

Engine- Cooperative Game Modeling (ECGM): Bridge
Model-Driven Game Development and Game Engine Tool-

chains
Meng Zhu

zhumeng@idi.ntnu.no
Alf Inge Wang

alfw@idi.ntnu.no

Hallvard Trætteberg
hal@idi.ntnu.no

Department of Computer and Information Science, Norwegian University of Science and Technology

Trondheim, Norway

ABSTRACT
Today game engines are popular in commercial game
development, as they lower the threshold of game
production by providing common technologies and
convenient content-creation tools. Game engine based
development is therefore the mainstream methodology in
the game industry.

Model-Driven Game Development (MDGD) is an emerging
game development methodology, which applies the Model-
Driven Software Development (MDSD) method in the
game development domain. This simplifies game
development by reducing the gap between game design and
implementation. MDGD has to take advantage of the
existing game engines in order to be useful in commercial
game development practice. However, none of the existing
MDGD approaches in literature has convincingly
demonstrated good integration of its tools with the game
engine tool-chain. In this paper, we propose a hybrid
approach named ECGM to address the integration
challenges of two methodologies with a focus on the
technical aspects. The approach makes a run-time engine
the base of the domain framework, and uses the game
engine tool-chain together with the MDGD tool-chain.
ECGM minimizes the change to the existing workflow and
technology, thus reducing the cost and risk of adopting
MDGD in commercial game development. Our contribution
is one important step towards MDGD industrialization.

Author Keywords
Model-Driven Development; Game Engine Game
Development.

INTRODUCTION
Engine-based game development is the mainstream
methodology today for commercial games, where the game
engine as the central tool provides both the low-level
technical implementation and the platform for development
and management of high-level artifacts. Model-Driven
Game Development (MDGD) on the other hand is an
emerging research field, which brings the Model-Driven
Development (MDD) methodology into the game
development domain, following the model-centered
development philosophy. It is interesting to compare the
two methods from modeling perspectives: Game engines
usually come with a tool-suite, with which game data such
as world layout and characters can easily be created or
modeled. If we look on game data as a model, its meta-
model, which specifies the game domain, is implied in
hand-written code. In MDGD, such a meta-model is
explicitly created using a language workbench. Thus the
game instance can be modeled through a domain-specific
language specified by the meta-model. The game instance is
either an executable model supported by a run-time engine,
or a non-executable model that can be transformed into
executable code running on top of a framework. In both
cases, the software supporting the game model is in MDGD
called a domain framework [1].

Engine-based game development has a long history in the
game industry and it has impacted many aspects of
commercial game development, such as technology,
developer expertise and process. MDGD has to commit to
current practice and embrace engine-based development to
be practically useful. Integrating MDGD with game engine-
based development is therefore an important step towards
MDGD industrialization. However, if we look into the
existing MDGD approaches in literature, gaps still remain.
Some MDGD approaches overlook the whole game engine
part and play an exclusive role in the game development [2,
3, 4]. Others use run-time game engines as the base of a
Domain Framework while overlooking the game engine
tools [5-9]. A common problem with these approaches is
that they do not fully utilize the power of game engines,
thus more or less reinvent the wheel by re-implementing

Please do not modify this text block until you receive explicit instructions.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
CONF '22, Jan 1 - Dec 31 2022, Authorberg.
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-xxxx-yyyy-z/zz/zz…$zz.00.
unique doi string will go here

either a library or tools (or both) that are already provided
by the game engines. This can lead to several risks
preventing MDGD from industrialization:
1) Tool maturity: Game engines are complex software and

are usually developed by professional vendors with a
long development cycle. Replacing the functionality of
game engines with MDGD tools will bring concerns to
whether the MDGD tools can reach the maturity of
game engines within a reasonable budget, while
providing full MDGD support at the same time.

2) Developer expertise and knowledge base: Game
engines have been used in the game industry for many
years and it is easy to hire staff with relevant
experience. Moreover, popular engines such as Unreal
and Unity have a large and active community where it
is easy to find existing solutions for various issues. It is
expensive to train game developers and build a
comparable knowledge base for MDGD tools.

3) Workflow: Game engine-based development has
important impacts on the development workflow
accepted by the industry. Moving the entire team out of
the game engine-centered workflow is a large risk to
take, seen from management point-of-view.

All in all, game engines and engine-based development are
unique characteristics of the game industry that have to be
considered when adapting general software engineering
methodologies. This means that game engines must be
organically integrated with MDD to establish a pragmatic
MDGD approach. In this paper we propose Engine-
Cooperative Game Modeling (ECGM), an MDGD approach
that bridges the model-driven game development and
game engines to minimize the modifications to the
traditional methodology on one hand, while taking the
advantage of modern MDD methodology on the other. With
ECGM, the risk of applying MDD is reduced, thus MDGD
having a better chance being accepted by game companies.

The rest of the paper is organized as follows: Section 2
introduces Model-Driven Development in general; Section
3 discusses some MDGD approaches in literature related to
our work; Section 4 presents the ECGM approach; Section
5 briefly discusses a case study to show the usefulness of
ECGM, and Section 6 concludes the paper.

MODEL DRIVEN DEVELOPMENT (MDD)
The central concept in the MDD domain is the model. In
[10], a model is defined as “a simplification of a system
built with an intended goal in mind”. A similar definition
can also be found in [11]. This means that theoretically
many things are within the scope of a model. E.g. Favre
argues in [12] that an article itself is a model: a model of the
topic that it is about. However, the pragmatic scope of
model is usually narrower. For example: Kelly and
Tolvanen describe the developers understanding of models
and code as “models are used for designing systems,
understanding them better, specifying required

functionality, and creating documentation. Code is then
written to implement the designs” [1]. They distinguish
between models and code, which is necessary for
consolidating the theoretical base of MDD. Otherwise will
MDD cover the traditional development methodology in
terms of the provision that code is a kind of a model.
Furthermore, in MDD, models are more than just
documentation of the system: They can be transformed into
a system, or they are the system themselves.

Model-Driven Development and Model-Driven Software
Development (MDSD) are often used interchangeably in
the software engineering community, although the former
can express more than just software development. Various
definitions of MDD have been proposed in the literature
[13-16], where MDD can be defined as a software
development methodology with following characteristics:

1) Models are the focus: MDD focuses on the models
rather than the code, and the models are the major
artifacts in the software development.

2) Models are formal: Models in MDD are formal thus
can be transformed into software automatically or be
executable.

3) Models are on a high abstraction level: Models are
created with a modeling language at a higher
abstraction level than a programming language, thus
reducing the problem-solution gap.

A term similar to MDD is Model-Driven Engineering
(MDE), which sometimes refers to the same concept as
MDD in research papers, e.g. [17, 18]. But in [11], France
and Rumpe enrich the meaning of MDE by distinguishing
between the development models and the runtime models.
These two models further lead to two directions in research
with different research focus. The research focusing on
development models is mainly concerned with how can
modeling techniques be used to tame the complexity of
bridging the gap between the problem domain and the
software implementation domain, while the research
focusing on runtime models is mainly concerned with how
can models cost-effectively be used to manage executing
software, and how can models be used to effect changes to
running systems in a controlled manner? We agree with
France and Rumpe who imply a broader scope than MDD,
covering development of software by models as well as run-
time management and control of software with models.
Models in MDD can be created with either General Purpose
Languages (GPLs), or Domain-Specific Languages (DSLs).
UML is the most popular modeling GPL standardized by
the Object Management Group [19], and was developed to
be able to model all kinds of application domains [1].
However, people in the MDD community have pointed out
some drawbacks of the language, e.g. [20]. Especially the
one-size-fits-all design has been criticized for lowering the
abstraction level [1]. The 2.0 version of UML supports
semantic variation points and profiles as two forms of

extensions, which improved its domain appropriateness
[21]. But the support for domain-specific abstractions is still
weaker in UML compared to MDD approach Domain-
Specific Modeling (DSM). DSM uses the modeling
language developed for a specific application domain to
solve the problems within a domain. DSM is claimed to
have better domain appropriateness, restricted semantic
scope, better support for generating code, and increased
domain-specific reuse of components [22], and is also
reported better than GPLs in regards to the improvements

on software productivity [1]. DSM has also its drawbacks,
where an important one is the potential huge investment
from developing a DSL. Although the time to implement a
DSL can be short, the expected time to benefit from it can
decrease the investment interest [1]. An extensive
consideration must be made on whether a new DSL for a
problem should be created or not. In [23], the problem is
discussed through identifying a set of decision patterns
from the cases of applying DSM. Figure 1 shows a
summary of the concepts of MDD, and their relationships.

Figure 1. MDD Concepts and Their Relationships

We have discussed the conceptual base of MDD. Another
important aspect of MDD is its tool-chain that makes MDD
practically useful. Model-Driven Software Development
does not make sense without tool support [24]. Essential
tools for MDD are tools enabling model execution, which
includes two kinds of tools: the code generator and the
model execution engine. Code generation is arguably the
most widely used approach for doing MDD [24]. The
interpreter is another mechanism supporting the model
execution, which shares the same underlying principles as
code generation [24]. The model editor is also a central tool
in MDD [24], which is used for creating and maintaining
models. When a model is created through a model editor, its
correctness must be checked with respect to the meta-model
before code generation. This checking is in most cases
conducted with a model validator tool to avoid unnecessary
complicated code generation [24]. Other tools, such as a
model-level debugger, are also important but we will not
get into these details in this paper.

MDD IN THE GAME DOMAIN

The game industry has actually a long history of using
models. A typical example is the level model (or “world

model”) created with a level editor, which provides a visual
environment for game world modeling in game engines like
Unity and Unreal. However, the game elements that engine
tools can model are restricted to a narrow scope of game
software, which are mainly artistic and topological assets
such as graphics and level structure. Other elements such as
AI, control, and rules still have to be hand-coded, either
with a General-purpose Programming Language (GPL) or
with a scripting language. Some state-of-art game engines
do provide visual modeling tools for creating script code,
for example, Unreal Kismet [25], but these tools do not take
full advantage of MDD, such as use of meta-models and
language workbenches, which makes them difficult to adapt
to changing requirements, or to new game domains.

To address the drawbacks of existing engine tools,
researchers in the game community have proposed various
MDGD approaches, and we will discuss some of them in
this section. To make our discussion more focused, we only
consider approaches where models are regarded as the
central artifacts in game development, which must be
described in a modeling language whose syntax and
semantics are formalized.

One kind of MDGD approaches ignore the game engine
while they tend to generate code directly based on the OS

or some kind of graphics SDK, for example [2, 3, 4, 26].
For simple games such as educational games or simple
prototypes, this is a practical approach. However, it does
not scale well for development of commercial games.

Other approaches use game engines or equivalent software
components as a domain framework. Approaches in this
category include [8] and [9] using Microsoft XNA1, and [27]
using the Corona SDK 2 . Moreover, some approaches
modify game engines to promote them to a domain
framework as suggested in [28], such as [5-7] that modified
an open engine developed by DigiPen Institute of
Technology (no longer available online), [28, 29] that
modified the FlatRedBall engine3, and [30] that added a
layer (called “metaframework”) to the GTGE engine 4 .
These approaches use a run-time game engine, thus can
provide important features such as 3D graphics and
animation. However, the game engine modeling tools were
not in scope of the approaches, thus they failed to take the
full advantage of the game engines.

One approach uses a specific semantics engine to interpret
the models at runtime [31, 32]. It can load and execute the
model according to a set of semantic rules and render the
game graphics as well as handling the player input. The
semantics engine is a stand-alone software without any
relationship to an existing engine. This means it is likely to
lack some important features, or it has to make its own
implementation.

Pleuß and Hußmann's approach [33-35] is the closest to our
approach. They integrated MDD with authoring tools, more
specifically Adobe Flash. Similar to our ECGM approach,
two kinds of artifacts are generated: script code
(ActionScript) and media objects (FLA files), and they are
directly associated. The script code implements the game
logic and the media objects can be edited with Adobe Flash
tool. Their papers focus on their modeling language (MML)
and technical details about the integration with the specific
authoring tool. However, they do not make thorough
discussion about the high level engineering approach,
which is yet a major contribution of the paper in hand.
Moreover, our paper discusses the integration with
commercial game engines instead of general media tools,
which further reduces the gap between MDGD and
commercial game development.

THE ECGM FRAMEWORK
Figure 2 illustrates a typical engine-based game
development architecture. The software in the double-edged
boxes are usually third-party tools: Script Editor can be
general text editors, or language-specific editors; DCC

1 Microsoft XNA: http://www.microsoft.com
2 Corona SDK: http://coronalabs.com/products/corona-sdk/
3 FlatRedBall Engine: http://newsblog.flatredball.com
4 GTGE Engine: http://goldenstudios.or.id/products/GTGE/

means Digital Content Creation, such tools include 3D Max,
Photoshop, and so forth; GPL IDE is the general purpose
programming language development environment, for
example Visual Studio or Eclipse. The remaining
components in the figure should be self-explanatory.

Figure 2. Architecture of Engine-Based Development

If we want to integrate the above-mentioned Engine-Based
Development and a Model-Driven Development approach,
we must find a place for MDGD in Figure 2. The existing
MDGD approaches replace the script editor partly or
entirely with a model editor and a code generator, with
which the game models are created and (some of) the
gameplay code is generated based on the models. However,
such an approach overlooks the world data and the world
editor. This means that how the model and the generated
code relate to the world data is not resolved, leaving a gap
between engine-based development and MDGD. Some
approaches choose to re-implement the world editor to be a
part of the MDGD tools. This is not a pragmatic approach
as argued in Introduction section of this paper. If the
MDGD tools and the engine tools are not aware of each
other, the link between the model and the world data has to
be built by the generated code and world level data, as the
game developers do in traditional engine-based
development. This raises at least two concerns:

1) The protocol for generating code, including the
structure and names, depends on code generation
software maintained by a programmer instead of a
game designer. This means that a game designer
cannot prototype or implement their ideas without
help form programmers, as he or she does not
know/understand all details of about the generated
code to associate the model and the world data. A
major advantage of MDGD is to allow game designers
doing their work without help from programmers.

2) When the code generation software is updated, the
code structure and names can be changed. This will
destroy the existing associations between the world
data and the model, and rebuilding such associations
can be very difficult in larger projects.

To solve the above problem, MDGD solutions must make
the MDGD tools and engine tools interoperable to support a
direct link between the model and the world data to achieve
the following two goals: 1) the generated script code
becomes transparent to the modeler and the game designer,
eliminating the communication overhead, and 2) changes to
the code generation software do not destroy the existing
associations between the model and world data.

ECGM is a reference solution to this problem, and Figure 3
illustrates the architecture of ECGM. The topmost box in
Figure 3 represents the MDGD meta-tools, which can be a
language workbench or a collection of separate tools. The
DSL developers use a meta-tool to create the meta-model,
which constitutes the base of the game DSL. Two tools can
be created with the meta-tool using a meta-model: the
model editor, and the code generation/model transformation
tool. With the model editor, gameplay developers, e.g. the
game designers, can create the model defining the game-
specific elements using the game DSL.

So far our approach is not different from the existing
MDGD approaches. What distinguishes ECGM from other
approaches is that the game model will not only be
transformed into script code, but also be transformed into
world data. The association between the game model and
the world data is then generated within the process. When a
game model is changed, corresponding changes will
automatically be made in the world data by the code
generation/model transformation tool, and game designers
do not have to be aware of the generated code while solely
focus on the game model and world data. This process is
illustrated with an example below.

Assuming a scenario in a MDGD project where the level
transition logic is modeled with a DSL, and the level layout
is specified in a world editor. We illustrate the ECGM
approach with the example shown in Figure 4, which is
about the level transition of World 1-2 in the Super Mario
Bros game.

Figure 3. ECGM Architecture

Figure 4(c) shows a part of the scene of World 1-2 in a
presumed world editor, and we label it “SWE”. The scene
shows three pipes, through which the player can exit World
1-2 and move on to World 2-1, 3-1, and 4-1 respectively.
Figure 4(a) shows the DSL model of the level transition
logic, where the double-edged circles embedded in the box
labeled “World 1-2” represents three possible exits that
connect to three world boxes. The model will be
transformed into script code as shown in Figure 4(b), where
a “class” (World_1_2) is generated for the scene (World 1-
2). Three variables labeled p1, p2 and p3 are generated for
the three exits in Figure 4(a) respectively. Since the DSL
model does not contain any spatial information about the
exits, it has to be specified in the SWE. The DSL model
editor and the SWE are isolated in this example. This
means that SWE holds no knowledge about the model, thus
the associations between the location as well as the
representation of pipes and their behaviors has to be
implemented according to a custom protocol. For example,
to build associations, manual operations in the SWE has to
be done, which may be:

1) Create three “placeholder” objects in the SWE. One
placeholder shown in Figure 4(c) is a red semi-
transparent box overlapped with the pipe labeled “4”.

2) Modify the properties of the placeholder object, set its
name to “p1” so that the generated script can recognize
the object and execute the expected code in certain
conditions.

To do the task, the game designer has to know the protocol
such as the name (p1) of the placeholder object, and the
type of the placeholder object, which is implied in the
generated code. This means that the game designer needs

knowledge about the script code. Moreover, once the code
generation rule changes, the protocol may change
correspondingly, e.g. it is possible that the name has to be
“p_1” as the result of the change of code generation rule.

The change then destroys the existing associations requiring
extra job (change properties of all impacted placeholders in
SWE). But if we choose to use ECGM, the process can be
significantly simplified as illustrated in Figure 5.

Figure 4. Level Transition DSL Model and Level Design View of World 1-2 in Super Mario Bros

Figure 5. Level Transition Modeling with ECGM

In ECGM, the level transition model will not only be
transformed into script code, but also be transformed into
world data. Three placeholder objects will automatically be

added to the world data after the model transformation, as
shown in Figure 5(c). The remaining job for the game
designer is to drag and drop the placeholder objects to the

right place and adjust its size if necessary. The properties of
the placeholder objects have been set to reflect the
relationship to the script code during code generation, so
the generated script code is totally transparent to the game
designer. Even the code generation rule can change in the
future. The corresponding change to world data regarding
placeholder objects will be done by re-doing the code
generation. No manual modifications to the world data are
needed, making the change irrelevant to the scene design.

The ECGM concept is easy to understand, but the
implementation might be difficult. One major problem is
that the world data is engine-specific, requiring different
approach and effort for different engines. It can be very
time-consuming to figure out how to manipulate the data
format of the world editor. Having access to the source
code of the world editor is important if the data is in a
binary format. If we look ahead in the future of MDGD, it
will be very helpful for the implementation of ECGM if
game engine vendors provide open interfaces to their world
editors. Next section further illustrates ECGM by
presenting a case study: RAIL and Torque2D.

INTEGRATE RAIL WITH TORQUE 2D: A CASE STUDY
Reactive AI Language (RAIL) is a DSL we designed for
modeling character behavior, i.e. the high-level AI of
characters in action/adventure games. Due to paper length
limitations, only a brief introduction to the main concepts
will be given:

• AI Pattern: It represents the complete behavior of a
specific character, including the character reactions to
specific events in each particular state, and default
behavior when no events occur. An AI Pattern may
have 0 or multiple States.

• State: The “State” concept represents the current state
of the NPC at a particular moment.

• NPC Action: The whole NPC behavior consists of
many sequences of moves, and each completes a basic
task. The NPC Action represents such a sequence of
moves. Typical actions can be “move to a location”,
“shoot a bullet at the player”, and “run to the player”.

• Event: The action of NPCs is stimulated by an event or
an event composite. An event can be directly connected
to the player behavior, e.g. “the player enters vision”,
“the player becomes invisible”, and “the player is
aiming at me”, or it can be related to other gameplay
objects, e.g. “the boss is down” or “the light is off”. An
event can trigger an action, and/or other events, and the
event-action chain depicts complex behaviors.

The abstract syntax and static semantics of RAIL are
defined with an Ecore meta-model, and the language
borrows some core concepts from State Machines. The top-
level RAIL construct is Game, which is the container of all
AIPatterns in a game. Each computer game to be modeled
should have one and only one instance of Game. The

AIPattern is the central construct of RAIL models that
corresponds to the AI Pattern concept. Modeling with RAIL
is mainly about creating various AIPattern instances, each
of which defines a particular kind of NPC behavior. An
AIPattern is stateful, meaning that the NPC reactions to
events are influenced by the condition the NPC is in at a
particular moment. The State is an abstraction of the
condition in the domain description. Each AIPattern
possesses a group of State instances reflecting all the
possible conditions that are relevant to the reactions of the
NPC following the AIPattern. But an AIPattern can only be
in one State at a given moment, say the “Active State”, and
the initial Active State is named “default”. A special case of
an AIPattern is that it has only one state, then the state can
be omitted and the Triggers (described later) will be
directly connected to the AIPattern.

A State has a group of triggers, which defines what actions
to perform in reaction to a stimulus that is typically an
event or a composite of events. The Event construct can be
further elaborated with vision events, input events, AI
interactive events, etc. The stimulus can also be something
other than Events, for example state change, pattern
initialization, or logic operations. The Action construct
encapsulates the actual actions to be performed by the AI
pattern as the result of the stimulus. A common kind of
actions is the IssueCommand which sends a specific
command to the NPC controlled by the AI pattern, such as
“Move to a Location”, “Attack a Target”, and “Look at a
Place”. The instances of a Trigger can be associated with a
State, or directly associated with AIPatterns, where they
become “Default Triggers”. The Default Triggers will take
effect in any State, and if they are in conflict with the State-
owned triggers, they have the priority.

The concrete syntax of RAIL is based on a tree-view. We
chose this form firstly because the AIPattern-State-Trigger-
Action/Event hierarchical relationship naturally follows a
tree structure, and secondly because with the Eclipse
Modeling Framework you can get a tree-view model editor
for free once a meta-model is defined with the Ecore
language. Figure 6 shows a RAIL model within the Eclipse-
based model editor.

Figure 6. A RAIL Model in Editor

The implementation of the RAIL follows the ECGM
approach, where Torque 2D is the target game engine to
integrate. Torque 2D is a commercial game engine
developed by GarageGames1. The game code for Torque
2D is written in “Torque Script”, which has a C-style
syntax plus some object-oriented features. Torque 2D
engine provides a powerful world editor: the Torque Game
Builder (TGB).

To integrate RAIL tools with the Torque 2D engine
following the ECGM approach, Acceleo2 was used to
implement the code generation. Acceleo is an
implementation of the Model to Text transformation
Language (MTL) standardized by OMG, and it greatly
reduces the effort of writing a code generator. Two kinds of
artifacts were generated from the RAIL models: 1) The
Torque Script code implementing the modeled behavior,
and 2) the data for the TGB (world editor). The generation
of Torque Script code is a trivial task: A Torque Script
Class (it is similar to Class in C++ or Java) was generated
for each AIPattern, and a couple of member functions were
generated for the states and triggers possessed by the
pattern. The Torque Script code must be associated with the
graphical objects in the TGB. With the ECGM approach,
the code-object relationships were built automatically
through a specific generator, and the format of the
generated data complies with the TGB extension protocol.
The TGB uses an object palette to manage object
prototypes. For each object prototype, e.g. a picture or a
sprite animation, there is a visual object in the palette. Users
can pick a visual object in the palette, and then create an

1 GarageGames: http://www.garagegames.com
2Acceleo official website: https://eclipse.org/acceleo/

object of the same type and initial attributes. The TGB
extension protocol allows adding customized object
prototypes to the palette of the world editor. We generated
one pattern object prototype in the TGB palette for each
AIPattern in the RAIL model. Thus, the AIPattern is
visualized in the TGB as a graphical object like other built-
in object prototypes. Figure 7 shows how the modeling tool
and the world editor are working together.

If a user wants to connect Pattern A modeled with RAIL to
character A in a level, he or she can drag Pattern A from
the world editor palette to somewhere near the character in
the level. The Pattern will automatically be linked to the
nearest character, and the association is built by the
generated code as well as the domain framework. In this
case study, RAIL modeling tools are seamlessly integrated
with the TGB, and the generated code is transparent to the
game designers. We have prototyped the game Orc’s Gold
with ECGM. This game is a single player action game,
where a player controls a human character who should steal
a gold chest from orcs. We modeled four main patterns as it
was presented in Figure 6. The modeling experience is quite
convenient with the RAIL model editor as, with a few
clicks and keyboard inputs, game designers can add a new
model element. The editor also support drag and drop as
well as copy and paste, which can make modeling even
easier. We hand-coded a reusable domain framework on top
of Torque 2D and the game-specific code is mostly
generated from the RAIL model. The game-specific code
should be the most cumbersome and error-prone to
program, but with the ECGM approach this was avoided.

The initial investment (creating DSL and tool-chain) of
model-driven development is a general concern. The
solution of ECGM is to embrace engine tools narrowing the
scope of modeling, thus reducing the effort needed to create
the modeling language and tools, which was shown
usefulness in our case study. The use of language
workbench, i.e. EMF and Acceleo also significantly
reduced the initial investment. Our case study showed that
the initial investment on the meta-model and code generator
for RAIL was acceptable, and the tools can be used to
create many more patterns for making Orcs´ Gold into a
real game, or be reused in other 2D action/adventure games.

When integrating RAIL with Torque 2D, we had to modify
the engine tools. Although Torque 2D is relatively open,
there are still some issues needed to be fixed at the source
code level. The modifications we made were minor, but it
introduces the problem that every time we update the
engine, we have to redo the modifications. So for the engine
vendors, it is wise to keep the format of level data flexible
and open to external tools, because this can make the
engines have better opportunity to be chosen as the target
engine in MDGD projects.

Figure 7. Use AIPattern in the TGB

CONCLUSION
Today, the use of game engines is the mainstream approach
for developing games. From a software architecture
perspective, a modern game engine mainly consists of two
parts: the run-time engine, and the world editor running on
top of the run-time engine. To be practically useful, MDGD
must be able to cooperate with both parts of a game engine.

Some existing MDGD approaches are aware of the game
engine, however they have overlooked the cooperation with
the world editor, leaving a gap between MDGD and the
game engine. In this paper we have presented ECGM to
address this gap. ECGM uses code generation or model
transformation techniques not only to generate gameplay
code, but also generate world data that can be manipulated
in the world editor. With the ECGM approach, game
designers working on world editors do not have to know the
details of code generation, while they only have to
manipulate the visual objects generated from the model.

The ECGM approach was demonstrated with a case study
where Reactive AI Language, a DSL for action/adventure
games was implemented and its toolchain were integrated
with the commercial game engine Torque 2D. The
integrated toolchain showed that the ECGM approach can
make MDGD and engine based development feasible and
convenient.

Further work may include integrating MDGD approaches
with other commercial game engines to validate the
feasibility and collect user feedback to evaluate the
effectiveness of the approach. Developing more prototypes
based on the integrated tool-chain can also provide usability
data that is important for evaluating the approach.

REFERENCES

1. Kelly, S. and J.-P. Tolvanen, Domain-Specific
Modeling Enabling Full Code Generation. 2008:
John Wiley & Sons, Inc.

2. Reyno, E.M., et al., Automatic prototyping in
model-driven game development. Comput.
Entertain., 2009. 7(2): p. 1-9.

3. Reyno, E.M. and J.A.C. Cubel, Model-Driven
Game Development: 2D Platform Game
Prototyping, in Game-On 2008, 9th Int’l Conf.
Intelligent Games and Simulation, EUROSIS.
2008.

4. Altunbay, D., E. Cetinkaya, and M.G. Metin,
Model Driven Development of Board Games, in
the First Turkish Symposium on Model-Driven
Software Development (TMODELS). 2009.

5. Furtado, A.W.B. and A.L.M. Santos, Using
Domain-Specific Modeling towards Computer

Games Development Industrialization, in 6th
OOPSLA Workshop on Domain-Specific Modeling
(DSM’06). 2006.

6. Furtado, A.W.B. and A.L.M. Santos, Extending
Visual Studio .NET as a Software Factory for
Computer Games Development in the .NET
Platform, in 2nd International Conference on
Innovative Views of .NET Technologies
(IVNET06). 2007.

7. Furtado, A.W.B., A.L.M. Santos, and G.L.
Ramalho, A Computer Games Software Factory
and Edutainment Platform for Microsoft .NET, in
SB Games 2007. 2007.

8. Hernandez, F.E. and F.R. Ortega, Eberos GML2D:
a graphical domain-specific language for
modeling 2D video games, in Proceedings of the
10th Workshop on Domain-Specific Modeling.
2010, ACM: Reno, Nevada. p. 1-1.

9. Walter, R. and M. Masuch, How to integrate
domain-specific languages into the game
development process, in Proceedings of the 8th
International Conference on Advances in
Computer Entertainment Technology. 2011, ACM:
Lisbon, Portugal. p. 1-8.

10. Bezivin, J. and O. Gerbe, Towards a Precise
Definition of the OMG/MDA Framework. 2001.

11. France, R. and B. Rumpe, Model-Driven
Development of Complex Software: A Research
Roadmap.

12. Favre, J.-M., Towards a Basic Theory to Model
Model Driven Engineering.

13. Hailpern, B. and P. Tarr, Model-driven
development: The good, the bad, and the ugly.
IBM Systems Journal, 2006. 45(3): p. 451-461.

14. Mellor, S.J., A.N. Clark, and T. Futagami, Model-
Driven Development. 2003.

15. Sendall, S. and W. Kozaczynski, Model
Transformation: The Heart and Soul of Model-
Driven Software Development. IEEE Software,
2003.

16. Selic, B., The Pragmatics of Model-Driven
Development. IEEE Software, 2003.

17. Kent, S., Model Driven Engineering, in IFM 2002.
2002.

18. Schmidt, D.C., Model-Driven Engineering. IEEE
Computer, 2006.

19. Group, T.O.M., UML 2.0: Superstructure
Specification. Version 2.0. 2005.

20. Henderson-Sellers, B., UML-the Good, the Bad or
the Ugly? Perspectives from a panel of experts.
Softw Syst Model, 2005.

21. Krogstie, J., G. Sindre, and H. Jorgensen, Process
models representing knowledge for action: a
revised quality framework. Eur J Inf Syst. 15(1).

22. France, R. and B. Rumpe, Domain Specific
Modeling. Softw Syst Model, 2005.

23. Mernik, M., J. Heering, and A.M. Sloane, When
and how to develop domain-specific languages.
ACM Comput. Surv., 2005. 37(4): p. 316-344.

24. Stahl, T., M. Voelter, and K. Czarnecki, Model-
Driven Software Development: Technology,
Engineering, Management. 2006: John Wiley &
Sons.

25. Visual Scripting Systems | Unreal Kismet. [cited
2014 13/02]; Available from:
http://www.unrealengine.com/features/kismet/.

26. Funk, M. and M. Rauterberg, PULP scription: A
DSL for Mobile HTML5 Game Applications.

27. Marques, E., et al., The RPG DSL: a case study of
language engineering using MDD for generating
RPG games for mobile phones, in Proceedings of
the 2012 workshop on Domain-specific modeling.
2012, ACM: Tucson, Arizona, USA. p. 13-18.

28. Furtado, A.W.B., et al., Improving Digital Game
Development with Software Product Lines.
Software, IEEE, 2011. 28(5): p. 30-37.

29. Furtado, A.W.B., A.L.M. Santos, and G.L.
Ramalho, SharpLudus revisited: from ad hoc and
monolithic digital game DSLs to effectively
customized DSM approaches, in Proceedings of
the compilation of the co-located workshops on
DSM'11, TMC'11, AGERE!'11, AOOPES'11,
NEAT'11, & VMIL'11. 2011, ACM: Portland,
Oregon, USA. p. 57-62.

30. Sarinho, V.T., et al. A Generative Programming
Approach for Game Development. in Games and
Digital Entertainment (SBGAMES), 2009 VIII
Brazilian Symposium on. 2009.

31. Moreno-Ger, P., et al., Language-Driven
Development of Videogames: The <e-Game>
Experience, in Entertainment Computing - ICEC
2006, R. Harper, M. Rauterberg, and M.
Combetto, Editors. 2006, Springer Berlin
Heidelberg. p. 153-164.

32. Moreno-Ger, P., et al., A documental approach to
adventure game development. Science of
Computer Programming, 2007. 67(1): p. 3-31.

33. Pleuß, A., et al., Integrating authoring tools into
model-driven development of interactive
multimedia applications, in Proceedings of the
12th international conference on Human-computer
interaction: interaction design and usability. 2007,
Springer-Verlag: Beijing, China. p. 1168-1177.

34. Pleuss, A. MML: a language for modeling
interactive multimedia applications. in
Multimedia, Seventh IEEE International
Symposium on. 2005.

35. Pleuß, A., Modeling the User Interface of
Multimedia Applications, Model Driven
Engineering Languages and Systems, L. Briand
and C. Williams, Editors. 2005, Springer Berlin /
Heidelberg. p. 676-690.

