide classes, which makes resource management as easy
as possible.

8) Input. The framework should provide means of
accessing input information.

Under these requirements, we also investigate what is
available in the bare Android API. It is expected that some
of the students’ requirements will be satisfied fully by the
bare Android API, such as networking.

IV. THE “SHEEP” FRAMEWORK
This section introduces the structure of the Sheep

framework and the key components’ value.

A. Design goals
From our previous experiences on XNA, students should

not be involved in the programming too much time and
cause less time on software architecture study, so the main
goal of the Sheep framework is to allow the students to save
time in game programming. In a nutshell, the two overall
goals for all major components in the Sheep framework are:

• Simplify a common task in game development, so
the students can spend more time on structure or
course theory and less time on technical issues.

• Use known patterns to interact with client code, as to
teach students these patterns, let them to perceive the
course theory through using this framework.

According to these goals, we classify the components
values in the Sheep framework as:

1) Practical value means that components which
simplify common tasks without requiring the use of any
particular patterns. The primary goal of these components
is to allow faster development, and save time for student to
focus on the course content.

2) Academic value means that components which
require the use of certain patterns. The primary goal of
these components is to illustrate the usefulness of a certain
technique, let students could handle or use this pattern.

Not all components achieve both goals. Some may be of
no direct academic value to the students, and may simply
exist as a convenience, some components may be of great
academic value, but may not be practical in a certain game
genre or specific game design.

B. Structure of Sheep
According to our design goals, we could describe Sheep

structure in two ways in which the Sheep framework makes
the android platform more feasible for game development to
learn the software architecture.

From aspect of time saving goal for game programming,
the Sheep structure is organized as packages as follows:

• Sheep.audio provides components for loading and
playback of sound.

• Sheep.collision contains collision detection and
spatial partitioning components.

26

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on July 17,2010 at 13:50:46 UTC from IEEE Xplore. Restrictions apply.

• Sheep.game assists in structuring the game logic (the
model) of the game.

• Sheep.graphics contains components for loading
images and fonts.

• Sheep.gui holds the graphical user interface system.
• Sheep.input contains the input devices, and the

interfaces needed to subscribe to events.
• Sheep.math contains some math classes which aren't

directly related to collision detection.
• Sheep.util is meant to contain miscellaneous

components, but for now it only contains a singleton
which keeps track of time between frames.

From aspect of encouraging or requiring the use of
patterns, the components in the framework are:

• Sprites, which uses the Model-View-Controller.
• Game states, which uses the State pattern.
• Collision detection, which uses the Observer pattern

and the Template pattern.
• Spatial partitioning, which uses the Visitor pattern.
• Graphical user interface system, which uses the

Observer pattern and Chain of command.
• Other components without expected patterns.
All above pattern concepts are from the software

architecture course, and students should master them during
the process of using this framework.

C. Packages analysis
Three packages will be examples to explain the

components values.
1) Sheep.game package. It provides components, which

help organize the game model. Game State pattern is one of
the main design concepts in this package. It keeps track of
the high-level states of the game. Its main controller object
contains methods for loading content, updating its internal
state, drawing itself, and responding to input events. The
practical value is that having a complete state system in
place is beneficial because it allows relevant input events to
be presented more clearly and quickly to the students. And
its academic value is that State pattern is a well-known
pattern, which allows an object partially changes its class at
run-time. Specific game behaviour should be implemented
via subclasses of the State class. Each state represents a
different view of the game, when students use it in
programming, they probably would understand it clearly.

2) Sheep.collision package. It provides functionality for
detecting interactions between objects in the game world,
and generates collision events, which may be subscribed by
observers.

The practical value is that collision detection was used in
most of the student projects, and getting the details of such
collision systems to work right can be incredibly time
consuming. When providing the students with a full
collision detection system, they could use it directly to work
efficiently.

The academic value is that two patterns will be visible
from the perspective of the student, the Template pattern
and Observer pattern. The Template pattern is in the Shape
class, where the overall algorithm is fixed, but some sub-
parts are modifiable by derived classes. The Observer
pattern will be used for custom collision responses. As an
example, perhaps a player should lose health when it is hit
by another object, A “Lose Health Listener” could then be
attached to listen for collision events occurring to the player
object.

3) Sheep.gui package. It provides a graphic user
interface system and can be used to create complex
windowed menus or simple buttons. The practical value is
that a few buttons were present to allow the user to start and
quit the game, and also provide functional kit for the
extensibility. The academic value is that Observer pattern is
used to listen for events. The Chain of command pattern is
used to control how input events are passed through the
widget class hierarchy.

V. INTEGRATE SHEEP IN THE SOFTWARE ARCHITECTURE
COURSE

This section presents how patterns work in Sheep
framework, and how students interact with the framework
based on the double stimulation. We choose two design
cases to explain it.

A. First Task: Sheep and patterns
When the students start to use Sheep, they are inevitable

to get into the code of Sheep. So the first task is to let the
students become familiar with Sheep by list some patterns
that they could find (or construct) in Sheep framework.

Here we give three exercise examples to explain the
patterns that the Sheep framework used. Also, other
patterns, such as Template, Visitor, Singleton, etc also can
be found in Sheep, but not list here.

1) Exercise 1: Model-View-Controller. Student should
find a Model View Controller design in the Sheep.

In the Sheep framework, the Sprite class acts as the
superclass for all models. When a method on the Sprite
itself is called to draw a sprite, this call is either redirected
to the associated SpriteView, or ignored in case a
SpriteView is not set. If the client code wishes to change the
way that a Sprite is represented, for instance an animation
instead of a static image, the client can simply create a new
SpriteView subclass. The logic in the Sprite remains the
same.

Figure 3 is one example to the exercise: a
PlayerController listen for events on the keyboard. This
controller can for example cause the Player to shoot bullets
when a certain key is pressed.

27

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on July 17,2010 at 13:50:46 UTC from IEEE Xplore. Restrictions apply.

Figure 3. MVC pattern in Sheep framework

2) Exercise 2: State. Students should find an example of
State pattern used in Sheep.

State pattern causes an object to appear as if it has
changed its class. It can be used in the Sheep framework by
adding subclasses of State to the instance of the Game class.
Figure 4 is an example of State pattern used in Sheep.

Figure 4. State pattern in Sheep framework

3) Exercise 3: Observer. Students should find an
example of Observer pattern used in Sheep.

The observer pattern could be found under some
conditions, such as, a) When listening to input devices, either
via the keyboard or touch singletons or via a State; b) When
listening to events from the collision detection system.
Events are issued when Sprite objects collide; c) When
listening to events from the graphical user interface system.
Events are issued for various reasons, for instance when a
button is pressed.

Figure 5 is an example in Sheep that PlayerController
responds to events from the keyboard, touch or collision
detection system.

Figure 5. Observer pattern example in Sheep framework

B. Second Task: Patterns design and game implementation
We propose three exercises to implement small games by

apply the patterns design through Sheep.
1) Exercise 1: Moving Sprite. The requirement is to

make a simple game where a Sprite is controlled by the
user. This could be done by subscribing to events issued by
the Touch singleton.

The purpose of this task is to show how the observer
pattern can be used to respond to input events in a way which
is familiar to gamers.

In a solution, the students could create a subclass of
Sprite, which listens to events directly; or simply instantiate
Sprite and use the main state class as the controller; or they
could create a separate controller class (Figure 6). There are
also other possibilities of the solutions.

Figure 6. Possible solution to the exercise 1

2) Exercise 2: Game States. This task is to make a game
with at least three States: a title screen, a main running state,
and an in-game menu. The game can be as simple as Pong
or Tic-Tac-Toe, as long as these states are present.

 This exercise shows how an object may change its
perceived class using the state pattern. A solution would
consist of three (or more) subclasses of State, and some
mechanism for transition between the states.

3) Exercise 3: Racing Game. This task is to make a
racing game architecture with following characteristics:

a) It should be possible to change between two sets of
graphics in the middle of the game; one with graphical
sprites, and the other using primitive shapes only, for
instance rectangles for cars and lines for the racetrack.

b) There should be more than one car; all cars except
the player's car are controlled by the computer.

c) It should be possible to click on other cars and take
control of them. In so doing, the computer should take
control of your old car.

The racing game does not need good artificial
intelligence or realistic car simulation, but these
characteristics should be evident in the game.

This exercise shows how to decouple the visual
representation, input handling, from the Model of Racecar.
The solution here is to use the Model-View-Controller
(Figure 7).

Figure 7. Solution to the exercise 3

VI. DISCUSSION
The software architecture course at NTNU is taught in an

untraditional way, in that the students in addition to
designing and evaluating their software architecture have to
implement the architecture in a game project as well. The

28

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on July 17,2010 at 13:50:46 UTC from IEEE Xplore. Restrictions apply.

main advantage with this approach is to let the students feel
the “pain” of making their design decisions, as complicated
and look-nice-on-paper architectures can be very difficult
and time-consuming to implement.

From Sheep’s application view, the Sheep framework is
a very useful tool to help the students with the transmission
between the design and implementation by offering high-
level components based on architecture and design patterns.
The most difficult task for the students when implementing
a software architecture is to decompose a high-level
architecture into classes and design the interaction between
these classes. The Sheep framework will make this
transition easier, as the built-in architecture and design
patterns is the first step in decomposing a high-level
architecture. Due to this type of design in Sheep, the
students could find appropriated available components to
start with. The Sheep framework also enables the students to
focus more on the architecture and less on issues related to
the programming.

From a view of edutainment, the android platform was
chosen and extended based on the Malone’s “What makes
things fun to learn?” [16] and our own experiences [1]. We
believe that it is useful to teach the students about design
and architecture patterns in a practical way through the
suitable game exercises proposed. This game domain is
likely to motivate the students to put an extra effort when
learning the patterns through various exercises. The students
are motivated by learning how to program on the android
platform as well as programming interesting games.

Game development for devices like android phones and
iPhone/iPod Touch can also be motivating for the students
from a business point of view, as development of games on
these platforms can be low-cost and low risk. The result of a
game project in a software architecture course might end up
as a continuing hobby game project uploaded to android
Market or AppStore to sell or as a student start-up game
company.

From the pedagogical point of view, the design and
application of the Sheep framework is also an example how
to bridge pedagogy, technology and game ideas to enhance
teaching in a reasonable way. During this double
stimulation process, students seek to align their continuous
interpretation of a task and tools. Also, the second stimulus
is provided with series of tools that can be classified in
horizontal-vertical orientations. From horizontal aspect,
XNA and android are provided in parallel for the same task;
from vertical aspect, XNA is used with other related tools,
such as XNA club website for the help and sharing games,
Zuneplayer for testing game demos, and PowerPoint for the
final presentation. Corresponding, android is used with
android Market, android phone and PowerPoint too.

We believe our analysis points to the necessity for further
pedagogical and technological co-design to better facilitate
awareness of game-based learning, better conduct the
direction of how to design the knowledge construction
process of involving individuals and small groups to

stimulate their initiative and creativity in game related
activities. This indicates that future evaluation of using the
Sheep framework for teaching the course is also beneficial, it
reveals not only the efficiency of using the framework along
with how much the students actually learn from game
projects, but also the social relationships of learner-learner
and learner-teacher. We also need to further investigate the
relationship between games, tasks, and tools in technology-
rich and collectively oriented knowledge construction in
order to better understand and support the game-based
learning.

VII. CONCLUSIONS
From our previous experiences in the software

architecture course, we would like to offer a new choice for
the double stimulation in this course. And we found that
Google android is a suitable tool for the educational use. In
this way, we extended the android platform mainly based on
the requirements from previous students’ projects. Further,
we have developed a game development platform called
Sheep based on android. We also described how to integrate
the game technology and software architecture learning in
Sheep framework to explain one perspective of how
technology perceives learning.

From the discussion, we found that there are various
orientations to apply or extend a tool according to the
previous experiences, context of students, local environment
and technology and teaching aims. Based on these
conditions, the game ideas, technology and learning should
be integrated in a reasonable way to let the second stimulus
match the first stimulus. This paper is an example from this
idea that applied theoretical and empirical context to support
the design process of game-based learning.

ACKNOWLEDGMENT
We would like to thank Anders Hartvoll Ruud for

implementing Sheep framework and for his inputs to this
paper.

REFERENCES
[1] Wang, Alf Inge; Wu, Bian. “An Application of a Game Development

Framework in Higher Education.” International Journal of Computer
Games Technology 2009 ;Volume 2009.(2)

[2] Google. “Android developers”
http://developer.android.com/index.html, Retrieved September 22,
2009.

[3] Apple. “iPhone Dev Center”, http://developer.apple.com/iphone/,
Retrieved September 22, 2009.

[4] Bian Wu, Alf Inge Wang, Jan Erik Strøm and Trond Blomholm
Kvamme: "XQUEST used in software architecture Education", IEEE
Consumer Electronics Society's Games Innovation Conference ,
August 25-28, 2009, London, UK.

[5] Trygve M. H. Reenskaug, MVC, XEROX PARC, 1978-79. Accessed
March 16th, 2009

[6] Koen Witters, Game Architecture: Model-View-Controller, 2008.
http://dewitters.koonsolo.
com/gamemvc.html, Accessed March 16th, 2009.

29

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on July 17,2010 at 13:50:46 UTC from IEEE Xplore. Restrictions apply.

[7] Gamma et.al, Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Publishing Co, 1994.

[8] Bian Wu, Alf Inge Wang, Jan-Erik Strøm, Trond Blomholm
Kvamme,"An Evaluation of Using a Game Development Framework
in Higher Education," 22nd Conference on Software Engineering
Education and Training, pp.41-44, 2009.

[9] T. Blomholm Kvamme and J.-E. Strøm, “Evaluation and Extension of
an XNA Game Library used in Software Architecture Projects”,
Master thesis at NTNU, June 2008.

[10] PSP, “Sony PlayStation Portable” http://www.us.playstation.com/psp,
Retrieved September 24, 2009

[11] 3G “Definition” http://en.wikipedia.org/wiki/3G, Retrieved
September 24, 2009

[12] A. I. Wang, T. Stålhane. Using Post Mortem Analysis to Evaluate
Software Architecture Student Projects, Conference on Software
Engineering and Training 2005, 8 p.

[13] XNA, “Microsoft XNA” http://www.xna.com, Retrieved October 5,
2009

[14] Vygotsky, L. S.. Mind in society: The development of higher
psychological processes. Cambridge, MA: Harvard University Press,
1978

[15] Lund, A., & Rasmussen, I. (2008). The right tool for the wrong task?
Match and mismatch between first and second stimulus in double
stimulation. International Journal of Computer-Supported
Collaborative Learning, 3(4), 387–412.

[16] T. W. Malone, “What makes things fun to learn? Heuristics for
designing instructional computer games”, In SIGSMALL ’80:
Proceedings of the 3rd ACM SIGSMALL symposium and the first
SIGPC symposium on Small systems, pages 162–169, New York,
NY, USA, 1980. ACM Press.

[17] Anders Hartvoll Ruud, “Designing a Game Development Framework
for Teaching Software Architecture on the Android Platform”, Master
thesis at NTNU, June 2009.

30

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on July 17,2010 at 13:50:46 UTC from IEEE Xplore. Restrictions apply.

