
Abstract

This master thesis presents an approach to make the MOOSES platform more flexible and
dynamic. MOOSES is a platform that allows people to play video games on a large screen using
their mobile phones. A server runs the game on the large screen, and mobile phones are used as
controllers for the game. The client controller is an application written in Java 2 Micro Edition
(J2ME), that has to be downloaded to the mobile phones. The game server communicates with
the client controllers through bluetooth. The MOOSES prototype was developed during our
depth study at NTNU fall 2006 based on ideas from us and Alf Inge Wang.

During the development of the MOOSES framework we encountered some technical
limitations that constrained the MOOSES platform. One of these problems was tied to
maintenance of the platform that makes adding and removing of games to a bothersome job.

Software development on mobile devices has become more important over the last years, and
new solutions have been made to program on this platform. Most mobile phones support the
J2ME platform, and there has been developed a couple of script solutions that run on top of this
platform. Scripts provide for the J2ME application programming interface (API) to be more
powerful by elevating the abstraction level. It also make it easier to provide domain specific set
of instructions, making development easier.

The MOOSES prototype requires manipulation of the source code when adding new games.
As a consequence of this, a new client has to be distributed to all the users of the system every
time new games are added. A more dynamic client will provide for the MOOSES system to
be passive in the addition of new games because the games will not interfere directly with the
backbone of MOOSES, but are loaded dynamically on runtime.

We will also focus on making development of game clients more tailored to the MOOSES
concept. When we are using a scripting platform to develop game clients, it will provide an
API that is completely tied to the MOOSES platform. Such an API will have both pros and
cons. It makes the API easier to follow and provides a better overview, but it constrains the
freedom of creativity.

We will have a look on different scripting solutions that may replace or stand as an alternative
to our current solution for development of game clients. We will also develop a prototype to
test the feasibility of such a solution.

A client for the game developed in the depth study will be rewritten to suit the scricted client
prototype. This client will be tested at our presentation of MOOSES at the Kosmorama film
festival 2007 [1].

The content of this thesis is confidential and should not be given or shown to any other person
than the external examiner, Alf Inge Wang, Morten Versvik, Sverre Morka or Aleksander Spro
without permission granted by Alf Inge Wang, Morten Versvik, Sverre Morka and Aleksander
Spro.

ii

Preface

This master thesis report is written by Sverre Morka in the period from January 2007 to June
2007.

Acknowledgments

We would like to thank Alf Inge for this assignment and for his help and guidance
throughout this project. We will also like to thank Metallica, Rammstein, Ayreon and Hans
Zimmer for making this project easier providing good music making this research much more
enjoyable.

We will like to thank Tellu for making ServiceFrame, and for showing great involvement in our
project and taking care of public promotion of our concept.

The MOOSES crew will also like to thank everyone that showed up to test our product at the
Kosmorama film festival, and all the journalists that gave us positive feedbacks.

We would like to thank all the developers of the Script languages that are discussed in this
report, and above all David N. Welton and Wolfgang Kechel for developing Hecl that are used
for the prototype.

Last but not least we will thank Herman Friele for making great coffee that has been crucial to
upheld the motivation in dark times.

Trondheim, 15. June 2007

Sverre Morka

iii

iv

Contents

I Introduction 1

1 Introduction 3
1.1 Motivation . 4
1.2 Problem Definition . 4
1.3 Project Context . 5
1.4 Readers Guide . 5

1.4.1 Part description . 6

2 Multiplayer On One Screen Entertainment System 7
2.1 MOOSE - System . 7
2.2 Development platform . 10

2.2.1 Alternatives to user defined class loader 11
2.2.2 Development Tool . 11

3 Research Questions & Methods 13
3.1 Research questions . 13
3.2 Research Method . 15

3.2.1 The Engineering Approach . 16
3.2.2 The Empirical Approach . 16

3.3 Test Environment . 16

4 Development Tools & Software 17
4.1 Eclipse With Plugins . 17

4.1.1 MiKTeX 2.5 . 17
4.1.2 Concurrent Version System . 18

4.2 Emulator . 18
4.2.1 Sony Ericsson SDK . 18

v

II Prestudy 19

5 Prestudy Introduction 21

6 Java 2 Micro edition 23
6.1 Virtual Machine . 24
6.2 Configuration Layer . 24
6.3 Profile Layer . 24
6.4 User Defined Class Loader . 25
6.5 Summary . 25

7 ServiceFrame 27
7.1 ActorFrame . 27
7.2 TellU ServiceFrame . 29
7.3 Tellu J2ME GUI Library . 30

8 Script languages and grammars 31
8.1 Scripting Languages . 31

8.1.1 History And Development . 31
8.1.2 Higher Level . 32
8.1.3 Area of application . 32
8.1.4 Types And Primitives . 32
8.1.5 Efficiency . 32
8.1.6 Different types of scripting languages 33

8.2 Grammars for programming languages . 35
8.2.1 Lexical Analyzer . 35
8.2.2 Extend Backus-Naur Form . 35
8.2.3 Context free and Context sensitive grammars 36
8.2.4 Syntax Notation . 37

8.3 Coarse grained VS fine grained . 39
8.3.1 Precompiled functionality . 39

8.4 Summary . 40

9 Threats 41

10 Script Language discussion 43
10.1 Simkin . 44

10.1.1 Licensing . 44
10.1.2 Documentation . 44
10.1.3 Grammar and syntax . 44
10.1.4 Size . 45
10.1.5 Artefacts . 45
10.1.6 Supported types . 45
10.1.7 Code Example . 45

10.2 Phonescript . 47
10.2.1 Licensing . 47
10.2.2 Documentation . 47

vi

10.2.3 Grammar and syntax . 47
10.2.4 Size . 48
10.2.5 Artefacts . 48
10.2.6 Supported types . 48
10.2.7 Code Example . 48

10.3 Hecl . 50
10.3.1 Licensing . 50
10.3.2 Documentation . 50
10.3.3 Grammar and syntax . 50
10.3.4 Size . 50
10.3.5 Artefacts . 50
10.3.6 Supported types . 51
10.3.7 Code Example . 51

10.4 Comparison . 53
10.5 Conclusion . 54

11 Development of the first MOOSES client 55
11.1 Game client development . 56
11.2 Development of the SlagMark game client . 56

11.2.1 Designing . 57
11.2.2 Threads . 57
11.2.3 Communication . 57
11.2.4 Input . 58
11.2.5 Sounds . 58

11.3 Summary . 58

12 Game concept profiling 61
12.1 Table explanations . 61
12.2 Shooter profile . 63

12.2.1 Feedback . 63
12.2.2 Visualization . 63
12.2.3 Screenshots from shooter-games . 64

12.3 Third person profiling . 64
12.3.1 Feedback . 65
12.3.2 Visualization . 65
12.3.3 Screenshots from Third person games 65

12.4 Sport Games profiling . 68
12.4.1 Feedback . 68
12.4.2 Visualization . 68
12.4.3 Screenshots from sport games . 69

12.5 Racers profile . 70
12.5.1 Feedback . 70
12.5.2 Visualization . 70
12.5.3 Screenshots from Race-games . 71

12.6 Strategies profile . 71
12.6.1 Feedback . 72

vii

12.6.2 Visualization . 72
12.6.3 Screenshots from strategy games . 73

12.7 Fighters profile . 74
12.7.1 Feedback . 74
12.7.2 visualization . 74
12.7.3 Screenshots from fighter-games . 75

12.8 Profile Summarize . 75
12.8.1 Graphical elements . 75
12.8.2 Game development support in MIDP 2.0 77

13 Cooperative Games 79

14 Hecl - The mobile scripting language 83
14.1 Hecl Architecture . 83

14.1.1 Example: Adding a new Thing to Hecl 84
14.1.2 Hecl Things . 85
14.1.3 Command class Example . 86
14.1.4 Hecl Cmds classes . 87
14.1.5 Hecl Core . 88

14.2 Running a Hecl application . 89
14.2.1 Example script . 89

14.3 Getting to know Hecl . 92
14.3.1 Installing Hecl . 92
14.3.2 Hacking Hecl . 92
14.3.3 Adding GUI Support . 93

III The MOOSES Scripted Client Architecture 95

15 Architecture Considerations 97
15.1 Architecture Background . 97
15.2 Stakeholders . 97

16 Requirements 99
16.1 Functional requirements . 99
16.2 Quality Requirements . 100

16.2.1 Availability . 101
16.2.2 Modifiability . 101
16.2.3 Performance . 103
16.2.4 Security . 104
16.2.5 Testability . 104
16.2.6 Usability . 106

16.3 Environmental Requirements . 106

17 Design Decisions 109
17.1 Tellu ServiceFrame . 109
17.2 State machines . 109

viii

17.3 Message System . 110
17.4 Script code . 111

18 Design Overview 113
18.1 High Level Architecture . 113
18.2 Data flow view . 115
18.3 Process View . 117

18.3.1 Joining games . 117

IV The Scripted MOOSES controller development framework 121

19 Development of a script solution 123
19.1 Manipulation of Hecl core . 123

19.1.1 If statements . 123
19.1.2 Expressions . 124
19.1.3 Pre parsing . 124
19.1.4 Global statement . 125

19.2 Variables . 125
19.2.1 Constants . 125

19.3 Additional functionality . 126
19.3.1 Graphical Elements . 126
19.3.2 Animations . 127
19.3.3 Input . 129
19.3.4 Sound feedback . 129
19.3.5 Communication . 130
19.3.6 Triggers . 131

V Testing 133

20 Performance Testing 135
20.1 Profiler Measurements . 135

20.1.1 Starting the application . 135
20.1.2 Painting the screen . 136
20.1.3 Performing shot . 136
20.1.4 Changing weapon . 137
20.1.5 Sending key message . 137
20.1.6 Thread and triggers . 137
20.1.7 Comparison . 137

21 Testing of requirements and quality attributes 139
21.1 Functional Requirements . 139
21.2 Reflection on quality requirements . 141

21.2.1 Availability . 141
21.2.2 Modifiability . 142
21.2.3 Performance . 143

ix

21.2.4 Security . 144
21.2.5 Testability . 144
21.2.6 Usability . 145

22 Test-session at Kosmorama with real users 147
22.1 Reducing latency . 148
22.2 Test session . 148

22.2.1 Images from test session at Kosmorama 2007 150

VI Discussion and Conclusion 151

23 Discussion 153
23.1 Flexibility . 153
23.2 Efficiency . 154

23.2.1 Communication . 154
23.2.2 Parsing overhead . 154
23.2.3 Detours . 154
23.2.4 Size . 155
23.2.5 Optimizing . 155
23.2.6 Hardware requirements . 155

23.3 MOOSES Limitations . 156
23.4 Game development . 156

23.4.1 Game development limitations . 156

24 Conclusion 159

25 Further work 163
25.1 Small scale . 163
25.2 Large scale . 164

VII Appendix 167

A Scripted Game Clients 169
A.1 SlagMark . 169

A.1.1 Gameplay . 169
A.1.2 Goal of the game . 170
A.1.3 Client source code . 170
A.1.4 Screenshots . 174

A.2 BandHero . 175
A.2.1 Gameplay . 175
A.2.2 Goal of the game . 175
A.2.3 Client source code . 175
A.2.4 Screenshots . 176

A.3 SelfFish . 177
A.3.1 Gameplay . 177

x

A.3.2 Goal of the game . 177
A.3.3 Client source code . 177
A.3.4 Screenshots . 179

B Scripted client commands documentation 181
B.1 Grammars for the MOOSES client scripting platform 181
B.2 Canvas declaration . 182
B.3 Commands for Hecl Lists . 182
B.4 Commands for Hecl Hash tables . 183
B.5 Constants in the scripting platform . 184
B.6 Documentation on Scripted MOOSES client GUI commands 184

B.6.1 paintline . 185
B.6.2 paintstring . 185
B.6.3 paintrect . 185
B.6.4 paintimage . 186
B.6.5 animation . 186

B.7 Commands for Input . 186
B.8 Commands for Sound control . 187
B.9 Commands for communication . 188
B.10 Commands for Animation . 188

B.10.1 Commands for String rotator . 188
B.10.2 Commands for the Image rotator . 189
B.10.3 Commands for the Progressbar . 190

B.11 Commands for Triggers . 190

C Abbrevations 193

D Source Code For The AFProprtyMsg 195

VIII Bibliography 199

xi

xii

List of Figures

2.1 Physical view of the MOOSE system . 8
2.2 Screenshots from our test game . 9
2.3 Screenshots from the vote session . 10

6.1 J2ME architecture . 23

7.1 Serviceframe and actorframe overview . 28
7.2 UML actor-statemachine . 29
7.3 Service Frame GUI examples taken from a CRM application 30

8.1 Lexical analyzer handles factorial function . 36

11.1 Main canvas for the game client . 59

12.1 Screenshots from different shooter games . 64
12.2 Screenshots from different third person games 67
12.3 Screenshots from different sport games . 69
12.4 Screenshots from different shoter games . 71
12.5 Screenshots from different strategy games . 73
12.6 Screenshots from different fighter games . 75

13.1 Screenshots from Lost Vikings . 80
13.2 Screenshots from Battlefield 2 . 81

14.1 Action Diagram showing the Parsing process in hecl 90
14.2 Action Diagram showing the Run process in hecl 91

17.1 MOOSES client states . 110

18.1 High level architecture for the scripted MOOSES client 114
18.2 Dataflow diagram for the scripted MOOSES client 116
18.3 Process view for initiating games on the scripted client 118

20.1 Screenshots from both clients . 136

xiii

A.1 Screenshots from SlagMark . 174
A.2 Screenshots from BandHero . 176
A.3 Screenshots from SelfFish . 179

xiv

List of Tables

10.1 Script Languages Comparison . 53

12.1 Genre sufficiency from our depth study . 62
12.2 Elements needed by the different game genres 76

16.1 The functional requirements for the scripted client implementation 100
16.2 A1 - Packet loss . 101
16.3 M1 - Extend the interpreter with additional commands 102
16.4 M2 - Change dynamic game related data . 102
16.5 M3 - Extend the framework with more states 102
16.6 M4 - Adding new games to the client . 103
16.7 P1 - Response time from player actions . 103
16.8 P2 - Fair premises . 103
16.9 S1 - Player tries to cheat . 104
16.10T1 - status of running modules . 104
16.11T2 - Test a new game-client script . 105
16.12T3 - Game developers wants to test their client 105
16.13U1 - The user wants to exit the application . 106
16.14U2 - The user wants to log in to the system 106

20.1 Profiler results . 138

B.1 Explanations for the paintline command’s arguments 185
B.2 Explanations for the paintstring command’s arguments 185
B.3 Explanations for the paintrectangle command’s arguments 186
B.4 Explanations for the paintimage command’s arguments 186
B.5 Argument explanations for String Rotator declaration 189
B.6 Argument explanations for Image Rotator declaration 189
B.7 Argument explanations for Progressbar declaration 190
B.8 Argument explanations for Trigger declaration 191

xv

xvi

Listings

8.1 Factorial function example . 35
8.2 Coarse Grained Animation Example . 39
8.3 Fine Grained Animation Example . 39
10.1 Simkin script example . 45
10.2 Phonescript example . 48
10.3 Hecl example . 51
14.1 ImageThing class . 84
14.2 ImageCmds class . 86
14.3 Commands for Image . 87
14.4 Adding Two Numbers . 89
14.5 Stanzas From Example Script . 89
14.6 Adding Random Number Generation In Hecl 92
17.1 Scripted controller example . 111
19.1 Example Using Expression as argument . 124
19.2 Hecl global Example . 125
19.3 Paint Component Command . 126
19.4 Interfacing Dynamic GUI Parameters . 127
19.5 Properties Example . 127
19.6 Using an imagerotator in the scripted client 128
19.7 Input class . 129
19.8 using sounds in a scripted client . 130
19.9 Sending data to server from script . 130
19.10Using triggers in the scripted client . 131
A.1 SlagMark source code . 170
A.2 SlagMark source code . 175
A.3 SlagMark source code . 177
B.1 Grammars for the MOOSES Client Scripting Platform 181
B.2 Input Commands Using Tags . 186
B.3 Communication Commands Example . 188
D.1 AFPropertyMsg class . 195

xvii

xviii

Part I

Introduction

1

CHAPTER 1

Introduction

Multiplayer On One Screen Entertainment System (MOOSES) is a platform that allows people
to play multiplayer games on a projected screen, using their mobile phones as controller for the
game. The client that allows the mobile phone to function as a controller is written in Java 2
Micro Edition, and has to be downloaded and installed to the client. The game runs on a server
which communicates with the mobile phones using Bluetooth 2.0. The MOOSES prototype
was developed during our depth-study fall 2006 at NTNU.

MOOSES has been given great response from the audience whenever we have tested it or
published information about it. The enthusiasm we have met has been better than we ever
dared to hope for. The presentations done so far have been executed with use of the prototype
we developed during our project last semester. This prototype still lacks a lot of elements to
make it a complete, reliable and user friendly platform.

This project is one of two projects that aims to take MOOSES into further development to
increase it’s capability to meet its goals. During this master thesis we will try to cover some of
the fields of the Further work section in our depth study that we found most important. These
fields are:

â On demand downloadable games for the MOOSES platform

â Look into what kind of GUI (Graphical User Interface) options that should be available
in the library for gaming.

â Better solutions for loading different game clients for the J2ME (Java 2 Micro Edition)
client until class loading becomes viable, or enable scripting.

â Scalability testing and improvements

3

â Look at interoperability between different types of mobiles, find minimum requirements.

Some of these fields will be given more attention and be prioritized higher than others. This
projects main focus is development environment of the game clients used by the MOOSES
platform, and testing will be included as a natural consequence of this development. Looking
at interoperability between different types of mobiles will in this turn be limited to the number
of different mobile devices available during testing.

1.1 Motivation

The MOOSES prototype developed in our depth study was used as a proof of concept during
testing. The client side of MOOSES is based on the Java 2 Micro Edition (J2ME), which is
the most common development platform for mobile devices [2]. J2ME require the classes that
constitute an application to be pre-verified, and data to describe the application to be stored in
a separate file [3]. As a consequence of this, applications developed on the J2ME platform may
not be updated by adding or replacing classes. An update of the application requires the whole
jar file that contains the classes constituting the application to be replaced.

For MOOSES this means that for every game added to a MOOSES implementation, the mobile
client has to be rewritten, preverified, compiled, and redistributed to all the clients.

This results in redistribution of the client for every game update at the gameserver and causes
unecessary traffic on the bluteooth bandwidth. Also, having to go through the edit-verify-
compile process is bothersome compared to just adding the games without having to manipulate
the server or the client.

We want to look into opportunities to make the MOOSES platform more flexible. It is crucial
that the MOOSE System is able to dynamicly handle games added and games removed to
provide for the customers of the system to control which games that are installed with their
implementation.

Ideally the client should only be downloaded once to the participants mobile devices, and
dynamicly load the games from the server. The client should only be replaced at the participants
mobile device whenever the client version is updated.

1.2 Problem Definition

This project will focus on research on methods to bypass J2ME’s lacking support for dynamic
changes to the applications. The MOOSES platform is not able to update the clients with
new controllers for new games because of J2ME’s lack of a dynamic classloader. However,
application ressources may be changed and added to the J2ME applications dynamicly during
runtime. If we can use a resource to define the application, for instance a script, we might be
able to load the game controllers on the client dynamically.

4

This approach means that the game controllers has to be written as scripts. And we will
therefore have a look on how a scripting approach will change the game development and
which utilities a scripting platform crave for development of game controllers for MOOSES.

We will make a prototype to test the MOOSES platform with a scripted client. The solution
will be based on some kind of script/interpreter middleware, and research will focus on what is
needed from such a solution.

1.3 Project Context

This project is a part of the research program on videogames at The Norwegian University of
Science and Technology (NTNU) [4]. This research program has the following superior goals:

1. To be initiator for new research projects regarding videogames at NTNU

2. Work to identify potential external resources that may support NTNU’s activities
regarding videogames.

3. Coordinate and arrange for research regarding video games internally at NTNU and
between NTNU and external collaborators.

4. Work to promote and make visibe the activities regarding videogames at NTNU.

5. Serve as advisors with respect to drawing up study offers related to videogames at NTNU.

The project runs in paralell to two other projects based on the MOOSES platform. Morten
Versvik and Aleksander Baumann Spro have a project that focus on co-operative games and
social aspects that the MOOSES platform should have [5].

Audun Kvasbø also works on new game concepts to MOOSES [6].

1.4 Readers Guide

The contents of this report vary with respect to focus and approach. Some of the report might
be more interesting to some readers than others. In order to increase the readability of this
report we will present a brief outline of the different parts.

If you are not interested in reading the whole report, you should identify yourself with one or
more of the following categories:

Readers interested in scripting technologies for mobile devices - Should read Chapter 8,
Chapter 10, Chapter 14 and Chapter 19.

5

Readers interested in the MOOSES concept - Should read Chapter 2 and Chapter A.

Readers interested in the technologies that the MOOSES platform is built on - Should read
Chapter 6, Chapter 7 and Part III which reflect the MOOSES architecture.

Developers interested in developing games for MOOSES - Should read and understand
Chapter 12, Chapter 19 and Chapter B.

Developers interested in improving the scripted client - Should read Part III to get an
understanding of the architecture, Part IV to get an understanding of how things are
implemented and the Part V to get a reflection of the bottlenecks.

1.4.1 Part description

In this section we will give an overview of the contents of the different parts of this report.

Part I Introduction - Gives an introduction to the purpose of this project and an introduction
of the MOOSES system. This part will also include the research questions we seek to
answer during this master thesis.

Part II Prestudy - The prestudy comprise study on technologies and COTS that we will make
use of to answer the research questions and to build a prototype.

Part III The MOOSES Architecture - This parts presents the architecture for the prototype
of the scripted client. This includes the requirements and the design decisions, together
with the stakeholders interests.

Part IV Development - This part comprise notes from the development process and technical
information about the implementation.

Part V Testing - This part presents the testing results, and the refection of the prototypes
satisfaction of the requirements.

Part VI Discussion and Conclusion - This part contains the discussion, conclusion and
answers to research questions, and further work that has to be done to the scripting
platform.

Part VII Appendix - This part contains a list of abbreviations used in this report, examples of
games developed on the scripting prototype and the grammars of the scripting platform.

Bibliography - This part contains the references on sources used in this project

6

CHAPTER 2

Multiplayer On One Screen Entertainment System

This chapter will give a brief presentation of the MOOSES platform to provide for the reader
to familiarize with it.

2.1 MOOSE - System

The MOOSE system was created during the depth study done by Morten Versvik, Aleksander
Spro and myself, Sverre Morka fall 2006 at NTNU. In the previous project we referred to the
system as MOOS, but we changed the name of the concept to include an E and S at the end to
make a catchier name which is easier for people to remember. The new name of the concept is,
as the title of this section implies, MOOSE system or MOOSES. Figure 2.1 shows a physical
view of the MOOSES platform.

MOOSES is a prototype that lets many people in a cinema auditorium play video games using
their mobile phones as controller. The concept was originally intended to be used on the Sony
4k projector at Nova cinema in Trondheim, but has proved to fit other HD-projectors with
lower resolutions. The games are designed to place multiple players on one screen, keeping
all the players visible at all times. The players control their character or characters through
a mobile phone with an installed application that communicate with the game server through
Bluetooth. The game server is responsible for running the game and send signals to a projector
that displays the game on a canvas.

The first game we developed for MOOSES was called SlagMark. SlagMark is based on ideas
from the old game worms. Every player controls a worm, and the goal of the game is to kill as
many of the other worms as possible. The worms kill each other by using weapons provided on

7

Billing

Login

Communication Server

Game Server

Game

1

1

1

1

1

1

1

1
1

1

Video Signals

Game
Controllers
(Client Module)

Player Input
Game Feedback

Bluetooth Router
Server host machine:
Can be deployed as one machine hosting
all server modules or as a distributed system,
hosting different modules on different machines.

Only constraint is each gameserver needs its
own projector.

Figure 2.1: Physical view of the MOOSE system

8

the game client controller. Screenshots from the first MOOSES game can be found in Figure
2.2.

(a) MOOS Extermination game (b) MOOS Extermination controller

Figure 2.2: Screenshots from our test game

The MOOSE framework supports sound feedback both from the game and the client controller.

The game server will have multiple games installed, there is no upper threshold for maximum
is set at this time. The concepts we had in focus, and the test game we developed, in the first
turn were instant action games that were on for about five minutes before they restarted. Games
installed on the MOOSE platform will be based on a window of time to run. When a game is
ended, the highscore is displayed. Further, the server initiates a voting session, providing all
the alternatives of installed games to the clients. The clients vote for the game they want to
start, and the game with most votes is started. The server tells the clients to load the controller
canvas to the corresponding game. At this point, all the games controller canvases are part
of the client applications source code. Figure 2.3 shows screenshots of the voting part of the
MOOSES. Communication between the server and the mobile clients makes use of Bluetooth
2.0 technology.

Additional information on MOOSES can be found in the depth-study report [7] or at our
homepage www.mooses.no [8]. Videos of the first MOOSES test session, and presentation
for the norwegian television show Newton may be found on the disc bundled with this report.

9

(a) Vote screen (b) Vote controller

Figure 2.3: Screenshots from the vote session

2.2 Development platform

The MOOSES platform depends on developers to develop and supply games. To attract
developers to our concept we would need a development platform and some standardizations
for common game genre profiles. The game development to our concept as it is today requires
the developer to make both the game in c++, Java or any other language that supports the Java
Native interface at the server side, and a client class in Java 2 Micro Edition.

The java part on the client side causes a problem because of the lack of Java’s dynamic class
loader support. To develop a client for your game to the MOOSES platform prototype, you got
to make one or more java classes that defines canvases with methods for:

â Graphical representation

â Animations

â Data exchange with the server

â Response for user input

â Response for game data received from the server

â Game logic

â Switching between canvases

The author will also have to define message classes for the data exchange between the game
and the client. The MOOSES framework is based on the ServiceFrame architecture developed

10

by Tellu [9], using the Server and the Client as two different actors. After the class is edited and
compiled, the client actor has to be updated with the new class and actions to the new messages
created. More information on how to develop game for the previous prototype of MOOSES
can be found in Chapter 11.

If the J2ME platform had supported dynamic class loading this would have worked well.
Whenever a game is added, all the client would have to do is to download the new classes
and load them in to the application dynamically. Unfortunately, this is not the case.

2.2.1 Alternatives to user defined class loader

To get around J2ME’s lack of a user defined class loader we would obviously have to make a
standardization for the data exchange, so that neither the client actor or the game server actor
would need any modifications for new games, at least not for common game concepts.

A scripted solution for games may offer us an implementation that does not rely on new Java
classes to define the game clients. If we provide the client with classes with abstract methods
that can be accessed by a script, the client would only have to download the script and the
corresponding media files (sounds and pictures etc.) whenever a game is added. However, a
scripting approach might not be the ultimate solution. We will have a look on how the script
solution may constrain the possibilities we already have, and compare this up to the benefits
we are gaining. The utility that we expect to be most constrained by the usage of scripts are the
ability to make and manipulate graphics and animations.

All in all a development platform should support easy layout for the common graphical units,
and support for user input and data exchange with the game, as well as actions taken based on
game data.

2.2.2 Development Tool

If the scripted implementation proves to be a success, we should build an editor tool that makes
client development easier. Such a tool should include support for authoring scripts, draw the
GUI and test the application. Since the scripts are stored in plain text files or analogous, they
may be authored from an arbitrary text editor, however it would be more convenient to make a
tool for authoring to highlight keywords etc. Such a tool would also reflect warnings and errors,
making debugging much easier. We could also include functionality for script generation. The
tool could provide an interface for the game client designer to draw the GUI/layout and get
the script needed for these drawings generated automatically. The tool should also have an
interface for manipulation of the attributes generated. A development tool should also provide
functionality to test and profile the application with a simulated server.

This master thesis will focus on development of a scripting platform for the MOOSES client,
and any development tool software will be developed at a later stage if the scripted solution
proves to fit the concept.

11

12

CHAPTER 3

Research Questions & Methods

In this chapter we will describe which questions we seek to answer through our work, and how
we intend to find the answers. We will describe how we plan to conduct the work and explain
the different methodologies we plan to follow.

3.1 Research questions

This research is meant to extend the MOOSES framework to with respect to covering unsolved
problems for dynamic adding and removing of games, and to provide better development
environment to the game authors.

The larges barrier for the MOOSES concept is the utility to dynamically update the mobile
client without having to make changes to the source code and without having to reinstall it
on the mobile phones. The solution for developing game clients with the prototype developed
during our depth-study has led us partly where we want to go. It provides support for balancing
gameplay between the Main game and the client display in form of visual representations,
animations, user input and data exchange with the game. We want to keep these utilities in the
development of a new dynamic solution for the game client implementation.

Creating a dynamic way to implement the client in form of scripts require profiles on different
game concepts to provide a better abstraction for game developers. Different game concepts
have different needs for utilities provided by the client, and grouping them into profiles will
make development environment more orderly. The research will therefore focus on suitable
game concepts and which features they crave from a scrpting platform.

13

The current implementation requires the developer to make new messages in form of Java
classes for data exchange between the game and the controller that are tailored to their game.
An abstraction for game developers need to make standardization on the data flow between the
game and the client to prevent manipulation of the MOOSES source code.

We want to provide some research into determining solutions to come around the lack of a
user defined class loader for J2ME. The Connection Limited Device Configuration for J2ME,
which is the configuration used by mobile phones, does not support dynamic user defined
class loading. This is constrain the MOOSES opportunities to load new game controllers
dynamically.

Alternative solutions may constrain and put limitations on the former implementation. Some
of our concept ideas from the previous project are likely to suffer some reduced opportunities.
Alternative solutions might also put constraints on the developers’ creativity.

In addition to game development, the alternative solutions may also suffer some technical
difficulties. Using a middleware solution may produce a significant overhead, more power
consumption and so on. Communication may also represent a problem, not only because of
overhead produced by middleware, but freedom of creation from the developers’ side.

In retrospect of this as well as from motivation and the problem description, several concrete
questions have arisen. This report will lead to answering these questions.

RQ-I: How will an alternative solution affect MOOSES?

â We will have a look on different solutions to use script or interpreters to
provide dynamic code for the game controller. This research will determine
which attributes needed by such a solution to suit as a replacement for the
current solution with respect to pros and cons.

a) Will a scripting API for the client make the MOOSES able to
dynamically load new games?

b) To what extent will the performance of MOOSES be affected by a
scripted client?

c) Will the MOOSES concept be constrained by a scripted client?

RQ-II: Which impact will a scripting platform have on game development?

â To provide a better development platform for the game developers we would
need an abstraction from the current implementation. The developer should
only be concerned about the response to user input, dataflow to the game,
actions taken by game data and visualization. The developer should not be
concerned by the background logic for making this possible.

a) Will a scripting platform make it easier to develop a game client?
b) Will a scripting platform constrain the game clients with respect to game

play?
c) Which elements would a scripting API need for game client develop-

ment?

14

3.2 Research Method

In order to make prescriptions about the research methodology in software engineering we need
a basic understanding of what software engineering is.

Basili in [10] defines software engineering as follows:

"[. . .] can be defined as the disciplined development and evolution of software
systems based upon a set of principles, technologies and processes."

With that in mind we can start to look at what models to use for research into software
engineering. One issue with attaining good models for this type of research is that software
engineering is still fairly new discipline in a scientific perspective. Unlike other sciences,
models for components like processes and resources have been neglected so far even though a
lot of research is going on in this field. Basili [10] does however describe three experimental
models for use in software engineering research. The variations between the models are small,
but focus on different areas and are parts of two distinct paradigms; the scientific- and the
analytical paradigm. First model consists taking on an engineering approach, the second an
empirical approach while the latter takes on a mathematical approach.

The three approaches in short:

The engineering approach (scientific) In this approach one has to perform iterations of
observing the existing system, suggesting improvements and building and analyzing the
new system. This continues until no more improvements can be found.

The approach is strictly evolutionary and implies access to existing models of processes,
products and the environment in which the software is developed.

The empirical approach (scientific) Based on a model of the domain a set of statistical
and qualitative methods are proposed. Then these models are applied to case studies,
measured and analyzed, and the result is a validation of the model.

This distinct the approach from the previous one since a new model is proposed. It is
also more reliable to validate the model through the use of case studies. This approach is
widely used in all fields of research.

The mathematical approach (analytical) A formal theory or a set of axioms is presented,
the theory is developed and a result is derived from it. It is preferable to have this results
compared to empirical observations.

The empirical approach will constitute the base research method for resolving the game related
research questions to determine the utilities a scripted solution have to support for the different
games, while the engineering approach will constitute most of the work behind the extension
of the framework.

15

3.2.1 The Engineering Approach

In Section 3.2 above, we described the engineering approach as; observing, suggesting
improvements, analyzing and building. The observation phase consists of the Part II Prestudy
where we will look into game concepts to profile them and aspects of the scripted solution as
well as some technology used by a scripting approach.

With the main focus of this project being to design a script platform for use of game clients
on the MOOSES concept, we will incorporate the last two stages of the engineering approach
into the requirements, design Chapters of Part III Architecture and development Chapter of
Part IV Development of the scripting Framework. The last part of the engineering approach,
suggesting improvements, will be found Chapter 25.

3.2.2 The Empirical Approach

As mentioned in Section 3.2, we will use the empirical approach to research different game
concepts in order to determine what they will require from a scripted solution, and it they will
fit a scripted solution. We will use an adapted form of literature study to categorize the games
we found feasible in the first project. With this data we can determine what elements will work
with a scripted solution, and which constraints such a solution may put on them. This will also
help in spite ideas for game concepts for our domain.

We have chosen to categorize the different game types into the following sections:

Genre presentation will try to summarize the common basic gaming elements the given genre
makes use of.

Feedback will try to summarize the most common information that is necessary to reflect to
the user.

Visualization will try to find common visualization techniques and how to reflect them on the
mobile.

When the detailed look at the game types is done we will summarize the elements needed by
a scripted client, and some possible loopholes which one should look out for. We will also
develop a prototype to test a scripted client implementation on the games we have so far.

3.3 Test Environment

The testing will reveal if our solution was satisfactory. The testing will be performed on the
emulators on desktop computers and on mobile phones. The framework will be tested at the
main auditorium at Nova with real cellular phones at the Kosmorama film festival in Trondheim.
This to make sure the framework performs acceptably in an optimal setting.

16

CHAPTER 4

Development Tools & Software

In this chapter we will give a brief presentation of the different tools used to create this report
and the prototype.

4.1 Eclipse With Plugins

Eclipse [11] is a an open source development platform with lots of available plugins for
different purposes, e.g. writing in LaTeX, creating applications for mobile phones and finding
code statistics.

TeXlipse is a plugin for writing LaTeX documents in Eclipse. It includes features like syntax
highlighting, command completion and bibliography completion [12].

EclipseMe [13] is a plugin for developing J2ME MIDlets in Eclipse. A Java Wireless Toolkit
must be installed on the system for the plugin to work.

4.1.1 MiKTeX 2.5

MiKTeX is an implementation of TeX and related programs for Windows on x86 systems
[14]. The MiKTeX distribution contains many features including the pdfTeX compiler which
generates a pdf document. The compiler is used to produce this document.

17

4.1.2 Concurrent Version System

Concurrent Versioning System (CVS) are used to keep track of versions of code and
documentation. In our case we will use the CVS to keep backups and make the project available
from multiple terminals. NTNU has a Linux server with CVS support which we have used in
this master thesis. The system also makes it easy to work from any computer that has Eclipse
and the necessary plugins.

4.2 Emulator

Applications made in J2ME need to be tested. The applications can run on mobile phones, but
it is a tedious process to do for each iteration. Therefore, emulators can be used instead. There
are several emulators available and each mobile phone producer has its’ own toolkit. In our
study we will use the Sony Ericsson SDK.

4.2.1 Sony Ericsson SDK

The Sony Ericsson software development kit (SDK) is a wireless toolkit that can be used to
emulate Sony Ericsson mobile phones that support Java ME technology [15]. The kit can
emulate the following phones: W800, W600, W550, Z520, K750, K600, K300, J300, Z800,
V800, S700/S710, Z500, K700, Z1010, K500, K508, F500i, P900, P910, Z600/Z608, T630-
T628, T637 and T610 Series (T610, T616 and T618). The SDK can run applications that uses
both MIDP 1.0 and 2.0.

The Sony Ericsson toolkit can run several instances of an application using emulations of
different phones so that each phone has a recordstore, filesystem and PIM database. This
enables us to test the applications with the emulator, without having to use actual phones.
However, using this SDK will only test how the framework and applications will work on Sony
Ericsson mobile phones. Therefore, the framework must be tested on different real phones
ensure that the software will run on different hardware. This SDK also include profilers for
communication, CPU instruction cycles and memory usage. We will make use of the CPU
instruction cycles profiler during development and testing.

18

Part II

Prestudy

19

CHAPTER 5

Prestudy Introduction

This part presents the prestudy of our project. We will have a look on the tecologies that
the MOOSES client make use of, and how the may be affected or contribute to the scripting
platform for gamedevelopment. The tecnologies presented are Java 2 Micro Edition (J2ME)
and ServiceFrame. J2ME, presented in Chapter 6, is the base of the client application and it is
also the source of the problem with dynamic addition and removing of games to the MOOSES
implementations. ServiceFrame, which is a framework that we have based the entire MOOSES
platform on, is presented in Chapter 7.

In addition to these technologies, we will have a look on scripting technologies and central
concepts regarding use of scripts. We will look on available open scripting platforms for J2ME
to find one that suits our needs, which we will make use of to develop the prototype. We will
also provide a detailed presentation of this language’s architecture and demonstration of usage.
We will also have a look at the threats that are represented by implementation of scripts on a
mobile platform.

The prestudy also contains research in elements that have to be provided to a development-
platform that make use of scripts. In Chapter 12 we discuss the elements that we find
appropriate for the game genres that suit the MOOSES platform. In Chapter 11 we will have
a look on how game clients are developed on the first MOOSES implementation to get some
ideas to elements needed. We will also have a brief look on new game concepts that makes
impact on how to think when developing game clients for MOOSES in Chapter 13.

21

22

CHAPTER 6

Java 2 Micro edition

In this chapter we will have a look on the Java 2 Micro Edition (J2ME) which the MOOSES
client is based on. J2ME is the source of the problem taken into account for this project. We
will have a brief look on the J2ME architecture and the class loader implementation for J2ME.

Java Platform, Micro Edition is the most ubiquitous application platform for mobile devices
across the globe [2]. Sun Micro systems introduced a Java 2 platform called Micro edition as
a set of specifications to pertain to Java on small devices to meet the increasing technology in
this field with a standardized platform [3].

The domain of J2ME are ranging from pagers and mobile phones to set top boxes and car
navigation systems. The J2ME architecture is divided into three layers as shown in figure 6.

Implementation for
Mobile Phones

Mobile Information
Device Profile

(MIDP)

Connection
Limited Device
Configuration

(CLDC)

Kilobyte Virtual
Machine (KVM)

Profile Layer

Configuaration
Layer

Virtual Machine

J2ME
Achitecture

Figure 6.1: J2ME architecture

23

6.1 Virtual Machine

The virtual machine layer implements a Java virtual machine customized for the device’s host
operating system that supports a particular J2ME configuration. For mobile phones this virtual
machine is called Kilobyte virtual machine. During the development of the KVM, classes that
were too bloated or not as critical to the system where extracted. Most important of these
features, regarding our project, where the support for user-defined class loaders.

6.2 Configuration Layer

The configuration for J2ME devices defines a minimum set of Java Virtual machine features and
core Java class libraries available to a category of devices. The configuration for J2ME devices
consist of two alternatives, the Connected Device Configuration (CDC) and the Connection
limited Device Configuration (CLDC), where CDC is a super set of CLDC. As the name
insinuate the CDC configuration is aimed at devices that are always connected (although it
is used on PDAs) but relatively resource poor, such as a satellite TV receiver or WebTV. The
CLDC is the configuration used on mobile devices, such as mobile phones and pagers. The
CLDC consist of a set of additional classes contained in separate package. These packages are
the java.io, java.lang, javal.util and javax.microedition.io. The current CLDC version, CLDC
1.1, has been granted an additional package java.lang.ref to support weak references.

The verification technique used by CLDC had to be less memory consuming than the one
used in Java 2 Standard Edition (J2SE). To reduce the client side verification overhead,
CLDC uses a dual pre-verification process to push part of the verification operation into the
development platform. Applications in J2ME are called MIDlets. When a MIDlet is compiled,
the classes that constitute it is archived into a Java archive (JAR) file. The preverification
process generates information called stackmap attributes that is stored in an independent file
called Java Application Descriptor (JAD). This file is downloaded together with the jar file that
constitute the application.

6.3 Profile Layer

The profile layer is more device specific and defines the minimum set of application
programming interfaces available on a particular group of devices, which are developed on
top of the underlying configuration. The profiles maintains device specification and device
portability which assures that applications written for a particular profile should port to any
device that conforms the profile. For mobile phones the current profile is Mobile Information
Device Profile (MIDP) 2.0.

MIDP provides a Java Application Programming Interface (API) related to interface,
persistence storage, networking and application model. The platform for mobile Java
applications provides a mechanism for MIDP applications to persistently store data across

24

multiple invocations. This persistent storage mechanism can be viewed as a simple record-
oriented database model and is called the record management system (RMS) [16]. MIDP also
put some hardware requirements to the manufacturers. To support MIDP a mobile device has to
have 128 K bytes of RAM, 8 K bytes of application-created data and 32 K bytes of Java heap.
Most (if not all) Mobile devices developed today has far more resources than this. For instance
one of the most advanced J2ME enabled phones, Sony Ericsson’s k800i, has up to 3000 Kbytes
available heap [17].

6.4 User Defined Class Loader

The dynamic loading of classes is a crucial feature of Java virtual machines. It allows the Java
platform to load and install new software components at run-time.

In CLDC, the application programmer cannot override, modify, or add any classes to the
protected system packages, i.e., configuration specific, profile-specific, or manufacturer-
specific packages. Therefore, in order to protect system classes from downloaded MIDlets,
system classes are always searched first when performing a class file lookup and the application
programmers are not able to manipulate the class file lookup order in any way [18].

J2ME’s CDC (Connected Device Configuration) layer is a super set of the more constrained
CLDC which contains the support for user defined class loaders. The CLDC’s lack of a user
defined class loader is mainly for security reasons, and the versions of CLDC that are developed
in the future is therefore not likely to provide this utility. The CLDC class loader is a built-
in "bootstrap" class loader that cannot be overridden, replaced or reconfigured, and we will
therefore have to look at other options to make a client that supports dynamic adding of new
games. Compiled Java class files are stored as the machine code for the Java virtual machine,
referred to as bytecode [19]. It could be possible to write an interpreter that interpreted the
bytecode from the class files, but such an interpreter would probably be to complex and
unstable, not to mention the overhead it would produce. There has been developed multiple
solutions for scripting on top of J2ME, and many of these solutions are open, meaning that
we may tailor them to suit our needs. It is more likely that a scripted solution may serve as
a replacement for the dynamic class loader than to interpret the bytecodes. We will therefore
look into some of these solutions.

6.5 Summary

J2ME provides an advanced API that makes it possible to develop increasingly advanced
applications on a mobile platform. The new MOOSES client will still be based on J2ME,
but since J2ME has a strong focus on security we will have to use some kind of middleware
that can interpret structural data and instructions constituting a game client runtime.

25

26

CHAPTER 7

ServiceFrame

TellU [9] is a small company located in Asker which has developed ServiceFrame [20] which
is a library for use in developing of mobile applications that make use of distributed services.
This library provides functionality that differs from the general by shoving more of the work
to the server, and making the mobile device more passive. ServiceFrame is able to determine
which connection options to use, once the available ports has been opened.

The applications consist of so called actors, equal to the Java Beans in regular java. One actor
serves a service-role, and will initiate actions from given input.

ServiceFrame was a big help for us creating the prototype of MOOSES. The ServiceFrame
architecture provided a platform that minimized the work we had to do to make the
communication between the server and the phones. Both the server and client where easy
to develop using the state machine architecture, provided by ServiceFrame.

7.1 ActorFrame

An Actor is a composite object having a state machine (ActorSM) and an optional inner
structure of Actors [21]. Some of these inner Actors are static, having the same lifetime as
the enclosing Actor, and others are dynamically created and deleted during the lifetime of
the enclosing Actor. The state machine of an Actor will behave according to generic actor
behaviour, common to all actors, and a Role type, which is bound when the Actor is instantiated.
If the Actor shall play several Roles, this is accomplished by creating several inner Actors each
playing one of the desired roles.

27

Figure 7.1: Serviceframe and actorframe overview

On the MOOSES server the server has several roles, for instance billing, highscore
management, authentication, interfacing the game etc.

Communication between the Actor and its environment takes place via an in-port and an out-
port. Internal communication among the inner actors is also routed via the ports.

The actor has a generic behaviour, inherited from the base Actor type that provides management
functionality. It manages the inner structure of Actors and the Roles they play. It knows
the available Roles and the rules for Role invocation. This is provided to it in the form of a
Deployment Descriptor (DD). The generic behaviour handles role requests and will either deny
the request or invoke an Actor to play the requested role or an acceptable alternative role. The
generic behaviour also has the capability to add and remove roles, and to perform other Actor
management functions. It keeps track of what Plays the Actor takes part in and is able to track
and release all Roles in a play when the Play shall be ended.

The Actor has an assigned Role type, which defines the application specific behaviour of the
Actor. The behaviour of a Role type is defined by a composite state - RoleCS.

A service designer will primarily work with RoleCS and its constituent Role features to design
service behaviour.

An Actor has a unique identifier and ActorAddress. In addition, the ActorSM holds both
generic attributes and application specific attributes.

ActorFrame itself is defined as a special Actor, the Root Actor. This Actor will normally have
an inner structure of Actors reflecting the needs of the environment. Each of these inner Actors
may recursively contain an inner structure until atomic Actors having only a role behaviour and
no inner structure are reached.

28

Figure 7.2: UML actor-statemachine

7.2 TellU ServiceFrame

ServiceFrame is a statemachine and message-routing framework for J2ME, J2SE and J2EE.
It has support for tcp-, udp-, bluetooth- etc routers. Events are sent using messages and the
routing system takes care of where the messages gets sent. ServiceFrame’s generic architecture
makes it very scalable.

ServiceFrame is basically a Root Actor containing an open collection of actors reflecting the
needs of the application domain and a library of generic Actor types and role types (classes)
tailored to the domain. This is a general framework that must be specialized by supplying
application dependant Actor types and Role types and instances.

ServiceFrame allows designers to add new types and to specialize existing types incrementally.
The Actors are interconnected through ports. The ports are in charge of message routing and
have access to routing databases, and also the name-servers/registries needed to perform name
based routing.

ServiceFrame builds on a Peer-2-Peer architecture where client server architecture is a special
case. It has an event driven architecture build on asynchronous message passing and use of
state machines for complex behaviour (UML based). It uses a message structure that makes
application routing for a flexible integration and distribution of applications.

The ServiceFrame architecture is scalable allowing a flexible and dynamic deployment of
applications making it able to support applications on large servers to pc to mobiles, to sensors.
It also has integrated with external service enablers making it able to interface services(SMS,
MMS, Map, Webservices).

29

7.3 Tellu J2ME GUI Library

The J2ME part of ServiceFrame has its own library for Graphical User Interface components.
This library has support for themes, animations and common elements such as lists, text
elements, menus etc. The GUI library builds on the J2ME Canvas, i.e. all the elements
consists of primitives painted on the canvas. The canvases therefore supports direct drawing
on the canvases, and manipulations of the elements drawing methods. Figure 7.3 shows some
examples of the ServiceFrame GUI elements.

(a) Main window (b) Meeting details (c) Text editor

Figure 7.3: Service Frame GUI examples taken from a CRM application

30

CHAPTER 8

Script languages and grammars

In this chapter we will have a look on scripting technologies and structure to provide a better
understanding for scripts purpose, architectural concerns and area of application.

8.1 Scripting Languages

Scripting languages are programming languages that can be used to write programs to control
an application or class of applications [22], typically interpreted rather than compiled, and can
be typed directly from the keyboard or be stored in plain text files.

Common high level programming languages convert the code into binary executable files, and
yield weak support for dynamic changes once they have been compiled. Scripts remain in their
original form and is interpreted command by command each time they are executed, hence a
script may be typed directly from the keyboard to a command line.

8.1.1 History And Development

Scripts where created to cut down on the edit-compile-link-run process, as scripts may be
edited runtime. The inventors named it script to associate with the scripts given to actors in
which dialog is set down to be interpreted by actors. In a computer setting, the actors are the
programs. Although scripting languages can be compiled, the common usage is interpreting,
because it is easier to write a interpreter than a compiler.

31

8.1.2 Higher Level

Scripting languages have a higher level than system programming languages. System
programming languages where made as an higher abstraction than the assembly language that
consists of plain machine instructions. A statement in a system language may comprise four to
six statements in assembly language. Scripts run on top of the system languages, and represent
an even higher abstraction level. One statement in a script may comprise about a hundred
statements in the underlying system language [23].

8.1.3 Area of application

As system programming languages are designed for building data structures and algorithms
from scratch, scripting languages are designed for gluing these components together. They
assume the existence of a set of powerful components and are intended primarily for connecting
components together.

As an example of scripting usage we can refer to computer games. Games often use scripts to
extend the game logic, tailoring the game engine to particular game data. This is convenient
to make some elements accessible from within the game. In this way scripts may also make
some applications programmable from within, so that repetive tasks can be quickly automated.
Scripts is also used in web-development, where they may provide for the client to be less
dependent on the server since the scripts allow processes to be executed locally.

8.1.4 Types And Primitives

To simplify the task of connecting components, scripting languages need to be typeless,
meaning that all things look and behave the same. For example in PHP, a variable may hold a
string one moment and an integer the next. This results in most scripting languages to be string
oriented, since this provides a uniform representation for many different things. For instance,
"hello", "123", "32.233", "true" etc. It might seem that this results in scripting languages to
allow errors, however, scripting languages do their error checking at the last possible moment,
when the value is used.

Scripts are typically used to control or write parts of an application rather than programming
whole applications. Therefore the terms coarse grained and fine grained grammar becomes
reel, and will be discussed in Section 8.3.

8.1.5 Efficiency

Scripting languages are less efficient than system programming languages. Since the scripts
are being interpreted by other programs they produce a overhead, making them harder to
optimize for memory management and speed. The interpretation also consume more memory

32

than compiled applications, since the process is bigger. Also the scripts basic components
are chosen for power and ease of use rather than efficient mapping onto underlying hardware.
However, the script option provides an advantage in association of file size and code needed.

The performance of scripting languages is not usually a major issue because the scripted
applications size are usually smaller than system language applications, with limited purposes.

8.1.6 Different types of scripting languages

To give a better understanding of the usage of the scripting languages we will present the most
common types of scripting languages and give some examples on their usage. There are many
different types of scripting languages based on their domain criteria, and we can divide scripting
languages into following superior types [24]:

â Job control languages and shells - This is scripting solutions provided to control the
behaviour of system programs, often written and interpreted through a command line.

Example: Microsoft DOS’s COMMAND.COM [25], used a command line interface to
write DOS-commands. Alternatively they could be stored in *.bat files as a collection of
DOS-commands.

â GUI Scripting languages - As the name states, these languages are used to control
graphical user interfaces that a system generates (Windows, buttons, text fields, etc.).
The support for this kind of languages are dependent on the application and the operating
system. GUI scripts are often used to automate repetive actions or configure a standard
state for graphical user interface.
Example: Action script which is used to provide animations, logic and GUI components
to Macromedias (Adobes) Flash [26].

â Application-Specific Languages - Many application programs include a scripting
language that aims on the needs of the application user. This scripting type are often
included in programs that provide for or require the user to make parts of the program.

Example: Many computer games makes use of Application specific languages to
define actions of non player characters and creation of own maps, weapons or gameplay
elements. For instance the scripting language used in Americas Army [27] has a scripting
language to make configuration details available from within the game. The commands
of this language can be found at [28].

â Web programming languages - Application specific scripting language that is used
to provide custom functionality to dynamic web pages. Modern web programming
languages are powerful enough for general purpose programming. We divide these
languages into two sub genres based on their purpose, namely Server-side scripting
languages and client-side scripting languages.

– Server-side - One subtype such as the PHP [29] and SMX [30] are used to write
code for generating dynamic web pages on the server side.

33

– Client-side - The client-side languages are used for the website to access and
the client and/or execute actions on the client side rather than going through the
server. For instance changes in the page layout may be coded to be executed on the
client-side to minimize server traffic and latency. Examples Javascript [31] and
VBScript [32]

â Text processing languages - This subtypes are among the oldest uses of scripting
languages. They are designed to aid system administrators in automating tasks that
involve configuration and log files.

Examples: Perl (which has grown to be an application language) [33] and AWK [34]

â General-purpose dynamic languages - Script languages usually have a specific goal
when they are created. However, some of the languages evolve to cover a broader band
of purposes. For instance PHP which is intended to be a language for generating dynamic
web pages may be used for programming of graphical applications.

Our script solution will have elements from both the application specific languages and the
GUI Scripting languages. The language will be used to declare and control data structures that
are already defined on the Java side of the framework. In addition to this, the script will also
be used to control events and communication for the game client. The script is intended to
provide as much functionality as the previous implementation as possible without constraining
the freedom of creativity for the developers too much.

34

8.2 Grammars for programming languages

All languages are based on the grammar that makes the rules of how to make sentences out of
words. The same goes for computer languages. In this section we will have a look on features
that are element in grammars of computer languages. Grammars define both statements,
expressions and tokens.

8.2.1 Lexical Analyzer

A program that accepts a sequence of characters and returns a sequence of tokens is called
a lexical analyzer. A lexical analyzer is the first step in a compiler or interpreter. Once the
characters are compiled to tokens it is sent to the parser. A parser is a program that accepts a
sequence of tokens and returns a parse tree.

In Figure 8.1 we can se how the lexical analyzer handles a pseudo function that calculates the
factorial value of an integer.

[fun { F a c t N}
i f N==0 t h e n 1 e l s e N * { F a c t N−1}
end

end]

Listing 8.1: Factorial function example

The parse tree is provided to an interpreter that reads the tokens and executes the computations
based on the language syntax.

8.2.2 Extend Backus-Naur Form

One of the most common notations for defining grammars is called Extended Backus-Naur
Form (EBNF) [35]. EBNF distinguishes between terminal symbols and non-terminal symbols.
A terminal symbol is a defined token, whereas a non-terminal symbol represent a sequence of
tokens. The non-terminals is defined by the grammar rule which shows how it is expanded into
tokens.

Example

<character> ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z

The declaration above says that <character> represent one of the 26 tokens (terminals) a, b, . . . ,
z. The symbol ’|’ is read as "or", and means to pick one of the alternatives. The grammar rules
may refer to other nonterminals.
This nonterminal shows how to write strings

35

Tokenizer

Parser

[f u n ’{’ ’F’ a c t ’ ’ ’N’ ’}’ ’\n’ ’ ’ i f ’ ’ ’N’ ’=’ ’=’ 0
’ ’ t h e n ’ ’ 1 ’ ’\n’ ’ ’ e l s e ’ ’ N ’*’ ’{’ ’F’ a c t ’

’ ’N’ ’-’ 1 ’}’ ’ ’ e n d ’\n’ e n d]

[’fun’ ’{’ ’Fact’ ’N’ ’}’ ’if’ ’N’ ’==’ ’0' ’then’ ’1'
’else’ ’N’ ’*’ ’{’ ’Fact’ ’N’ ’-’ ’1' ’}’ ’end’ ’end’]

fun

Fact N if

==

N 0

1 *

-

N

N Fact

1

sequence of
characters

sequence
of tokens

parse tree
representing
a statement

Figure 8.1: Lexical analyzer handles factorial function

<string> ::= <char>|{<char>}

This rule says that a string is a character followed by any number of characters. The braces
mean to repeat whatever is inside any number of times including none. The braces [...] means
one or zero instances and the braces {. . . }+ means one or more times.

8.2.3 Context free and Context sensitive grammars

The grammar from the example are referred to as context-free grammars, because the expansion
of a nonterminal (<char>) is always the same independent from where it is used. The
compliment to context-free grammars is context-sensitive grammars. In Context-sensitive
grammars, nonterminals depend on the context where they are used. Most of the programming
languages can not rely on the context-free grammar alone to define what is legal and not.
For instance, most of the programming languages require a variable to be declared and often
initiated before it is used. This is a context dependency.

The syntax of most practical programming languages is defined in two parts, as a context-free
grammar supplemented with a set of extra conditions imposed by the language.

To prevent context-free grammars from being ambiguous they implement precedence as a

36

condition to the parser.

Example

<expression> ::= <integer>|<Expression> <OP> <Expression>
<OP> ::= +|*
<integer> ::= 0|1|2|3|4|5|6|7|8|9

The grammar above will result in two parse trees giving different results. The expression 2+3*4
will result in either (2+3)*4=20 or 2+(3*4)=14.

Precedence is a condition on expressions with different operators. Each operator is given a
precedence level. The higher the precedence, the deeper they go in the parse tree. For instance,
* usually has higher precedence than +, therefore the parse tree 2+(3*4) is chosen in favour of
the alternative (2+3)*4. This is expressed as * binding tighter than +.

8.2.4 Syntax Notation

Grammars are defined to make it easier for a developer to get to know and understand the
language syntax and semantics. But grammars are also dependent on how the interpreter or
compiler is written. The notation of the grammars often depends on how the parser is written.
There are three notations used in programming languages, infix, prefix and postfix, with infix
being the most common because it is more intuitive to the programmers. The three notations
are different but they produce equivalent results. To demonstrate the three notation we will
percent them in a list

â Infix notation: X + Y - Operators are written in-between their operands. This is the
usual way we write expressions. An expression such as A * (B + C) / D is usually taken
to mean something like: "First add B and C together, then multiply the result by A, then
divide by D to give the final answer."

Infix notation is strictly dependent on extra information to give the order of evaluation
of the operators clear. The precedence and associability rules are important. Usage of
brackets () allow users to override the rules.

â Postfix notation: X Y + - Operators are written after their operands. To demonstrate
the postfix notation we can write the infix expression given above in postfix notation,
A B C + * D / . Unlike Infix notation, postfix notation always perform evaluation of
operators from left-to-right, and brackets can not be used to change their order. The
leftmost operator is always evaluated before the next one. Because Postfix operators use
values to their left, any values involving computations will already have been calculated
as we go left-to-right, and so the order of evaluation of the operators is not disrupted in
the same way as in Prefix expressions.

37

â Prefix notation: + X Y Operators are written before their operands. The expression
above is equivalent to / * A + B C D . Just like postfix notation, the prefix notation
always arrange the order of evaluation of operators from left-to-right, independent of
brackets. Prefix expressions use values to their right, and if these values themselves
involve computations then this changes the order that the operators have to be evaluated
in. In the example above, although the division is the first operator on the left, it acts
on the result of the multiplication, and so the multiplication has to happen before the
division (and similarly the addition has to happen before the multiplication).

38

8.3 Coarse grained VS fine grained

If we replace the client with a script interpreter we can expect an overhead compared to running
precompiled applications as the old client. Therefore it is crucial to have a look on options to
reduce the overhead as much as possible. The terms coarse grained and fine grained in context
of scripting languages mirrors the scripting language’s capability to provide a high abstraction
level on the code. As discussed in Section 8.1.2 one script statement may consist of a couple
of hundred statements from the underlying system language. Such a script will be referred to
as coarse grained, while a script that assembles one to three statements from the underlying
language will be referred to as fine grained, because it requires most of the work to be done on
the script side.

For instance, if the developer wish to invoke an animation moving a rectangle 10 pixels up , it
would be easier to write:

1 animate $animation up 10

Listing 8.2: Coarse Grained Animation Example

than

1 set offset 50
2 for {set i 0 } {< $i 11} {incr $i } {
3 paintrect y [- offset i] x 50 width 100 height 100
4 }

Listing 8.3: Fine Grained Animation Example

The first will also allow more of the computation to be done at the precompiled system code
side of the application, reducing overhead.

8.3.1 Precompiled functionality

Since the scripting solution causes much overhead, it is desirable to reduce the script
computation as much as possible and keep as much of the code available as precompiled
functions on the system language side. This is important not only to reduce the processing
overhead, but also to be able to reduce the power consumption of the mobile device.

We have chosen to use and extend an open scripting platform. These platforms is basically fine
grained script languages in the way that they provide support for fine grained logic, and entire
programs may be written in them, with only the initiation of the MIDlet and the call to the
interpreter in the Java side.

In the first project we developed a model on concepts from different game genres that would
work on our project. These can be found in Chapter 12. To provide as much code as possible
on the java side, we will have a look on these concepts and new that are under development to

39

make some profiling on what animation elements and communication support that are likely to
be needed by the different concepts.

However, we will not constrain the open scripting language further, indeed quite the contrary.
We will try to include as much functionality as possible at the script side to allow the game
developers to be as creative as possible because we can not foresee every possible scenario. In
addition to provide as much functionality on both sides as possible, we will try to keep the size
of the classes as small as possible to minimize the storage consumption and heap usage.

8.4 Summary

Grammars for computer languages are concerned by making the language easier to compile or
interpret, and to make the syntax and semantics intuitive for the coder to reduce the learning
curve and complexity. Our scripting platform for game client development has to inherit the
syntax of the open platform we decide to use, and we will therefore take this into account when
choosing a scripting middleware platform.

It is also important for a scripting platform running on such a resource constrained device as the
mobile phones, to increase the abstraction level as much as possible. Doing so will provide for
the client to suffer less overhead runtime, because more of the computation will be executed
in precompiled Java. It will also provide for the client development to be easier because of
reduced requirements to code needed.

40

CHAPTER 9

Threats

Pervasive computing comes with a lot of threats that may compromise or constrain the
application. Introducing a new layer on top of Java will not make these threats any smaller.
In this chapter we will have a look at the technical threats that is relevant for a scripted
implementation on a mobile platform.

According to the article The Challenges of Mobile Computing [36] the main challenges to
mobile computing are Wireless communication, Mobility and Portability. The first two are in
our case dealt with by using the Service Frame Framework, with bluetooth communication
between the server and the client. Besides, our concept is not mobile in the term of using
multiple access points. Portability is an attribute relevant to using scripts with the MOOSES
concept.

The attributes mentioned regarding portability issues are battery capacity, small user interface
and small storage capacity. This article is written in 1994 and some portability issues has
been eliminated or decreased the following years. However, battery capacity remains an even
bigger problem today than in 1994 due to that the battery capacity has not been able to increase
proportional resources demanded by modern mobile devices. The only way to decrease the
power consumption from a software perspective is to decrease the amount of processing needed.
Regarding the user interface, modern mobile devices has better resolutions than the previous
models. The keypad on the mobile devices may still provide a problem, giving some phones
benefits in favour of others, we could solve this by letting the user define his own control setup.

In relation to the storage, our main concern is about the mobile phones memory heap. Mobile
phones MIDP stores all application data in non-volatile memory, using a storage system called
the Record Management System (RMS)[16]. Modern phones RMS is, in most cases, limited by
the size of memory cards that is inserted to the mobile device and may range up to Giga-bytes.

41

The memory heap however is limited to a few Kbytes on some phones, meaning that we must
reduce the need of memory needed by an application to the absolute minimal to expand the
number of phones supported.

Using scripts instead of precompiled Java Bytecode provides a span of threats compared to the
current implementation of the MOOSES client. These threats are mainly :

Overhead Amount of delay as a result of the additional computation needed to parse and
interpret scripts.

Heap Most of the Java supporting phones that are developed today has a memory heap that
ranges above one Megabyte, but older or cheaper phones may not. Scripts may increase
the need for memory heap.

Battery The Mobile devices has limited battery capacity. The usage of scripts will increase
the processing, and therefore consume more power.

Processing A Scripting implementation will cause much redundant processing, because of
interpreting and detours of variable references.

It is crucial that the script solution is optimized to reduce these threats as much as possible. To
reduce overhead we can start by parsing the script once, in stead of each time it is ran. The
scripts may also be parsed on the server before they are sent over, reducing processing needed
on the client. Reducing heap size is the worst part. The obvious solution is to make smart
solutions for objects that consume less memory. Processing might be reduced by constraining
the threads created. It would be possible to make one thread do the work of more threads, since
only one thread are executing at a time anyway. For instance, all animations may use the same
thread to perform animations.

42

CHAPTER 10

Script Language discussion

To get around J2ME’s lack of user defined class loader, we have decided to base the game
applications developed for the client on script technologies. There is a number of scripting
languages with J2ME support available, that support an open platform that we may tailor to
suit our needs. The prototype will be based on one of these scripting languages, to reduce
the development time needed. Some of these scripting languages may prove to fit our concept
better than the others with respect to their domain and architecture. We will therefore have a
look on the pros and cons for the open scripting platforms aimed for J2ME that we have found
and determine which language to go for.

43

10.1 Simkin

Simkin is a simple interpreted language developed by Simon Whiteside. The language was
originally developed using C++ in order to implement an interactive adventure game. The
Scripts accessed commands available from the underlying game engine.

In 2000, Simkin was re-implemented to work with Java and XML. The interpreter consist of
100 percent pure java classes. It can used to enable users to customize a Java-based application
using scripts embedded within XML documents or TreeNode files (defined at [37]). The MIDP
version of Simkin however, does not support ThreeNodes

More information on the Simkin language may be found at the language’s homepage [38].

10.1.1 Licensing

Simkin for Java is covered by the GNU Lesser General Public License (LGPL) that can be
found at their website [39].

The main points of this license is that you are allowed to copy, modify and distribute the library.
Modifications on the library must remain a library. You must notify the changes made, and let
the whole of the framework be available free of charge for any third parties.

For all work that uses the library you will have to give notice that the library is used by it and
that it is covered by the GNU LGPL license.

10.1.2 Documentation

The language syntax and grammars are well documented on the languages site together with
documentation files attached to the downloadable library. The zip file containing the library
also includes JavaDoc on the classes in the entire library as well for the Java classes it uses.

10.1.3 Grammar and syntax

Statements and expressions in Simkin is based on infix syntax. This is a strength because it is
the most intuitive syntax for programmers, but it might put a constraint on efficiency.

Statements, expressions and procedures are stored and called from an XML file. The complete
language grammar may be found at the simkin website.

44

10.1.4 Size

The size of the JAR file is 87 Kb.

10.1.5 Artefacts

A list of the artefacts in favour of Simkin follows bellow:

â Powerful language

â Infix, Left recursive Grammar

â Well documented

10.1.6 Supported types

Simkin supports the most common types and data structures in software development. Those
that is not supported are easily implemented by extending the language. The types supported by
default are Integers, Floating point numbers, strings, booleans, characters and objects, which
means that any data structure is supported as long as it is defined on the Java side of simkin.

10.1.7 Code Example

1 <example>
2
3 <comment>
4 This is an example Simkin script , it will show some of the
5 main elements of the language
6 </comment>
7
8 <comment>This field is an member variable of the object owning the script</comment>
9

10 <InstanceField attribute="value">InstanceData</InstanceField>
11
12 <comment>Here is a more complex member variable</comment>
13
14 <InstanceStruct>
15 <Field1>Field1 Data</Field1>
16 <Field2>Field2 Data</Field2>
17 </InstanceStruct>
18
19 <comment>Here is a method which takes two parameters</comment>
20
21 <function name="Method1" params="a,b">
22 return (a+b);
23 </function>
24
25 <comment>This method iterates over the characters in a string looking for the first ’m’,

returning -1 if not found</comment>
26

45

27 <function name="Method2" params="s">
28 length=length(s); // call built -in function length()
29 index=0;
30 while (index lt length){
31 if (charAt(s,index)=’m’){ // call another built -in function charAt()
32 return index;
33 }else{
34 index=index+1;
35 index=index/1;
36 index=index*1;
37 index=index%1;
38 }
39 }
40 return -1;
41 </function>
42 </example>

Listing 10.1: Simkin script example

46

10.2 Phonescript

Phonescript is a minimalistic programming language based on Postscript [40] designed for
Brew and J2ME devices. It emphasize efficiency and is among the smallest frameworks built on
J2ME. With the J2ME version weighing in at under 20K Phonescript gives a major advantage
over other frameworks.

Additional information and examples of programs may be found at the Phonescript homepage
[41].

10.2.1 Licensing

Phonescript is covered under the licensing of TRAC integrated SCM and project management
[42] which says:

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. - Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. - Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. - The name of the author may not be used to endorse or promote products derived from this
software without specific prior written permission.

10.2.2 Documentation

Documentation on Phonescript is limited. The languages homepage contains a number of dead
links. However, the guide to the script is maintained.

10.2.3 Grammar and syntax

The syntax of Phonescript is postfix. The scripts may be stored in PostScript files and are sent
as parameters to the interpreter.

47

10.2.4 Size

Phonescript comes best out with respect to size, taking only about 20K on the complete
framework.

10.2.5 Artefacts

A list of the artefacts in favour of Phonescript follows bellow:

â Small under 20k.

â Fast

â One program can run on J2ME, Symbian, and Brew phones.

â Can load and run code on the fly.

10.2.6 Supported types

Phonescript support the most common types and data structures used in software development.
These are signed numbers, real numbers, strings, arrays, booleans and chars.

10.2.7 Code Example

1 %
2 % comments
3 abc%comment(/%) Blah blah blah
4 %
5 % ints
6 123
7 %
8 % Strings
9 (This is a string)

10 (Strings may contain new lines
11 and such.)
12 (Strings may contain special characters *!&|^% and
13 balanced parentheses ()(and so on).)
14 (The following is an empty string.)
15 ()
16 (It has 0 (Zero) length.)
17 (These \
18 two strings \
19 are the same.)
20 (These two strings are the same.)
21 %
22 % Names
23 abc Offset $$ 23A 13-456 a.b $MyDict @pattern
24 %
25 % Literal Names
26 /abc /

48

27
28 % immediatly evaluated Names
29 //abc //
30
31 % Arithmatic
32 12 23 add 2 div .2 pow
33
34 %stack manipulation
35
36 (first) (2nd) exch
37 a b c 3 1 roll
38 a b c 3 -1 roll
39
40 %Arrays
41 [12 23 add 2 div
42 (first) (2nd) exch
43 a b c 3 1 roll
44 a b c 3 -1 roll
45 [2 4 sub 4 mul (result)]]
46
47 %Executable arrays
48
49 { 2 4 sub 4 mul (result) } exec
50
51 % Executing strings
52 (3 2 add) cvx exec
53
54 % files
55 (array.ps) (r) file
56
57 % Executing files
58 (array.ps) (r) file read cvx exec
59
60 %control
61 3 4 lt { (3 is less than 4) 3 4 sub }
62
63 0 1 1 4 { add } for

Listing 10.2: Phonescript example

49

10.3 Hecl

The Hecl Programming Language is an high level open source scripting language implemented
in Java. The language is small enough to run on J2ME enabled phones. Hecl emphasize being
easy to learn and use. Hecl is also intended to be quick to write.

Scripts provided to Hecl emphasis a user friendly scripting interface rather than XML based
configurations etc. This means that Hecl parses a plain text file, statement by statement. It is
built with a minimal core, supporting most of the logic provided in Java and Object oriented
programming.

Additional information on Hecl language may be found at the languages homepage [43].

10.3.1 Licensing

Hecl is available under the liberal Apache 2.0 license [44]. This license indicates that we may
use Hecl in our own applications, even if they are not open source, but we have to give the
author credit.

10.3.2 Documentation

Hecl is well documented. The Hecl site contains Javadocs for all the classes, brief descriptions
on most of the commands, and tutorials and examples on scripts. Also the site contains tutorials
on how to interface Hecl and Java, how to manipulate the code and run it.

Hecl has also gained a big community.

10.3.3 Grammar and syntax

Hecl has a prefix notation. A complete grammars of modified Hecl is provided in Appendix B.

10.3.4 Size

The size of the Jar file is 51 K byte.

10.3.5 Artefacts

A list of the artefacts in favour of Hecl follows bellow:

50

â Easy to manipulate

â Powerful language

â Good GUI support

â Supports fine grained operations

10.3.6 Supported types

Hecl refer to types and objects in form of so called Things (for instance StringThing and
IntThing). All types that are supported in J2ME is supported in Hecl. Hecl also support Object
oriented programming, referring to the object as an ObjectThing. To interact with objects, Hecl
require you to write an interface in form of a Cmds class. For instance the ListCmds class is
the part of the interpreter that holds the commands available to work on the ListThing class.
The most common objects in Java, such as Lists and Hashtables is included as Things in Hecl.

10.3.7 Code Example

1 #Initiate two numbers
2 set NumberOne 1
3 set NumberTwo 2
4
5 #procedure that sends a string containing the two numbers to System.out
6 proc displayTheTwoNumbers {} {
7 global NumberOne NumberTwo
8 puts "number one is $NumberOne number two is $NumberTwo"
9 }

10
11 #calling the procedure
12 displayTheTwoNumbers
13
14 #procedure that returns the sum of two numbers
15 proc addTheTwoNumbers {nbr1 nbr2} {
16 return [+ $nbr1 $nbr2]
17 }
18 #Calling the procedure, storing the return value in a new variable
19 set NumberThree [addTheTwoNumbers {$NumberOne $NumberTwo]}]
20
21 # using the MIDP controls
22
23 #procedure that takes the caption from a textfield, reverse it
24 # and stores it in a static text
25 proc reverse {tf results} {
26 # tf = textfield, results = static text
27 # get the caption
28 set string [getprop $tf text]
29 set newstring ""
30 # i = length of the text -1
31 set i [slen $string]
32 incr $i -1
33 #reverse the text
34 while {> $i -1} {
35 set c [sindex $string $i]
36 append $newstring $c
37 incr $i -1
38 }
39

51

40 #set the caption of the static text
41 setprop $results text $newstring
42 }
43
44 # creating a form
45 set mainform [form label "Reverse a String" code {
46 #forms contentpane
47 set tf [textfield label "String:"]
48 set results [stringitem label "Results:"]
49
50 # adding commands to the softbuttons
51 cmd label "Reverse" code [list reverse $tf $results]
52 cmd label "Exit" code exit type exit;
53 }]
54
55 # set the form as current screen
56 setcurrent $mainform

Listing 10.3: Hecl example

52

10.4 Comparison

To compare which language that best suits the MOOSES platform we will divide the script
solutions discussed in a table focusing on desired attributes. The results is provided in Table
10.1.

MIDP Scripting Languages Comparison
Simkin Phonescript Hecl

Documentation Very good Limited OK
Size 87 Kb about 20 Kb 51 Kb
Licensing Free and open. The

result must be shared.
Free and open Free and open

Notation Infix notation Postfix notation Prefix notation
Learning
curve

Require you to know
XML

The Postfix notation is
less intuitive than infix

Prefix notation takes
some time to get used
to, the scripts is in plain
text.

Table 10.1: Script Languages Comparison

Phonescript score much points on being the smallest framework, although it may be hard to say
how much additional classes and functionality that needs to be added and may expand the size
substantial. An inconvenience for this language is that it is hard to find any good documentation
on it. To download the library you will have to download one class at a time. We also fear that
the small library require more work to be done to the framework itself, yielding a complete
library that might range up to the other two in size. The postfix notation that phone Script is
based on is a bit harder to relate to than infix and prefix.

Simkin looks like a good alternative. The language has gotten a few years to get rid of the
biggest child diseases and is probably the most powerful of the languages we have looked
into. However, the XML notation scares us a bit because of the processing overhead XML
brings. The framework also contains a great deal of functionality that might be redundant to
our implementation. This might be solved by stripping the library of redundant classes when the
framework is complete. The GNU LGPL licence says that we have to share the modifications,
and that it has to remain a library. The MOOSES implementation is not open. Therefore, such
a licence would be inconvenient for us.

As for Hecl, the fact that the scripts are stored in plain text files gives it an advantage in favour
of the two others in our opinion. Plain text files are easy to edit without any additional software
than those included in every operating system. Hecl is also powerful enough to execute fine
grained logic and has good support for Graphical User Interface. It also has an easy to learn
modifiability, making coarse grained solutions easy to implement. The licence of Hecl also
says that we might use it to projects that are not open source, as long as we give the authors
credit.

53

10.5 Conclusion

All the three languages has their pros and cons. From our point of view, Hecl is the language
that covers most of the tasks we have planned for our concept. The first script implementation
will therefore be based on Hecl.

54

CHAPTER 11

Development of the first MOOSES client

This chapter will give an overview of the approach for developing a game client with the former
implementation to give an overview of the aim for our scripted implementation.

The mobile client is based on the Java Actorframe framework. This means that it is executed on
a finite state machine, which is connected to a server. The state machine handles and redirects
messages from and to the server. Graphical user interface is provided to the user in form of the
canvas classes provided by Java. The state machine determines which canvas to display, and
we may look on the canvases as applications running on top of the state machine.

Development of games to the MOOSES platform needs development in J2ME for the client and
C++, Java SE or another language supported by Java native interface (JNI) for the game 1. The
author has to determine the data exchange, and make native interface in the server and the game
classes for data exchange. This does not concern the client, as it just receive or sends data in
Java format to the server. The data to be exchanged are defined in message classes. The client
or server will determine how to use the data based on the message’s name. For instance the
message UpdateStatusMsg from the first game provides the client with status regarding health,
deaths, frags and score.

Before development the authors has to determine which tasks and attributes that are controlled
by the client and which are controlled by the game. We can look at the test game to get
some concrete examples. We decided that the client should be responsible for keeping track
of weapon selection and ammunition status, while the game was responsible for keeping track
of the user’s health, score, frags and deaths. This means that the game supply the client with
concrete status, rather than relative status. Therefore the server is also responsible for knowing

1Java native interface is a feature that allows Java to call and to be called by native applications and libraries
written in other languages, such as C, C++ and assembly [45].

55

when a user dies and send a death message to the client.

To direct messages to the canvas running on the state machine, the developer has to manipulate
the core state machine, rather than just the canvas and game classes.

11.1 Game client development

The author defines a new class that extends the GuiCanvas class which is part of the
ServiceFrame GUI library. This class has methods for user input, drawing and communication.
The author writes methods for:

â How the canvas paints - Every canvas has it’s own method for painting. This method is
invoked every time the canvas or another class calls the repaint() method.

â Threads for animations or other independent logic - Things that are independent or
concurrent from/to the main thread. Every canvas may start it’s own span of threads.

â Receiving and sending data to/from the game - The developer has to write the routing
logic for the state machine, and provide interfaces that the state machine can use to
provide data to the canvas.

â How to act on data received from the game - The developer has to make interfaces
that the state machine calls to provide data to the game. He also writes logic for how the
canvas act on this data, for instance, update local variables, trigger an event or to display
another canvas.

â Reactions to user input - The developer has to define the logic to be executed when a
player presses or releases a key on his mobile. In most cases, a key message is sent to the
game, indicating the key and whether it was pressed or released.

â Interactions with other canvases or classes - A canvas may communicate with another
canvas to share data, update data etc. Canvases also have methods for code to execute
before it is displayed, and when it is hidden from the display.

In addition to this the programmer of course has to declare appropriate variables to hold the
data.

11.2 Development of the SlagMark game client

To illustrate how development might be done at the former MOOSES client implementation
we will refer to the game client we developed to the test game during the depth project. The
game SlagMark was the game that was used to test the prototype. Every player controls one

56

worm, and the goal is to kill (frag) all the other players. Every worm has an arsenal of weapons
he can use to kill the other worms.

In our test game we made inner classes for the threads we used. The only additional class to
the main canvas was a canvas that where loaded whenever the user received a KilledMsg. The
canvas displayed a picture, name of the player that committed the kill and countdown to the
next insertion.

When we discussed how to implement the game concept in the depth-study we had to decide
which elements that would be appropriate for displaying on the client display. We found that it
would be convenient to display the worm’s health on both the client and the main canvas, but to
conceal the ammunition status on the client side to make a strategic advantage for the players.
We also decided to display the score, frags and deaths on the client to save space on the main
game canvas.

11.2.1 Designing

After deciding what elements to represent on the controller, the designing process began, and
we found it would be convenient to show the score, deaths and frags in a bin on the top. An
icon and a text indicating selected weapon where also put in this bin. Further, we decided to
use bar indicators to display health and ammunition status. The layout of the controller can be
viewed in Figure 11.1.

11.2.2 Threads

We made four threads to run on top of the canvas. One of them is the reloader thread that runs
in the background the entire game session. As the name indicate it reloads weapons whenever
they go out of ammunition. The second thread was used to animate the weapon selection,
sliding the icon and weapon string vertically, replacing the former picture and string with the
new ones. The third thread was used for the rapid fire effect, allowing a user to just hold down
the fire button to fire rapidly. The canvas that displayed when the player died used a thread to
count down until next insertion.

11.2.3 Communication

We defined four message classes to transfer data between the game and the client, namely
UpdateStatusMsg, KilledMsg, ShootweaponMsg and KeyMsg. The first two are used to send
data from the game to the client, and the last two messages is used to send data from the client
to the game.

In addition to the messages, methods had to be created to send and receive data. The method
receiveData, with score, health, deaths and frags as its parameters, is called from the state

57

machine whenever the game updates the client with data updates. To handle the KilledMsg
the method receiveDeath, with the killer’s nickname as parameter, was created to tell the client
that it was killed and had to wait for insertion. This was all the data the client needed from the
game. We found that the server would need information about movement and shooting from the
client. Whenever a user hit the fire button (or held it down with a rapid fire weapon selected)
the shootWeapon method is called with an integer indicating the weapon selected by the user.
This method wraps the integer into a ShootweaponMsg and sends it to the server. A KeyMsg is
sent whenever the user press or release a movement key, through the sendKey method, with a
number indicating which key is pressed and a flag indicating whether it is pressed or released.

11.2.4 Input

Reactions to user input is done by a switch that finds which key is pressed or released and
executes the code associated with the key. As mentioned, pushing a movement key (either
from the navigation stick or number pad) results in a keymessage sent to the game.Pushing five
or navigation stick results in the client sending a ShootWeaponMsg and to execute local code
to decrease weapon ammunition etc. The pound sign button triggers the code for changing
weapon without sending any data.

11.2.5 Sounds

MOOSES supports up to 21 players, and if all these players should provide actions that
generated sounds there would probably be too much noise. With this in mind we developed
sound support for the client. Our first testgame was implemented with the gunshot sounds on
the client, and the bullet impact sounds on the server.

11.3 Summary

As we have seen, development of a game client to the former MOOSES client implementation
is a relatively easy process and it yield good opportunities for visual representation and
dataflow. The use of animations and visualization is minimal on the test game compared to
potential future game concepts. We plan to make more usage of tactics calculations, extended
use of information visualization and even parts of the game play visualized on the client screen.
Also, the canvas layout will depend on in-game roles played by the player. This functionality
is available now, and it is therefore desirable that a solution for game client development do not
put to big limitations on these utilities.

58

Figure 11.1: Main canvas for the game client

59

60

CHAPTER 12

Game concept profiling

To provide for the script solution to our concept to cover most of the most common animations
and communication solutions in a coarse grained way, we will look into ways to get it to run on
precompiled java side. We will have a look at which animations and communication support
that is most common to the given genres or concepts. The discussion will be based on the
genres we found appropriate for the MOOSES platform during the prestudy. These genres
where, as seen in Table 12.1, Shooter, Third Person (with a fixed camera control), Sporters,
Racers, Fighters, Strategies and combination of them.

In this turn we have also extended our focus on games for our concept to include games that
emphasize cooperation. In the context of cooperation, new angles of client development are
rising. We will therefore present some perspectives of cooperative concepts in Chapter 13.

12.1 Table explanations

Table 12.1 shows our evaluation of different game genres from our depth study. The table is
based on the following fields:

Genre - Name of the game genre

Multiplayer opportunities - Indicates to what extent it supports multiplayer for MOOSES
and if this multiplayer is based on cooperation or competition or both.

Max Players - The maximum number of players that would be appropriate for the MOOSES
for the given genre

61

Features to concept - Indicates the artefacts that make the genre interesting for MOOSES

Gameplay Elements - Features that is common for the genre

Genre Multiplayer op-
portunities

Max
players

Features to concept gameplay elements

Adventurer Poor, cooperation 2 - 8 Storytelling, enchanting Solve puzzles, commu-
nicate, collect things

Role Play-
ing Game

Poor, both cooper-
ation and competi-
tion

2 - 8 Storytelling, statistics,
players can manipulate
their characters

collecting points and
artefacts, develop
character, freedom

Shooter Good, both About
50

Instant Action, good
projection methods

instant action, shoot ev-
erything that moves

First Person Limited, Both
competition and
cooperation

8
(split-
screen)

Same as shooter Same as shooter

Third
Person

Ok, both About
15

Use of surroundings,
isometric battlefield

Bullet dodging, use of
environment

Sporters Good, Both de-
pending on sport

Comp-
etit-
ive:
4 - 8,
Coop-
erate:
12 - 22

Endless possibilities, ev-
ery sport can be used

Depending on sport,
should be imple-
mentable to our concept

Racers Good, competition 4 - 16 Either visualize from
top, perspective or
split-screen

Competition and instant
action

Fighters Good, both 4 - 16 Cooperation in beat em’
ups or Teamed competi-
tion in versus fighters

Instant action, fighting
opponents

Simulations Difficult, coopera-
tion

Depends
on sim-
ulation

Maybe in an extension Often Educational, de-
mands patience

Strategies Good, Teamed
competition

2 - 10 Reduced version, team
based, limited compared
to the originals

Time demanding, col-
lect resources, build
army, make strategic
moves

Table 12.1: Genre sufficiency from our depth study

62

12.2 Shooter profile

A Shooter (often referred to as shoot em’ up), is a computer and video game genre where the
player has limited control of their character or machine. The gameplay focus is almost entirely
on annihilation of opponents or objects by aiming and shooting projectiles in their direction
[46]. An overview of some of the most common shooter sub-genres can be found at wikipedia
[47].

The first game we made to the MOOSES platform was a shooter, and therefore we have some
experience on which attributes that would suit the genre. The shooter is probably the genre that
allows most freedom for creativity and that can be merged with other genres. Our first game
was a strategy shooter, giving the player time to aim and calculate where his bullet would hit.

12.2.1 Feedback

In a shooter the players often has an arsenal of different weapons. It would be convenient to
display for the player which weapon he has selected on the client display, not only to save space
on the big screen, but also to give a strategic advantage of hiding this information. Health is
also an important feedback for a shooter player. Close to all shooters have some kind of health
barometer to provide feedback to the player about his health condition. Whether or not this
information should be hidden for other player may be up to the developers.

Other attributes that is common in shooters is amount of kills (frags), score, deaths, lives left,
ammunition status. Other statistics such as accuracy, highscore position and time alive etc. is
usually provided at the end of a match or level.

12.2.2 Visualization

The feedback mentioned above may be visualized only by a text indicating the value or by
barometers that indicate the value compared to the maximal value. Such a bar may be animated
or just calculated by the value it is indicating using graphical primitives. Animation of a bar
will be visualization of it decreasing or increasing whenever it is updated with a new value.
Typically if it is a black color indicating the true value, a red color for the background, you
would have another color indicating the interval decreasing or increasing and cut this down
with a timer until it reaches the actual value.

In our test game implementation we used a image and string rotator to display the current
weapon selected. The first game client we tried to implement when we first tried the Hecl
framework was the client to the MOOSES game. When i wrote the code for the Image rotator
(after a few modifications of the Hecl source) we experienced a huge overhead that made the
rotator useless. Some modifications reduced this overhead, but it would be convenient anyway
to have these rotator elements implemented as compiled java code to reduce overhead and
processing for saving battery power.

63

12.2.3 Screenshots from shooter-games

We will provide some screenshots in Figure 12.1 to illustrate common solutions for feedback
and visualization for shooters. Metal gear is an old stealth shooter. As displayed in the
screenshot, the player is given feedback on health, ammunition and selected weapon. The
player may change weapons and equipment through another interface, displayed on demand
of the player. Metal gear has a pretty simple gameplay in contrast to Ghost recon advanced
warfighter. As the screenshot shows, much more feedback are given to the player in ghost

(a) Metal Gear (b) Ghost recon advanced warfighter

Figure 12.1: Screenshots from different shooter games

recon. First person shooters will not be relevant to our concept (at least not on the main game
canvas), but some of the feedback mirrors feedback we would like to provide in our game. The
player is given feedback on selected weapon, both by displaying it and by text and icon in the
lower right of the screen. He is also given feedback on ammunition status, both on the weapon
and ammunition left. A compass shows the orientation of the player. He is also given status of
his team-mates and as we can see in the upper left corner, he is given the view of one of his
team-mates. Health and stance is provided in the lower left corner.

12.3 Third person profiling

Third person games is a genre that display the character or characters controlled by the player
from a third person perspective. They emphasize usage of surroundings, for instance use of
obstacles for cover etcetera. Third person games often involves control of the character and the
camera. The gameplay on third person perspective games will change on our concept compared
to what’s common on single terminal games. We will have a battlefield or world viewed from
a fixed perspective angle, where players may use the environment tactically to proceed. When
talking about third person games, many refer to these games just as third person shooter (TPS).
This is because the shooters are dominating the third person genres, and the gameplay on other
third person action games are pretty similar to the TPS genre. However, third person is just a

64

perspective that may be used for almost all genres such as sporters, racers, strategy, adventure
etc.

Although we have not made a third person game yet, we have some good ideas on how to
do it. Another project that runs in parallel to this one focus on development of new game
concepts for MOOSES, and one of the test implementations is a third person shooter with fixed
camera control. The game will be a space shooter viewed from an automatically zooming
perspective angle. All players may choose or gain roles as they play, and their roles will affect
their gameplay and the team’s strengths. More info on this game can be found at [5].

12.3.1 Feedback

The feedback attributes on third person games are common to the one’s for shooters, although
there are some additional.

Players may need feedback on their position, location of targets or strategic points, or
battle strategies. This is necessary because of the new game concepts that require more
communication between players. A brief overview of the new ideas to new concepts is given
in Chapter 13.

The feedback given to the player is also dependent on the role the player has chosen or been
given. Although third person is commonly associated with shooters it might be fitted onto other
genres, making their feedback of relevance.

12.3.2 Visualization

Feedback on players’ position and interesting points on the map such as targets, vehicles,
strategic plans, cover spots or other objectives may be provided to the player through a
minimap. A minimap would probably not require animation, but support for visualizing spots
in form of small images or dots. It would also need support for drawing routes to certain
points. Animation elements required would be the opportunity to make icons or dots blink to
get attention. A more advanced minimap could support zooming and more detailed animation
of movement or changes.

12.3.3 Screenshots from Third person games

Common solutions for feedback and visualization from various third person games is provided
in Figure 12.2. The two games both represents games that we want to gather inspiration from in
further development of new games. Killzone is a shooter with multiple players competing on a
battlefield that allows them to take advantage of environment. For instance to seek cover behind
different obstacles, to shoot barrels of explosives near an enemy or to use mounted weapons or
vehicles that are located around the battlefield.

65

As displayed in the screenshot, players are given feedback on their selected weapon,
ammunition and grenades left and health status. Players’ stats are displayed on the side, and
the player’s position is provided by keeping focus on it in the center of the view.

The Crime life screenshot does not provide much feedback to the player. Crime life has a simple
gameplay that only need to display the condition of the player. However, it shows potential
usage of a fixed third person angle to display a greater battlefield with more characters, which
is the goal of our next game.

66

(a) Killzone: Liberation

(b) Crime life, Gang wars

Figure 12.2: Screenshots from different third person games

67

12.4 Sport Games profiling

The Sport games genre span over a large number of games tied to most of the sports represented
in the real world. The gameplay on these games are typically to give a player control one or
more of the characters in setting of the sport.

Sport games represent a problem for our concept, especially regarding cooperative games. Our
concept needs the availability for players to come and go from a running game as they plead.
Also, if the players should only control one player, it would be inconvenient for few players in
team based sports. Therefore, it would be a suitable solution to provide control of a bundle of
characters from a fixed number balanced on the amount of players participating.

As mentioned in our depth study [7] we found sporters suitable for the single screen multiplayer
system. The best support for such games would be games that are based on team sports. Such
as Ice hockey, soccer, football, basket etcetera.

12.4.1 Feedback

Given that players should be able to come and go as they please, the player may be forced to
change team during the game session to balance number of players on the teams. It is therefore
important to give the player feedback on which team he belongs to.

Team based sport games usually provide scores both for the team as a whole and for the player’s
achievements. Depending on sports, a reflection on the achievements would be appropriate, for
instance status on the game such as the goals or points and which team is leading.

The different characters may have different skills or purposes. Interface for showing or using
these may be of relevance. A player that has based his character on speed will be able to outrun
many of the opponents, but might lack ability to hold control of the ball for longer periods or
shoot less accurate.

12.4.2 Visualization

As mentioned, a player needs feedback on which team he belongs to. This could be done by
showing the team’s icon in the display with a topic indicating the team. Also, the environments
in the display, for instance background color, could be filled with the team’s colours.

Scores and achievements may be displayed using a progress bar or just string representation
of the values. For example, we could use a bar to balance which team is in the lead and the
strength of the lead.

Players may be able to balance the skills of their character(s) by balancing points into groups
(stamina, strength, speed etc). A common way to implement this is to provide a list with the
different attributes with a fixed amount of points to add to desirable categories.

68

In many sports different roles of a team has slightly different gameplay. For instance, baseball,
which has a thrower, a batter and people on the field to catch the ball. Visualization of gameplay
attributes on these roles will be different. A thrower will have visualization on aim, and how to
throw (direct fast, screw or bow), while a batter will need to balance something to hit, and bars
to indicate strength etc.

Although sport games for MOOSES are likely to display the entire map on the projected screen,
the client could take advantage of having a minimap for the games that focus on scrolling,
showing where the camera is displaying in relation to the entire map.

All in all, team based sporters may need support for the minimap, animated bars, and lists.

12.4.3 Screenshots from sport games

Common solutions for feedback and visualization from various sport are displayed in Figure
12.3. The first game, Track and field, is an old athletics game from Konami with a rather simple
gameplay. The player is given feedback on his position and the time elapsed.

(a) Track and field (b) NHL 06

Figure 12.3: Screenshots from different sport games

NHL gives the player feedback on the team’s goals, which team is leading, and which character
the player currently controls.

69

12.5 Racers profile

A racing game is any game that involves competing in races through a surrogate playing piece
or vehicle, either getting it from one point to another or completing a number of circuits in the
shortest time.

Racing games might be hard to implement on our concept. However, there are some alternatives
that would allow for it to be done. One problem is, as with sporters, it will be hard to allow
for users to come and go as they please. Because a race usually take place between two points,
or during a fixed number of laps, it would be difficult to shoot in a new player in the middle
of it. One solution to this could be to provide a couple of artificial intelligence (AI) controlled
cars that could be taken over by players and let AI take control of cars whenever players leave.
Another problem is the visualization because as the distance between the vehicles increases it is
harder to display them in one screen. To be safe, the best way of making a racer to our concept
is probably to display the whole course at the canvas, or forcing the players to stay in scope to
still be in the contest.

12.5.1 Feedback

The typical user feedback from racers are speed, warning of upcoming turns or obstacles, and
car condition.

As with most of the other genres, racers may provide some custom additional attributes to let
the player customize the car or character.

For games that do not display the whole course on the the main screen, it would be convenient
to display the players position compared to the other players and the course.

12.5.2 Visualization

The most intuitive way to reflect the players speed would be a speedometer. This should provide
animation opportunities with a image as background, and an image or line as pointer. This
animation element could be used by other game concepts to indicate intervals. For instance
strength in baseball strikes etc.

To display the players position in relation to the track, many racers have used a vertical pole
that has the start position at the bottom, and the goal at the top. The players current position is
indicated by a line or dot at this pole, giving the player information on how much he has left
behind and how much is left of the track. The pole may also contain checkpoints and so on to
give a better feeling with it.

Another way to reflect the players position could be to use a mini map that draws the route, and
have different colors on the part of the track left behind, and the part of the track remaining.

70

Racers usually provides for the user to choose the vehicle he shall use during the race. Interface
for vehicle selection could be provided either through lists, or by use of a canvas that displayed
multiple icons, where each icon served as a button. The user could navigate to the image of his
choice, and confirm selection by hiting the fire button. Alternatively an imagerotator may be
used to select vehicles.

12.5.3 Screenshots from Race-games

Common solutions for feedback and visualization from various race games are displayed in
Figure 12.4. Need for speed has gone into the history as one of the most popular car game
series. As we can see on the screenshot, the player is given feedback on his speed, the mirror
gives a view backvards, minimap providing position and an indicator at under the speedometer
gives the amount of nitro left.

(a) Need for speed most wanted (b) Lotus III

Figure 12.4: Screenshots from different shoter games

Lotus III is a third person racer. In the upper left corner we se feedback on players position in
the race, speed and rational speed. The player is also given feedback on lap-progression and
laps left.

12.6 Strategies profile

The strategy genre is usually set to command one part of a battle. The gameplay is either
realtime or turn based. The traditional strategies developed for consoles and computers have
a scrollable view over the battlefield, and provides for the user to use the mouse to control
units on the map, and quick-buttons on the keyboard to do frequent occurring tasks. The player
control a collection of units that he use to defeat the opponent. Stragies often involve reource
management to acheive new units to control.

71

It is obvious that the interface has to be changed to fit our concept, not only for the controller
but also the visualization techniques since we only have one screen to display all the action.
Our implementation would probably require just to command the units directions and attack
options.

12.6.1 Feedback

Strategies is probably the genre that depend most on the opportunity to conceal data using the
client. Much of the info that is required to be feedbacked to the user is therefore preferably
displayed on the client.

Much of the feedback that is needed to be provided to the user is already displayed on the main
canvas. Commonly in strategies, a player will be notified whenever one of his units is under
attack. This would probably be redundant in our case, since the whole map is displayed.

A common feature in strategies is resource management, both available units and resources
collected. The player would need feedback on resources, and interface to manage them.

The player would also need feedback on his units condition and attack adjustments.

If the game supports structure building and/or ordering of new units, the player will need
feedback on which buildings and units that are available.

Another feedback that is required to be reflected to the user is the strategies available in given
situations. For instance for attack, defense and management.

12.6.2 Visualization

All the users and the opponents units are displayed on the main canvas, and therefore reflection
on which units that are attacked may be redundant. However, it might be appropriate to fetch
the players attention. This could be done by using the vibrating in the mobile phone, or blink
the lights or an icon.

For resources to collect, the most common solution is to provide this as a string value indicating
the amount collected. Reflection on unit management is another story. It could be appropriate
to display the units in a hierarchy list, depending on the amount of units available to the player.
The player could select a unit from its subgroup, and his repetoir of that unit would come up in
a list showing their condition. A further click in the list would result in control of the particular
unit, for instance a display with a picture of the unit and the options attached to it. A similar
list could be used to order new units.

To build structures, a player could view the structures available through another list. The
best solution to deploy the structures would be to use fixed locations on the main canvas.
Alternatively, the user could navigate to the desired deployment location either through a
minimap or a cursor at the main canvas.

72

To interface with strategies it would be convenient to provide these in a list or a buttoncanvas,
as shortcuts.

12.6.3 Screenshots from strategy games

Common solutions for feedback and visualization from various strategy games are displayed in
Figure 12.5. Warcraft III is a popular realtime strategy games that includes building bases, and
management of resources and warriors. The player is given feedback on available resources
at the bar in the upper right corner. In the lower left corner we see a minimap. This minimap
gives a concentrated view of the whole map, and highlights important loacations. If one of
the players warriors are attacked, it will also be higlighted on the mini map. The panel in the
lower right corner provides strategic options for the player. This panel shows the idea of a
buttoncanvas to interface with strategies.

(a) Warcraft III (b) Codename panzers

Figure 12.5: Screenshots from different strategy games

Codename panzers is a realtime strategy game that emphasize the battle and leaves the resource
management to before the battle begins. The feedback layout is basicly like warcraft. Minimap
in the lower left corner, and strategic options on the lower right corner. In the middle of these is
a panel that shows the status of the selected unit(s), such as ammunition status, condition, crew
etc.

73

12.7 Fighters profile

There are two kinds of fighters, versus fighters where players compete each other face to face,
and beat ’em ups where one or more players fight a horde of AI controlled enemies while
travelling through horizontal scrolling levels.

The player typically controls one fighter, and resort to tricks by dialling different key-
combinations. A versus fighter typically hosts for two fighters at the time, and beat ’em ups
typically support two to four for multiplayer.

12.7.1 Feedback

The player needs feedback on his position in relation to the others. He will also need to know
which characters that are available for character selection, and eventually the key-combinations
available for the selected character.

As for beat ’em ups, the player will need reflection on number of lives left and maybe
progression in the current level.

12.7.2 visualization

Fighters may have a relatively long learning curve based on how advanced they are. There
might be about hundred different key-combinations tied to every playable character. Common
ways to provide for the player to learn these combinations is to include them in the games
manual or to make tutorials where the player can learn to use the characters. To ease the
learning curve we would probably have to cut down on the number of key-combinations to
between five and ten. Some combinations could be common to all characters, while a few
special is tied to the different characters. The combinations would probably have to be stored
in a list on the client, which the player could view while playing. The tutorial part would be
difficult to implement on MOOSES, because it would be inconvenient to lock the main canvas
to provide for a few players to practice. Making the tutorial local on the client is an option,
but it would not provide the right feeling with the main game to the player. The best way is
probably to have a vote during the start of the game on whether or not the first two to four
minutes should be used to practice.

The player’s condition is commonly provided by giving all of the fighters’ health-bars showing
how much more they can take before they fall. Whether or not this should be provided on the
main canvas, both the main canvas and the client, or concealed by the client is up to the game
developer.

Just as the racers, fighters usually include character selection before the game takes place.
Available characters could be displayed in a button canvas or using image rotators.

74

12.7.3 Screenshots from fighter-games

Common solutions for feedback and visualization from various fighters are displayed in Figure
12.6. Tekken is a fighter series that in the newer versions supports both versus fighting and beat
em’ up mode, although it is commonly known as a versus fighter. In the screenshot we can
see that players are given feedback on their health. The circles under the health bar indicates
rounds won. Between the health bars is a field used for round time countdown, which in this
case is turned off. Tekken also support an interface for showing button combinations on the
screen, making it easier for the player to familiarize with them.

(a) Tekken 5, versus fighter (b) Ninja Turtles, beat em’ up

Figure 12.6: Screenshots from different fighter games

Turtles is a beat em’ up game. In this game the players are given feedback on their health, lives
left, credits and score.

12.8 Profile Summarize

The profiles shows that much of the information that needs to be reflected to the player may be
displayed just as text representation or icons, with icons being preferred because it is easier or
faster to interpret by the player and contribute to the game atmosphere. Some of the feedback
is best given by graphical objects and animations of these.

The feedback and visualization methods for the different genres are displayed in Table 12.2.

12.8.1 Graphical elements

For a scripted solution to the MOOSES client, all the graphical elements has to be ready on the
Java side and then glued together with the script. Some of these elements will be ready to the
prototype developed in this run, and some will have to wait. The elements that have priority

75

Genre Feedback Elements needed
Shooter Weapons, ammunition, health,

frags, kills, deaths, lives left
Text, icons, progress bars,
image- and stringrotator

Third person Same as shooter, position, role
specific information, team mates,
strategic points

Text, icons, minimap, progress
bars, rotators

Sport games Team indicator, stamina, game
status, skills

Text, icons, bars, lists, minimap

Racers Speed, upcoming turns/obsta-
cles, car condition, car cus-
tomization, position, available
cars

Text, icons, mini map,
speedometer, progress bar,
pole, button canvas, imagerotator

Strategies Location of units, unit status,
resources, available upgrades,
available strategies

Text, icons, mini map, lists, but-
ton canvas

Fighters Health, round time, progression,
available characters, key combi-
nations

Text, icons, progress bars, list,
button canvas

Table 12.2: Elements needed by the different game genres

are the elements we used on our previous implementation. These elements are prioritized to be
able to test the scripted solution with the game we have already developed, at Kosmorama film
festival. The elements that will be developed for the prototype are:

Rotators The Imagerotator and String rotator are elements that can be used by most
games developed for MOOSES. In our first game, SlagMark, we used a synchronized
stringrotator and imagerotator to display the arsenal of weapons available. The scripted
client will primarily be tested with the SlagMark game.

Animated bars These bars are easy to build from scratch, since they comprise a few graphical
primitives. However, providing support for them on the java side might reduce the script
latency.

Icons Icons might be implemented as animations as well, a picture blinking for instance. The
prototype will support static Icons in the first turn.

Text Is supported by J2ME, the script just need an interface to use it.

The other elements are not crucial for any of the games we have developed so far. Some of them,
such as the mini map require a lot of planning for foreseeing a solution of implementation. The
minimap would probably have to be processed mainly on the server. Maybe split up to cells
to decrease the amount of the map needing processing. These are the elements that will be
implemented at a later stage:

76

Speedometer - Implemented like a progress bar. May be used in several games, but mainly
car games. Convenient to use an image as background.

Lists - The client might take advantage of using the a modified version of the lists provided by
the service frame GUI library. However, lists will also be implemented to the scripting
platform later.

Button Canvas - Button canvas is intended to be a selection of icons where the user selects
one icon at the time, navigating either horizontal or vertical between the icons. Used for
character selection etc.

Mini map - A concentrated map of the main game canvas. Mini map can support important
locations in form of small dots, and drawing of paths between them etc. They may be
used by several games.

Pole - A pole with a starting point and an endpoint to display checkpoints and progression.

12.8.2 Game development support in MIDP 2.0

In addition to these graphical elements and animations we might take advantage of the MIDP
2.0’s support for game development. The game development framework provided by MIDP
2.0 comprise functionality for character animations and collision detection using Layers [48].
This framework raise the abstraction level on game development for mobile phones. If we
could interface with it from the script, we might be able to provide a platform for creating more
advanced gameplay on the client. The framework could also ease the implementation of a mini
map, using Tiled layers which divide images into regions. Using Tiled layers we would only
have to update the cells of relevance.

Implementation of the MIDP 2.0 game development support would require some major changes
to the client. We will look on this opportunity if the scripted implementation proves to be a
success.

77

78

CHAPTER 13

Cooperative Games

Together with the profiles tied to the genres, there are other aims that has impact one elements
that need to be covered in a scripted client. During the first project we neglected the support
for direct communication and data exchange between the players. This was done with respect
to the time available for development of the prototype, together with the fact that since the
test game was based on competition between all the participating players there would be no
particular need for direct communication and data exchange. However, the idea of cooperative
games seems to suit the concept even better than plain competitive games. Therefore, we will
have a look on solutions to implement direct communication between participating players, and
how to implement this to a development platform.

In our prestudy on the MOOSES framework [7] we discussed different aims for multiplayer.
Namely cooperation, competition and socialization, with the last one commonly achieved by
the two first. We discussed the opportunity to make use of cooperation to our concept, and
concluded that it might be a good idea to divide the players into two or more competitive
teams.

To draw this further, we may also take cooperation to an extent where it forces the players to
cooperate. In most cooperation based competitive games the players are free to act on their own
and does not really rely on the team-mates. By giving the players unique skills that is needed
for the task to complete the teams objective or beat the opponents, we could assure cooperation
between players on the same team.

To draw an example picture of these skills we can begin by referring to the old game Lost
Vikings. Screenshots from the super Nintendo version is provided in Figure 13.1 The game is
single player, where the player controls three Vikings that are sent through time. One Viking
can run faster than the other two, he can jump, and can bash through some walls (and even

79

some enemies) with his helmet. The second Viking can kill enemies with his sword, or from
a distance with his bow. The bow can also be used to hit switches from a distance. The third
Viking can block enemies and their projectiles with his shield, use his shield as a hang glider,
or as a stepping stone for the first one to enable him to reach high grounds which is not possible
without the shield. The whole point is that you need all the three Vikings abilities to complete
the level. More information on Lost Vikings may be found at wikipedia [49], or at the blizzard
homepage [50] which provide a flash demo of the game.

(a) Lost Vikings title, Super Nintendo version (b) Lost Vikings in-game screenshot, Super Nin-
tendo version

Figure 13.1: Screenshots from Lost Vikings

The cooperation based on dependence on the other players’ roles will probably enhance the
gameplay and socialization experience, but it will constrain the concept in the way that it
depends on a lower threshold of players to provide a good gameplay. If there is not enough
players to fill the required roles, players might not be able to reach certain points or complete
objectives. This could be solved by making the environments aware of which roles that are
taken and adjust obstacles and so on to fit number of roles taken. But other utilities may be
satisfied to emphasize cooperation.

When talking about team based cooperation the wave of first person shooters with team based
multiplayer is a good example for providing team based gameplay. This genre was grew
popularity with the Counter Strike mod developed for valve’s Halflife game. Counter Strike
divides players into two teams, where one of the teams serve as terrorists that either kidnaps
hostages, try to blow of a bomb or kill a VIP. The other team, Counter terrorists, is a police
group that tries to stop the terrorist by killing them [51]. The idea of this game is to get the
members in the teams to cooperate by combine tactics and fight together to solve the objective,
but there is nothing that directly force cooperation between the players. A player is free to
roam alone as he please, and during online sessions with players that does not know each
other this is usually what happens. Therefore, games based on the same concept that has been
developed in the later has developed new ways to achieve team-play. One great solution we
can take advantage of is the technique used in Dice’s Battlefield 2. Battlefield has a wider aim
than counter strike with bigger maps, support for more players (up to 64 [52]), use of vehicles
and air force and roles for each player such as medic, support gunner, engineer, assaulter etc.
As for the team, the players joins one of the squads on the team. The squad gains points by
cooperating, which ties the players more tightly to cooperation. Each squad has a team leader

80

that commands tactics on a map, and can ask for support such as resources or artillery. In
addition to this each team has a commander that commands all the squads to attack an area,
defend an area etc. The commander also respond to queries from the team leaders. Screenshots
from Battlefield 2 are provided in Figure 13.2.

(a) Battlefield 2, Commander view (b) Battlefield 2

Figure 13.2: Screenshots from Battlefield 2

A possible cooperative gameplay discussed for our concept is to make a battlefield viewed
from an angled perspective, with two bases with a corresponding team. The objective is to take
over the opponents’ base. By giving the players a spectre of different roles to chose from, for
instance field Engineer and demolition solider, which have different tasks relied upon them to
get to the opponents base, for instance blow a way through obstacles or repair vehicles etc. And
for controlling vehicles, different roles are required. As one controls the vehicle, other players
may function as gunners etc.

The gameplay descriped above requires direct comminication between the users. This could be
achieved in multiple ways. User input in form of text would be little convenient with respect
to time required for writing them. However solutions with predefined words could be sent.
Also, team-mates could be synchronized in given situations, for instance by sitting in the same
vehicle or just by teaming up. Relevant data could be sent between the players, and developers
could take of this utility.

Since the communication between the server and the clients is based on bluetooth, it would be
desirable to use a bluetooth peer-to-peer solution without having to go through the server for
direct communication between the players. Unfortunately this has proven to be difficult due to
the Bluetooth lack of scatter net support [53].

This means that most of the work that has to be done to the framework making it able to support
direct communication between players lies on the server side of MOOSES and not the client.
The server has to provide lists of available users, and maybe information capsules in relation
to game data, allowing two or more users to team up and communicate directly. We will also
need opportunities to interfere with this information from the script.

81

82

CHAPTER 14

Hecl - The mobile scripting language

In Section 10.5 we decided to use Hecl as a base for the scripted client prototype. In this chapter
we will have a deeper look on Hecl and it’s architecture.

The Hecl Programming Language is a high-level, open source scripting language implemented
in Java. It is intended to be small, extensible, extremely flexible, and easy to learn and use.
Hecl is small enough to run on J2ME-enabled cell phones [43].

Hecl is intended as a complement to Java, and does not aim to replace it. This means that
it tries to do well what Java does not, and this is where it fits into the MOOSES project,
providing a substitute for the user defined class loader that is not present in the current version
of J2ME’s CLDC. By authoring the MOOSES game controller application through scripts, the
client would only have to download the script together with it’s resources to get the controller
application for a certain game on MOOSES. The resources can be put into the Mobile Phone’s
RMS and accessed dynamically runtime by the MOOSES client application.

14.1 Hecl Architecture

The Hecl scripts give opportunities to declare variables represented as text strings, which is put
in a hash-table on the Java side and is referred to at the Java-side as so called Things. A Thing
is a Hecl object translated to Java. A Thing is an encapsulation of a RealThing instance, which
is a Java object in Hecl.

When executing a script in Hecl, hecl first parses the script by sending it through Hecl’s lexical
analyzer. The lexical analyzer returns the parse tree, referred to in Hecl as a collection of

83

stanzas, that are sent to the interpreter that executes the stanzas.

14.1.1 Example: Adding a new Thing to Hecl

We can make a new Thing-class to hold Image values in Hecl. Normally this could be done by
using the ObjectThing class, but we may also make a new class that implements the RealThing
interface. In this class we can provide methods for operating on the object. In our example, we
have a method in addition to the constructor that provides resize functionality for the image.
Listing 14.1 shows the source code of the ImageThing.

1 p u b l i c c l a s s ImageThing implements RealThing {
2 Image val = n u l l ;
3 String path = "";
4 i n t width = 0;
5 i n t height = 0;
6
7
8 /**
9 * Constructor - creates a ImageThing instance and initiates the Image

10 * */
11 p u b l i c ImageThing(String Path , i n t Width , i n t Height){
12 val = Image.createImage(Path , width , height);
13 path = Path;
14 width = Width;
15 height = Height;
16 }
17
18 /**
19 * Resize ’s the Image
20 * */
21 p u b l i c vo id setSize(i n t width , i n t height){
22 val = CanvasUtil.resize(val, width , height);
23 }
24
25 /**
26 * The <code >deepcopy </code > method must copy a RealThing and any values
27 * it contains.
28 *
29 * @return a <code >RealThing </code > value
30 * @throws HeclException
31 */
32 p u b l i c RealThing deepcopy() throws HeclException {
33 re turn new ImageThing(path , width , height);
34 }
35
36 /**
37 * The <code >getStringRep </code > method returns the string representation
38 * of a <code >RealThing </code >.
39 *
40 * @return a <code >String </code > representation of the value
41 */
42 p u b l i c String getStringRep(){
43 re turn ("ImageThing path: " + path + " width: " + Integer.toString(width) + " height:

" + Integer.toString(height));
44 }
45 }

Listing 14.1: ImageThing class

84

14.1.2 Hecl Things

In this section we will present the things available in the Hecl core by default.

CodeThing - Holds a compiled code segment that might be tied to an instance of an object

DoubleThing - Holds a Double value

FractionalThing - Is a super class for floating point variables

GroupThing - Is used by the interpreter to keep components together

HashThing - Represents a hashtable type in hecl

IntegralThing - Represents integers or longs

IntThing - Represents an integer value

ListThing - The ListThing class implements lists, storing them internally as a Java-Vector

LongThing - Represents a long value

NumberThing - Is the super class for all the Things related to numbers. It contains static
methods for calculations.

ObjectThing - Represents a wrapper for objects that are not representable as Strings. May be
any object in Java.

PrintThing - Is a utility class used to print out Things. It is useful for debugging purposes.

RealThing - RealThing is an interface which all things must implement. All Things has an
attribute val that represent the object or type which is the value of the Thing.

StringThing - Is the internal representation of string types. This is somewhat special, as all
types in Hecl may be represented as strings. All things are initiated as StringThings (With
the exception of objects) in Hecl before they are casted into other things on the Java side.

SubstThing - Represents a thing that must be substituted, for instance $hello or &hello. This
class is used by the parser

Thing - Is Hecl’s representation of objects. All RealThings can be encapsulated by a Thing
representing it.

These Things are part of the Hecl core, and new things might be added as an extension. The
logic in hecl is evaluated by the interpreter through a collection of command classes. Command
classes are also written to provide commands to operate on Objects or Things.

85

14.1.3 Command class Example

As an example, we can make a Cmds class to work on our ImageThing class. Listing 14.2
shows the Cmds class for ImageThing.

1 package org.hecl;
2
3 p u b l i c c l a s s ImageCmds ex tends Operator implements HeclModule {
4
5 // Constants
6 p u b l i c s t a t i c final i n t IMAGE = 0;
7 p u b l i c s t a t i c final i n t RESIZE = 1;
8
9

10 /**
11 * Constructor - makes a new command avalable
12 *
13 * */
14 p r o t e c t e d ImgCmds(i n t cmdcode , i n t minargs , i n t maxargs) {
15 super(cmdcode , minargs , maxargs);
16 // TODO Auto -generated constructor stub
17 }
18
19
20 /**
21 *
22 * Operate is called by the interpreter whenever one of the commands held by the
23 * ImageCmds is called.
24 * */
25 p u b l i c RealThing operate(i n t cmdcode , Interp interp , Thing[] argv)
26 throws HeclException {
27 // TODO Auto -generated method stub
28 switch(cmdcode){
29
30 // Create a new ImageThing
31 case IMAGE:
32 re turn new ImageThing(argv[1].toString(),
33 IntThing.get(argv[2]),
34 IntThing.get(argv[3]));
35
36 // resize a imageThing
37 case RESIZE:
38 ((ImageThing)argv[2].getVal()).resize(
39 IntThing.get(argv[2]),
40 IntThing.get(argv[3]));
41 break;
42
43 }
44 re turn n u l l ;
45 }
46
47
48 /**
49 * Interface to load the commands to the interpreter
50 *
51 * */
52 p u b l i c vo id loadModule(Interp interp) throws HeclException {
53 // TODO Auto -generated method stub
54 super.load(interp);
55 }
56
57 /**
58 * Interface to unload the commands from the interpreter
59 * */
60 p u b l i c vo id unloadModule(Interp interp) throws HeclException {
61 // TODO Auto -generated method stub
62 super.unload(interp);
63 }

86

64
65
66 /**
67 * puts the commands to the commandtable , allowing them to be loaded by the

interpreter
68 *
69 * */
70 s t a t i c {
71 cmdtable.put("image", new ImgCmds(IMAGE , 3,3));
72 cmdtable.put("resize", new ImgCmds(RESIZE , 3, 3));
73 }
74
75 }

Listing 14.2: ImageCmds class

This class allow us to write the commands:

1 set myImage [image "\root\background.jpg" 200 200]
2 resize $myimage 300 300

Listing 14.3: Commands for Image

14.1.4 Hecl Cmds classes

The Cmds classes included in the Hecl core are:

ControlCmds - Implements control constructs like if, while, for, foreach, and so on.

HashCmds - Takes care of loading and implementing the Hecl commands that deal with hash
tables, which are in turn implemented in the HashThing class.

InterpCmds - Implements various Hecl commands that deal with the state of the interpreter.
For instance set which binds a value to a hecl variable and puts it in the hashtable, or proc
that declares a procedure.

ListCmds - Implements the Hecl commands that operate on lists, which are implemented by
the ListThing class.

MathCmds - Implements a variety of math commands such as incr, sin, abs, +, logical
commands like or, <= etc.

PutsCmds - Implements the command in Hecl that is used to display text on the console which
is the System.out in Java.

SortCmds - Implements algorithms to sort a ListThing in Hecl

StringCmds - Is a collection of methods that work with the Hecl Strings

87

14.1.5 Hecl Core

In addition to the Things and Commands classes the Hecl core consist of the following classes:

Command.java - Command is an interface that serves as a template for all commands
implemented in Hecl. Commands takes an array of things as argument and make some
calculations and calls the setResult() method in the interp class once done.

Compare.java - Compare takes either two strings or two procedures as argument. It compares
the two strings or the result of the two procedures and return the result dependent on
the comparison. For procedures, it will return 0 for equal, -1 if the first is less than the
second, and 1 vice versa.

HeclException.java - HeclException is the exception used in hecl. If an exception is thrown
when executing a script, Hecl will encapsulate the exception with a Hecl exception,
alternatively throw a HeclException based on errors discovered by Hecl, and print it
in to System.out together with the stack indicating where the error occurred.

HeclModule.java - Hecl module is an interface that provides for modules (Cmds classes) to
be loaded by the interpreter.

Interp.java - Interp is the interpreter. It is responsible for the variables and commands that
are available. Interp contains the method eval(String script) which takes the script as
argument and is responsible for parsing and run the script. All Cmds-classes used by the
interpreter is loaded into this class in the init of the application.

Operator.java - Operator is an interface for creating Cmds classes. It comprise the methods a
collection of commands has to implement.

Parse.java - Parse is responsible for parsing the scripts into tokens. Scripts are parsed before
they are executed. It is also responsible for making recursive parses and detect variable
references, comment signs, calls to commands and procedures etc.

ParseList.java - ParseList is an extension to the parse class, that takes care of parsing Hecl
ListThings.

ParseState.java - ParseState is the state of the current parse. It reflects whether the parse is
done or has remaining characters.

Proc.java - Proc is a class that holds an instance of a procedure declared in hecl.

Properties.java - The properties class is used to parse command arguments that are set by
name. A new Properties is instantiated with default properties and values, then setProps
is called to substitute the default properties by the ones set in the script. At that point the
rest of the command can go on, and for every property that is needed, it can be fetched
with getProp.

Stanza.java - Stanza represent tokens provided to the interpreter. One Stanza is one parsed
command together with it’s arguments.

88

14.2 Running a Hecl application

As all J2ME applications Hecl requires that you have a MIDlet running in the background.
This MIDlet, or canvases running on it, has to have an instance of the Interp class which is the
interpreter in Hecl.

Additional commands and object may be provided to Hecl by defining them and load them into
the Interp instance. When all the modules are loaded to the interpreter, the eval(Thing script)
command may be called to evaluate a script.

14.2.1 Example script

In this section we will present an example script, given in Listing 14.4 and give a step by step
procedure from the interpreter. Figure 14.1 shows how the parse process is executed in Hecl.

1 set Nbr1 1
2 set Nbr2 2
3 proc addTwoNbrs { nbr1 nbr2 } {
4 return [+ $nbr1 $nbr2]
5 }
6
7 set Nbr3 [addTwoNbrs $Nbr1 $Nbr2]
8 puts "helloworld, the sum of $Nbr1 and $Nbr2 is $Nbr3"

Listing 14.4: Adding Two Numbers

The eval() method first parses the entire script using the CodeThing.get() method. The
CodeThing divides the entire script into characters. The CodeThing class determines whether
the script is already parsed, or if it is a ListThing, which has to be parsed by a special class. If
not, it creates a new instance of the Parse class, sending the script as parameter, and calls the
parseToCode() method from the Parse instance. This method runs a while loop that recursively
create stanza instances based on the script. The script above results in five stanzas, one for each
statement. Figure 14.1 shows an action diagram of how the parse process is executed.

After the script is parsed, CodeThing returns a CodeThing instance that holds the stanzas. The
Interp class then invokes the run method that runs the script. Figure 14.2 shows an action di-
agram of how the script is executed. The run method takes one stanza at a time, creating a
Command instance from the first word of the stanza. It looks up this command through the
interp class, which holds a hashtable with all the commands. Then it checks the arguments to
see whether they need to be substituted, or treated in any way, before it calls the commands
cmdcode. The cmdcode checks the argument length and call the Cmds class’ operate method
which does the computation. Our test script is parsed into the stanzas provided in Listing 14.5:

1 set Nbr1 1
2 set Nbr2 2
3 proc addTwoNbrs nbr1 nbr2 {return [+ ${nbr1} ${nbr2}]}
4 set Nbr3 [addTwoNbrs ${Nbr1} ${Nbr2}]
5 puts "helloworld , the sum of ${Nbr1} and ${Nbr2} is ${Nbr3}"

Listing 14.5: Stanzas From Example Script

89

ParsestateParseCodeThingInterp

Evaluate Script Parse Code

Check thing instance

CodeThing

ListThing

Make Array of Things

Other

Create Parse instance

Parse script

Find next line

Parse character by character, line by line

extract things from the parse

Create stanza with command and arguments

More script left?

Return stanzas to CodeThingReturn stanzas to InterpRun the script

Get parse state

done?

yes no

no yes

Figure 14.1: Action Diagram showing the Parsing process in hecl

90

OperatorStanzaCodeThingInterp

Run Script

Run stanza

Assemble Argument

Check firstt token

substitute or parse token to code

lookup command

Execute command

return return responsible operator

Should token
be substituted?

More
Stanzas?

Should token
be substituted? Check argument length

Operate on Command

Retrurn realthing

return final realthing

substitute or parse token to code

Yes

no

Yes
no

no

yes

yes
no

More
arguments?

Figure 14.2: Action Diagram showing the Run process in hecl

91

14.3 Getting to know Hecl

Starting development of a script based client started width exploration of Hecl and it’s
capabilities. It took some time to get into the Hecl platform, and in the beginning we wrote a
number of solutions to the language that were already implemented. The only documentation
on the Hecl scripting language we have been able to find up is on it’s home page, and answerers
to a lot of the questions we had were not present on the site. Therefore we had to learn about
Hecl’s architecture and functionality and available commands mainly by hacking the Hecl core.

14.3.1 Installing Hecl

We extracted the Hecl core and installed it as a project, making us able to hack it. The first ting
we did to get to know Hecl was to download the demo MIDlet posted on their site. This MIDlet
contains some classes in addition to the core. These classes provides for Hecl to interface most
of the basic GUI components provided by CLDC 1.1, such as forms, text field, static text etc.
We went on to make our own scripts, and made some simple programs that took a string as
input, manipulated it and displayed it.

14.3.2 Hacking Hecl

As we began to understand the syntax we wanted to take a look under the hood of Hecl to
figure out how to manipulate it. First off we made Hecl compatible with some functionality
it lacked, which we thought was important to support the animation. This functionality was
firstly support for random generators. We achieved this by hacking the MathCmds file. The
J2SE version of Hecl support’s Random number generation, but for some reason it has been
excluded in the J2ME version although J2ME supports it. Listing 14.6 shows the code added
to the MathCmds file in the hecl core to support random numbers generation.

1 p u b l i c s t a t i c final i n t RAND = 33;
2 ...
3 case RAND:
4 re turn NumberThing.asNumber(new Thing(Integer.toString((new Random()).nextInt())));
5 ...
6 cmdtable.put("rand", new MathCmds(RAND , -1, -1));
7 ...
8 }

Listing 14.6: Adding Random Number Generation In Hecl

The random generation of numbers seemed to work fine, and we began to realize how easy it
was to extend the functionality of Hecl. We moved on to extend the functionality of Hecl to
support threads. We thought that this functionality would be convenient to use in animation
context. We made the command thread in the ControlCmds file, taking code to be evaluated as
parameter. In addition to this we made a single Hecl command sleep to allow for code to pause
for a given interval. The thread also seemed to work fine on the testing we did in the beginning,

92

but we encountered some problems due to the processing overhead later on when testing more
advanced programs, we will come back to these problems.

14.3.3 Adding GUI Support

At this point we wanted to provide control of the Canvas’ Graphics component in Hecl. The
CLDC 1.1 version of Hecl support the standard GUI components provided by java, but it does
not support drawing. The game controllers we had developed to our first implementation were
made by drawing primitives and images on the canvas class, as well as using GUI components
provided by the ServiceFrame framework. The GUI support in Hecl 1.1 (the CLDC version)
is an extension of the core. All we had to do to extend the class GUI, which holds the GUI
commands part of the interpreter, to support painting was to add support for drawing was to
make constants representing each primitive and give the GUI class control of the Graphics
object of the canvas and draw them.

GUI support for the scripted client were first out supported to the GameCanvas class that comes
with the J2ME library. This solution provided the GUI class with the main gameCanvas’s
Graphics object. For every statement in the script containing a paint command, the Graphics
object were called with the values it needed. However, we have had some problems width
the GameCanvas class due to it being double buffered. This means that it as a contrast to the
Canvas class, buffers two screens in the memory causing it to use’s twice as much heap as the
canvas class. We changed the main MIDlet to extend Canvas instead of GameCanvas. This was
convenient since we did not use any of the extra features provided by the GameCanvas class in
the first place.

The Canvas class do not directly give control of the Graphics object to the other classes, but
require them to call the repaint method. The repaint triggers the paint method which determine
which elements to paint. Our first solution was to call the interpreter to calculate the paintscript
for every time the repaint method was called. We had some problems with this because of
the overhead generated from the interpreter. This overhead was critical with animations that
required a repaint every hundred millisecond. Therefore we made specific paint objects that
were calculated once from a specific paintscript, and repainted on demand. The primitives
that should be drawn was stored in a Vector as paintcomponents. This solution minimized the
overhead a bit, but not enough. Besides, this method had a problem with attributes tied to the
paintcomponents. Binding paint objects x- and y- location to a value in the script worked ok,
since the interpreter tied that value to the hashtable containing all program variables. However,
binding this value to a dynamic expression did not. The expression return one immediate value,
which were stored with the paint object on initiation, rather that a reference to the expression
which were calculated on every call. To find the weakest spot generating most overhead we
used the Sony Ericsson emulator’s profiler.

The profiler showed that 28 percent of the CPU time was used on the instantiating of images,
and that approximately 40 percent were used on the Images resize method.

Knowing this we saw the need to instantiate the pictures to be used in the game before they
were used (painted). To be able to do this we had to add support for pictures in Hecl. We did

93

this by adding new classes to the core as showed in Listing 14.1 and Listing 14.2.

We added a new class called ImageThing, and a related class with commands to operate on it
called ImageCmds. This way we was able to instantiate the images before they were used, and
the ImageThing instances were sent as parameters to the paint object that held a draw Image
command. This introduced another problem, because, although the variable were changed, the
reference within the paint object did not.

We figured that at this point we would have enough functionality in Hecl to make a test version
of GUI from the game client we developed during the previous project. All logic, such as
animation, was written in Hecl. We used our thread implementation to make the animations.
This did not work out quite as well as we had pictured it. One animation that were supposed to
display forty pictures managed to show about three to four. This was a result of the paint script
being calculated every time the repaint() method was called. As the sleep interval got smaller,
to about 30 to 50 milliseconds, the repaint just did not manage to calculate the paintcomponents
through the script, and the call to repaint() was neglected. We tried using the serviceRepaints()
method, that insures that repaint() is being executed, but without any luck as it resulted in a
slow animation. When the sleep interval became even smaller, the script did not executed at all
because the script did not get time to read.

We was stubborn enough to rewrite solution for this about ten times, wasting much time. We
alternated whether the script should be initiated once or whenever the call to repaint was called.
Whenever we made the script being initialised from the start, storing all the primitives to paint
in a Vector or Hashtable, we found a source for overhead. Eliminating this point made us go
back to the solution where objects were painted on demand. No matter how much overhead we
managed to get rid of, the paint on demand solution did not seem to work well with animations.
After a couple of weeks stumbling in that circle we finally decided that the paint scripts had to
be initialized from the start. This meant that we had to make the attributes to the components
dynamic.

Forunatly, the rest of the scripting platform for MOOSES game controllers development went
more smoothly. At this point we had more experience with hecl and limitations it caused.

94

Part III

The MOOSES Scripted Client
Architecture

95

CHAPTER 15

Architecture Considerations

15.1 Architecture Background

Software architecture is a field of study that is becoming more important every day. As
systems become more large and complex, the difficulty of meeting requirements increases
dramatically. The software architecture discipline is centred on the idea of reducing complexity
through abstraction and separation of concerns. By achieving this at an early stage, the
system is more likely to meet its requirements since it allows for reviewing design issues
before implementation, reducing risk and costs. In this aspect, software architecture is of high
importance for this project in hopes of avoiding a poor, low-quality, non-flexible and over-
complex framework. This Part contains information regarding system stakeholders, quality
attributes associated with the architecture, architectural tactics1- and patterns2-choices made
to achieve quality requirements. The practices used here are adapted from the Software
Architecture in Practice, by Bass, Clements and Kazman [54].

15.2 Stakeholders

In this section we will try to explain who the different stakeholders are for the system, which
interests they have to it and what views that are important for them. The views are covered in .

1Architectural tactics: Known methods for achieving quality in a system
2Architectural patterns: A description of element and relation types together with a set of constraints on how

they may be used

97

Developers: This project is part of a bigger concept that includes three developers. The
concept also requires other third party developers to write software for it. And allow
for extensions or alternative ways for usage which may involve other developers. All
the views presented in this document are important for developers to provide a better
understanding of the ideas behind the framework.

Maintenance: If the MOOSES framework is distributed, it will require maintenance which
may be done by a person sitting with the appropriate knowledge. The maintenance is not
likely to include works on the client, but a person that perform maintenance or repair on
an implementation of the framework will have an advantage of knowing the functionality
of the client, since it may be the cause of an error. The physical view is important,
together with the documentation on the code to better understand the layout and mode of
operation of the client in relation to the concept.

Financial: This project is based on cooperation between NTNU and Tellu. Both of these
actors, together with the developers, have financial interests in the project.

End users: The users using a MOOSES implementation may be divided into players and
administrators. Administrators may find parts of the process view interesting, together
with the physical view.

98

CHAPTER 16

Requirements

This chapter will present the functional, non-functional and environmental requirements of the
scripted client solution.

16.1 Functional requirements

This section represents the functional requirements of the scripted client implementation.
Functional requirements are a set of instructions reflecting the functionality which must be
implemented in the application. The requirements are presented in Table 16.1.

Additional information about the functional requirements

FR 3 The developer should be able to load wav files and play them by calling a statement from
the script.

FR 4 The developer must control code to be evaluated if a key is pressed or released. This
includes an interface for telling whether or not the key should send a keyPressed or
keyReleased message to the server. The developer must also control whether or not a key
should repeat while being pressed, and how frequent it should be repeated.

99

Functional
Require-
ments

Description

FR 1 The implementation must support graphical components as primitives
and pictures

FR 2 The implementation must support dynamic changes in graphical components
attributes

FR 3 The implementation must support sound feedback
FR 4 The implementation must support logic for user input
FR 5 The implementation must have support for the most common animations
FR 6 The implementation must support multiple canvases
FR 7 The implementation must support interface for communication from and to

the server
FR 8 The implementation must support interface for independent logic

such as threads

Table 16.1: The functional requirements for the scripted client implementation

16.2 Quality Requirements

The non-functional aspects are an important thing to keep in mind when designing applications.
Non-functional requirements include constraints and qualities [55]. Qualities are properties or
characteristics of the system that its stakeholders care about and hence will affect their degree
of satisfaction with the system. Constraints are not subject to negotiation and, unlike qualities,
are (theoretically at any rate) off-limits during design trade-offs.

The non-functional requirements are not so clearly stated by the users and stakeholders
of a system, but are nonetheless important for the user satisfaction of the architecture.
The requirements will be presented as ways to achieve the quality attributes: Usability,
Performance, Modifiability, Availability, Security and Testability. The following roles are
mentioned in this section and it is important for the reader to distinguish between these:

â The framework developer - The developer that is responsible for changes and
modifications to the framework and the script part of the client framework core. This
group is interested in the quality requirements: Modifiability, Testability

â The game developer - The developers are responsible for writing game controllers
that run on top of the framework. This group is interested in the quality requirements:
Testability

â The user - The persons playing the games running on the framework designed by the
game developers. This group is interested in the quality requirements: Usability and
Performance

â The system owners - The organization / person(s) running and maintaining the

100

framework and games. This group is interested in the quality requirements: Modifiability,
Availability and Security.

16.2.1 Availability

A systems faults and failures are associated with availability. A fault occurs when something
does not go as intended and is not visible. For instance, if a data package is sent from one of
the devices without one of the devices registering the loss, a fault has occurred. If the device
that sent the package acts like the other device has received the package, a failure might occur.

A1 - Packet loss
Source of
stimulus

Runtime issue

Stimulus The game server sends a status message to the client
Environment Run time
Artefact The game server module
Response The client synchronize with server
Response
Measure

The game client synchronize with server once a minute

Table 16.2: A1 - Packet loss

16.2.2 Modifiability

Modifiability mirrors changes to the system. It is vital that changes may be performed without
too much hassle. For instance, if a famework developer wants to add new commands to the
interpreter, this should not involve changes to more than the module that handles the interpreter.
A change does not necessarily need to be made by a maintainer or developer. It can also be
made by the end-user, for instance a configuration set-up.

The client is designed in a way that allows future modifications and/or additional modules.

101

M1 - Extend the interpreter with additional commands
Source of
stimulus

The Framework developer

Stimulus The framework developer wants to extend the commands supported by
the interpreter

Environment Design time
Artefact The mobile client
Response The framework developer provides the additional Cmds- and corre-

sponding classes to the client JAR file, and makes the interpreter load
the new modules.

Response
Measure

The developer does not make any modifications to other parts of the
client

Table 16.3: M1 - Extend the interpreter with additional commands

M2 - Change dynamic game related data
Source of
stimulus

The user

Stimulus The user’s actions make changes in the local variables
Environment Run time
Artefact The mobile client module
Response The controller canvas runs the script associated with the action
Response
Measure

Dependent on how intuitive the interface is, and the complexity of the
changes, such a change should be doable in a couple of seconds.

Table 16.4: M2 - Change dynamic game related data

M3 - Extend the framework with more states
Source of
stimulus

The Framework developer

Stimulus The framework developer wants to extend the domain of the framework
to fit other concepts.

Environment Design time
Artefact The mobile client state machine module
Response The framework developer has to add new states to the state machine

running the client, and determine how the client should act on messages
received in the different states. He may also remove redundant states. If
the state requires additional corresponding classes, these must be added.

Response
Measure

Manipulation of the backbone state machine should be possible without
side effects.

Table 16.5: M3 - Extend the framework with more states

102

M4 - Adding new games to the client
Source of
stimulus

The Maintainer

Stimulus The maintainer wants to add more games on an implementation of the
concept.

Environment Maintenance time
Artefact Game server module
Response The Maintainer adds the game to the server together with the corre-

sponding script and client resources.
Response
Measure

Adding new games is done without interfering with any code or
modules

Table 16.6: M4 - Adding new games to the client

16.2.3 Performance

Performance mirrors the systems ability to respond to an event that occurs and time to execute
it. Such events may come from several instances. These instances can be an end-user, the
system itself or from other systems.

P1 - Response time from player actions
Source of
stimulus

The User

Stimulus The user gives input to the game through his/her controller (mobile)
Environment Run time
Artefact Script interpreter
Response The action chosen by the user should play out on the screen(s).
Response
Measure

If the input involves scripts to be executed, it should take no less than
0.5 seconds, independent of underlying hardware.

Table 16.7: P1 - Response time from player actions

P2 - Fair premises
Source of
stimulus

The client

Stimulus The client runs on a resource constrained device
Environment Run time
Artefact Script interpreter
Response The gameplay experience should not be affected by the limitations of

the client
Response
Measure

The client should be efficient enough to run on all the clients supported
by the former client

Table 16.8: P2 - Fair premises

103

16.2.4 Security

Security is concerned with the systems ability to prevent unauthorized usage/access without
compromising normal usage. Attacks can be unauthorized attempts to access or modify data.

S1 - Player tries to cheat
Source of
stimulus

The User

Stimulus The user tries to alter the script that represents the game controller
Environment Run time
Artefact Game mobile client module
Response The client downloads a new script whenever a game is started, or a user

logs on.
Response
Measure

Depending on the size of the script. Average size is a couple of Kilo
bytes that should be distributed in one or two seconds.

Table 16.9: S1 - Player tries to cheat

16.2.5 Testability

To find bugs, faults and leaks in the system, it needs to be testable. Designing an architecture
that can easily be tested for faults will save a lot of time. There are several different ways of
doing this. Most of them involve monitoring the systems internal state and outgoing output that
is easy to interpret.

T1 - status of running modules
Source of
stimulus

The System owners

Stimulus The system maintainer wants to check the status on the running system.
Environment Maintenance time
Artefact The Framework
Response The framework must supply a GUI based tool for debugging of the

system. This GUI must also profile attributes related to the scripted
client, and the game running on the game server

Response
Measure

The debug GUI should respond with the current running status of all
modules currently running in the system.

Table 16.10: T1 - status of running modules

104

T2 - Test a new game-client script
Source of
stimulus

The Game developers

Stimulus The game developer wants to test the controller they have scripted for
their game.

Environment During game development
Artefact Editor tool
Response The Framework must include tools for writing and testing scripted

controllers. Such a tool should also be able to profile the program and
display the measurements in wanted format.

Response
Measure

The Script editor should provide profilers and feedback on measure-
ments.

Table 16.11: T2 - Test a new game-client script

T3 - Game developers wants to test their client
Source of
stimulus

The game developers

Stimulus The game developers test their client without having to run the game
Environment During game development
Artefact Editor tool
Response The editor tool must simulate server connection, and provide an

interface for simulations.
Response
Measure

The game developer is able to test the scripted client without running
the game.

Table 16.12: T3 - Game developers wants to test their client

105

16.2.6 Usability

Usability is concerned with the learning curve, how easy certain tasks may be performed by the
user and how intuitive the system is for the user in the way it displays information. Usability
is an issue that often must be considered in the early stages of architectural design. If a major
problem related to usability is detected late in the project phase, the repair and modification that
have to be done to the architecture will cause more work than if these problems are illuminated
in the architecture design phase.

U1 - The user wants to exit the application
Source of
stimulus

The user

Stimulus The user wants to exit the application
Environment Run time
Artefact Mobile client
Response The procedure for quitting the application is the same in every part of

the application, independent of the scripts
Response
Measure

The Exit procedure involves two key-presses from the user, and an exit
protocol that takes a half to one second depending on traffic.

Table 16.13: U1 - The user wants to exit the application

U2 - The user wants to log in to the system
Source of
stimulus

The user

Stimulus The user wants to log in to participate in the games
Environment Run time
Artefact Mobile client
Response The user should only concern about starting the application and type in

desired nick name. Any other actions should be taken care of by the
state machine.

Response
Measure

The user may log in without any advanced setup

Table 16.14: U2 - The user wants to log in to the system

16.3 Environmental Requirements

In this section we will give a short description of the environment that is needed to run the
framework.

Java Our framework is based on the newest Java technology. Therefore the devices must
support the CLDC 1.1 configuration and the MIDP 2.0 profile.

106

Java Bluetooth API The devices must have the Java API for Bluetooth to make the Bluetooth
device accessible from Java.

Bluetooth The devices must support Bluetooth 2.0 to provide the bandwidth needed, and
preferably class 2 Bluetooth to expand the covering area and to reduce probability for
packet loss.

Sound It is desirable, but not crucial, that the phones support the Advanced Multimedia
Supplements (JSR 234) standard to be able to give sound feedback on the phone.

Hardware Phones using a faster processor may get an advantage not only by obtaining faster
communication with the server, but also by providing a better GUI that can be refreshed
faster. For this reason we have put a lower threshold on the phones supported. So far we
have only worked with mobiles manufactured by Sony Ericsson, and the threshold will
therefore be set at the phone with the oldest phone which passed the test. Another factor
that speaks in favour of the other devices is that the Sony Ericssons mobiles are leading
on in the size of the memory heap. Our application consumes a god slice of this heap
(between 300 to 1000 bytes depending on resources used and operations on them). We
have set the lower threshold to SE K750 which gives a little disadvantage compared to
the newer phones when running on our framework.

107

108

CHAPTER 17

Design Decisions

This chapter discuss many of the design decisions made on how different parts of the new client
implementations should be implemented, together with a brief presentation of the some of the
decisions we made one the previous implementation that ate still relevant.

17.1 Tellu ServiceFrame

ServiceFrame was a perfect hit for our base system because their platform support for mobile
clients, servers and multiple ways for communication between these. It allows the state
machines to be placed anywhere in the deployed system (At different servers) without changing
addresses. This means that we may move the state machines to higher level servers and down
again without any big impact.

17.2 State machines

When we designed the architecture for the MOOSES framework, we wanted it to be as flexible
and quick to design and implement as possible. We had a look at the Finite State Machine
(FSM) technology and found it to suit our needs to provide good extensibility, and being fast
and maintainable.

The MOOSES client comprises five states. The MOOSES state cycle is presented in Figure
17.1. The two first are initial states, while the client will cycle between the three other

109

Wait for user profile

Configured inGame

inVote

GameEnded

Login

Response
from server

Start game

Vote alternatives

End game

Vote
alternatives

Start
game

Exit application

Exit application

Exit
application

Figure 17.1: MOOSES client states

states on runtime. The first state registers and authenticates the client with the server. If
the authentication is validated, the client will go to configured state to wait for the server.
The client will receive either a startgame message or a vote alternatives message, and go to
the corresponding state. From this point, the client will cycle in this order, inVote-inGame-
endGame-inVote.

17.3 Message System

The communication between clients and servers in ServiceFrame follows a message system.
Each message extends a default interface and adds the additional functionality needed by the
specific message. The message is serialized during transport, and deserialized when arriving
to the receiver. The state machines use these messages to change between states, and to
distinguish information between them self. The state machines use the instanceof check in
Java to differentiate between the incoming and outgoing messages, and perform the necessary
actions.

Using these messages comes with advantages and disadvantages. The messages make it easy
to route information within the state machines, and to bind functionality to the data. However,
since each message has to be declared in its own class, it extends the size of the client for each
message added. Also, adding new message classes requires manipulation of the statemachines
source code. This would not be appropriate when using a scripted client that does not allow
changes in the core. Therefore, the only messages used in the new implementation (the scripted
controllers, not the entire client) is the KeyMsg that sends a keypress or keyreleased message to
the server, and a VibrateMsg that allows the server to trigger the Vibrate function on the phone.
All other communication between the Game and the controller is done using an AFPropertyMsg
provided in Appendix D. This contains a Hashtable and the ID of the message as a string. This

110

solution is convenient because it makes it easy to transport data from and to the script.

For instance, in the test game for the previous implementation we created a ShootMsg to tell the
server that the client had initiated a shoot. The message contained an integer value indicating
the weapon the client used. With the new implementation the message is sent from the script.
The ID of the AFPropertyMsg is "ShootMsg", and the integer is stored in the hashtable.
StatusMsg from the previous implementation that provided the client with the current status
in the game with respect to health and score has also been replaced by an AFPropertyMsg
containing the same values. These values are easy to retrieve in the script and may be used as
the author of the controllers desire.

17.4 Script code

The scripted applications use a predefined template. A scripted game controller may comprise
several canvases. Each canvas is declared using the canvas command, followed by the name
of the canvas and a tag begin{ and closed by a tag stop}. Multiple parts of the canvas is
distinguished by the ! token.

Listing 17.1 shows an example of how a canvas is created for our scripted client. More
examples are provided in the Appendix A.

1 canvas maincontrol begin{
2
3 ! main
4 # initate some values
5 set frags 0
6 set maxammo [list 13 30 4 8 1]
7 set bg [image "/res/background.jpg" $reswidth $resheight]
8
9 ! paint

10 #draw the background picture
11 paintpicture src $bg x 0 y 0 "left|top"
12 #draw a rectangle
13 paintrect x 0 y 0 width {[- $frags 1]} height [/ $resheight 3] depth 3
14
15 #input code for the 5-key
16 ! 5
17 presscript: set frags 0
18
19 ! UpdateMsg
20 #input from the server, extracting the values and replace the local
21 set frags [hget $msgHash frags]
22
23 ! shownotify
24 # executes when the canvas is loaded to the screen
25 set frags [lget $maxammo 3]
26 stop}

Listing 17.1: Scripted controller example

The ! main token represent a section where the variables used by the script is declared, it is
executed instantly by the underlying Java canvas and stored in hashtables. The ! paint token
is the canvas paintscript. It comprises several paintcomponents that are stored in a hashtable
and redrawn each time the flush command is called from the script or an animation triggers

111

a repaint event. By giving parameters to a paintcomponent enclosed by brackets, for instance
height {$height} , the height parameter will be dynamic and point to a variable in the script or
calculations that are evaluated on draw. Both these tokens are immediately executed in the init,
their values stored in hashtables, and then the scripts are discarded. The rest of the tokens are
pre-parsed, and stored as CodeThings in a hashtable in the underlying canvas.

112

CHAPTER 18

Design Overview

Now that we have established the requirements for the client, it is convenient to get the base
design down to help getting a rigid and easy-to-maintain system. The design overview may help
to wipe out problems at an early stage, and provide for other actors to get a better understanding
of the systems inner and outer workings.

This chapter will focus on the design views of the scripted MOOSES controller architecture,
and some views of the complete framework to give a better understanding of the entire concept.

18.1 High Level Architecture

The client architecture is module based with separate packages for each major type of classes.
The top level structure of the client architecture is provided in figure 18.1. This is to ensure that
certain parts of the client may be redesigned, replaced or tailored for specific needs without
rewriting the entire client.

The client application comprises one MIDlet that runs different parts of the application based
on the state of the state machine.

State Machine The state machine is the backbone of the client application. It serves as the
clients face outwards in relation to the game-server, and decide which module that is
loaded to the display at different times based on messages from the game server.

Default Window The default window is loaded when the client is idle waiting for the server.
This occurs on initializing states and when games end.

113

Control
Window

Vote
Window

StateMachine

Default
window

Interacion with server

Interpreter

Operators

GUI

User interface

User interface

Figure 18.1: High level architecture for the scripted MOOSES client

Vote Window The vote window is the program loaded to allow the user to participate in a vote
session. The server provides the client with available games, that are put in a list on the
vote window. When user selects a gane, a vote is sent to the server.

Controller window The controller window is the application that let the user interact with a
game. This window has interfaces that connect the script and the game server, through the
state machine. It runs the interpreter that executes the scripts. When a game is started, a
new controller window is created with the script for the game controller as argument. The
game controller divides the script and stores the information about the game controller
application, provided by the script, in hashtables. The game controllers are built up
by different canvases that run on top of the controller window. The controller window
contains most of the data constitute the canvases, to reduce the scripting computation
needed.

Interpreter The interpreter is the interface between the script and the Controller window. The
canvases that run on top of the controller window comprise script fragments that are
evaluated through the interpreter. The interpreter also contains the variables used by the
scripted game controller application.

Operators The operators are parts of the interpreter that handles different commands. This
include commands for logic, input, sending and receiving data, sound feedback,
animations and operations on data types and objects. When framework developers add
a new commands to the framework, they extend the operator and load the new operator

114

into the interpreter.

GUI The GUI module is a special operator that computes a paint script, and produce
collections of paintcomponents that are associated with the different canvases. These
collections are stored in the GUI module, and fetched on demand by the controller
window when changing between canvases.

18.2 Data flow view

To get a better understanding of the communication between the actors involved with the client
we will provide a Flowchart diagram. Figure 18.2 shows the dataflow in the Scripted MOOSES
client.

External Actors The external actors are elements that provide data to the system, and that
receive the data produced by the system. The user provides the system with user input in
form of key presses and key releases. The system provides the user with information by
refreshing the display, to reflect the current situations.

Triggers are elements in the scripted solution that executes in their own thread. The
Hecl is designed to run code once in the underlying Java MIDlet thread. Triggers run in
their own thread, and may periodically, or on demand, perform logic. Code may also be
executed from the script by receiving data or by user input.

The game server hosts the games, and the voting sessions. The server tells the client
which state is supposed to go to, and provides the client with data from the game.

Start game The client will go to inGame state when receiving a startGameMsg, containing
the name of the game. If the client does not have the script it will request the script and
the corresponding resources from the server. The script will be divided into fragments,
and stored as collection of data for the different canvases on the controller window. The
game will be loaded on the client, and the user is ready to play.

Refresh screen The display is the user’s local reference to the game. It reflects the data that
is relevant for the user. Changes in variables will result in changes in the representation,
either animations, changing canvas or other representations.

Send Data The developer controls protocols for sending data to the server. Sending data is a
result of user input, an event from a trigger or as a response for received data. The data
collection is a hashtable that contains Java Objects. The hash’s and name of the message
has to be the same on the game side and the Java side.

Receive Data The scripts contain tags for receiving data. These tags include code to execute
on the data received.

Perform computation Different actions may have scripts attached to them. This computation
may result in local changes, communication with the game or both. Computation may
also create triggers or trigger other script parts.

115

Game Server

Press input

Send Data

Send Vote

Initiate Vote

Start Game

User

Receive Data

Invalidate
Screen

Key, flag

Visual
representation

Code

Data
Collection

Data
Collection

Game name

Updated variables

Game name,
Script,

resources

Paintcomponents

Vote Alternatives

Key

Perform
Computation TriggersCode

Data Collection

Key

Variables

Data

Data

Figure 18.2: Dataflow diagram for the scripted MOOSES client

116

Press input The key input is the users interface for interaction with the game. Pressing or
releasing a key may result in a key message to the server indicating the key, and a flag
indicating whether the key was pressed or released. User input may also trigger scripts
to execute.

Initiate Vote When the game server sends a voteAlternatives message, the client will go to
vote state. The message contains all the vote alternatives, which is put in a list. The user
chooses a game, and sends his vote. The vote module of the MOOSES client does not
concern the script module.

Send Vote When a user sends his vote, a vote message is sent to the game server, containing
the name of the game the user voted.

18.3 Process View

The process views give a better understanding of how the different components run and relate to
each other in real time. This will dredge the way communication occurs between the modules
and the functionality of the modules.

18.3.1 Joining games

When a user is connected to the game server, he will join the game that is running on the server.
The server sends a startgame message containing the name of the game. The client responds
with a resource request message if it does not possess the script. The process of joining a game
is provided in figure 18.3

After receiving the resources, the state machine instantiates a new Controller window with the
script as argument. The controller window first loads all the modules to the interpreter, then
proceed with dividing the script. The script is first divided on different canvases. A canvas
is identified with a name, and a body that contains all the scripts related to the canvas. The
scripts are further divided into tags. The main and paint tags are executed directly and then
discarded. Running the paint-tag will result in a list of paintcomponents that constitute the
visual representation of the canvas.

The other scripts that constitutes a canvas is input , data scripts and scripts to execute when a
canvas is being displayed or hidden. The controller window stores information for each key as
a collection of press and release scripts, keyrepeat options and flags that indicates whether or
not the key should send a keymsg to the server. This information is stored in an instance of the
inner class Input. The Input instances are further stored in the hashtable which possess all the
information about a canvas that concerns the controller.

The data scripts are used for receiving data. The tags of these scripts are called the same as the
message they represent, and they will be parsed and stored in the canvas’ hashtable.

117

Controller windowStateMachine

Start game

request resources

Load controller window

Divide script

Run scriptCreate input instance

Store script

Load the script modules

parse script

create hashtable for canvas

refresh screen

Extract and Store paintcomponents

Contains
script?

More
tokens
left?

More
canvases?

Kind of token?

Paint
token?

Paint or main
input

other

yes

no

yes

no

yes no

yes

no

Figure 18.3: Process view for initiating games on the scripted client

118

When all the canvases has been stored in the hashtables representing them in the controller
window, the controller window is set to point at the first canvas from the script, and the repaint()
method is called. The screen refreshes, and the player is free to play.

119

120

Part IV

The Scripted MOOSES controller
development framework

121

CHAPTER 19

Development of a script solution

During this master thesis we developed a prototype implementation of the scripted client based
on the Architecture given in Part III. This chapter will present how the prototype was written
with respect to changes done to Hecl and additional code and functionality added. It will also
provide information on the features available for developing game controllers for MOOSES
with the scripting platform.

19.1 Manipulation of Hecl core

To tailor Hecl to our needs we had to make some changes in the existing framework. Some
classes where added to the Hecl platform, but manipulation of the core was necessary as well.
The changes, mentioned previously, to give thread support and random number generation in
Hecl where made directly in the Hecl core classes.

19.1.1 If statements

Hecl does not provide a thing for the boolean variables. Boolean variables are represented
as an IntThing with zero as false and one as true. This created a problem, because "true"
or "false" where not capable as arguments, only the calculation of boolean expressions. The
reason for this is that the IntThing’s isTrue() method throws an exception for any thing that is
not a NumberThing, meaning that "true" that might be a StringThing may raise an exception.
We changed the if command in the ControlCmds class to accept both positive numbers and
"true" as true.

123

19.1.2 Expressions

Since all the drawing operations are done on application start-up, and never called again,
we needed for the paintcomponents to accept dynamic arguments. We based our GUI
implementation on the one provided with the CLDC version of Hecl. This class calculates all
the arguments in advance, and they become permanent. We changed the GUI class to provide
an array of paintcomponents to every canvas. These paintcomponents comprise primitives,
images and animations.

Example

1 set height 200
2 set drawrect true
3 paintrect x 100 y [/ $height 2] widht 100 height 100 fill false dept 4 draw $drawrect color

red

Listing 19.1: Example Using Expression as argument

The line paintrect above creates a new paintcomponent that draws a red rectangle with 4 pixels
thickness at point (100, 100), 100 pixels wide and 100 pixels height. Arguments such as fill,
draw and dept may be neglected, and the default values will be loaded. All the arguments are
calculated once in advance, and remain as single values for the rest of the runtime. Changing
$height or $drawrect will not affect the paintcomponent.

We chose to initialize the paintcomponents only once, with the opportunity to manipulate
the arguments later on. The final version of the dynamic argument implementation sends
the argument collection as parameter to the paintcomponent. When the paintcomponents
draw method is invoked, the arguments are calculated for every call. This is where we first
encountered the expression problem. We used the Interp’s eval(Thing t) method, which is
supposed to parse and evaluate a statement, or a collection of statements. This method is also
used recursively to evaluate expressions in Hecl. Despite the fact that the method returns a thing
indicating the result, it would not allow us to use the method to evaluate the dynamic arguments.
We had to manipulate the Interp class to provide a method for evaluating expressions. Most of
the manipulation was done in the Stanza class. A flag in the Stanza class indicates whether it
is an expression or statement that is to be calculated, if the flag is set, Stanza will return on a
certain point with the calculated value.

19.1.3 Pre parsing

When the controller window divides the script based on canvases, it parses the scripts
constituting the canvases into CodeThings. A hashtable contains the fragments of canvases
that constitute the application. Different parts of the script are called in different contexts. For
instance, the current canvas might have its own scripts for input. The pressedkey script will
then occur when a user presses a key. Interp’s eval(Thing t) method will be called with the
script to evaluate. This produces a significant overhead that can be reduced. The overhead is a

124

result of the Interp having to parse the script for every time. Hecl is designed to load a script
once, not occasionally like our implementation does. If the scripts are parsed only once under
the initiation process, we could more than halve the overhead. The parse operation will result
in a CodeThing containing the parsed script as a collection of Stanzas. The Interp will not parse
a CodeThing, just evaluate it. We made an interface in the Interp class for parsing the scripts
without executing them.

19.1.4 Global statement

By default, Hecl always use local variables in procedures. To use a global variable, the global
statement has to be called to load the variable into the scope of the procedure.

Example

1 set Nbr1 1
2 set Nbr2 2
3 proc getSumOfNbr1AndNbr2 {} {
4 global Nbr1 Nbr2
5 return [+ Nbr1 Nbr2]
6 }

Listing 19.2: Hecl global Example

Calling global in the example above will allow the global variables to be used inside a procedure
body. However, the global variables are read only, meaning that any changes done on the
variables in the scope will not affect the values they represent. We figured we did not need for
global variables to be loaded into the scope, and certainly not read only variables. Therefore, we
removed this feature from the Hecl core. The prototype makes all variable declarations global
not only for the current canvas, but for the whole scripted controller application. This means
that variables that belong to GUI components or other data may be edited from independent
from applications state.

19.2 Variables

Declaration and usage of variables that contains primitive types in the scripted client is done by
the standard in Hecl. Declaration of variables that contains objects on the other hand is done by
using the operators (Cmds classes) for the specific object. The operator also handles statements
that operate on the object.

19.2.1 Constants

Some of the variable names are locked to provide some constants useful for computations.
From the core, Hecl provides constants for mathematical PI and mathematical e. Our extension

125

of the Hecl framework provides the constants $reswidth and $resheight that reflects the width
and height of the mobile devices screen, providing for developers to make dynamic GUI.

The variable name $msghash is also dedicated to the development, although it is not a constant.
The underlying controller canvas use this variable to dispatch data received from the server to
the interpreter, making it available through the script.

19.3 Additional functionality

In addition to the changes done to the core of Hecl, we added commands for the elements
needed to develop a game client for MOOSES that supports scripted controllers. Development
of these features where done by providing classes in Java and Cmds classes to work on them.

19.3.1 Graphical Elements

The CLDC 1.1 version of Hecl comes with a module for basic MIDP GUI components, but
it has no support for drawing primitives or other graphical elements. The MOOSES control
client is based on the MIDP Canvas that draws directly on the canvas through a defined
paint() method. This implementation also supports the GUI elements from the ServiceFrame
framework.

We figured we could use the GUI class distributed with Hecl, but we had to rewrite it to suit
our purpose. As mentioned earlier this drained most of the development time, pending between
different solutions to optimize the implementation. The final implementation of GUI support
for the scripted client requires the paint scripts to be loaded at application start-up. Running
the script will result in an Array of PaintComponents that are stored and associated with the
canvas.

The paint script is separated by the "! paint " tag, and consist of a collection of paint statements.
For instance:

1 paintrect x 0 y 0 width $reswidth height $resheight fill true color red

Listing 19.3: Paint Component Command

The code-line in Listing 19.3 tells the paintscript to fill a red rectangle in the entire display.
The variables $resheight and $reswidth mirror the width and height of the canvas. These are
predefined constants that are necessary for dynamic accommodation of graphical elements to
different screen resolutions.

In the statement above, all the parameters to the statement are static, meaning they will be
calculated only once and stored together with the paintcomponent instance. To give parameters
that are dynamic we have to encapsulate them with bracelets {}. If the statement above had the
attribute "[. . .] width {$width}", then the statements

126

1 set width [- $width 10]
2 flush # refreshes the screen

Listing 19.4: Interfacing Dynamic GUI Parameters

would have changed the appearance of the rectangle. The flush statement is the repaint()
statement in the scripted client.

The paintscript is executed on init. The Interpreter calls up CodeThing to evaluate,
which triggers stanza, which again requests the responsible operator, which in this case is
GUIcmdFacade, which points to the GUI class. The GUI class serves as any other operator,
with a number of additional methods tailored for GUI components to translate from the script
to Java. The method for the current command is located through a switch. The arguments are
assembled, and the dynamic arguments are parsed. The arguments for a GUI statement are sent
in a properties instance. The Properties class allows for the arguments to have names, and to
provide default values for these arguments.

1 # statement that uses the properties class
2 paintstring value "hello world" x 50 y 50
3 # statement that do not use the properties class
4 starttrigger $myTrigger false

Listing 19.5: Properties Example

After the argument has been assembled and treated, a paintcomponent instance is created.

PaintComponents

Paintcomponent is a class that collects all the data that is necessary to draw a primitive and
compute the dynamic attributes. The GUI class stores all the paintcomponents from a script
in a Vector associated with the script, that are fetched on demand from the controller window.
The paintcomponents available for the scripted client are:

- line - rectangle
- animation - string
- image setting clip
- setting color setting font

19.3.2 Animations

To prevent overhead by scripted animations, the scripted framework include a module for
Animations. This module contains animation classes for the most common animations,
and support for new ones to be added when they are needed. The current implementation
contains the animations we decided to implement in Section 12.8.1, which was Stringrotator,
Imagerotator and Progressbar. All the animation classes extend an abstract animation class,
making interface for the animations easier. Interaction between scripts and animations are

127

done through the AnimationCmds operator. To draw an animation, it requires to be registered
as a paintcomponent.

All the animations run in the same thread. When an animation object receives orders to animate,
it will register to the Animator class that executes the animation code for each animation
registered on it. For each iteration the Animator polls the Animation object to check if it is
done animating. When an animation is done, it leaves the Animator thread. The animator
is created to reduce the number of parallel threads executing, as this is a weak point on the
resource constrained devices. The thread executes as long as there are still animation elements
registered on it.

Operations on the animation are done through the AnimationCmds operator. All the animations
must support commands for speed, start, stop and reset. Some of the commands are tailored for
specific animations.

Animation example

Listing 19.6 show an example of how to use an animation element in the MOOSES client
scripting framework. The imagerotator is first declared in the script with positioning and
additional data such as the direction to rotate and the anchor options of the graphics component
that shall paint it. After the imagerotator has been initialized in the script the speed of the
animation is increased and two pictures are added.

The paint tag contains a statement that registers the imagerotator as a paintcomponent,
providing for it to be painted when the display repaints. The "! 5" tag says that the rotator
should rotate to the next image whenever the user presses the five-key.

1 canvas imagerotatorexample begin{
2
3 ! main
4 # create an imagerotator
5 set imgroter [imagerotator x [- $reswidth 50] y 10 width 40 height 40 direction vertical

anchor top|hcenter]
6 # set the speed to animate
7 speed $imgroter 6
8 # add the images
9 addpic $imgroter [image /res/ball.jpg 40 40]

10 addpic $imgroter [image /res/fly.jpg 40 40]
11
12 ! paint
13 animation $imgroter # paint the animation
14
15 ! 5
16 presscript:
17 next $imgrot # display the next image
18 stop}

Listing 19.6: Using an imagerotator in the scripted client

128

19.3.3 Input

In the previous version of the client we managed user input by identifying the key through a
switch, compute the code, and send a keyMsg to the server. The opportunity to send a key
message has been maintained in the script, because a key press might be all the game needs to
take action. Sending a KeyMsg is done without interacting with the script, and therefore the
overhead from the interpreter is removed. In the scripted client we instantiate an object that
contains all the data concerning a key.

1 p r i v a t e c l a s s Input{
2 KeyRepeater keyrepeater = n u l l ; // thread that repeats the key when pressed
3 p u b l i c String pressScript = ""; // Script that executes when pressed
4 p u b l i c String releaseScript = ""; // Script that executes when released
5 p u b l i c boolean sendPressed = f a l s e ; // flag for sending a keyMsg on press
6 p u b l i c boolean sendReleased = f a l s e ; // flag for sending a keyMsg on release
7
8 // variables used by the keyrepeater
9 p u b l i c boolean repeatkey = f a l s e ; // flag indicating whether the key

should repeat
10 p u b l i c boolean pressed = f a l s e ; // flag keeping the repeater alive
11 p u b l i c i n t interval = 1000; // repeat frequency , millis
12
13 // loads the keyrepeater
14 p u b l i c vo id loadRepeater(i n t key){
15 keyrepeater = new KeyRepeater(key);
16 }
17 }

Listing 19.7: Input class

The Input instance may be written as a tag (to increase readability), or as statements. The
properties of an Input may be manipulated runtime. This is convenient because some keys
might not have a function before an event has occurred. An event may also alter the way the
key is behaving.

To repeat a key that is pressed, the client uses a KeyRepeater that runs in it’s own thread.
Although the Canvas class has support for repeating keys, we choose to make our own
implementation because the one provided by the Canvas class does not support changes in
the frequency of repeatings.

The keyrepeater represents a problem for some phones, because every repeater starts its own
thread, which might result in multiple threads fighting for the CPU. This problem might be
solved by executing all the repeaters in the same thread, and maybe even use the animation
thread.

19.3.4 Sound feedback

Sounds are declared in the MOOSES scripting platform by giving the path to the file using the
sound command. The sound support is based on MIDP 2.0’s Media library. Using the sound
command includes instantiation of a Player for each sound added. The player is pre-fetched
and realized, meaning that it loads the entire sound file into the memory.

129

Sound files are preferably loaded in the ! main part of the application, because it is a relatively
resource expensive task. The SoundCmds class provides interface for interacting with the
initialized sounds. Basically these commands are just play and stop, where start may have
an additional parameter telling the sound to loop.

Example of sound usage

The code provided in Listing 19.8 shows usage of the sound interface. The sound is initialised
in the main tag as gunShot. If the user presses the fire button or the 5 button the client will send
a gunshot message to the server, and play the sound of the gunshot.

1 canvas soundexample begin{
2 ! main
3 set gunShot [sound "/sounds/gunshot.wav"]
4 ...
5 ! fire
6 sendscript:
7 send gunshotMsg
8 playsound $gunShot
9

10 ! 5
11 sameas: fire
12 stop}

Listing 19.8: using sounds in a scripted client

19.3.5 Communication

Data are sent between the game server and the client using the AFPropertyMsg. This message
comprises an identifier that is the type of the message, and a hashtable containing the values.
The identifier and the hashes has to be equal on both sides (Server and client), so that the actor
may identify the message to know which data it possess.

Sending data from the script is done through the command send. This command takes the name
of the message and name of the hashes, and their value as parameter. Since all values in the
script are represented as Strings on the java side, additional parameters is necessary to cast the
value to its real type. Otherwise they will be sent as Strings, and may be casted at the server
side. To cast a value, an identifier representing the target type has to be placed in front of the
certain value.

Communication example

1 send valuetest strval hello intval %i 50 doubletval %d 1.55 boolval %b true longval %l 20000
objectval %o $myImage

Listing 19.9: Sending data to server from script

In the example above, the script will send an AFPropertyMsg called valuetest. The argument
of the send statement further consist of values to put in the hashtable, with the hash first and the

130

value following. The tokens introduced with the ’%’ are the casting identifier. The first hash,
strval, has no cast identifier because it is supposed to remain as a String on the Java side.

Receiving data is not done through a command interface. The developer has to define tags in
the script that are called the same as the identifier of the data message. The tag is followed by
the script to execute when the data is received. The controller window contains an interface
for receiving the data. It will translate the data to the script, and call the responsible script to
execute. The data is available in the script through the $msghash variable that is set by the
controller window.

19.3.6 Triggers

One of the first things we wrote for the scripted client was the support for threads. The threads
work ok, but they produce a lot of overhead, and might be difficult to control. We figured that
a trigger, defined in its own class and not as part of the core, that gave good opportunities for
control and manipulation would be more convenient.

The trigger is intended to keep more of the attributes on the Java side, and to execute a pre
parsed script. The trigger runs the script either once, or repeatively. The trigger may also
contain scripts that executes when the trigger exits the run loop.

The trigger is controlled through an operator TriggerCmds that operates on it. The operator
provides commands to start, stop, pause and revoke the trigger. It also provides commands to
manipulate the trigger, such as the frequency of repeating, number of repeats and change the
scripts.

Trigger example

1 canvas triggerexample begin{
2 ! main
3 set countdown 10
4 set myTrigger [trigger interval 1000 periodic true start true itterations 10 code {
5 incr $countdown -1
6
7 flush
8 } onexit {
9 set countdown "explode"

10 flush
11 }]
12
13 ! paint
14 paintstring value {$countdown} x 50 y [/ $resheight 2]
15
16 stop}

Listing 19.10: Using triggers in the scripted client

Listing 19.10 shows an example of how to use a trigger. The trigger will draw a string on the
screen that counts down from 10, and displays "explode" when it reaches zero.

131

132

Part V

Testing

133

CHAPTER 20

Performance Testing

In this chapter we will test the current implementation of the scripted client to measure and
compare performance with the previous client implementation. The programs will be executed
through the Sony Ericsson profiler provided with their development kit , and we will reflect the
bottlenecks and differences on the two implementations.

20.1 Profiler Measurements

The tests will allow us to reflect local computations consumption of processing power. Both
tests will be applied on simulated versions of the SlagMark clients that do not connect to a
server. It is convenient to compare these two applications, because they respond with similar
actions to events, and they use the same resources (Images and sound files). Testing will be
done five times in all cases, and the average number of instruction cycles will be presented.
The tested scenarios follow below.

20.1.1 Starting the application

The first test will be a start of the application (the canvas, not the entire client), without
performing any actions. The goal of this test is to measure the processing consumption on
initiation of the canvases, and compare them.

The profiler shows that the old client used 17.1 million instruction cycles on the init with 90
percent of these used on resizing images. The scripted client used 4.5 million with 87 percent

135

(a) old client for SlagMark (b) scripted client for SlagMark

Figure 20.1: Screenshots from both clients

on initiation and parsing of the script.

From these results it might seem that the scripted client is more efficient for initiation than
the previous client, however, as stated, 90 percent of these cycles is used on resizing pictures,
which is handled differently by the script.

As we can se from this test, there are resources to save on reducing the script initiation process
on the client. If we had completely parsed scripts on the server, and sent them to the client, all
the client would have to do was to fill in the data structures.

20.1.2 Painting the screen

The next step was to measure the number of instruction cycles used for the client to refresh
the screen with the repaint method. The profiler gave us 65.5 thousand instruction cycles with
the old client and 218.1 thousand with the new. The scripted client consumes more processing
because the paint method on the scripted client include some script executions of pre-parsed
code segments and some detours compared to the old client. The detours are a consequence of
the scripted client often has to traverse multiple modules to fetch variables.

20.1.3 Performing shot

We will provide another test that involves pressing the same buttons on both the implemen-
tations. The first key will be the key that fires the weapon. This is convenient, because both
the clients executes code that achieve the same result, but on different places. The old client
triggers a method that contains all the logic, where the new client has to execute a pre-parsed
script through the interpreter.

136

The profiler gave us 1328 instruction cycles on the old client against 31.9 thousand on the new
scripted client.

The script interpreted on keypress is relatively heavy, meaning that the scripted client
executions involve a lot of interpreting.

20.1.4 Changing weapon

Next out we pushed the change weapon key on both devices. Changing weapons on the client
involves rotation of the pictures and the string indicating the selected weapon. This will allow
us to measure the animation code on the old client against the implementation for animations on
the scripted client. The old client came best out with the total of 1859 instruction cycles used
on animation logic against the scripted clients 3664 instruction cycles. The scripted version
contains some redundant code to make it more generic, but it has only a few calls to the
interpreter. In this case the only call is to calculate the string on the string rotator, and the
script to trigger the animation.

20.1.5 Sending key message

Pressing a key that does not contain a script should be relatively equal on both clients, however
the scripted client has to make a few detours to access code and variables and to check if
conditions are met. The profiler gave us 170 instruction cycles from the old client and 737
instruction cycles from the new. The codes for releasing buttons are almost the same. The
profiler gave us 49 instruction cycles from the old client against 631 from the new client.

20.1.6 Thread and triggers

In the last test we measured the cycles used by the mechanisms that reload the weapon on the
client. This is done using a thread on the old client and through a trigger that executes parts of
the script on the new client. The thread on the old client used 8606 instruction cycles in total
against the 240.8 thousand instruction cycles used by the trigger on the scripted client.

20.1.7 Comparison

In this section we will compare the profiler results from both clients to measure the performance
we lose by using the new implementation. In this comparison we will also present the time of
execution on a 200 MHz CPU which is about the lowest threshold you could expect from
modern mobile phones. Table 20.1 shows the profiler results measured in instruction cycles
needed to perform the operation and the factor New client / Old Client to indicate the difference.

137

The table also presents the time the execution of the instruction cycles using a 200 MHz CPU,
and the difference the difference in time, new client - old client.

Old client New client Difference
Test Instruction Execution Instruction Execution New/Old Exec.

Cycles Time Cycles Time Time
Initiation 18660683 0.0933 5801677 0.0221 0.31 0.0712
Painting 65503 3.275∗10−4 218119 1.09∗10−3 3.33 7.625∗10−4

Fire weapon 1328 6.64∗10−6 32926 1.6463∗10−4 24.79 1.578∗10−4

Change weapon 1859 9.295∗10−6 3664 1.832∗10−5 1.97 9.025∗10−6

Send key 170 8.5∗10−7 737 3.685∗10−6 4.34 3.44∗10−6

Release key 49 2.45∗10−7 631 3.155∗10−6 12.88 2.91∗10−6

Execute Thread 8606 4.303∗10−5 240777 1.2∗10−3 27.98 1.157∗10−3

Table 20.1: Profiler results

As we can see in Table 20.1 the scripted implementation produces a significant overhead,
especially with respect the scenarios that involves execution of larger scripts. The results
presented in this chapter are done on a client that is optimized considerably since the test
session at Kosmorama.

138

CHAPTER 21

Testing of requirements and quality attributes

This chapter will reflect to what extent the scripted client implementation covers the functional
requirements and the quality attributes set in the architecture.

21.1 Functional Requirements

This section will reflect testing on the functional requirements.

FR1: The implementation must support graphical components
Executor Sverre Morka
Date 18.05.2007
Time used 2 hours
Evaluation Success: The basic primitives supported by Java Graphics is supported

FR2: The implementation must support dynamic changes in graphical components
Executor Sverre Morka
Date 18.05.2007
Time used 2 hours
Evaluation Success: By defining parts of the argument as dynamic, they may be

changed during runtime

139

FR3: The implementation must support sound feedback
Executor Sverre Morka
Date 18.05.2007
Time used 2 hours
Evaluation Success: Sounds may be instantiated and played on demand by the

script

FR4: The implementation must support logic for user input
Executor Sverre Morka
Date 18.05.2007
Time used 2 hours
Evaluation Success: The script supports logic for user input by pressing, holding

and releasing keys.

FR5: The implementation must have support for the most common animations
Executor Sverre Morka
Date 18.05.2007
Time used 2 hours
Evaluation Success: The script supports instantiation and manipulation of the

animations found in the profile section, although there are more to be
added to a complete framework.

FR6: The implementation must support multiple canvases
Executor Sverre Morka
Date 18.05.2007
Time used 2 hours
Evaluation Success: Script is defined as multiple canvases that constitute the client

application for a certain game

FR 7: The implementation must support interface
for communication from and to the server
Executor Sverre Morka
Date 18.05.2007
Time used 2 hours
Evaluation Success: Communication to the server is done by using the send

command. Tags are written to respond to data from the server

140

FR 8: The implementation must support interface for
independent logic such as threads
Executor Sverre Morka
Date 18.05.2007
Time used 2 hours
Evaluation Success: The triggers provided in the framework for scripting clients

runs independent logic. The triggers are controlled from the script.

21.2 Reflection on quality requirements

In this section we will reflect to what extent the quality requirements have been met.

21.2.1 Availability

This section reflects the test results of the availability requirements.

A1 - Packet loss
Executor Sverre Morka
Date 20.05.2007
Stimuli The server sends a status message to the client
Expected
response

The Server synchronizes with the server once a minute

Observed
response

The client is synchronized by update messages sent from the server,
once a minute if the client has not received update within the last minute

Evaluation Success: During several hours of testing, there was no problem with the
client getting out of sync.

141

21.2.2 Modifiability

This section reflects the test results of the modifiability requirements.

M1 - Extend the interpreter with additional commands
Executor: Sverre Morka
Date 03.03.2007
Stimuli Extend the command vocabulary of the interpreter
Expected
response

The framework developer provides the additional Cmds- and corre-
sponding classes to the client Jar file, and makes the interpreter load
the new modules without modifying other parts of the client.

Observed
response

If the new commands do not interfere with the functionality from the
underlying canvas, only manipulation of Cmds- and additional classes
are needed.

Evaluation Success: Adding new commands through cmd classes will make them
be loaded and ready to be used by the interpreter.

M2 - Change dynamic game related data
Executor: Sverre Morka
Date 20.05.2007
Stimuli The user’s actions make changes in the local variables
Expected
Response

The controller canvas runs the script associated with the action

Observed
response

The controller canvas runs the script associated with the action, and may
send data and/or manipulate local data controlled by the interpreter.

Evaluation Success: Game logic is provided by smaller script fragments that are
executed on actions such as user input, triggers or data exchange.

M3 - Extend the framework with more states
Executor Sverre Morka
Date 03.03.2007
Stimulus The framework developer wants to extend the domain of the framework

to fit other concepts.
Expected
response

Manipulation of the backbone state machine should be possible without
side effects

Observed
Response

As expected

Evaluation Success: During the development of the scripted client we made some
changes to the states. Changes did not affect the rest of the client.

142

M4 - Adding new games to the client
Executor: Sverre Morka
Date 18.05.2007
Stimulus The maintainer wants to add more games on an implementation of the

concept.
Expected
response

The Maintainer adds the game to the server together with the corre-
sponding script and client resources, without interfering with any code
or modules

Observed
response

The script is loaded dynamically, but additional resources has to be
stored on the phone in advance

Evaluation: Partly success: The ability to dynamically load resources on the client is
available from ServiceFrame, but is not installed on MOOSES yet. This
requires some manipulation of the server as well, it will be installed at
a later stage. However, addition of new games does not interfere with
the source code

21.2.3 Performance

This section reflects the test results of the performance requirements.

P1 - Response time from player actions
Executor Sverre Morka
Date 20.05.2007
Stimulus The user gives input to the game through his/her controller (mobile)
Expected
response

The action chosen by the user should play out on the screen(s) in less
than 0.5 seconds.

Observed
response

The action chosen by the user plays out on the screen(s) in less than 0.5
seconds

Evaluation Success: The scripts executed on user input may manipulate dynamic
data from the paintcommponents and call a repaint. Phones with limited
processing power may suffer latency in the display update.

143

P2 - Fair premises
Executor Sverre Morka
Date 20.05.2007
Stimulus The client runs on a resource constrained device
Expected
response

The gameplay experience should not be affected by the limitations of
the client

Observed
Response

The resource limited devices tested on the former client suffered some
latency, and minor bugs

Evaluation Fail: This requirement was tested on the Kosmorama presentation with
a more resource consuming version of the scripted client. Tests with the
optimized version however has proved to run on the clients tested on
both implementations without noticeable latency.

21.2.4 Security

This section reflects the test results of the security requirements.

S1 - A player tries to cheat
Exectutor: Sverre Morka
Date: 18.05.2007
Stimulus The user tries to alter the script that represents the game controller
Expected
response

The client downloads a new script whenever a game is started, or a user
logs on.

Observed
response

At this point, the client only receives the script if it is not already stored
on the mobile in advance

Evaluation Fail: The server will not send a script to the client if a script with the
same name is already present in the RMS.

21.2.5 Testability

This section reflects the test results of the testability requirements.

T1 - status of running modules
Executor: . . .
Date: . . .
Stimulus The system maintainer wants to check the status on the running system.
Expected
response

The framework must supply a GUI based tool for debugging of the
system. This GUI must also profile attributes related to the scripted
client, and the game running on the game server

Observed
Response

A development tool for development and debugging has not been made
yet.

Evaluation Fail: Not implemented

144

T2 - Test a new game-client script
Executor: . . .
Date: . . .
Stimulus The game developers want to test the controller they have scripted for

their game.
Expected
Response

The Framework must include tools for writing and testing scripted
controllers. Such a tool should also be able to profile the program and
display the measurements in wanted format.

Observed
Response

. . .

Evaluation Fail: No editor has been made yet

T3 - Game developers wants to test their client
Executor: . . .
Date: . . .
Stimulus The game developers test their client without having to run the game
Expected
response

The framework must simulate server connection, and provide an
interface for simulations.

Observed
response

Simulation of the server is hard coded during test time, no interface for
this in an editor.

Response
Measure

Fail: No development kit has been made for the development yet

21.2.6 Usability

This section reflects the test results of the usability requirements.

U1 - The user wants to exit the application
Executor: Sverre Morka
Date: 18.05.2007
Stimulus The user wants to exit the application
Expected
response

The procedure for quitting the application is the same in every part of
the application, independent of the scripts

Observed
response

The Exit procedure is easy accessible from all the application states, but
is customized by the script author

Evaluation Partly success: The player may exit in all states of the application,
although it might not be the same procedure from all game clients. Also,
this requires the client developer to write exit support.

145

U2 - The user wants to log in to the system
Executor: Sverre Morka
Date: 20.05.2007
Stimulus The user wants to log in to participate in the games
Expected
response

As long as the mobile satisfy the hardware requirements and the server
is not full, this should be accomplished every time a player tries to log
on

Observed
response

The client sometimes hang on login screen, sometimes it takes a very
long time, sometimes the phone is not able to initiate the script

Evaluation Fail: The client is logged on to the system in 4 of 5 tries, but there are
still bugs that have to be dealt with.

146

CHAPTER 22

Test-session at Kosmorama with real users

Our project was participating in the Kosmorama film festival [1] and we decided to make a
scripted version of the client ready to use it for test sessions at this festival. At this point we
had two complete test-games that needed a client. Morten Versvik had made a new game called
BandHero as a compliment to the popular game Guitar hero. This game requires minimal logic
executed on the client, and so the client was written on five lines of code. A presentation of the
BandHero game can be found in Appendix A.

In addition to the client for Bandhero, we had to make the client for the game we used in the
previous test sessions. At this point we had already made solutions in our version of Hecl
to support for the elements required by this game. Most of the code was also provided since
we had used this as a benchmark to test the GUI during development. We wrote the code for
input and communication and ended up with a script with approximately 200 lines (the script
is provided in Appendix A).

The script worked fine through the simulator, but suffered a few bugs when distributed to the
phones. The phones we used to test the scripted implementation were Sony Ericssons K750,
which had proved to run our first implementation without problems related to latency. We also
tested the script with the newer K- model from Sony Ericsson, namely K800i, which did not
suffer from the latency problems. This meant that we had to optimize the script solution further.
In this context it is worth to mention that we have tested the optimized version used in Chapter
20.1 on the K750 phone, and it gave no visual differences compared to the K800i.

147

22.1 Reducing latency

Our solution for repeating keys was not synchronized, resulting in it to spin several threads
for each key pressed. We made a new version which synchronized the thread, so that there
would only be one thread running for each key to press. This worked as a temporarily solution
because the clients we had at this point only required one key to repeat. However, for further
development, we decided to cut down on the potential threads running to just one for all keys
that had to be repeated.

The K750 did not manage to repaint the canvas when the user provided input too frequent. The
framework has an overload of repaint calls in the first place, and with the script implementation,
a call to repaint is a bit more time consuming task. The first thing we did to cut down on this
was to parse the dynamic fields of a PaintComponent Object before it was being used, meaning
that it were only parsed one time in stead of each time it were used. We also removed some of
the calls to repaint in the GUI components provided by ServiceFrame. The problems with the
mobile not being able to refresh the screen was reduced, but not eliminated.

Although some of the overhead was eliminated, it still produced much more overhead than
the current scripted solution. The version that is provided with this report has been developed
further, pre-parsing all the scripts used by the application, not only the draw scripts.

22.2 Test session

We tested our concept at the Kosmorama festival on two occasions. The first demo was done
for the Norwegian television program Newton, followed by an open test session were everyone
could join in. This test session provided us with information we had speculated in for since we
started the MOOSES development. This was the first time we got to test with more than four
players, and we had thirteen phones connected to the system at the max. Testing at Kosmorama
also gave us the opportunity to test the client on more phones than we had done earlier. The
phones we used at Kosmorama were all Sony Ericssons phones, the models were W850i,
K610i, K800i, K750i and W300i. Technical information on these phones can be found at
the Sony Ericssons product guide [17].

The first three phones worked fine with the scripted solution, but the K750 and the W300i
encountered some latency both for the drawing and the communication. These phones had
problems running more threads resulting in a lot of lag, and W300i had the smallest display of
all the phones used, 128x160 pixels, which gave a disadvantage because some of the elements
did not fit the screen (Text Strings went outside the display).

As expected we encountered some bugs during the tests. Most of these bugs were related to the
server and the game, but some were related to the scripted client.

â Sometimes the KeyRepeater hung
On some occasions the worm continued to fire although the button had been released.

148

This was probably due to the script being interrupted and did not get enough time to
execute on the resource constrained phones.

â Sometimes the player is able to shoot even though he is dead
This one is odd, because when a player dies, the client will switch to another canvas.
Therefore the communication for the main game canvas should not be enabled. This
error is limited to about a second after the death incurred. This problem is probably
due to communication latency, because the player is dead in the game before the client
gets notified. This error might be prevented by modifications to the game rather than the
client.

â Sometimes the phone is not able to initiate the script
This error occurred a few times. It is likely but not certain that the reason is that the
phones were not able to initiate the script. This error occurred after the voting session,
the vote animation stopped, indicating that the client had gotten the message to start the
game. At this point, the client freezed. However, after a restart of the client application,
the mobiles were able to initiate the script. It is also possible that the animation used
by the voting canvas use too much resources on the constrained devices, allowing less
memory heap to be used to initiate the scripts.

â One time the client hung
The client hung, and the mobile did not respond to anything. This resulted in having to
take out the battery for restart.

â Movements hangs up, no communication
Sometimes the worm on the game did not respond to the keys being pressed on the client.
However, the actions were remembered later, and then executed in the game, resulting in
a latency ranging from one to five seconds. Communication and processing limitations
is assumed to be the main reason to this problem.

The problems mentioned above mainly occurred on the K750 and the W300, but latency were
also a problem on the more powerful phones. The profiler results presented in Section 20.1.7 is
based on a client that is about four times more efficient than the client used in the test session
at Kosmorama, and it is therefore likely that the resource constrained phones will have less
trouble running the client.

As we were expecting, the largest issue showed to be latency from the communication. This
was the first time we tested this amount of clients at the same time, and the delay might be
explained as a result of interference and much processing by the Bluetooth router and the server.
The sizes of the messages used by the scripted client are larger than they were the last time we
tested the concept at Nova, and we can reduce the latency by reducing the size needed by the
data carriers. An optimized version of the client has been made with the keypress message
small enough to fit one Bluetooth package, but we have not been able to test it with more than
two clients. The AFP message that contains additional data will also be replaced by a new
optimized message based on Java Vectors in stead of hashtables.

149

22.2.1 Images from test session at Kosmorama 2007

(a) Morten explains the MOOSES concept (b) In-game screenshot

(c) Happy testers (d) In-game screenshot

(e) Audience (f) In-game screenshot

150

Part VI

Discussion and Conclusion

151

CHAPTER 23

Discussion

In this chapter we will try to discuss the things we have learned during this master thesis, and
tests of the prototype to be able to answer the research questions.

23.1 Flexibility

One of the goals of this project was to find out whether or not we could achieve a more dynamic
client for MOOSES using a scripting platform for game clients. During this project we have
been able to build and test a prototype as proof of concept for use of scripts to define the game
clients.

We have also tested sending the script from the server when starting games. However, at the
present point there is no support on the server to provide the rest of the resources, meaning
that these have to be in the phones RMS in advance. ServiceFrame has support for sending
resources, and we will have to implement this feature to the scripted client to make the
MOOSES client completely independent of pre-allocated resources. Using ServiceFrame for
resource management will also allow us to perform heavy operations on the resources, like
resizing a picture, on the server. Implementation of resource management from the server will
not change the interface from the script because the state machine will request these resources
automatically if they are not located in the mobiles RMS. This will result in some latency the
first time resources are loaded.

With the implementation of dynamic resource management on the server we will be able to
provide for MOOSES to be dynamic. This means that a MOOSES implementation will support
adding and removing just by adding the game files, the client script and the client resources.

153

23.2 Efficiency

As we can se in Section 20.1.7 the scripted client consume up to 28 times as much CPU
resources as the former client by executing similar tasks. More advanced clients may increase
this factor even more.

23.2.1 Communication

The prototype also lack efficiency on the communication especially with respect to the
AFPropertyMsg that makes use of a hash table. The hashes of the hash table represents data
load that can be removed, providing for the messages to be smaller. We could replace the
hash table with a Vector to get rid of the extra baggage of the hash table. This will impact the
scripting module, making sequence of data in the array important in stead of calling data by
their names (hashes).

In future versions of MOOSES we might be able to use wireless fidelity (WiFi) to communicate
with server, as phones with WiFi support becomes available. WiFi will provide faster
transmission rate than Bluetooth 2.0.

23.2.2 Parsing overhead

Hecl is designed to both parse and interpret the script on the mobile device. This way scripts
may be edited on the mobile device before they are executed. Our scripted client solution
will not need to parse the scripts because it is not intended to manipulate the scripts runtime.
Therefore our client would only need to have an interpreter, and be provided with the parse tree
from the server. This way, all the latency regarding parsing would be illuminated.

This is basically what is done with the prototype because all the script fragments are parsed in
the init. However, the interpreter always checks if the script is parsed before it executes it. And
in some cases, this check is a bit time and process consuming.

23.2.3 Detours

Another feature that is responsible for causing overhead is the detours of references. Detours
are a consequence of making the modules generic and increase of modularity. In the scripted
client implementation the interpreter often has to traverse multiple modules to get to a variable.
For instance, it might have to find out where the variable is located, and fetch it from a hash
table. Then it has to check whether the variable should be substituted or not. This represents
more computing than just fetching a variable from the memory.

154

23.2.4 Size

The new client comprises more classes than the former client because the scripting framework
comes in addition to the other classes. This mainly affects time to download the client from the
server. Storage capacity on modern phones is limited to between 30 and 100 Megabytes, and
even more when phones have memory cards inserted. Therefore the increase in size is not a
major concern for hardware requirements.

23.2.5 Optimizing

There are many points regarding the prototype that shows room for improvements. If we
remove the entire parse functionality from the client and leaves this part to development,
yielding only the parse three for the client, the script overhead would be limited to just detours.
We could also cut down the size of the framework by removing redundant functionality.

23.2.6 Hardware requirements

During our test session at Nova we tested several phones. Some of the resource constrained
devices experienced problems that resulted in latency, which again affected the gameplay
experience. We had tested some of these phones with the former client implementation without
noticeable latency. Unfortunately, we have not been able to test all of the phones used on the
Kosmorama test session on the optimized version of the scripted client.

The Sony Ericssons models that we had available seemed to work fine with the optimized
version, and we did not experience any notable latency. Nokia phones on the other hand still
have an issue running the MOOSES client. We have tested the framework with the Nokia N73,
which is one of the newer Nokia phones on the marked. Nokia N73 had some performance
problems, sometimes causing the phone to freeze for shorter periods of time. Nokia N73 has
a smaller memory heap than the Sony Ericssons mobiles, and this is why we experience these
problems.

Using scripts extend the need of memory heap, because it involves more data to compute.
During our depth study we also experienced problems getting Nokia phones to run the client.
It is likely that memory heap will be extended on future cell phones developed by Nokia, but
reduction of heap consumption is nonetheless a prioritized issue.

When looking on the results from performance testing it is obvious that the hardware
requirements has been increased, and phones with faster CPU’s will gain advantage of being
able to compute code faster. The hardware requirements for MOOSES clients were high also
with the first implementation. If common phones are able to run the MOOSES client without
notable latency at this point, future phones will also be able to do so.

155

23.3 MOOSES Limitations

In this section we will discuss to which extent the MOOSES platform suffer limitations as
a consequence of using a scripting middleware on the mobile client. We have seen that the
scripting solution increase the hardware requirements. However, we have been able to test the
scripted solution with relatively old Sony Ericssons phones without notable delays. The latency
caused by the processing overhead is therefore not a major concern, although the overhead
might become noticeable when more advanced scripted clients are developed.

Using mobile phones as clients is a good idea that makes it easier to support multiple players
without having to reach to expensive alternatives to provide controllers, but it comes with a
drawback. When the mobiles run out of power, they are not able to play anymore. The increase
of processing also increases the power consumption, which causes a problem for the MOOSES
concept.

23.4 Game development

In this section we will discuss to what extent the scripting platform will make it easier or harder
to make game clients. Using a scripting platform will increase the abstraction level, providing
for the client to be written on less code. As the abstraction level increases it is also easier to
make tools for code generation.

On the other hand, the syntax of our scripted solution takes some time to get into. But
the learning curve of our scripting language is lower than the learning curve of the system
language Java. Our scripting platform represents a language that is more domain specific, with
commands limited to develop game clients for MOOSES. For a game client developer, it will
probably be easier to relate to a domain specific language than a language that contains much
redundant functionality.

At this point, the scripting platform will make it harder to make clients because of the lack of
error correction. Development of games on the scripting platform may be done through any text
editor, and the author is responsible for finding the errors himself. Fortunately Hecl supports
exception handling that may ease the debugging to some extent.

23.4.1 Game development limitations

The scripting platform puts some constraints on the game client development for MOOSES.
Developers have to use the Script language to develop games which put limitations on freedom
of creativity. This is because the developers are relatively tied to use the components and
functionality provided by the scripting platform, which means that the developers of the
scripting platform must foresee the demanded components to be able to provide them. If the
game client developer wants to provide new components to renew gameplay he might be able
to code these from scratch using fine grained script commands, but this is likely to affect the

156

performance of the client. In Appendix A we can view the source code of SlagMark, which
shows that the progress bar in this game was coded by using primitives rather than the one
provided as precompiled components by the framework.

Another feature that will be reduced or illuminated by a scripting approach is the ability to move
parts of the game to the client. In our depth study we looked on opportunities that provided
most of the game on the client and parts of it on the projected canvas. As mentioned in Section
12.5 a problem with racing games is that the vehicle has to be in the display at every time. If we
want to build a racer that scrolls over the track, just focusing on the leading vehicles, the other
vehicles won’t be able to navigate at all. If we could make the client able to display the car
and track on the mobile phones display, the players that where not visible on the game canvas
would be able to use the display on their mobile phones to navigate.

In Section 12.8.2 we discussed using MIDP2.0’s game API. This API increase the abstraction
level for game development, making games require less code. This API comprises functionality
for Animations, collision detection, sprites, layers and management of layers. We might be able
to provide advanced gameplay on the client by interfacing this API from the scripting platform.

Modern mobile phones come with their own Graphical Processing Unit (GPU) for handling
the graphical representation. In our depth study we also discussed the opportunity to take
advantage of the mobiles GPUs to make games clients in 3D for the MOOSES platform. For
instance in use of advanced gameplays, we could make first person shooters on the clients and
use the projected canvas to give an overview and zoom down on gunfights etc. 3D games for
mobiles are getting increasingly advanced, and this is definitely a feature that we would like
to implement for the MOOSES concept. However, this feature will probably be too heavy to
develop through scripts.

157

158

CHAPTER 24

Conclusion

In Chapter 3 we stated two research questions. We wanted to research on alternative ways
to implement dynamic loading of code in Java to make a dynamic client for the MOOSES
platform. We also wanted to look on which elements such a solution had to provide to be
convenient for client development. The two main focuses on this master thesis have been in
which way the client for the MOOSES platform will be affected by a scripting platform with
respect to performance and game controller development.

Throughout this project we have looked into central concepts of a scripting solution for mobile
devices to work on top of the J2ME and ServiceFrame, and we have developed a prototype.

In this chapter we summarize the projects results by answering the research questions.

RQ-I: How will an alternative solution affect MOOSES?

â During this project we have developed a prototype that is based on an open
scripting platform for J2ME enabled devices. The prototype is based on
the open scripting platform Hecl which executes both the parsing and the
interpreting on the device. The prototype has been a good proof of concept
and we intend to base future clients on this prototype. For future scripted
clients, the parse process should be executed during development, yielding
only the parse tree to the client.

a) Will a scripting API for the client make the MOOSES able to
dynamically load new games?

â The client is able to load the scripts from the server when a
game is started. As soon as dynamic resource distribution is

159

implemented on the MOOSES server it will be able to load the
games dynamically without changes in the source code. This means
that games can be added without interfering with the source code
on the client or the server.

b) To what extent will the performance of MOOSES be affected by a
scripted client?

â The profiler results in Section 20.1.7 show that the scripted client
uses up to 28 times as much processing as the old client on some
tasks. For tasks that are time sensitive, this will increase the
hardware requirements for the mobile phones. The implementation
of scripted clients is also more memory consuming which is
also a factor that increases the hardware requirements. The
communication also suffers more latency with the current scripting
implementation compared to the old client implementation. The
scripting approach has to be generic, which causes a lot of
redundant computation. The Hecl architecture also contributes with
overhead, because it checks whether code is parsed or not.

c) Will the MOOSES platform be constrained by a scripted client?

â The larges issue that comes alive using a scripting platform is
the increase in power consumption used by the clients. Increased
hardware requirements and restrictions to client gameplay are also
relevant issues, but since we have been able to run the client without
noticeable latency with cell phones used on both the old and the
new client implementation, the hardware requirements is not a
major concern.

RQ-II: Which impacts will a scripting platform have on game development?

â During this master thesis we have developed three game controllers for
MOOSES games. When we replace the API for game controller development
it changes the way developers has to think to develop controllers for
MOOSES games.

a) Will a scripting platform make it easier to develop a game client?

â At this point, the scripting platform makes it harder to develop
games because of the lack of a development tool. However, the
scripting platform gives an abstraction level that eases the learning
curve and makes the language more tailored to the concept. The
abstraction level also makes it easier to build development tools
that can generate code and provide error correction and hints, and
simulate the application. A complete scripting platform, together
with a development tool to use it, will ease the development
process.

b) Will a scripting platform constrain the game clients with respect to game
play?

160

â Using scripts to develop game client will affect the developers’
freedom of creativity because they have to use predefined compo-
nents in order to maintain performance on the clients. The scripting
platform does not provide support for advanced gameplay, or sup-
port for 3D games, on the client.

c) Which elements would a scripting API need for game client develop-
ment?

â The elements required for MOOSES clients depends on how
advanced the client gameplay should be. The games developed at
this point, and nearest future, will have the client work more as
a control than part of the gameplay. In Chapter 11 we gave the
artefacts that a game client for MOOSES should include, and in
Chapter 19 we saw how these artefacts were implemented in the
scripted client. Section 12.8.1 presents the elements that should
be available for visual representation in a scripting platform for
game client development. We have also discussed the opportunities
to include control of more advanced gameplay components. To
summarize we can put the elements in a list.

– Reactions to user input
– Graphical representations of Images, primitives and animations
– Support for Threads/logic
– Communication from and to the server
– Reactions to data received
– Support for sound feedback
– Support for multiple screens/canvases and communication

between them
A scripting platform for game development has to include generic
components that support these fields, and opportunities to interface
them from the script.

To determine whether or not we are going make use of the client scripting platform we have to
measure the qualities we are loosing against the qualities we are gaining. The scripted client
solution makes the client less efficient, it increases the hardware requirements for the mobile
phones, it increases the power consumption on the client, it makes limitations on how advanced
the game clients can be, and it constrains the freedom of creativity for the developers.

Using the scripting implementation we are able to make a MOOSES implementation that is
totally independent of source code manipulation when adding and removing new games. The
scripting platform also represents a language that is more tailored to the concept and makes
game development easier. With the advantage of being familiar with the scripting language
we were able to develop the game client for SelfFish (presented in Appendix A) in about three
hours.

MOOSES has proved to be best suited with games that provide a simple gameplay, and
therefore the scripted client solution is sufficient for games developed to MOOSES.

161

Although we had some problems during the test session at Kosmorama, we have been able to
optimize the client to give a more satisfying level of latency.

The scripted client has proven to work on MOOSES as a replacement for the old statically
coded client. We will use this client in future versions of MOOSES, although there are still
work to be done on the client to make it a complete satisfactory. This work is presented in
Chapter 25.

162

CHAPTER 25

Further work

The client is an important part of the MOOSES framework, and it is crucial that it is
optimized, stable, and attractive for developers and yielding as good support as possible for
good gameplays. During this research we have researched elements that are needed by a
client and solutions to develop game clients for MOOSES. The prototype developed during
this project has proved to be a good compliment to the former Java development platform
in context of game development. There is much work left to be done to provide a complete
attractive and reliable development platform for the MOOSES games.

25.1 Small scale

These are elements that are relatively easy to implement for the framework without consuming
too much time and research.

â Dynamic loading of resources - At the end of this master thesis, the prototype
implementation is able to fetch the script from the server but it still rely on the resources
in form of pictures and sound files already being stored with the client. ServiceFrame has
support for dynamic loading of resources. Using this functionality is convenient because
image resizing, which is the most process consuming task done by the client, can be
performed at the server.

â Optimizing the communication - The current implementation uses a hashtable as carrier
for data exchanged between the server and the client. Even though the data carried may
be small, the hashkeys extend the size of the message, resulting in a great number of

163

packages being sent over Bluetooth. The future implementation will use a vector in
favour of the hashtable. The size of the keyMessage will also be reduced to fit one
Bluetooth package. Implementation of new communication protocols should only take a
few hours in addition to a few hours with testing.

â Animations and Graphical Elements - The scripted client prototype does not support
all the graphical elements found in Chapter 12 yet. These, in addition to potential others
that we have overseen, has to be implemented to the framework.

â Accommodation of the server - The server has to be manipulated to be able to prepare
the resources used by the client, and send them over. The current prototype could also
benefit from scripts being parsed on the server or during development. The server also
has to be issued funcionality to distribute the actor address of the player’s on the same
team, in order to provide communication between the players for cooperative games.

25.2 Large scale

These elements require some additional research and time for development.

â Client Optimizing - Although we have optimized the client several times during this
project, it is possible to optimize it even more. As we saw in Section 20.1.7 the scripted
implementation produces a pretty big overhead. There is a conflict of interest between
Hecl and our purpose. Hecl is not intended to replace Java, but to compliment it. Our
implementation is indented to replace Java. By leaving all the script parsing during
development, and storing all the information in parse trees that are executed when the
client is executed we can illuminate much of the overhead. It might be more convenient
to build a domain specific solution from scratch, rather than tailoring a general purpose
scripting platform like Hecl. Eluminating the parse process from the client will also
reduce the memory heap consumption on the mobile phones.

â Development Platform - Game development on the scripted platform is done through
text editors, with no support for highlighting of keywords or error feedback. To make
the development platform more attractive for game developers it would be convenient to
have an editor tool that provided these features together with support for script generation
and compilation of the scripts into permanent parse trees (Hecl Stanzas).

â Code Syntax - There are, at this point, two people that has developed game client using
scripts. The syntax of the scripts that constitute the game clients is based on the syntax
that the authors of the scripting platform found intuitive. It would be appropriate to make
some research and testing to find the learning curve of the language, and the points that
could be changed to make a more intuitive language.

â Implementation of MIDP 2.0 Game API - As mentioned in Section 12.8.2 we could
take advantage of an interface for using MIDP 2.0 Game API elements through the
script. This would require research on how to make games in this API, and how this

164

could be accessed and developed through a script. It would also require some changes
to the scripted game client implementation which is based on MIDP Canvas, and not
GameCanvas which this API builds on.

165

166

Part VII

Appendix

167

APPENDIX A

Scripted Game Clients

During this project we have made three scripted clients for MOOSES games. The first
scripted client was based on the game we developed to test our frame work during our depth
study. Morten Versvik developed two additional games during his master thesis, and we have
developed a client for these based on the scripting platform.

A.1 SlagMark

SlagMark is the first game we made for MOOSES. The game is based on the old game Liero,
and has inherited its gameplay. The game is set to a battlefield in 2D where each player is
in control of one worm. The players have an arsenal with five weapons they can use. These
weapons are pistol, machine gun, grenades, bazooka and a nuclear bomb. The goal of the game
is to be the worm with most kills (frags). The game is instant action, and run in a window of
five minutes.

When the five minutes have passed, the highscores is displayed on the game canvas.

A.1.1 Gameplay

The game starts with all the worms placed in random locations on the map. The worms have to
shoot their way through the dirt that constitutes the battlefield, in their chase for another player
to frag. When a player dies, he get the name of the worm that frag’ed him and have to wait ten
seconds to the next insertion.

169

The controls comprise a jetpack button that allows the worm to jump or fly, horizontal
movement, aiming up and down, changing weapon and fire weapon.

Ammunition is limited on the different weapons, and when the player has used his magazine of
ammunition he has to reload his weapon. The different weapons use different times to reload,
depending on how powerful they are. The Nuclear bomb will take about a minute to load.

A.1.2 Goal of the game

The game is based on total annihilation of opponents and landscape. The players score points
for frags, and loose points on suicides. The goal of the game is to achieve the highest score.

A.1.3 Client source code

1 canvas maincontrol begin{
2
3 ! main
4 set frags 0
5 set deaths 0
6 set score 0
7 set health 100
8 set ammo 100
9

10 set maxammo [list 13 30 4 8 1]
11 set reload [list false false false false true]
12 set ammostatus [list 13 30 4 8 0]
13 set repeatkeys [list true true false false false]
14 set repeatint [list 300 50 0 0 0]
15 set paintammo [list 100 100 100 100 0]
16
17 set weaponpointer 0
18 set max [lget $maxammo $weaponpointer]
19 set curr [lget $ammostatus $weaponpointer]
20
21 set reloadinterval [list 30 30 200 500 800]
22
23 keyrep 5 [lget $repeatkeys $weaponpointer] [lget $repeatint $weaponpointer]
24
25
26 set killername ""
27
28 sendpressrelease 2 4 6 8 * left right down up
29
30 set reloader [trigger interval 200 periodic true itterations 2 code {
31 incr $ammo 2
32 set curr [/ [* $max $ammo] 100]
33 flush
34
35 } onexit {
36 set ammo 100
37 set curr [lget $maxammo $weaponpointer]
38 lset $reload $weaponpointer false
39 }]
40
41 set sounds [hash {}]
42 hset $sounds 0 [sound /Sounds/m82.wav]
43 hset $sounds 1 [sound /Sounds/m16.wav]
44 hset $sounds 2 [sound /Sounds/Grenade.wav]
45 hset $sounds 3 [sound /Sounds/RocketAway.wav]

170

46 hset $sounds 4 [sound /Sounds/Gun.wav]
47
48 set background [image "/icons/Background.jpg" $reswidth $resheight]
49
50 set img1 [image "/icons/pistol.png" 40 40]
51 set img2 [image "/icons/MachineGun.png" 40 40]
52 set img3 [image "/icons/Grenade.png" 40 40]
53 set img4 [image "/icons/bazooka.png" 40 40]
54 set img5 [image "/icons/Nuke2.gif" 40 40]
55
56 set imgroter [imagerotator x [- $reswidth 50] y 10 width 40 height 40 direction vertical

anchor top|hcenter]
57 set strroter [stringrotator x [/ $reswidth 2] y 80 direction vertical]
58
59 speed $imgroter 6
60 speed $strroter 4
61
62 addpic $imgroter $img1
63 addpic $imgroter $img2
64 addpic $imgroter $img3
65 addpic $imgroter $img4
66 addpic $imgroter $img5
67
68 addstring $strroter "Gun"
69 addstring $strroter "Mp5"
70 addstring $strroter "Grenade"
71 addstring $strroter "Bazooka"
72 addstring $strroter "Nuke"
73
74 strrotfont $strroter size large style bold
75 strrotanchor $strroter top|hcenter
76
77 proc fireweapon {} {
78
79 if { [lget $reload $weaponpointer] } {
80 return
81 } else {
82 sendshoot
83 incr $curr -1
84 set ammo [percent $curr $max]
85 playsound [hget $sounds $weaponpointer]
86
87 if { [<= $curr 0] } {
88 lset $reload $weaponpointer true
89 triggeritterations $reloader 50
90 triggerinterval $reloader [lget $reloadinterval $weaponpointer]
91 starttrigger $reloader
92 }
93 }
94
95 flush
96 }
97
98 proc sendshoot {} {
99 send ShootMsg weapon "%i" $weaponpointer

100 }
101
102 proc incrpointer {} {
103 incr $weaponpointer
104 if { [>= $weaponpointer [llen $maxammo]] } { set weaponpointer 0 }
105 }
106
107 proc changeweapon {} {
108 stoptrigger $reloader true
109
110 lset $ammostatus $weaponpointer [+ $curr 0]
111 lset $paintammo $weaponpointer [+ $ammo 0]
112 incrpointer
113 keyrep 5 [lget $repeatkeys $weaponpointer] [lget $repeatint $weaponpointer]
114 set curr [lget $ammostatus $weaponpointer]

171

115 set max [lget $maxammo $weaponpointer]
116 set ammo [lget $paintammo $weaponpointer]
117
118 if { [lget $reload $weaponpointer] } {
119 triggerinterval $reloader [lget $reloadinterval $weaponpointer]
120 triggeritterations $reloader [/ [- 100 $ammo] 2]
121 starttrigger $reloader
122 }
123
124 flush
125 }
126
127
128 ! 5
129 presscript:
130 fireweapon
131
132
133 ! fire
134 sameas: 5
135
136
137 ! #
138 presscript:
139 if { [or [animates $imgroter] [animates $strroter]] } { return }
140 next $strroter
141 next $imgroter
142 changeweapon
143
144
145 ! paint
146 paintpicture src $background x 0 y 0 width $reswidth height $resheight flags "left|top"
147 color r 255 g 255 b 255
148 set height [/ $resheight 3]
149 paintrect x 0 y 0 width [- $reswidth 1] height [/ $resheight 3] depth 3
150 animation $imgroter
151 font size $fontsmall
152 paintstring value {"Frags: $frags"} x 4 y 5 flags "left|top"
153 paintstring value {"Deaths: $deaths"} x 4 y 25 flags "left|top"
154 paintstring value {"Score: $score"} x 4 y 45 flags "left|top"
155 animation $strroter
156 set height [- [/ [* $resheight 2] 3] 2]
157 paintrect x 50 y $height width 100 height 20 fill true color 0x990000
158 paintrect x 50 y $height width $health height 20 fill true color 0x336600
159 paintrect x 50 y [+ $height 25] width 100 height 20 fill true color 0xff0000
160 paintrect x 50 y [+ $height 25] width {$ammo} height 20 fill true color 0x424242
161 color r 255 g 153 b 51
162 paintrect x 49 y [- $height 1] width 101 height 21
163 paintrect x 49 y [+ $height 24] width 101 height 21
164 font size $fontsmall
165 color r 255 g 255 b 255
166 paintstring value "health:" x 5 y $height flags top|left
167 paintstring value "ammo:" x 5 y [+ $height 25] flags top|left
168 paintstring value {"$health%"} x 100 y $height flags top|hcenter
169 paintstring value {"$curr"} x 100 y [+ $height 25] flags top|hcenter
170
171
172 ! KilledMsg
173 set killername [hget $msgHash "player"]
174 set score [hget $msgHash score]
175 set deaths [+ $deaths 1]
176 cs death
177
178 ! UpdateMsg
179 set health [hget $msgHash health]
180 set frags [hget $msgHash frags]
181 set score [hget $msgHash score]
182
183 ! shownotify
184 set weaponpointer 0

172

185 set reload [list false false false false true]
186 set ammostatus [list 13 30 4 8 0]
187 set paintammo [list 100 100 100 100 0]
188 set curr [lget $ammostatus $weaponpointer]
189 set max [lget $maxammo $weaponpointer]
190 set ammo 100
191 set health 100
192 resetanim $strroter
193 resetanim $imgroter
194
195 ! hidenotify
196 stoptrigger $reloader true
197
198 ! 1
199 presscript: cs death
200
201
202 stop}
203
204 canvas death begin{
205
206 ! main
207 set bg [image "/icons/DeathScreen.jpg" $reswidth $resheight]
208 set countdown 10
209
210 ! paint
211 paintpicture src $bg x 0 y 0 flags "left|top"
212 font size $fontlarge
213 color r 255 g 204 b 204
214 paintstring value {"by $killername"} x 30 y 40 flags top|left
215 paintstring value {"inserting in $countdown"} x [/ $reswidth 2] y [/ [* $resheight 3] 4] size

medium color 0xffffff flags top|hcenter
216
217 ! shownotify
218 set countdown 10
219 set counter [trigger interval 1000 periodic true start true itterations 10 code {
220 incr $countdown -1
221
222 flush
223 } onexit {
224 cs maincontrol
225 }]
226
227 ! hidenotify
228 stoptrigger $counter
229
230 stop}

Listing A.1: SlagMark source code

173

A.1.4 Screenshots

Screenshots from the SlagMark game and client:

(g) Ingame screenshot from Slagmark

(h) SlagMark game client (i) SlagMark death canvas

Figure A.1: Screenshots from SlagMark

174

A.2 BandHero

BandHero was developed by Morten Versvik just before the Kosmorama film festival. It is
intended as a compliment to the popular game Guitar Hero. The game supports four to eight
players depending on which song is played. The game builds the key pattern that the player
must press based on the information in a midi file. As the timeline goes, the game will show
rectangles that indicates which buttons the player should press.

A.2.1 Gameplay

The gameplay is based on pushing the right buttons at the right time. The game screen is
divided into four or eight frames that display the button combination that the player must press
in order to get score. As the time goes the indicators will move to the left. If the player presses
the right keys when the indicators pass the leftmost edge, he will gain scores.

A.2.2 Goal of the game

Goal of the game is to achieve the highest score when the song is finished playing.

A.2.3 Client source code

1 canvas maincontrol begin{
2
3 ! main
4 sendpressrelease 1 2 3 4
5 set background [image "/icons/background.jpg" $reswidth $resheight]
6
7 ! setbackground
8 set background [image [hget $msgHash imgName] $reswidth $resheight]
9 flush

10
11 ! paint
12 paintpicture src $background x 0 y 0 flags left|top
13
14 stop}

Listing A.2: SlagMark source code

175

A.2.4 Screenshots

Screenshots from the BandHero game and client:

(a) Ingame screenshot from BandHero

(b) BandHero game client (c) BandHero game client

Figure A.2: Screenshots from BandHero

176

A.3 SelfFish

SelfFish is a top-of-the-hill game that focus on the eat or be eaten nature. The game takes
place in an aquarium where every player controls one fish. The fishes gain progress by eating
planktons that are dropped into the aquarium. When a player reaches a certain threshold of
planktons he will grow bigger, and may eat smaller fishes.

A.3.1 Gameplay

The player is in control of one fish that can move in all directions. When a player moves to a
plankton, the fish eats is and the progress bar on the client increases. When the progress bar is
full, the player will increase his level and grow bigger. The player may eat fishes that are lower
level. The player also has a boost function at his disposal that he might use to flee from bigger
fishes or to reach plankton before others. When the player is eaten he is out of the game until
the game restarts.

A.3.2 Goal of the game

The goal of the game is to be the last fish alive, to be top of the hill.

A.3.3 Client source code

1 canvas maincontrol begin{
2
3 ! main
4 set bg [image "/fiskespill/mainBack.jpg" $reswidth $resheight]
5 set prog 0
6 set frags 0
7 set boost true
8 set level 2
9 set cap "ready"

10 sendpressrelease 1 2 3 4 6 7 8 9
11 set progress [progressbar x 50 y [/ $resheight 2] width 100 height 25 startpos 0 caption {"

$prog%"}]
12 progcolor $progress forecolor 0x0000ff backcolor 0xff0000 middlecolor 0x00ff00 framecolor

0x000000
13
14 set booster [progressbar x 50 y [+ [/ $resheight 2] 35] width 100 height 25 onfull {
15 set boost true
16 set cap "ready"
17 } onempty {
18 set boost false
19 set cap "loading"
20 } caption $cap]
21 progcolor $booster forecolor 0x0000ff backcolor 0xff0000 middlecolor 0x00ff00 framecolor

0x000000
22
23 ! paint
24 paintpicture src $bg x 0 y 0 flags left|top
25 paintstring value {"Frags: $frags } x [/ $reswidth 2] y [/ $resheight 3] flags top|hcenter

color 0xff9963 size large style bold

177

26 paintstring value {"Level: $level } x [/ $reswidth 2] y [/ $resheight 4] flags top|hcenter
color 0xff9963 size large style bold

27 paintstring value "energy" x 5 y [+ [/ $resheight 2] 3] color 0xffffff flags top|left
28 paintstring value "booster" x 5 y [+ [/ $resheight 2] 38] color 0xffffff flags top|left
29 animation $progress
30 animation $booster
31
32
33 ! powerup
34 set frags [hget $msgHash score]
35 set nano [hget $msgHash energy]
36 set interv [- $nano $prog]
37 set prog $nano
38 incrp $progress $interv
39
40
41 ! death
42 cs death
43
44 ! levelup
45 set prog 0
46 incr $level
47 decrpi $progress 100
48
49 ! 5
50 presscript:
51 if { $boost } {
52 decrpi $booster 100
53 incrp $booster 100
54 send boost
55 }
56 stop}
57
58 canvas death begin{
59
60 ! main
61 set bck [image "/fiskespill/deathBack.jpg" $reswidth $resheight]
62 set clipx [/ $reswidth 2]
63 set clipy [+ [/ $resheight 3] 5]
64 set clipwidth 0
65 set clipheight 0
66
67 ! shownotify
68 trigger interval 100 periodic true start true itterations [+ [/ $reswidth 2] 4] code {
69 incr $clipx -1
70 incr $clipy -1
71 incr $clipwidth 2
72 incr $clipheight 2
73 flush
74 }
75
76
77 ! paint
78 paintpicture src $bck x 0 y 0 flags left|top
79 setclip x $clipx y $clipy width $clipwidth height $clipheight
80 paintstring value "OhohoPWNED" x [/ $reswidth 2] y [/ $resheight 3] flags top|hcenter color

0xff0000 size large style bold
81 paintstring value "you acheived" x [/ $reswidth 2] y [/ $resheight 2] flags top|hcenter color

0xffffff size medium
82 paintstring value "$frags frags" x [/ $reswidth 2] y [+ [/ $resheight 2] 14] flags top|hcenter

color 0xffffff size medium
83 setclip
84
85
86 stop}

Listing A.3: SlagMark source code

178

A.3.4 Screenshots

Screenshots from the SelfFish game and client:

(a) Ingame screenshot from SelfFish

(b) SelfFish game client (c) SelfFish Death canvas

Figure A.3: Screenshots from SelfFish

179

180

APPENDIX B

Scripted client commands documentation

In this chapter we will give the grammars of the scripting platform prototype that we have
developed through this project. Some of the commands will be discussed in more detail.

B.1 Grammars for the MOOSES client scripting platform

In this section we present grammars for the MOOSES client scripting platform .
<LoopCode> ::= <Code> | ’break’ | ’continue’
<Code> ::= <Statement> {<Statement>}
<Statement> ::= ’if’ ’{’ <Comp> ’}’ ’then’ ’{’ <Statement> ’}’ [’else’ ’{’ <Statement> ’}’

]
| ’for’ ’{’ <Statement> ’}’ ’{’ <Comp> ’}’ ’{’ <Statement> ’}’
| ’foreach’ <Id> <List> ’{’ <LoopCode> ’}’
| ’while’ ’{’ <Comp> ’}’ ’{’ <LoopCode> ’}’
| ’thread’ ’{’ <Code> ’}’
| ’unset’ <Id>
| ’set’ <Id> [<Value>]
| ’puts’ <String>
| ’rename’ <Id> <Id>
| ’proc’ <Id> ’{’ <Code> ’}’
| <Id>
|’sleep’ <Integer>
| ’catch’ <Statement> <Id>
| return
| incr ’$’<Id> [<Integer>]

<Value> ::= <Expression>|<Object>
<Object> ::= <Image>|<Stringrotator>|<Imagerotator>|<Progressbar>|<Trigger>|<Sound>
<Image> ::= ’image’ <String> <Number> <Number>
<Comp> ::= <Expression> |<Cop> <Expression> <Expression>
<Expression> ::= <Term> | <operator> <Term> <Term> |
’copy’ ’$’<Id> | ’eval’ <statement> | ’return’ [<Expression>]

<Term> ::= ’$’<id>|<integer>|<Expression>

181

<Cop> ::= ’==’|’<=’|’>=’|’!=’|’<’|’>’|’and’|’or’
<Op> ::= ’+’|’-’|’*’|’/’|’%’
<Float> ::= <Number>’.’<Number> | ’long’ <String>
<Number> ::= <Integer> {<Integer>} | ’rand’ | ’int’ <String> | ’abs’ <Number>
<String> ::= ’"’<char>{<char> | ’$’<Id>}’"’
<Boolean> ::= true|false|0|1|’not’ <Comp>
<Integer> ::= (Integer)
<Char> ::= (character)
<Id> ::= (atom)

Listing B.1: Grammars for the MOOSES Client Scripting Platform

B.2 Canvas declaration

The game application comprises a collection of canvases. The canvases are instantiated using
the canvas command, followed by an id for the given canvas, a begin tag and a stop tag at the
end of the canvas.
canvas <Id> begin{ . . . stop}

To provide code to the canvas, this is done using tags between the begin and stop tag.
The tags used are:

! main - The main tag represents the init for the canvas, declaring all the variables used by
the script so that the objects are stored at the Java side of the application. Objects may
also be declared runtime, but it is recommended to make use of the main tag allowing the
processing to take place during init.

! paint - The paint tag comprise the code that is responsible for the visual representation of the
canvas. The code comprises declaration of paintcomponents and control of the controller
window’s Graphics object.

! <Id> - The tags that consist of an Id are used for response to server messages. The Id will be
the same as the Id on the message, and the data load carried by the message is accessible
through the Hecl hashtable $msghash.

! <Key> - Using a key as a tag provides for the input options to be stored on initiation of the
scripts. Details on this tag may be found in Section B.7.

! shownotify - This tag holds a script that is executed when the canvas is about to get focus.

! hidenotify - This tag holds a script that is executed when the canvas loose focus.

B.3 Commands for Hecl Lists

Lists in Hecl is a collection of Strings inside a pair of ’[’ ’]’ brackets.
Declaration: <List> ::= list <String>

182

Operations:

llen <List> - Returns the number of elements in the list

lappend <List> {<String>} - Appends elements to the list

lset <List> <Number> [<Value>] - Sets the value of the list at the specified index, if the
value is not present, the field in the list will be deleted.

lrange <List> <Number> <Number> - fetches a range of elements from list, between the
two indexes

filter <List> <Id> <Comp> - The filter command takes a list and filters it according to the
code provided. The current element of the list being considered is stored in the varname
provided. A list of ’matches’ is returned.

search <List> <Id> <Comp> - Searches for the first instance in the list that satisfy the code
and return its index.

join <List> <String> - Joins the elements of a list to a string, separated by the string argument

split <String> <String> - Splits the firs string based on the delimiters provided by the second
string, and puts the results into a list

lget <List> <Number> - Returns the element at the specified index

B.4 Commands for Hecl Hash tables

Hash tables support interface to the hashtables provided by Java.
Declaration: <Hashtable> ::= hash {́{́<String>} }́´
Operations:

hget <Hashtable> <String> - Returns the Object associated with the string

hset <Hashtable> <String> <Value> - Registers a new value in the hashtable

hkeys <Hashtable> - Returns the hash keys from the hashtable in a List

hclear <Hashtable> - Clears the hashtable

hremove <Hashtable> <String> - Removes the value associated with the string

183

B.5 Constants in the scripting platform

The scripting library provides some constants to ease the development. We refer to these
numbers as constants although they might be changed from the script because they are not
meant to be changed. These constants are:

$pi - Mathematical Pi

$e - Mathematical e

$resheight - Height of the screen, used for dynamic resolution adoption

$reswidth - Width of the screen

$msghash - This is not a constant, but it is not intended to be changed by the script. Variables
received from the server will be put in this hashtable, which is available from the script.

B.6 Documentation on Scripted MOOSES client GUI com-
mands

This section describes the grammars and syntax for the GUI elements supported on the scripted
MOOSES client. Some of these commands are used to control the Graphics object in Java that
is responsible for drawing on the canvas. These commands are:

color r <Number> g <Number> b <Number> - Which set the color of the Graphics Object.
The paintcomponents that does not specify which color they will use will be painted by
this color.

setclip x <Number> y <Number> width <Number> height <Number> - Sets the area which
the Graphics object is allowed to draw on. Calling setclip without arguments will reset
the clip to the screen resolution.

font size <String> style <String> - Sets the font used by the Graphics Object

flush - The flush command refreshes the screen, calling the canvas rePaint() method which
triggers the Graphics Object

In addition to control of the Graphics Object, there is one other control command that concern
the GUI.

cs <Id> - Changes the canvas in focus to the one indicated by the id. This will also change
the additional data concerning the canvas in the MOOSEControlCanvas. Executes the
hidenotify tag on the current canvas, and the shownotify tag on the canvas indicated by
the id.

The rest of the commands are used to register paintcomponents to the application draw objects.

184

B.6.1 paintline

The paintline command registers a line to the canvas’s paintcomponents
paintline x1 <Number> y1 <Number> x2 <Number> y2 <Number> draw <Boolean> color
<String>

Field Explanation Default value
x1 The Lines horizontal start point 0
y1 The Lines vertical start point 0
x2 The Lines horizontal end point 0
y2 The Lines vertical end point 0

draw Flag indicating whether the line should be drawn true
color Color of the line graphics color

Table B.1: Explanations for the paintline command’s arguments

B.6.2 paintstring

The paintstring command registers a string to the canvas’s paintcomponents
paintline value <String> x <Number> y <Number> style <String> size <String> draw
<Boolean> color <String>

Field Explanation Default value
x x position of the string 0
y y position of the string 0

val the string to draw ""
size size of the font "small"
style style of the font "plain"
flags anchoring options for the string "left|top"
draw flag indicating whether the string should be drawn true
color The color of the string to draw "0xffffff"

Table B.2: Explanations for the paintstring command’s arguments

B.6.3 paintrect

The paintrect command registers a rectangle to the canvas’s paintcomponents
paintrect x <Number> y <Number> width <Number> height <Number> fill <Boolean> depth
<Number> draw <Boolean> color <String>

185

Field Explanation Default value
x x position of the rectangle 0
y y position of the rectangle 0

width The width of the rectangle 50
height The height of the rectangle 50

fill A flag indicating whether the rectangle should be filled false
depth Indicates the thickness of the rectangle in pixels 1
draw flag indicating whether the string should be drawn true
color The color of the rectangle -1

Table B.3: Explanations for the paintrectangle command’s arguments

B.6.4 paintimage

The paintimage command registers an image to the canvas’s paintcomponents
paintimage src <Image> x <Number> y <Number> draw <Boolean> flags <String>

Field Explanation Default value
scr The Image which should be paint ""
x x position of the image 0
y y position of the image 0

draw flag indicating whether the string should be drawn true
flags Anchoring options for the graphics component "left"

Table B.4: Explanations for the paintimage command’s arguments

B.6.5 animation

The animation command registers an animation to the Graphics object. animation <Anima-
tion> draw <Boolean>

B.7 Commands for Input

As mentioned in Chapter 19 there are two alternatives to provide input commands in our
scripting platform. The Input commands may be defined in their own tag to increase the
readability of the script. In addition to the tags we have provided tags to manipulate input
to be able to change the input options during runtime. The keys available from the scripting
platform are: <Key> ::= 0|1|2|3|4|5|6|7|8|9|fire|left|right|up|down|softl|softr|*|#
Defining input functionality using tags is done as illustrated bellow.

1 ! fire # firekey

186

2 sendpress: true|false #indicates whether the key should send a KeyMessage when pressed
3 sendrelease: true|false # indicates whether the key should send a KeyMessage when released
4 sendpressrelease: true|false # indicates whether the key should send a KeyMessage on both

press and release
5 presscript: <Code > # The script that is executed when the key is pressed
6 releasescript: <Code > # The script that is executed when the key is released
7 pressreleasescript: <Code > # Script that is executed both on press and release of the key
8 repeatkey: true|false # indicates whether the key should be repeated when pressed
9 interval: 1000 # changes the interval for the keyrepeater, measured in milliseconds

10 sameas: <Key> # makes the key reffer to the same as another key. Manipulation of the other key
’s attributes will also affect this key.

Listing B.2: Input Commands Using Tags

Input options may also be defined or manipulated using commands. The Input commands are
explained bellow.

keyrep <Key> <Boolean> - Flag that indicate whether or not the key should repeat when
pressed

sendrelease {<Key>}+ - Configure a key or collection of keys to send message when released

sendpress {<Key>}+ - Configure a key or collection of keys to send message when pressed

sendpressrelease {<Key>}+ - Configure a key or collection of keys to send message when
released or pressed

presscript <Key> <Code> - Configure the script that are executed when the key is pressed

releasescript <Key> <Code> - Configure the script that are executed when the key is released

bothscript <Key> <Code> - Configure the script that are executed when the key is pressed or
released

registerkey <Key> <Boolean> <Number> - Configure keyrepeater options for the given key.
The first boolean indicates whether or not the key should repeat, and the number indicates
the frequency of repeats.

B.8 Commands for Sound control

Sounds have commands for declaration, and playing and stopping the sound.
Declaration: <Sound> ::= sound <String>
The string is the path to the sound file.
Operations:

playsound <Sound> [<Number>] - Starts the player responsible for the given sound. The
optional number in the argument indicates how many times the sound should loop, default
is 0.

stopsound ’$’<Id> - Stops the player responsible for the given sound.

187

B.9 Commands for communication

Handling communication with the script depends on which way the communication should go.
For communication from the server to the client the script has to define the script in its own tag.
In this tag the script may interfere with the hashtable sent from the server. It is crucial that the
id of the tag and the hashes in the hashtable is equal on the game side and the script side.

1 ! statusMsg
2 set score [hget $msghash score]
3 set progress [hget $msghash progress]
4 flush

Listing B.3: Communication Commands Example

The $msghash variable is set by the underlying MOOSEControlCanvas when receiving
messages from the server.

The scripting platform also contains one command for sending data. send <Id> { <Id>
["%<Char>"] <String> }

B.10 Commands for Animation

The current scripting platform for contains three animations at this point, that are all interfaced
through the same Cmds class. Some of the commands are common for all the animations.

Declaration:<Animation> ::= <Stringrotator> | <Imagerotator> | <Progressbar>

Operations:
The commands that are common for all animation objects are:

resetanim ’animation’ - Resets animation objects to their initial states

speed ’animation’ <Number> - Sets the speed of the animation

animates ’animation’ - Returns a boolean indicating whether or not the animation is
animating

The rest is specific for the different components.

B.10.1 Commands for String rotator

This section presents the specific commands for the stringrotator. Declaration:
<Stringrotator> ::= stringrotator x <Number> y <Number> direction <String> anchor <String>

188

Field Explanation Default value
x x position of the stringrotator 0
y y position of the stringrotator 0

direction Which way the rotator should rotate, vertical or horizontal vertical
anchor Anchor options for the Graphics object left|top

Table B.5: Argument explanations for String Rotator declaration

Operations:

addstring <Stringrotator> <String> - Adds a string to the stringrotator

next <Stringrotator> - Makes the stringrotator scroll to the next string

prev <Stringrotator> - Makes the stringrotator scroll to the previous string

strrotfont style <String> size <String> - Sets the font used to draw the strings

strcolor r <Number> g <Number> b <Number> color <String> - Sets the color of the
strings

B.10.2 Commands for the Image rotator

This section gives the commands specific for the Imagerotator.
Declaration:
<Imagerotator> ::= imagerotator x <Number> y <Number> direction <String>

Field Explanation Default value
x x position of the imagerotator 0
y y position of the imagerotator 0

direction Which way the rotator should rotate, vertical or horizontal vertical

Table B.6: Argument explanations for Image Rotator declaration

Operations:

next <Imagerotator> - Makes the imagerotator rotate to the next image

prev <Imagerotator> - Makes the imagerotator rotate to the previous image

addpic <Imagerotator> <Image> - Adds an image to the imagerotator

189

B.10.3 Commands for the Progressbar

This section presents the commands specific for Progressbar.
Declaration:
<Progressbar> ::= progressbar x <Number> y <Number> width <Number> height <Number>
startpos <Number> onempty <Code> onFull <Code> caption <String>

Field Explanation Default value
x X position of the progressbar 0
y Y position of the progressbar 0

width Width of the progressbar 0
height Height of the progressbar 0

startpos Indicates the starting point of the progressbar, measured in percent 100
onempty Code that is executed when the bar reaches 0 ""

onfull Code that is executed when the bar reaches 100 ""
caption Text which is painted on top of the bar ""

Table B.7: Argument explanations for Progressbar declaration

Operations:

incrp <Progressbar> <Number> - Increases the given progressbar the given amount

decrp <Progressbar> <Number> - Decreases the given progressbar the given amount

incrpi <Progressbar> <Number> - Increases the given progressbar the given amount without
animating the bar

decrpi <Progressbar> <Number> - Decreases the given progressbar the given amount
without animating the bar

progcolor <Progressbar> forecolor <Sting> backcolor <String> middlecolor <String> framecolor <String> textcolor <String>
- Sets the colours on the different parts of the progressbar

B.11 Commands for Triggers

Triggers are responsible for executing logic in the scripting platform for game client
development, either once or continuous.

Declaration
<Trigger> ::= trigger code <Code> interval <Number> periodic <Boolean> itterations
<Number> start <Boolean> onexit <Code>

Operations

190

Field Explanation Default value
code Code to be executed by the trigger ""

interval Sleeping interval in milliseconds when using itterations 1000
periodic Flag indicating whether the trigger is iterative false

itterations Number of itterations the trigger should use, -1 means forever 0
start Flag indicating whether the trigger should start after declaration false

onexit Code to be executed when the trigger if finished running ""

Table B.8: Argument explanations for Trigger declaration

pausetrigger <Trigger> - Pauses the trigger from execution

stoptrigger <Trigger> [<Boolean>] - stops the trigger. The optional flag indicates whether
or not the onexit code should be executed, default is true

starttrigger <Trigger> - Starts the trigger

resumetrigger <Trigger> - Resumes a paused trigger

triggercode <Trigger> <Code> - Replaces the Triggers code

triggeronexit <Trigger> <Code> - Replaces the Triggers onexit code

triggerinterval <Trigger> <Number> - Sets the triggers sleep interval for continuous
itterations

triggeritterations <Trigger> <Number> - Sets the number of itterations the trigger should
execute

191

192

APPENDIX C

Abbrevations

This Chapter contains the abbrevations used in this master thesis report.

EBNF - Extended Backus-Naur Form

GUI - Graphical User Interface

CPU - Central Processing Unit

MIDP - Mobile Information Device Profile

J2SE - Java 2 Standard Edition

J2EE - Java 2 Enteprise Edition

J2ME - Java 2 Micro Edition

JAR - Java Archive

JAD - Java Application Description

PDA - Personal Data Assistant

RMS - Record Management System

API - Application Programming Interface

RAM - Random Access Memory

KVM - Kilobyte Virtual Machine

193

CLDC - Connection Limited Device Configuration

CDC - Connected Device Configuration

MOOSES - Multiplayer On One Screen Entertainment System

194

APPENDIX D

Source Code For The AFProprtyMsg

This chapter contains the sourcecode of the AFProprtyMsg used by the scripted client to
transfer Data between the server and the client.

1 package no.tellu.common.javaframe.messages;
2
3 import java.io.*;
4 import java.util.Enumeration;
5 import java.util.Hashtable;
6
7 p u b l i c c l a s s AFPropertyMsg ex tends ActorMsg {
8
9 p u b l i c String msgId;

10 p r i v a t e Hashtable property;
11 p r i v a t e Object o;
12
13
14 p u b l i c AFPropertyMsg() {
15 }
16
17
18 p u b l i c String getMsgId() {
19 re turn msgId;
20 }
21
22 p u b l i c AFPropertyMsg(ActorMsg am, String msgId) {
23 t h i s .setSenderRole(am.getSenderRole());
24 t h i s .setReceiverRole(am.getReceiverRole());
25 t h i s .msgId = msgId;
26 }
27
28
29 p u b l i c AFPropertyMsg(String msgId) {
30 t h i s .msgId = msgId;
31 }
32
33 p u b l i c boolean isInstanceOf(String name) {
34 re turn (msgId != n u l l && msgId.equals(name));
35 }

195

36
37 p u b l i c Hashtable getProperty() {
38 re turn property;
39 }
40
41 p u b l i c Object getProperty(String name) {
42 i f (property == n u l l) re turn n u l l ;
43 o = property.get(name);
44 re turn o;
45 }
46
47 p u b l i c String getString(String name) {
48 i f (property == n u l l) re turn n u l l ;
49 o = property.get(name);
50 i f (o i n s t a n c e o f String)
51 re turn (String) o;
52 re turn n u l l ;
53 }
54
55 p u b l i c i n t getInt(String name) {
56 i f (property == n u l l) re turn 0;
57 o = property.get(name);
58 i f (o i n s t a n c e o f Integer)
59 re turn ((Integer) o).intValue();
60 re turn 0;
61 }
62
63 p u b l i c boolean getBoolean(String name) {
64 i f (property == n u l l) re turn f a l s e ;
65 o = property.get(name);
66 i f (o i n s t a n c e o f Boolean)
67 re turn ((Boolean) o).booleanValue();
68 re turn f a l s e ;
69 }
70
71 p u b l i c vo id setProperty(String name , Object value) {
72 i f (value == n u l l)
73 re turn ;
74 i f (property == n u l l) {
75 property = new Hashtable();
76 }
77 property.put(name , value);
78 }
79
80 p u b l i c vo id setBoolean(String name , boolean value) {
81 i f (property == n u l l) {
82 property = new Hashtable();
83 }
84 property.put(name , new Boolean(value));
85 }
86
87
88 p u b l i c vo id setInt(String name , i n t value) {
89 i f (property == n u l l) {
90 property = new Hashtable();
91 }
92 property.put(name , new Integer(value));
93 }
94
95 p u b l i c String getSignalName() {
96 re turn msgId;
97 }
98
99

100 p u b l i c String messageContent() {
101 StringBuffer sb = new StringBuffer();
102 sb.append("MsgId: " + msgId);
103 i f (property != n u l l) {
104 Enumeration en = property.keys();
105 while (en.hasMoreElements()) {

196

106 String s = (String) en.nextElement();
107 sb.append(s + ": " + property.get(s) + " : ");
108 }
109 }
110 re turn super.messageContent() + sb; //To change body of overridden methods use File

| Settings | File Templates.
111 }
112
113 p u b l i c AFPropertyMsg(InputStream is) throws IOException {
114 DataInputStream din = new DataInputStream(is);
115 msgId = StringHelper.resurrect(din);
116 property = HashtableHelper.resurrect(din);
117 }
118
119 /**
120 * This function implements the serialization of the object.
121 *
122 * @return a byte array with the objects data
123 * @throws java.io.IOException
124 */
125 p u b l i c byte[] serialize() throws IOException {
126 ByteArrayOutputStream bout = new ByteArrayOutputStream();
127 DataOutputStream dout = new DataOutputStream(bout);
128 dout.write(super.serialize());
129 dout.write(StringHelper.persist(msgId));
130 dout.write(HashtableHelper.persist(property));
131 dout.flush();
132 re turn bout.toByteArray();
133 }
134
135 /**
136 * Use this function for resurrection of the object
137 *
138 * @param data The serialized data containing the object data
139 * @throws java.io.IOException
140 */
141 p u b l i c ByteArrayInputStream deSerialize(byte[] data) throws IOException {
142 ByteArrayInputStream bin = super.deSerialize(data);
143 DataInputStream din = new DataInputStream(bin);
144 msgId = StringHelper.resurrect(din);
145 property = HashtableHelper.resurrect(din);
146 re turn bin;
147 }
148 }

Listing D.1: AFPropertyMsg class

197

198

Part VIII

Bibliography

199

Bibliography

[1] Kosmorama - trondheims internasjonale filmfestival. "http://www.kosmorama.no",
2007.

[2] Sun Microsystems. The java me platform, 2007.

[3] Sumi Helal. Pervasive java. Technical report, University of Florida, 2002.

[4] Alf Inge Wang. Forskningsprogrammet dataspill. http://www.ime.ntnu.no/
forskning/prosjekter/dataspill, 26.04.2007.

[5] Morten Versvik and Alexander Baumann Spro. Multiplayer on one screen - co operative
gaming. Master’s thesis, Nowegian University of Science and Recnology, Spring 2007.

[6] Audun Kvasbø. Mooses game concepts. Master’s thesis, Norwegian University of Science
and Technology, 2007.

[7] Morten Versvik Sverre Morka and Alexander Baumann Spro. Multiplayer on one screen.
Master’s thesis, Nowegian University of Science and Technology, 2006.

[8] Tellu and NTNU. Mooses homepage. "http://www.mooses.no", 2006.

[9] Tellu. Tellu homepage. "http://www.tellu.no", 2006.

[10] Victor R. Selby Richard W. Rombach, H. Dieter Basili. Experimental software
engineering issues: critical assessment and future directions, pages 3–12. Springer, first
edition, 1993.

[11] The Eclipse Foundation. What is eclipse. "http://www.eclipse.org/org/", 2005.

[12] Open Source Technology Group. Texlipse. "http://texlipse.sourceforge.net/",
2005.

201

http://www.kosmorama.no
http://www.ime.ntnu.no/forskning/prosjekter/dataspill
http://www.ime.ntnu.no/forskning/prosjekter/dataspill
http://www.mooses.no
http://www.tellu.no
http://www.eclipse.org/org/
http://texlipse.sourceforge.net/

[13] Open Source Technology Group. Eclipseme. "http://sourceforge.net/projects/
eclipseme/", 2005.

[14] Christian Schenk. About miktex. "http://www.miktex.org/about.html", 2005.

[15] Sony Ericsson Mobile Communication AB. Java docs tools. "http://developer.
sonyericsson.com/site/global/docstools/java/p_java.jsp", 2006.

[16] IBM. J2me record management store. "http://www-128.ibm.com/developerworks/
library/wi-rms/", 2002-01-05.

[17] Sony Ericsson. Sonyericsson k800. "http://developer.sonyericsson.com/site/
global/products/phonegallery/k800/p_k800.jsp", 2006.

[18] Chamseddine Talhi Mourad Debbabi, Mohamed Saleh and Sami Zhioua. Embedded Java
Security. Springer London, 2007.

[19] Bill Venners. Bytecode basics. "http://www.javaworld.com/javaworld/
jw-09-1996/jw-09-bytecodes.html", 1996.

[20] Rolv Bræk, Geir Melby, and Knut Eilif Husa. Serviceframe whitepaper. Technical report,
Ericsson, 2002.

[21] Geir Melby and Knut Eilif Husa. Actorframe developers guide. Technical report,
Ericsson, 2005.

[22] Oxford Reference Online Premium. scripting language. "http://www.
oxfordreference.com/views/ENTRY.html?subview=Main&entry=t11.
e4636&authstatuscode=202", 2004.

[23] John K. Ousterhout. Scripting: Higher level programming for the 21st century. Technical
report, Tcl Developer Xchange, 1998.

[24] Wikipedia. Scripting language. http://en.wikipedia.org/wiki/Scripting_
language, 2006-20-09.

[25] Batch files for dos, os/2, windows 95/98, nt 4, 2000 and xp. "http://www.
robvanderwoude.com/batchfiles.html".

[26] Adobe. Actionscript technology center. http://www.adobe.com/devnet/
actionscript/.

[27] The official u.s. army game. "http://www.americasarmy.com".

[28] Americas army game manual. "http://manual.americasarmy.com/index.php/
Main_Page".

[29] Official php website. "http://php.net".

[30] Smx: Server macro expansion. "http://www.smxlang.org/index.html".

202

http://sourceforge.net/projects/eclipseme/
http://sourceforge.net/projects/eclipseme/
http://www.miktex.org/about.html
http://developer.sonyericsson.com/site/global/docstools/java/p_java.jsp
http://developer.sonyericsson.com/site/global/docstools/java/p_java.jsp
http://www-128.ibm.com/developerworks/library/wi-rms/
http://www-128.ibm.com/developerworks/library/wi-rms/
http://developer.sonyericsson.com/site/global/products/phonegallery/k800/p_k800.jsp
http://developer.sonyericsson.com/site/global/products/phonegallery/k800/p_k800.jsp
http://www.javaworld.com/javaworld/jw-09-1996/jw-09-bytecodes.html
http://www.javaworld.com/javaworld/jw-09-1996/jw-09-bytecodes.html
http://www.oxfordreference.com/views/ENTRY.html?subview=Main&entry=t11.e4636&authstatuscode=202
http://www.oxfordreference.com/views/ENTRY.html?subview=Main&entry=t11.e4636&authstatuscode=202
http://www.oxfordreference.com/views/ENTRY.html?subview=Main&entry=t11.e4636&authstatuscode=202
http://en.wikipedia.org/wiki/Scripting_language
http://en.wikipedia.org/wiki/Scripting_language
http://www.robvanderwoude.com/batchfiles.html
http://www.robvanderwoude.com/batchfiles.html
http://www.adobe.com/devnet/actionscript/
http://www.adobe.com/devnet/actionscript/
http://www.americasarmy.com
http://manual.americasarmy.com/index.php/Main_Page
http://manual.americasarmy.com/index.php/Main_Page
http://php.net
http://www.smxlang.org/index.html

[31] Mary Bellis. The history of javascript. "http://inventors.about.com/od/
jstartinventions/a/JavaScript.htm", 2007.

[32] Alan Finn. Vbscript fundamentals for windows scripting - the basics. "http://
www.2000trainers.com/windows-scripting/vbscript-windows-scripting-1/",
April 2003.

[33] Elaine Ashton. The timeline of perl and its culture. http://history.perl.org/
PerlTimeline.pdf, 2002.

[34] Brian W. Kernighan Alfred V. Aho and Peter J. Weinberger. The AWK Programming
Language. Addison-Wesley, 1988.

[35] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer
Programming. The MIT Press, 2004.

[36] George H. Forman and John Zahorjan. The challenges of mobile computing. Technical
report, University of Washington, 1994.

[37] Simon Whiteside. Threenode format. "http://www.simkin.co.uk/Docs/Simkin/
TreeNode.html", 2001.

[38] Simon Whiteside. Simkin - the embedable scripting language. "http://www.simkin.
co.uk/Features.shtml".

[39] Ty Coon. Gnu lesser general public license. "http://www.gnu.org/licenses/lgpl.
html", February 1999.

[40] Adobe Systems Incorporated. Postscript language reference third edition, February 1999.

[41] Phonescript homepage. "http://phonescript.org".

[42] Edgewall Software. Trac license. "http://phonescript.org", 2003.

[43] David N. Welton and Wolfgang Kechel. Hecl. "http://www.hecl.org/".

[44] he Apache Software Foundation. Apache license, version 2.0. "http://www.apache.
org/licenses/LICENSE-2.0", January 2004.

[45] Sun Microsystems Inc. Java native interface. "http://java.sun.com/j2se/1.4.2/
docs/guide/jni/", 2003.

[46] Mark J. P. Wolf. The Medium of the Video Game,. University of Texas Press, 2001.

[47] Shooter game. "http://en.wikipedia.org/wiki/Shooter_game", 2007.

[48] Christopher Wiliams Mark Burge. Midp 2.0 changing the face of j2me gaming. Technical
report, Armstrong Atlantic State University, 2004.

[49] Wikipedia. The lost vikings. "http://en.wikipedia.org/wiki/The_Lost_Vikings".

[50] Blizzard Entertainment. "http://www.blizzard.com/blizzclassic/
#lostvikings", 2006.

203

http://inventors.about.com/od/jstartinventions/a/JavaScript.htm
http://inventors.about.com/od/jstartinventions/a/JavaScript.htm
http://www.2000trainers.com/windows-scripting/vbscript-windows-scripting-1/
http://www.2000trainers.com/windows-scripting/vbscript-windows-scripting-1/
http://history.perl.org/PerlTimeline.pdf
http://history.perl.org/PerlTimeline.pdf
http://www.simkin.co.uk/Docs/Simkin/TreeNode.html
http://www.simkin.co.uk/Docs/Simkin/TreeNode.html
http://www.simkin.co.uk/Features.shtml
http://www.simkin.co.uk/Features.shtml
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://phonescript.org
http://phonescript.org
http://www.hecl.org/
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://java.sun.com/j2se/1.4.2/docs/guide/jni/
http://java.sun.com/j2se/1.4.2/docs/guide/jni/
http://en.wikipedia.org/wiki/Shooter_game
http://en.wikipedia.org/wiki/The_Lost_Vikings
http://www.blizzard.com/blizzclassic/#lostvikings
http://www.blizzard.com/blizzclassic/#lostvikings

[51] PlanetHalfLife. Counter strike. "http://planethalflife.gamespy.com/cs/".

[52] Electronic Arts. Battlefield 2 product description. "http://www.ea.com/official/
battlefield/battlefield2/us/features.jsp", 2005.

[53] Carl-Henrik Wolf Lund Alf Inge Wang, Michael Sars Norum. Issues relatd to
development of wireless peer-to-peer games in j2me. Technical report, Norwegian
University of Science and Tecnology, Bearingpoint, Bekk Consulting AS, 2005.

[54] Paul Clements & Rick Kazman Len Bass. Software Architecture in Practise. Addison-
Wesley Professional, 2 edition, 3 2003.

[55] Ruth Malan and Dana Bredemeyer. Architecture resources for enterprise advantage.
Technical report, Bredemeyer Consulting, 2001.

204

http://planethalflife.gamespy.com/cs/
http://www.ea.com/official/battlefield/battlefield2/us/features.jsp
http://www.ea.com/official/battlefield/battlefield2/us/features.jsp

	I Introduction
	1 Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.3 Project Context
	1.4 Readers Guide
	1.4.1 Part description

	2 Multiplayer On One Screen Entertainment System
	2.1 MOOSE - System
	2.2 Development platform
	2.2.1 Alternatives to user defined class loader
	2.2.2 Development Tool

	3 Research Questions & Methods
	3.1 Research questions
	3.2 Research Method
	3.2.1 The Engineering Approach
	3.2.2 The Empirical Approach

	3.3 Test Environment

	4 Development Tools & Software
	4.1 Eclipse With Plugins
	4.1.1 MiKTeX 2.5
	4.1.2 Concurrent Version System

	4.2 Emulator
	4.2.1 Sony Ericsson SDK

	II Prestudy
	5 Prestudy Introduction
	6 Java 2 Micro edition
	6.1 Virtual Machine
	6.2 Configuration Layer
	6.3 Profile Layer
	6.4 User Defined Class Loader
	6.5 Summary

	7 ServiceFrame
	7.1 ActorFrame
	7.2 TellU ServiceFrame
	7.3 Tellu J2ME GUI Library

	8 Script languages and grammars
	8.1 Scripting Languages
	8.1.1 History And Development
	8.1.2 Higher Level
	8.1.3 Area of application
	8.1.4 Types And Primitives
	8.1.5 Efficiency
	8.1.6 Different types of scripting languages

	8.2 Grammars for programming languages
	8.2.1 Lexical Analyzer
	8.2.2 Extend Backus-Naur Form
	8.2.3 Context free and Context sensitive grammars
	8.2.4 Syntax Notation

	8.3 Coarse grained VS fine grained
	8.3.1 Precompiled functionality

	8.4 Summary

	9 Threats
	10 Script Language discussion
	10.1 Simkin
	10.1.1 Licensing
	10.1.2 Documentation
	10.1.3 Grammar and syntax
	10.1.4 Size
	10.1.5 Artefacts
	10.1.6 Supported types
	10.1.7 Code Example

	10.2 Phonescript
	10.2.1 Licensing
	10.2.2 Documentation
	10.2.3 Grammar and syntax
	10.2.4 Size
	10.2.5 Artefacts
	10.2.6 Supported types
	10.2.7 Code Example

	10.3 Hecl
	10.3.1 Licensing
	10.3.2 Documentation
	10.3.3 Grammar and syntax
	10.3.4 Size
	10.3.5 Artefacts
	10.3.6 Supported types
	10.3.7 Code Example

	10.4 Comparison
	10.5 Conclusion

	11 Development of the first MOOSES client
	11.1 Game client development
	11.2 Development of the SlagMark game client
	11.2.1 Designing
	11.2.2 Threads
	11.2.3 Communication
	11.2.4 Input
	11.2.5 Sounds

	11.3 Summary

	12 Game concept profiling
	12.1 Table explanations
	12.2 Shooter profile
	12.2.1 Feedback
	12.2.2 Visualization
	12.2.3 Screenshots from shooter-games

	12.3 Third person profiling
	12.3.1 Feedback
	12.3.2 Visualization
	12.3.3 Screenshots from Third person games

	12.4 Sport Games profiling
	12.4.1 Feedback
	12.4.2 Visualization
	12.4.3 Screenshots from sport games

	12.5 Racers profile
	12.5.1 Feedback
	12.5.2 Visualization
	12.5.3 Screenshots from Race-games

	12.6 Strategies profile
	12.6.1 Feedback
	12.6.2 Visualization
	12.6.3 Screenshots from strategy games

	12.7 Fighters profile
	12.7.1 Feedback
	12.7.2 visualization
	12.7.3 Screenshots from fighter-games

	12.8 Profile Summarize
	12.8.1 Graphical elements
	12.8.2 Game development support in MIDP 2.0

	13 Cooperative Games
	14 Hecl - The mobile scripting language
	14.1 Hecl Architecture
	14.1.1 Example: Adding a new Thing to Hecl
	14.1.2 Hecl Things
	14.1.3 Command class Example
	14.1.4 Hecl Cmds classes
	14.1.5 Hecl Core

	14.2 Running a Hecl application
	14.2.1 Example script

	14.3 Getting to know Hecl
	14.3.1 Installing Hecl
	14.3.2 Hacking Hecl
	14.3.3 Adding GUI Support

	III The MOOSES Scripted Client Architecture
	15 Architecture Considerations
	15.1 Architecture Background
	15.2 Stakeholders

	16 Requirements
	16.1 Functional requirements
	16.2 Quality Requirements
	16.2.1 Availability
	16.2.2 Modifiability
	16.2.3 Performance
	16.2.4 Security
	16.2.5 Testability
	16.2.6 Usability

	16.3 Environmental Requirements

	17 Design Decisions
	17.1 Tellu ServiceFrame
	17.2 State machines
	17.3 Message System
	17.4 Script code

	18 Design Overview
	18.1 High Level Architecture
	18.2 Data flow view
	18.3 Process View
	18.3.1 Joining games

	IV The Scripted MOOSES controller development framework
	19 Development of a script solution
	19.1 Manipulation of Hecl core
	19.1.1 If statements
	19.1.2 Expressions
	19.1.3 Pre parsing
	19.1.4 Global statement

	19.2 Variables
	19.2.1 Constants

	19.3 Additional functionality
	19.3.1 Graphical Elements
	19.3.2 Animations
	19.3.3 Input
	19.3.4 Sound feedback
	19.3.5 Communication
	19.3.6 Triggers

	V Testing
	20 Performance Testing
	20.1 Profiler Measurements
	20.1.1 Starting the application
	20.1.2 Painting the screen
	20.1.3 Performing shot
	20.1.4 Changing weapon
	20.1.5 Sending key message
	20.1.6 Thread and triggers
	20.1.7 Comparison

	21 Testing of requirements and quality attributes
	21.1 Functional Requirements
	21.2 Reflection on quality requirements
	21.2.1 Availability
	21.2.2 Modifiability
	21.2.3 Performance
	21.2.4 Security
	21.2.5 Testability
	21.2.6 Usability

	22 Test-session at Kosmorama with real users
	22.1 Reducing latency
	22.2 Test session
	22.2.1 Images from test session at Kosmorama 2007

	VI Discussion and Conclusion
	23 Discussion
	23.1 Flexibility
	23.2 Efficiency
	23.2.1 Communication
	23.2.2 Parsing overhead
	23.2.3 Detours
	23.2.4 Size
	23.2.5 Optimizing
	23.2.6 Hardware requirements

	23.3 MOOSES Limitations
	23.4 Game development
	23.4.1 Game development limitations

	24 Conclusion
	25 Further work
	25.1 Small scale
	25.2 Large scale

	VII Appendix
	A Scripted Game Clients
	A.1 SlagMark
	A.1.1 Gameplay
	A.1.2 Goal of the game
	A.1.3 Client source code
	A.1.4 Screenshots

	A.2 BandHero
	A.2.1 Gameplay
	A.2.2 Goal of the game
	A.2.3 Client source code
	A.2.4 Screenshots

	A.3 SelfFish
	A.3.1 Gameplay
	A.3.2 Goal of the game
	A.3.3 Client source code
	A.3.4 Screenshots

	B Scripted client commands documentation
	B.1 Grammars for the MOOSES client scripting platform
	B.2 Canvas declaration
	B.3 Commands for Hecl Lists
	B.4 Commands for Hecl Hash tables
	B.5 Constants in the scripting platform
	B.6 Documentation on Scripted MOOSES client GUI commands
	B.6.1 paintline
	B.6.2 paintstring
	B.6.3 paintrect
	B.6.4 paintimage
	B.6.5 animation

	B.7 Commands for Input
	B.8 Commands for Sound control
	B.9 Commands for communication
	B.10 Commands for Animation
	B.10.1 Commands for String rotator
	B.10.2 Commands for the Image rotator
	B.10.3 Commands for the Progressbar

	B.11 Commands for Triggers

	C Abbrevations
	D Source Code For The AFProprtyMsg

	VIII Bibliography

