
	

	

CAMF – CONTEXT-AWARE MACHINE LEARNING FRAMEWORK
FOR ANDROID

Alf Inge Wang1, Qadeer Khan Ahmad2

Dept. of Computer and Information Science, Norwegian University of Science and Technology
Sem Sælandsvei 7-9, N-7491 Trondheim, Norway

1) alfw@idi.ntnu.no / 2) qadeerkh@idi.ntnu.no

ABSTRACT
Context-aware computing is a promising approach for
utilizing the characteristics of mobile computing:
communication, mobility and portability. By
combining machine learning and context-aware
computing, we can provide proactive services based
on the users’ usage patterns of the mobile device
combined with the environmental context of the user.
Android has become a popular mobile platform,
which have addressed context-awareness from day
one through hardware and software support for sensor
and context management. In this paper, we have
evaluated the Android platform support for context-
awareness and identified some shortcomings. Further,
we have designed a Context-Aware Machine learning
Framework (CAMF) for the Android platform that
addresses these shortcomings as well as incorporating
machine learning. We also demonstrate the usefulness
of the framework through the implementation of an
application that monitors the applications a user is
running on an Android device along with the
environmental context the applications are running in.
This information can be used to proactively launch
Android applications when the context is appropriate.
Finally, the paper evaluates the CAMF framework
and our context-aware application AppL.

KEY WORDS
Software Design, Mobile and Wireless Computing,
Context-aware Computing, and Android platform

1. Introduction
Smart-phones have now become an essential part of
daily life. Mobile devices have not only become very
powerful computing devices, but they are also
equipped with various connectivity features and a
wide range of sensors or hardware units that can be
utilized as sensors such as accelerometers, GPS, light-
sensors, distance sensors, video/photo cameras,
microphones, etc. Mobile computing introduces
several challenges related to communication, mobility
and portability, but it also opens a range of new
opportunities such as context-aware computing [1].

Context-awareness can be defined as: “A system is
context-aware if it uses context to provide relevant
information and/or services to the user, where
relevancy depends on the user’s task”, where context
is “information that can be used to characterize the
situation of an entity. An entity is a person, place, or
object that is considered relevant to the interaction
between a user and an application, including the user
and applications themselves” [2].

A context-aware system can improve the user
experience, by only showing or doing the relevant
things for a given context. To utilize the context to a
large extent, a context-aware application needs to
learn how the user use his device and in what context.
A learning context-aware system can be achieved
through machine learning. Machine learning has
many application areas for mobile context-aware
applications such as location prediction [3], adaptable
user interfaces [4], observing and recognizing human
behavior at home [5], recognizing human faces [6],
and smart music players that play music according to
learned user preferences and activities [7].

The Android platform has good support for
developing context-aware systems and is regarded as
one of the best choices for mobile application
development [8]. Android uses a middleware
infrastructure approach to distinct context sensing and
usage, supports a range of physical components, and
provides software components to offer middleware
for the physical components and context
preprocessing capabilities. The platform lacks a
generalized interface for context management and a
discovery component for adaptation. In addition,
Android does not include any machine learning
capabilities.

In this paper, we have evaluated the Android
platform support for context-awareness and identified
some shortcomings. Further, we have designed a
Context-Aware Machine learning Framework
(CAMF) for the Android platform that addresses
these shortcomings as well as incorporating machine
learning. We also demonstrate the usefulness of the
framework through the implementation of the
Application Learner (AppL) application that monitors
what applications a user is running along with the

	

	

environmental context of the applications. This
information can be used to proactively launch
Android applications when the context is appropriate.
Finally, the paper evaluates the CAMF framework
and the AppL application.

In this paper we wanted to find answers the
following research questions: RQ1) How can context-
aware systems benefit from machine learning; RQ2)
What context support is provided by the Android
platform; and RQ3) How well suited is Android for
developing a context-aware system.

The rest of the paper is organized as follows:
Section 2 describes related work, Section 3 outlines
considerations when designing a context-aware
system, Section 4 shows the results of evaluating
context-awareness support in Android, Section 5
presents our Context-Aware Machine learning
Framework (CAMF), Section 6 describes our
experiences from implementing the CAMF
framework and a CAMF application named AppL,
and finally Section 7 concludes the paper by
answering the research questions given above.

2. Related Work
In [9], Dey et al. describe their Context Toolkit, which
is a framework for rapid prototyping of context-aware
applications. The framework is built around the
following components: context widgets – a software
component that provides applications with access to
context information from their operating
environment, interpreters – transforming context
information to a higher abstraction level, aggregators
– collecting multiple pieces of context information
that are logically related into a common repository,
services – executing actions such as changing the
state of activators, and discoverers – maintaining a
registry of existing capabilities in the framework.

In his PhD-thesis, Chen defines an agent
architecture for rapid prototyping of context-aware
applications [10] based on a context broker that
utilizes ontologies for representing and modeling
context. It consists of a context knowledge base, a
context-reasoning engine, context- acquisition
module, and a privacy-management module.

In [11], Baldauf et al. present a survey on various
context-aware systems from which they have derived
common architectural principles depending on factors
such as the sensors are local or remote, the system has
many or few users, available resources on the device,
and extendibility of the system. Baldauf et al. propose
a layered architecture for supporting context-aware
systems (see Figure 1) consisting of (from bottom to

top) a Sensor layer managing physical, virtual and
logical sensors, a Raw data retrieval layer responsible
for providing the layer above with sensor data, a
Preprocessing layer (optional) improving the quality
of sensor data through reasoning and interpretation, a
Storage and management layer concerned with
organizing and providing the gathered data to clients
through a public interface and finally a Application
layer providing a high-level API for context-aware
applications.

Figure 1. Baldauf's and Miraoui's layered

architectures

Miraoui et al. conducted a similar survey with focus
on pervasive computing where the focus was on level
of context abstraction, communication model,
reasoning system, extensibility and reusability [12].
Also Miraoui et al. describe a layered architecture
similar to Baldauf (see Figure 1) where the second
and third layer from the bottom have been slightly
changed: The Raw data retrieval layer has been
replaced with a Interpretation layer that transform
crude sensor data into useful context information, and
the Preprocessing layer has been replaced with a
Reasoning layer interpret, predict and deduce sensor
information from the layer below to produce context
information at a higher level. In contrast to Baldauf’s
architecture, Miraoui’s architecture includes an
Adaptation layer, which is responsible for system
adaptation as the environment changes. Note that our
mapping is a simplification and that the layers from
the two architectures cannot be interchanged.

Persona is a context-aware toolkit for pervasive
applications that focuses on end-user personalization
and control [13]. The toolkit consists of an interface
engine to generate multi-modal user interfaces that
support end-user personalization and control, and an
API for capturing end-users’ interactions. The
approach is document centric in such a way that an
application’s default runtime behavior is overlaid by
end-users’ preferences.

There are some examples of context-aware
frameworks implemented for the Google Android

	

	

platform. Shu et al. present the design of a mobile
location service for Android to make it easier to
manage and query location-aware map services [14].
Tutzschenke and Zukunft have made a context-aware
multi-user framework for construction of pervasive
games on the Android platform [15]. Hu et al. have
made a semantic context management framework for
making various types of context information
semantically searchable and sharable among context-
aware Android applications [16].

CAMF presented in this paper is based on
Miraoui and Baldauf’s layered architectures and has
integrated some ideas from the Context Toolkit.
Although the layered approach for context-aware
systems has proven to be beneficial, potential
problems with this approach must be taken into
account such as incomplete rule logic, inconsistent
sensing rates, slow sensing, problematic rule logic,
overlapping sensor fields, and sensor noise [17].
These problems are usually caused by the nature of
layered architecture, the asynchronous propagation of
context information and the inaccuracy in the
interfaces between layers. There are no simple
solutions to avoid this problem, but the applications
should be designed with these issues in mind.

The focus of CAMF is different than the existing
context-aware framework presented above in that it is
a general framework that provides a generalized
interface for context management and a discovery
component for adaptation. In addition, CAMF is the
only context-aware framework for Android that
supports machine learning.

3. Design of Context-aware Systems
Context-aware system design is mainly characterized
by three factors: a distinction between context sensing
and usage, a set of physical components to capture
context information, and a set software components to
handle and manage context information and to adapt
to contextual changes in the environment. In Baldauf
et al.’s survey of context-aware systems [11], they
identified some common architectural principles. The
architecture of context-aware systems depends on
factors such as whether sensors are local or remote,
whether the system has many or few users, the
available resources of the used devices (mobile
devices vs. high-end PCs), and the facility of further
extension of the system.

Another main architectural driver in context-
aware systems is the method of context-data
acquisition. Three commonly used approaches are
direct sensor access, middleware infrastructure and

context server [10]. In the direct sensor access
approach, the system gathers desired data directly
from its sensors without preprocessing or using some
other layer. Sensors acquisition is hard-coded in the
clients, which gives a tight coupling between the
clients and sensors. This approach is often used in
devices where sensors are locally built in and not
suitable for distributed systems. In the middleware
infrastructure approach the sensor data acquisition is
done through a middleware component. This
approach hides low-level sensing details and avoids
hard-coding in the clients. It improves reusability of
sensors among different clients and simplifies
extensibility of clients. The context server approach
allows clients to remotely access data sources. This
approach introduces an access managing remote
component, which facilitates concurrent client access
of sources. The advantage of this approach is
reusability of sensors by remote clients, which also
relieves clients from resources intensive operations
involved with acquisition. Thus, this approach allows
clients to be thin.

CAMF was mainly designed based on the
middleware infrastructure approach. This approach
was chosen as smartphones are powerful enough to
do the extra processing of adding a layer that hides
the physical sensors to provide reusability and
extensibility. Further, by not choosing the context
server approach, the application can work off-line (to
save battery and network expenses). The motivation
for our framework was based on the following [11]:
Strict division of context data acquisition and usage
allow context sources to be reusable by multiple
clients, the context models and context processing
logic is an important criterion for providing
intelligent and adaptable context-aware services or
applications, resource discovery mechanism is
important in dynamic or pervasive environments
where available sensors and the context sources
change rapidly, and historical context data
management combined with learning algorithms can
enable proactive services and provide highly
adaptable context-aware services.

4. Context-Awareness in Android
Smartphones are ideal for context-aware applications
since they are relatively powerful and contain various
sensors. Before we decided to go for Android for our
context-aware framework, we evaluated other
smartphone platforms: iPhone, Symbian, RIM,
Windows phone and Linux. The two most promising
platforms were iPhone and Android because of the

	

	

popularity, high usability, powerful CPUs and
available sensors. The Android platform was
preferred to iPhone because it uses Java as the main
programming language and there were several
machine learning frameworks available for Java, it
provides access to more core OS functionality, it does
not require any certification or developer registration
to deploy the software to hardware, and the Android
SDK is available on multiple platforms [8].

The context support in Android application
framework consists of two main parts: Raw context
data sources and Context processing [18]. The
support for raw context data sources contains several
packages and classes such as for the camera,
Bluetooth scanning of nearby devices, sensor
manager for controlling interaction with physical
sensors on the Android device, geographical location,
time, and sound recording. The sensor manager
enables Android applications to access a wide range
of sensors: accelerometer, light, magnetic field,
orientation, pressure, proximity, and temperature.

The context processing support in Android
contains functionality for processing raw context data
into more useful contextual data and includes face
recognition, speech recognition, text-to-speech,
location proximity, and a Google Maps API.
 The Android application framework provides a
very good starting-point for development of context-
aware applications, but it lacks a generalized interface
for context management and a discovery component
for adaption. Further, if proactive context-aware
applications are to be developed, machine learning is
necessary to recognize previous context patterns.

Separation between context acquisition and
usage is very important for context-aware system
architectures [11, 12]. Such separation of concern is
well supported in the Android application framework
through the broker architecture that provides an
intent-based communication between components.
The Android application framework uses a
middleware infrastructure for context acquisition
providing interfaces for various sensors in such a way
that no data is accessed directly from the hardware.
Further, access to remote context servers are
supported in Android through various network APIs
as well as specific APIs such as for Google Maps.

5. The CAMF Framework
The starting-point for our Context-Aware Machine
learning Framework for Android was the layered
architectures for context-aware computing defined by
Miraoui et al. [12] and Baldauf et al. [11]. The next

step was to map the existing context-awareness
support in the Android application framework to the
layers. The bottom layer, sensor layer, is well
supported in Android through the raw context
acquisition for the various sensors (see previous
section). The second layer, interpretation layer, is
also well supported through the Android middleware
components representing the physical sensors and
providing reusability of sensors. The third layer,
reasoning layer, should provide a high-level
reasoning and interpretation of context information
from the layer below. This is supported in Android by
the components for location proximity, face
recognizer, speech recognizer and text-to-speech.
Android does not provide a complete set of services
for this layer, but provides support for some critical
context sources (location, picture/video, and audio).
The two remaining layers, the storage and
management, and adaption layers, are not supported
in Android. Figure 2 shows the architecture of CAMF
based on Miraoui and Baldauf’s layers (see Figure 1).

The processing widgets are based on the context
widgets from the Context Toolkit [9]. The goal of the
widgets is to hide the complexity of the sensors used
by the application by processing contextual data from
single or multiple context sources. To further improve
the preprocessing layer, our framework includes
machine-learning support for widgets. This means
that the widgets can build a database of context data,
which they can feed to machine learning algorithms
to acquire useful classifiers. This approach can e.g.
be used to find whether the user is indoors or
outdoors by using a trained classifier of context data
such as surrounding sounds, environmental
temperature, light and location. Similarly, another
widget can use machine learning to recognize
whether a certain person or object is nearby (like a
car), by using sound characteristics of the person or
object.

The generalized interface provides a context
interaction scheme using a mutual interface for both
processing widgets and raw context layer
components. This interface can be used by
applications to request or subscribe to context events.
This will simplify the context handling since
developers spend less time learning widget and
context source interfaces, and context sources and
widgets can be easily replaced in the application. The
generalized interface also provides a storage of
context data atoms (single context data value) [11] to
provide support for context history. Historical context
data is useful in applications and widgets that
incorporate machine learning because of the way
classifiers are trained using training examples.

	

	

	

Figure 2. CAMF layered architecture

The discovery component is an adaption layer that can
discover and discard context sources dynamically,
including external previously unseen context sources.
All the sources that are available for the application
will be published in this layer in real-time. For
internal context sources, an adaption controller
component in the adaption layer can automatically
disable or enable context sources as the accuracy
drops or increases. For external context sources, this
is much harder – but this can be implemented through
the available PAN and WAN technologies provided
on the Android device.

6. Implementing and Evaluating CAMF
This section describes some implementation details of
the CAMF framework, implementation of a CAMF
application and an evaluation of the framework and
the application.

6.1 Implementing the CAMF framework
Our current implementation of the CAMF framework
contains three main modules: The context source
module providing a generalized interface, the
database module providing database support for
context information, and the Weka service module

providing machine learning capabilities to be used
with context information. The adaption layer has not
been implemented yet.

Figure 3 shows an overview of the classes in the
context source module. SourceChangeListener must
be implemented by any component that wishes to
receive source updates. The main purpose of
ContextSource is to require that context sources, both
raw sources and processing widgets, implement a
requestSourceUpdate() method, which
SourceChangeListener can use to request updates.
After a call to requestSourceUpdate(),
ContextSource calls the onContextSourceUpdate()
when its source data is ready. The
ContextSourceData is used by context sources to
return requested context data. This interface requires
context sources to return data with at least the
following properties: 1) actual data in a String array,
2) time stamp, and 3) the ContextSource object that
created this data. These properties follow the
suggestion of context data atom attributes of Baldauf
et al. [11] by including: Context type (found through
the source), context value, time stamp, and source. In
order to be saved in a database, ContextSourceData
and ContextSource implement ContextDBEntry and
ContextDBComponent respectively.

	

	

Figure 3. Overview of the context source module

The database modules is a SQLite database used to
save context data, context source information and
their relationship to context listeners, interfaces for
objects that can be saved in the database, and a
database adapter to fetch and insert data from/to the
database.

The Weka service module is used to access
machine learning capabilities using the Weka open
source collection of machine learning algorithms
[19]. Weka achieve machine learning independent of
algorithms by using datasets – sets of data instances
like training data, classifiers – an abstract class all
machine learning algorithms derive from, and filters –
that transforms datasets my removing/adding
attributes, re-sampling the dataset, removing
examples etc. The Weka framework had to be ported
to the Android platform to be integrated into the
CAMF, as it is implemented for the Java platform.

6.2 Implementing a CAMF application
To test the usefulness and the performance of the
CAMF framework, we implemented an application
we named Application Learner (AppL). The main
tasks of AppL is to learn when users start other
applications by collecting context data and creating a
classifier, and to use the learned classifier to start
applications in the right context. Such an application
have several useful application areas, such as the
mobile device knows when its sound should be turned
off (e.g. it detects that the user is in a church or in the
movie theater), the mobile device will automatically
search for the top 10 movies when the user is
approaching the movie theater, or that an alarm
should be set of for a given context.

The AppL implementation is focused around five
activities: 1) User can choose the application to
monitor (learn context from), 2) Cancel monitored
application, 3) Create a classifier from the training
examples of the application, 4) Context-based
application launcher that monitors application context
and use a selected classifier (provided by Weka) to
predict whether the application should be started or
not, and 5) Cancel active application that have been
selected to be launched.
 Figure 4 shows screenshots from 6 steps of
initiating training of a watch (“Klokke”) application
in AppL: 1) Choose “Train new” to start training an
application, 2) Choose application to train, 3) Choose
context sources to monitor, 4) The context monitoring
of applications has started, 5) The user can get a list
of all applications being monitored, and 6) The
“Watch” application is being monitored visible as the
AppL is getting current location (the ring in the
screenshot indicates that the GPS is being accessed).

Figure 4. Screenshots from initiating training

6.3 Evaluation of the AppL and CAMF
One of the main tasks of AppL was to discover what
applications the user initiates, and a polling service

	

	

was used to poll the current active applications to
decide whether a given application had been initiated.
The main disadvantage of this approach is that the
AppL application uses extra resources and thus drains
battery by polling the various applications all the
time. Unfortunately, we did not find any alternatives
to avoid this problem, but we found better ways of
polling on Android (by using the Android
AlarmManager) [20]. Another potential problem with
our polling approach is that there is no way to
explicitly quit applications in Android and therefore
to know when the user quits an application. Android
OS closes applications automatically when
appropriate. However, from experience we found
that Android closes most applications (apart from the
Android Browser) when the back button is used to
exit an application.

One of our worries when implementing the
CAMF framework was the performance of the Weka
machine-learning framework on a mobile device.
Performance tests from running AppL on a HTC Hero
(528 MHz CPU, 288MB ram) showed that learning
less than 30 training examples took on average about
1,5 seconds. This performance was better than we
anticipated, as the Android device we used was not
the most powerful on the marked. As the Android
devices become more and more powerful, 1GHz
CPUs and beyond, the machine learning performance
should not be a big issue. However, for many training
examples, we recommend to run the machine learning
services on a server. An extension to CAMF would be
to include a dynamic load balancing service that
decides whether machine learning should be
processed locally or remote based on the data set to
be processed, available network connectivity and
bandwidth, energy level etc [21].

Weka uses supervised learning to train a
classifier from a set of training examples. In a training
period on AppL, whenever a monitored application is
started, it is registered in the database as a positive
example, i.e. a training example where the state
application starting was true. Currently, there is no
support for adding negative examples, i.e. examples
where the application starting should be false. This is
because it is hard to find out when a user does not
want to start an application from usage pattern. We
think that AppL may benefit more from
reinforcement learning [22] than supervised learning.
In reinforcement learning, when the machine-learning
algorithm makes a prediction, a teacher provides
feedback on how good or bad the prediction was. The
algorithm then uses this feedback to make better
predictions in future. In AppL this can be used to
receive feedbacks from the user whenever AppL

starts an application, which can ultimately result in
better prediction. We initially tried to find a
reinforcement-learning framework for Java to
integrate with Android, but were unsuccessful.

A form of reinforcement learning may be
achievable using supervised learning. Whenever
AppL makes a prediction of starting an application,
the user could supply a feedback on whether it was
correct or incorrect prediction. This feedback,
together with the sources’ values can be added to the
application’s dataset as a new training example.
Rebuilding the classifier will then, most probably,
result in better predictions. By using this approach we
are also able to acquire negative examples.

We found the CAMF framework very useful
when we implemented AppL. By using the
SourceChangeListener interface, context listeners
can request data from CAMF sources and use the
database adapter to read and write to the database.
Further, the Weka service in CAMF was an important
tool for using machine learning to create proactive
behavior in AppL. The current implementation of
CAMF demonstrates the main functionality we
wanted in our context-aware machine-learning
framework. The implementation of the framework is
still in an early phase, and there are many areas to
expand and improve such as the more processing
widgets, implementation of the discovery component
(adaption layer) and a load balancing service.

7. Conclusion
Based on our experiences from designing and
implementing the CAMF framework and the AppL
application for Android, we have found the following
answer to our research questions listed in Section 1.
RQ1) How can context-aware systems benefit from
machine learning: Machine learning provides
mechanisms to proactively discover new resources
and make the system adaptable, and it can be used to
develop a reasoning system that infers new context
data from raw context data. Smartphones were also
proven powerful enough to process machine learning.

RQ2) What context support is provided by the
Android platform: The Android platform provides
components and interfaces for raw context data and
context processing. The support for various sensors is
not complete (e.g. RFID is currently not supported
and a general object recognizer for video or pictures
are not in place), but the mostly used context sources
are supported.
 RQ3) How well-suited is Android for developing
a context-aware system: Android is a very promising

	

	

platform for context-aware systems, as Android
devices supports a wide variety of physical sensors,
the Android application framework uses a
middleware infrastructure approach that separates
context acquisition and usage and the sensor layer and
the raw retrieval layer is well supported. Finally,
Android programming API is very close to traditional
Java, which means that context-frameworks
implemented in Java such as Weka can be ported. We
have also identified several support for context-
awareness improvements for the Android: platform:
1) context preprocessing widgets together with
machine learning provides reusable and advanced
context preprocessing, 2) a generalized interface for
storage and management to simplify high-level
context handling, 3) store historical context data to
support machine learning, and 4) provide discovery
component for dynamic discovery of external and
internal context sources. The CAMF framework was
designed to address these improvements.

References
[1] G. H. Forman and J. Zahorjan, "The Challenges of
Mobile Computing," Computer, vol. 27, pp. 38-47, 1994.
[2] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M.
Smith, and P. Steggles, "Towards a Better Understanding of
Context and Context-Awareness," in Proceedings of the 1st
international symposium on Handheld and Ubiquitous
Computing Karlsruhe, Germany: Springer-Verlag, 1999.
[3] T. Anagnostopoulos, C. Anagnostopoulos, S.
Hadjiefthymiades, M. Kyriakakos, and A. Kalousis,
"Predicting the location of mobile users: a machine learning
approach," in Proceedings of the 2009 international
conference on Pervasive services London, United
Kingdom: ACM, 2009.
[4] A. Shankar, S. J. Louis, S. Dascalu, L. J. Hayes, and
R. Houmanfar, "User-context for adaptive user interfaces,"
in Proceedings of the 12th international conference on
Intelligent user interfaces Honolulu, Hawaii, USA: ACM,
2007.
[5] D. H. Wilson, A. C. Long, and C. Atkeson, "A
context-aware recognition survey for data collection using
ubiquitous sensors in the home," in CHI '05 extended
abstracts on Human factors in computing systems Portland,
OR, USA: ACM, 2005.
[6] M. Davis, M. Smith, J. Canny, N. Good, S. King, and
R. Janakiraman, "Towards context-aware face recognition,"
in Proceedings of the 13th annual ACM international
conference on Multimedia Hilton, Singapore: ACM, 2005.
[7] S. Dornbush, A. Joshi, Z. Segall, and T. Oates, "A
Human Activity Aware Learning Mobile Music Player," in
Proceeding of the 2007 conference on Advances in Ambient
Intelligence: IOS Press, 2007.

[8] S. P. Hall and E. Anderson, "Operating systems for
mobile computing," J. Comput. Small Coll., vol. 25, pp. 64-
71, 2009.
[9] A. K. Dey, G. D. Abowd, and D. Salber, "A
conceptual framework and a toolkit for supporting the rapid
prototyping of context-aware applications," Hum.-Comput.
Interact., vol. 16, pp. 97-166, 2001.
[10] H. Chen, "An Intelligent Broker Architecture for
Pervasive Context-Aware Systems." vol. PhD Baltimore:
University of Maryland, 2004.
[11] M. Baldauf, S. Dustdar, and F. Rosenberg, "A survey
on context-aware systems," Int. J. Ad Hoc Ubiquitous
Comput., vol. 2, pp. 263-277, 2007.
[12] M. Miraoui, C. Tadj, and C. b. Amar, "Architectural
survey of context-aware systems in pervasive computing
environment," Ubiquitous Computing and Communication
Journal, vol. 3, 2008.
[13] F. Kawsar, K. Fujinami, T. Nakajima, J. H. Park, and
S.-S. Yeo, "A portable toolkit for supporting end-user
personalization and control in context-aware applications,"
Multimedia Tools Appl., vol. 47, pp. 409-432.
[14] X. Shu, Z. Du, and R. Chen, "Research on mobile
location service design based on android," in Proceedings
of the 5th International Conference on Wireless
communications, networking and mobile computing
Beijing, China: IEEE Press, 2009.
[15] J.-P. Tutzschke and O. Zukunft, "FRAP: a framework
for pervasive games," in Proceedings of the 1st ACM
SIGCHI symposium on Engineering interactive computing
systems Pittsburgh, PA, USA: ACM, 2009.
[16] D. H. Hu, F. Dong, and C.-L. Wang, "A Semantic
Context Management Framework on Mobile Device," in
Proceedings of the 2009 International Conference on
Embedded Software and Systems: IEEE Computer Society,
2009.
[17] M. Sama, D. S. Rosenblum, Z. Wang, and S. Elbaum,
"Multi-layer faults in the architectures of mobile, context-
aware adaptive applications," J. Syst. Softw., vol. 83, pp.
906-914.
[18] Google, "Android Developers,
http://developer.android.com/." vol. 2010.
[19] R. R. Bouckaert, F. Eibe, M. Hall, R. Kirkby, P.
Reutemann, A. Seewald, and D. Scuse, "Weka---Machine
Learning Software in Java, URL:
http://sourceforge.net/projects/weka/files/." vol. 2010, 2010.
[20] M. Murphy, "Diamonds are forever, services are not,
Web: http://www.androidguys.com/2009/09/09/diamonds-
are-forever-services-are-not/." vol. 2009, 2009.
[21] J. Flinn, S. Park, and M. Satyanarayanan, "Balancing
Performance, Energy, and Quality in Pervasive
Computing," in Proceedings of the 22 nd International
Conference on Distributed Computing Systems (ICDCS'02):
IEEE Computer Society, 2002.
[22] T. Mitchell, Machine Learning. San Francisco:
Ignatius Press, 1997.

