
Problems and Solutions for Mobile Multiplayer
Real-time Games over Wireless Networks

Alf Inge Wang1, Eivind Sorteberg1, Martin Jarrett1, and Anne Marte Hjemås2

1Dept. of Computer and Information Science
Norwegian University of Science and Technology

N-7491 Trondheim, Norway
alfw@idi.ntnu.no, sorteber@idi.ntnu.no, martinja@idi.ntnu.no,

2Telenor Research & Innovation
Trondheim, Norway

anne-marte.hjemas@telenor.com

Abstract—Most recent released PC and console games offer
multiplayer online support where players can compete or
cooperate in real-time. However, very few games on mobile
phones provide multiplayer support other than shared high
score lists. This paper describes problems game developers
have to face when developing real-time multiplayer games for
mobile phones. Typical problems the developer has to deal
with are incoherent representation of players’ positions, jagged
player object movement, missing collision detection between
player objects and background, and wrong or missing collision
detection between player objects. The paper describes the mobile
multiplayer real-time game BrickBlock, which was developed
to investigate the performance issues related to multiplayer
games played over the wireless networks. Further, we describe
our approaches to solve network latency problems in the game,
which made the game playable even over networks with high
latency.

Keywords: Mobile and Wireless Collaboration Systems, Col-
laboration M&S for Exercise Support and Gaming, Multiplayer
real-time games

I. INTRODUCTION

Online games like World of Warcraft [3] have become very
popular with more than 9 million paying subscribers around
the world (2007). Many new games support some kind of
online functionality, and many online multiplayer gaming. This
trend has also reached mobile gaming, but mostly on mobile
game consoles like Sony Playstation Portable and Nintendo
DS. On mobile phones, there are few online multiplayer
games. Some examples are Pirates of the Caribbean [11],
Samurai Romanesque [10], and Tibia Micro Edition [7]. The
online multiplayer games for mobile phones on the market
today are either turn-based games or slow-paced games to
avoid problem with the latency and low bandwidth of wireless
networks. Such games can live with network response time up
to 0.5 to 1 second without ruining the game play. However,
real-time multiplayer games require much lower response time
if the games should be fun to play. In such games, it is
required that the movements and actions of all the players
in the game are updated on all mobile devices many times
per second. Especially, in games where collision detection is

involved, it is critical that the player events are distributed
to all clients frequently to be able to detect crashes or direct
contacts between objects in the game. The update frequency
of player events depends on the game genre. For instance,
fighting games require high game event update frequency
compared to strategy games. In addition to response time,
transfer bandwidth is critical for multiplayer games. The
network performance of multiplayer mobile games must also
be scalable so many players can play simultaneously.

In the project MObile and Social gameS (MOSS), the goal is
to explore the opportunities of developing mobile multiplayer
real-time games for mobile phones. In the first phase of this
project we wanted to assess the limitations of existing wireless
networks when used to play multiplayer real-time games.
The wireless networks we consider are the mobile networks
available in Norway: GPRS, EDGE, UMTS (3G), and WLAN
(Wifi). From experiences on mobile consoles we know that
WLAN works well for real-time multiplayer games, so we
wanted to include WLAN in our tests as a benchmark. As only
high-end mobile phones provide support for WLAN, other
wireless networks are considered to be more important for
multiplayer gaming on mobile phones.

This paper describes the mobile multiplayer real-time game
BrickBlock, which was developed to investigate the perfor-
mance issues related to multiplayer games played over the
wireless networks. BrickBlock is a game where players must
collaborate and compete to win. The paper describes prob-
lems and solutions relevant for visual real-time collaborative
systems with mobile clients. It investigates how much of
the coordination of the system should be managed by the
server and how much by the clients. Further, we describe
our approaches to solve network latency problems in the
BrickBlock game, which made the game playable even over
networks with high latency.

The rest of the paper is organised as follows. Section II
describes the mobile multiplayer real-time game BrickBlock,
Section III describes issues related to Collisions, Section IV
describes how collisions can be handled, Section V discusses
game control issues, Section VI describes experiences from



running the game, Section VII describes related work, and
finally Section VIII concludes the paper.

II. BRICKBLOCK - A MOBILE MULTIPLAYER GAME

The BrickBlock game concept was developed for testing
real-time performance over wireless networks. This section
describes the BrickBlock game.

A. The Game Concept

In BrickBlock, each player controls his brick around a two
dimensional playfield. The goal of the game is to push other
players into certain areas defined as traps. When a player is
pushed into a trap, he dies, looses points, and respawns. The
winner of the game is the player that has died least number
of times within a limited time. This concept opens for tactical
play, as the players most likely will have to find other players
to cooperate with in order to push and block other players.
Further, such alliances will have to be temporary for one player
to become the winner of the game. Ambitious players will
most likely jump from one alliance to another several times
during a game session to make sure they are always in the best
position for the victory. In other words, BrickBlock is a game
characterised by its anarchy, chaos, and treachery - attributes
that makes it an entertaining, unpredictable and social game.

Fig. 1. Illustration of the BrickBlock game

An illustration of the game is shown in Figure 1. When the
game starts, the strength, size and speed of the players’ bricks
are equal. This will change when a player consumes one of
power-ups. The Speed power-up gives the player increased
speed making it easier to avoid other players and to pick up
other power-ups. The Size power-up increases the size of the
player’s brick making it easier to pick up more power-ups and
easier to push other players, but it also makes it easier to hit
traps. The Strength power-up increases the player’s strength
making it easier to push other players around.

B. The Game Architecture

The architecture of the BrickBlock game is a combination
of three architectural patterns: the client-server, the layered
and the model-view controller pattern as shown in Figure 2.

The bottom layer consists of the Communication module
that manages all communication between the server and the
client. The same communication and message-parsing inter-
face is used on both sides to provide a uniform communication

Fig. 2. Architectural overview

between the server and the clients to support various message
formats such as plain text and XML.

The Test module is not necessary to run the game itself, but
is used to run network performance tests between the server
and the client. This module also implements the communica-
tion interface, and can therefore be used as a communication
module by the models.

The Model layer contains the information needed to rep-
resent the current state of the game. It also keeps track of
the messages needed to be sent, or being received. The model
part on the server side stores and manages information about
the game that also is stored and managed by the clients. The
server contains the whole view of the game, while the clients
has a more local representation of the game.

The View layer provides the graphical user interface for the
server and the clients. The view on the server shows the players
being connected and provides some settings. The view on the
clients displays the game running including screens for a game
lobby and the game itself. The server view was implemented
in Java SE while the client view was implemented in Java ME.

C. Real-time Game Challenges

The BrickBlock game concept was developed to create a
game with very high real-time requirements for a game played
over a wireless network. The aim was to create a game that
would reveal gameplay issues related to network lag and low
network bandwidth:

• It is critical that the positions of the players (the bricks)
are correctly reproduced on all the players’ screens, as
how bricks are positioned on the play area is critical to
the gameplay.

• It is critical to detect when a brick (see Figure 1) hits the
walls limiting the play area.

• It is critical to detect when two or more bricks collide
to correctly move the bricks according to the involved
physical forces.

From preliminary tests running the game over a GPRS
wireless network with long latencies (0.6 secs), we noticed
a number of problems:

• The position of the same brick was different on different
players’ screens. As such, the players did not have one
coherent representation of game world. When watching



several mobile screens at the same time, it did not look
like the players played the same game, as the network
lag could not cope with the movement of the involved
players.

• In the first version of the game, the wall detection was
performed on the server to minimise the load of the
mobile device. Unfortunately, in some cases the server
did not discover when a brick hit the wall in time, and
the brick would float outside the play area (unstable state
of the game).

• The most noticeable problem was inaccurate detection of
collisions between players (bricks). This problem cannot
simply be solved by doing the collision detection locally
as all the players involved have to be taken into account.
In some cases, players could simply run over other
players without any collision detection at all. In other
cases, bricks were pushed around when it looked like
they did not collide or the bricks ended up on top of
each other. The latter should not be an allowed state of
the game.

To avoid these problems, all the mobile clients must be
updated over the wireless network frequently so they all have
about the same representation of what is going on in the
game. How frequently the data must be exchanged between
the server and the clients depends on how much the players
are moving the bricks around, and the screen framerate of the
game. Ideally the data exchange update rate should be equal to
or above the framerate of the screen. The screen framerate of a
game depends on the kind of game and the kinds of movement
on the screen. If objects move very fast on the screen, the
framerate should be higher. A game like BrickBlock does not
require a framerate above 10 frames per second, which means
that the data should ideally be exchanged more than 10 times
per second.

To investigate whether mobile multiplayer real-time games
can perform well over existing wireless networks we per-
formed some network performance tests. The results from
these tests showed that the expected latency for game updates
using the GPRS or EDGE is 0.5-0.6 secs, 0.3 secs for UMTS
and 0.09 secs for WLAN [15]. The rest of this paper will
describe issues and solutions to minimise the effect of the
network latency on the gameplay.

III. ISSUES RELATED TO COLLISIONS

Collisions are one of the most important aspects in nearly
all computer games with moving objects. For shooter games,
collision detection is needed to detect when the players shoot
each other or run into each other. For classic games like
Tetris, collision detection is needed to stop the bricks in
the correct position. Even in games where collisions do not
have immediately visible effects, like simple driving games,
collision detection is needed for example to detect when the
driving surface changes, i.e. when the car goes off track and
onto grass.

In BrickBlock, the need for collision detection and handling
is obvious. Without collision detection, pushing other players

is impossible, and nothing will happen if the players move
across a trap. This section discusses the different situations
where collision calculations are needed, and whether these
calculations are better handled on the server or on each client.

A collision in BrickBlock occurs when a part of a player’s
brick touches another object or a wall. This can happen when
a player moves his own brick into the other object or wall, or
when he is pushed. There are four main causes for collisions:
collision with walls, power-up objects, traps, or other players.
In the following, each of these cases is discussed, and we
propose some approaches for detecting the collisions.

A. Collision With Walls

Wall collisions occur when a player’s brick moves to a
position where it is partly or completely located outside the
game board. This happens either when the player tries to move
to this position himself, or when another player pushes him to
this position. The first case is quite simple to detect, as this
only requires checking if the next move causes the brick to
end in an illegal position. If so, the move is disallowed. Since
this is such an easy case of collision detection, self-caused
wall collisions should definitely be handled locally on each
client. Figure 3 illustrates this situation.

Fig. 3. Self-caused wall collision

The other case of wall collision is a little more complex, as
this involves interaction with another player. Several possible
solutions are possible for this situation. Firstly, a similar
approach as mentioned above can be used: If pushing a
player results in that the other player is placed in an illegal
position, the move is disallowed. However, the problem with
this solution is that the approximated position of the pushed
player is not necessarily completely correct, because of the
latency of information transmissions. A move towards a wall
may therefore be incorrectly disallowed, because a player that
is not actually there is detected to be standing in the way.

Another solution is allowing such a move, and only check-
ing the local player’s position against the wall. In this case, a
player may actually be pushed outside the wall. Such situations
need to be detected and corrected either by the client of the
pushed player or the server. In both cases, the simplest solution
for such events is transmitting a new position for the pushed
player so that he is placed back in a valid position. If this
is done by the server, the only client visibly affected by this
action is the player that pushed, as the pushed player will
be moved to another position shortly after the push occurred.
If it is done by the pushed player, all clients will be visibly
affected, as they first receive a notification that a player has



been pushed, and a corrected position shortly after. But the
advantage of this last solution is that this detection is already
mostly done by the calculation of self-caused wall collisions.
A three-step illustration for this situation is shown in Figure 4.

Fig. 4. Externally caused wall collision

Unfortunately, as the figure shows, both the solutions involv-
ing correction when a collision is detected is likely to result
in players being placed on top of each other when the pushed
player is returned to a legal position. Thus, the mentioned
drawback of the first solution can be accepted and let wall
collisions be detected by the pushing player. The result of this
solution is that step 2 and 3 of Figure 4 are detected and
stopped before they are executed.

B. Collision With power-up Objects

Another type of collision detection is collisions with power-
up objects. When such an event occurs, the power-up needs to
be removed from the game board, and the player’s attributes
need to be updated for all participants. Like wall collisions,
there are several solutions for this kind of collision detection,
all of which have both advantages and disadvantages.

The simplest solution for detecting power-up colli-
sions is to utilize the sprite collision available in the
javax.lcdui.microedition.Sprite class in MIDP 2.0. This can
only be performed by the local client, or it can be performed by
all the clients each time a player moves. However, performing
a collision detection every time a player position is received on
all clients requires quite an amount of processing. This is not
desirable for a game designed for mobile phones, and should
be avoided when possible. Furthermore, since information
from one client takes some time to be distributed to the others,
the player may see the power-up on their local screen for some
time after another player has picked it up. This may lead to
several players picking up the same power-up object.

Another possibility is comparing the player’s position with
the position of the power-up objects on the server whenever
a position update is received. A server is normally far more
powerful in terms of resources than a client, but this solution
leads to visible delay for the players, as the collision with the
power-up will not be registered before a little after the actual
collision. The game should offer feedback to the player when
colliding with a game object, such as vibration or flashing
lights. If the collision detection is performed on the server,
this feedback is likely to appear too late.

Hence, there appears to be a choice between saving the
client for these calculations and ensuring that only one player

can pick up a power-up, or introducing a lag that can be
avoided. However, the two solutions can be combined into
a solution that both ensures only one player picking up a
power-up, as well as immediate feedback to the player. In
this solution, the collision detection is performed locally on
the client, as in the first solution, and the phone flashes
and/or vibrates if a collision is detected. However, instead of
immediately increasing the player’s attributes, a notification
that the player has collided with the power-up is transmitted
to the server. The server then checks if the power-up has been
picked up by any other players. If not, the server notifies all
connected players that player X has picked up a power-up
object, and has increased one of his attributes. All clients must
then remove the power-up object from the game board once
they receive the notification.

This solution still contains the problem of introducing more
collision calculation on the client. However, in this case, the
extra processing is worth the cost, because of the increased
immediateness of the game. Thus, the detection of power-up
collisions should be performed locally on the player’s client
when he moves. When a power-up collision is detected, a
notification is sent to the server, and if the pick up is approved,
the notification is forwarded to all connected players.

C. Collision With Trap

A trap collision occurs when a player collides with the trap
object on the game board. This will usually happen when the
player is pushed by other player(s) into the trap, but it can
also happen if the player is unlucky and moves himself into the
trap. Both of these cases are similar to the power-up collisions
discussed in the previous section, and is best handled by
using the built-in support for collision detection in MIDP 2.0.
Trap collisions and power-up collisions are therefore detected
equally and at the same time on the local client.

The problem with several players colliding with the trap at
(close to) the same time does not apply to trap collisions as
with power-up objects. There is no rule against several players
dying at the same time. However, when a player dies, he needs
to be moved to an unoccupied corner on the game board.
This involves traversing the player list and comparing the
players’ positions to the possible new position of the player.
In itself, this operation is much like the collision detection
already performed on the client. However, if several players
die at the same time, all of these players need to be moved
to an available corner. Because of the network latency, the
new positions may be generated, and the players moved to the
corner, before the other player’s new positions are received.
Hence, two or more players may be placed in the same corner
if the respawning position is generated on the clients.

Due to this problem, collisions with traps are handled in
the exact same way as collisions with power-up objects. If a
player collides with the trap, his phone flashes and/or vibrates,
and a collision notification is sent to the server. The server
then generates the player’s respawning position, as well as
the player’s new score, and transmits this information to all
players.



Fig. 5. Player collisions with simultaneous movement

D. Collision With Other Players

Like collisions with power-up objects and traps, collisions
with other players are quite simple to detect using Sprite
objects. However, power-up objects and traps have constant
positions and do not continuously move around on the game
board like players do. As mentioned previously, it is impos-
sible to have a completely correct overview of exactly where
all the players in the game are at all times. This makes player
collisions harder to detect correctly than collisions with other
game objects, and even more difficult to handle.

The simplest case of collision detection and handling be-
tween two players is when one of the players is standing still
while the other is pushing. In this case, the collision detection
is similar to game objects. The position of the pushed player
can then simply be updated by letting the pushing player send
a message that says that the player has been pushed to a new
position.

But when both players move at the same time, the situation
is more complex because of the network latency. This may
result in three different situations. Figure 5 illustrates these
situations for collisions between two players, but the same is
true if three or more players collide. The left image of each
case shows a possible representation of the player positions,
whereas the right image shows the actual positions of the
players. The three situations illustrated in the figure can arise
when:

1) An existing collision is not detected because both players
have moved into the same area, but the position of at
least one player has not yet been received.

2) A non-existing collision is detected because both players
who were in the same area have moved away, but the
position of at least one player has not yet been received.

3) An existing collision is detected, but it is not completely
correct since the position of at least one player has not
yet been received.

The first cases may result in two players occupying the same
board position for a short period of time, until the new position
has been received and the collision is detected. However, this
is not very problematic, as the only time this happens is when
the players touch very briefly, and does not try to push each
other. The second case is the exact opposite of the first, and
may in some situations be more problematic. The consequence
of this case can be that a player is pushed even though he has
actually managed to get away from the pushing player. If this

happens close to the trap, the player may unintentionally die.
However, like in the first case, the correction will occur fast
enough that we do not judge this latency to be a critical issue.
For the third case, there is no consequence for how the players
experience the game. A collision is a collision, and whether
this collision occurs at the edge of or at the centre of the
brick, the result is the same. A collision has occurred, and
the strongest brick moves the other in the strongest players’s
movement direction.

As previously mentioned, the server contains the most
accurate approximation of the game state in sum, but each
client contains the most accurate representation of its own
state. This means that a collision that is detected on the server
is more likely to be correct than one detected on the client. On
the other hand, this solution introduces a visible latency to the
game. The player will see that he collides with another player,
but the effect of this collision will not register until the server
has received the player’s new position, detected the collision,
and returned a collision notification. In other words, the player
will experience that he is moving a bit over the other player
before the collision registers and the bricks start pushing each
other. Because of this, and since the consequences of a little
inaccurate collision detection are not too critical, BrickBlock
lets each client be responsible for detecting collisions with
other players.

IV. HANDLING PLAYER COLLISIONS

When collisions between players are detected, these detec-
tions have to be handled so that the correct actions are taken.
In BrickBlock, the results of such collisions are change of
speed and movement direction for at least one of the players.
For such events, several factors need to be calculated. First,
the strength ratio between the players involved in the collision
needs to be calculated. If one of the players is stronger than
the other, the strongest player will be able to push the other
in the strongest players’s movement direction. How much the
player can be pushed depends on the strength ratio between the
players, as well as the movement speed of the strongest player.
If the strongest player is 50% stronger than the weakest, and
the speed of the strongest player is 2, the weakest player will
be pushed with a speed of (0.5 × 2 =) 1. Since the players
are pushing each other, the contact will be maintained, and
the strongest player will also move with a speed of 1.

Like the other elements discussed in previous section,
collision handling may also be handled both server and client



Fig. 6. Server-side collision handling

Fig. 7. Client-side collision handling

side. While the server has the advantage of plentiful processing
powers, performing calculations on the client often leads to a
more responsive game from the player’s point of view.

In the case of player collisions and force movements,
collision handling on the server profits from its more accurate
world model compared to the pushing player, when it comes
to calculating the new position of the pushed player. When
the server is notified that a collision has occurred, it is able to
calculate the new positions of both the pushing and the pushed
player with relatively accurate values. However, the problem
of visible delay on the involved clients once again arises. Both
players will be able to move forward for a short time while the
server is waiting for the collision notification, and when the
server transmits the new positions, the players will experience
that they are moved backwards seemingly without reason.
This situation is illustrated in Figure 6. The figure shows a
step-by-step procedure of how calculations will be performed
and messages transmitted when the server is responsible for
handling player collisions. Where several boxes are placed
over each other, the actions are performed in parallel. As the
figure shows, the redrawing of positions happens first in step 5
on the local client. Two of these steps consist of transmission
between server and client, and with a slow network, it is easy
to understand that this solution involves significant delay for
the players.

The other solution is letting the pushing player have respon-
sibility for calculating the results of the collision. A step-by-

step illustration of this solution is shown in Figure 7. Here, we
see that the redrawing of the players happen already in step 3.
Furthermore, no message transmission is necessary before the
game board is updated. This will lead to a far more responsive
game from the player’s point of view.

As mentioned previously, it is likely to be a deviance
between the other player’s real position and its perceived
location on the local client. Calculating the new position of the
pushed player and transmitting this position may lead to the
same problem with seemingly unnatural position corrections.
However, an improvement can be achieved by letting the
pushing player transmit a movement vector instead of a static
position. With this solution, the pushed player will not be
reset to a previous state, but rather corrected with an amount
corresponding to the strength ratio between the players and
the speed of the pushing player. The procedure for detecting
and handling player collisions on a client can then be carried
out as described in Figure 8.

The movement vector solution could also be used at the
server, and will reduce the problem of position corrections.
However, the problem with responsivity still remains. When
a player collides with another player, he expects one of the
players to be forced by the other player. With server-side
collision handling, there will be a noticeable delay before this
happens.

Due to the latency in the network, a player may experience
to be pushed without contact between the players displayed on



Fig. 8. Procedure for handling player collisions

his phone. Also, there may be situations where a push should
occur, but does not. This is equal to the situations illustrated in
Figure 5. With client-side collision handling, these situations
will occur more often and with larger deviations than when
performed on the server. However, such situations will be
a smaller source of irritation than the delay associated with
server-side handling. As a consequence, collision handling is
performed on each client when a collision is detected.

V. GAME CONTROL ISSUES

In addition to collisions, running the game itself requires a
number of calculations that must be performed throughout the
game session. The state of the game is constantly changing,
and events occur both because of player interaction and be-
cause of the game’s inherent behaviour. This section presents
and evaluates the most significant of these events.

A. Power-ups

Power-up objects in BrickBlock are generated with random
intervals. To keep track of these intervals, the power-ups
should be generated by one of the devices in the network.
In a peer-to-peer version of BrickBlock, the game initiator
was appointed as game master, and had the responsibility for
power-up generation. However, using the same approach in
a client-server network with relatively high latency may give
the game master an advantage compared to the other players.
He will see the power-ups once they are generated, while the
other players must wait for the notification.

A better solution is to let the server handle power-up
generation. Some latency is still involved, and participants with
slow connections may receive the notifications a little later
than others. This was also the case in the former. In addition,
none of the clients need to use their valuable resources for
power-up generation, but delegates this responsibility to the
far more powerful server.

There are two possible scenarios that cause the removal a
power-up object from the game board. The first is when the
power-up times out without having been picked up by any of
the players. This is quite similar to generation of power-ups,
and should be handled by the server for the same reasons.
The second is when power-up objects are removed when a
player picks up a power-up. This event was discussed earlier
in this paper, and the conclusion was that the clients should
themselves detect when they collide with a power-up object.

When such an event is detected, the client sends a notification
to the server, requesting permission to activate the power-
up. If the request is approved by the server, this power-up
activation is forwarded to all players, along with the attribute
increment provided by the power-up object. The clients are
then responsible for removing the power-up in question from
the game board.

When a power-up has been activated, it remains active for
the player for a set time interval. Detection of when a power-up
is deactivated is also a task that can be performed both server
and client side. However, if this detection is performed client
side, the exact same calculation has to be performed on every
one of the clients. Of course, each player can be responsible
for his own power-ups and send a notification when a power-
up times out. Still, this check has to be run rather often, and
will occupy more of the mobile phones limited resources.

If this check is performed on the server, it only has to be
performed each time the active power-ups are checked. Since
the server also has the most available resources, detection
of timed out power-ups should be performed on the server.
Hence, the server runs through all the active power-ups for all
the players with set intervals, and if a power-up deactivation
is detected, a notification is sent to all players, who then set
the affected player’s attributes accordingly.

B. Game Settings

To give all the players a feeling of being equally involved
in the game, it is important that all players have the same
opportunity to change the settings of the game. Examples of
such settings are how long a game should last, how many
players are allowed in the game, or possible score limits.
Changing such settings should naturally be performed on
the local client, and the changes in settings should then be
transmitted to the other players through the server.

However, the control of these settings can be implemented
in various ways. In a peer-to-peer Bluetooth version of
BrickBlock, the game master was responsible for handling
these settings, and detecting whenever a change in the game
occurred (such as a time-out or reached score limit).

This solution is also possible to use for the server-client
architecture, by letting the game initiator be game master. The
problem with this approach is the latency discussed previously.
But for this kind of events, this latency is not critical. It is not
critical if a game finishes a little bit earlier for one player than



for another.
Another client-based approach for this kind of events is

letting all the clients be their own game master. All the clients
have control over the different settings, and if a limit is
reached, the game is simply closed locally. However, both
of these client-based approaches require some background
calculations. Even though these calculations are not very
demanding, a server-based approach is not in any way worse,
and in addition, frees the client from having to perform the
calculations.

A server-based approach to this task requires the server to
have a complete model of the game, such as player scores,
number of players in the game, and time elapsed. Some
of these elements are naturally stored on the server (such
as players connected to the game), whereas others can be
implemented with a minimal amount of effort. In this way,
the server can continuously check the state of the game,
and (close to) immediately send a “game over”-notification
when the game should be ended. As mentioned, this takes
some calculation load off the clients. Furthermore, like with
power-up objects, this approach reduces the small downside
of delayed “game over”-notifications mentioned for the game
master client-side approach.

VI. EXPERIENCES

Our experiences from running BrickBlock showed that the
game was playable even over GPRS and EDGE networks and
that our measures for limiting latency issues mostly works
well. However, there were some issues that will be presented
in this section.

In BrickBlock we use a simple movement prediction where
each player simply keeps moving in the same direction until a
new position update is received. Then, a new movement vector
is calculated, and the player is moved along this movement
vector. Most of the time, this movement prediction works
satisfactory and helps the game run smoothly. However, there
are a couple of situations where the movement prediction
algorithm does not work as well as we could have wished
for.

A. Warping

As long as the player moves in straight lines most of the
time, and does not constantly change direction, our movement
prediction algorithm works very well. Unfortunately, the play-
ers do not always necessarily move in straight lines. If a player
feels like it, he may change direction as often as he likes. This
may lead to need for correction of other player’s positions on
local client. In the worst case scenario, the warp distance can
be as much as 2d (d is the distance moved). If this happens
very often, the players will jump around on the game board
every time new position updates are received, and trying to hit
and push other players will be close to impossible.

This problem has two possible solutions. The simplest of
these is minimizing the size of d. Since d is the distance the
player moves between position updates, it can be reduced by
simply sending position updates more often, or reducing the

speed of the player. However, both of these methods have their
downsides. If position updates are sent more often, the amount
of data sent per game will increase correspondingly.

On the other hand, reducing the player’s speed leads to the
players’ bricks moving slower on the game board. This is
very likely to decrease the playability. For these reasons, it
is important to find appropriate values for the frequency of
position updates and the players’ speed. Some warping will
have to be allowed as a compromise.

Another solution to minimize the warping is interpolation.
This is a technique that reduces the amount of warping
significantly, or removes it entirely. However, interpolation and
smooth turning is not suitable for the kinds like BrickBlock
where the player changes directions very suddenly.

The movement prediction is definitely a problem in our
current implementation of BrickBlock, because of the warping
problem. We have not found a completely satisfactory solution
to this problem.

B. Detecting stopped players

Another problem related to our movement prediction occurs
sometimes when a player stops moving. To avoid sending
unnecessary position updates when the player is standing still,
the client sends two equal positions when the player stops, and
then waits for the player to start moving again before sending
new position updates. The receiving clients then calculate the
player’s movement vector based on these positions. Since the
positions are equal, the movement vector will be a 0-vector.
This method works very well most of the time.

However, since we use UDP protocol for performance
purposes, data packets are sometimes lost. If this happens
with one (or both) of the equal position updates, the player’s
movement vector will never be detected to be 0 and the player
will not stop moving. To make things worse, since position
updates are not transmitted while the player is standing still, no
new position updates are received by any of the other clients.
Because of the movement prediction algorithm, the stopped
player will therefore keep moving in the same direction on
the other player’s screen. Eventually, he will disappear through
one of the walls. If one of the equal positions is lost on the way
from the stopped player to the server, all connected clients will
experience this. If the packet is lost on the way from the server
to a client, only the receiver of the packets will be affected.

The optimal solution to this problem would be implement-
ing a mechanism for safe transmission of critical messages.
This is implemented in TCP, but not in UDP. However, due
to performance issues, TCP cannot be used.

Another, but much less elegant solution is never stopping the
sending of position updates, or sending them less frequently. In
this way, a few lost position updates is not that critical, since a
position update will correct the player’s position soon enough.
Although this solves the problem, sending more information
than necessary is not desirable.

A sort of middle way would be sending a larger number of
position updates before stopping the transmission. In this way,
the probability of at least two equal position updates reaching



their destinations would be improved. However, from our tests
we have discovered that one packet loss often is followed by
several more packet losses. As a consequence of this, if two
packets are lost, it is likely that five packets would also be
lost.

For our prototype game the problem with players not
stopping because of lost packets is a non-critical problem.
Firstly, such packet losses are rare; at least with the network
conditions we have tested the game. Secondly, and more
importantly, BrickBlock is not designed for static play. Players
that are not moving cannot push other players. At the same
time, they are easy targets for other players seeking to push
them into the trap.

C. Pushing Other Players

The main goal of BrickBlock is pushing other players into
the trap, and by doing so causing a negative point for the
pushed player. Making this force pushing work in a satisfac-
tory way has proved to be a challenge in our implementation.
In the current implementation of BrickBlock, this is done by
calculating the strength ratio between colliding players, and
moving the weakest player in the strongest player’s movement
direction according to this ratio. However, because of the
position updates that are continuously transmitted, the pushing
does not work as well as could be desired. Every time a
position update is sent from the pushed player, his position
is corrected with all the other clients. Since these position
updates are not necessarily synchronized with the force vector,
this correction may lead to pushed player being corrected to a
position he has actually been pushed past. When this happens
several times, the player will gradually be placed more and
more under the pushing player. When a player has picked up
a speed power-up, this problem is even worse, as the difference
between the positions in the updates are even greater.

There are several possible methods that can be used to
reduce this problem. However, we have not been able to find
any solutions that solve the problem satisfactory.

One solution is to increase the transmission frequency to
reduce this problem. If position updates were sent more often,
the deviance between the different clients’ model of the game
board would be reduced. Collisions would be detected closer
to the same time with the involved players, and the weakest
player would not be allowed to move toward the stronger. This
increases the amount of data transmission in the game.

Another solution is to forbid position updates from pushed
players. This could be done by either the server or by the
pushing player. The server would likely be the best alternative,
as this would be the fastest way to notify all connected clients.
However, the consequence of this approach would be that the
pushed player could not move away from the stronger player.
Still, a variant of this method, where only limited movement
from the pushed player is allowed, would probably be the best
way to improve the force push functionality of BrickBlock. For
example, the server could calculate the positions of the pushed
player based on his previous location, his current movement
vector, and the force vector received from the pushing player.

Then the server could transmit this position to the other clients,
instead of forwarding the position update from the pushed
player immediately.

The current version of BrickBlock does not work as well as
it should because of this problem. Players can push each other
around the board, but sometimes there will be some player
control issues. It is unlikely that there is one approach that
can make the pushing perfect. However, an approach involving
the server calculating the pushed player’s position should be
investigated.

VII. RELATED WORK

This section describes research in the area of network
issues and gaming. As there is little work on real-time mobile
multiplayer games, papers on real-time online multiplayer
games for wired network are also presented.

In [4], Busse et. al describe experiences from running a
ported online game over GPRS and UMTS from an quality
of service perspective. The game setup consisted of a two-
player game where one client ran on a PocketPC PDA and
one client ran on the game server. The game server sends
game states 20 times per second. The result from this test
shows that for GPRS the average response time is about 1
second, where as for UMTS the average response time is about
285ms. The authors conclude that the game is unplayable over
both GPRS and UMTS. The results found in this paper are
not very different from the results we found. However, we
believe that Busse et. al concluded that real-time games are
unplayable over wireless networks due to that TCP was used
as transfer protocol and that the game was not implemented
to handle latency of wireless networks. Our implementation of
BrickBlock compensates for a less frequent update of game
states than traditional wired online games.

In [1], Beigbeder et. al investigate the effect of loss and
latency on user performance in the online first-person shooter
game Unreal Tournament (UT) 2003 running on PCs over
wired network. The paper describes how introduction of loss
and latency in the network affects the players when they
performed simple movement (following trails), complex move-
ment (navigate an obstacle course), precision shooting and a
death-match. Although the introduction of loss and latency
affected the players’ performance to some degree, the differ-
ence was not statistically significant. E.g., the performance of
precision shooting decreased for latencies above 100ms, and
for latency over 300ms the performance decreased 50%. For
movement, neither latency nor loss had a noticeable impact
on the player’s abilities. In full game tests, packet loss did not
impact the player performance, but increased latency caused
a decreasing trend for the player performance although not
significant.

In [6], Chen et. al investigate the network traffic of a
Massive Multi-player Online Role Playing Game (MMORPG)
called ShenZhou Online. The results shows that MMORPG
have similar network characteristics as FPS that they both gen-
erate small packets and require low bandwidth. MMORPGs re-
quire less bandwidth than FPS due to less real-time gameplay.



The more distinctive network characteristics of MMORPGs
are the strong periodicity where game updates are accumulated
and sent at fixed time intervals, the temporal locality in the
game traffic due to chain-reaction of actions, the irregularity if
traffic due to diversity of user behaviour, and the self-similarity
of the aggregate traffic due to the heavy tailed activity/idle
activities of individual players.

In [8], Dick et. al analyse how network latency and jitter
affects the performance and perception in multiplayer online
games (wired). This paper presents a survey where players
state their subjective perceptions for how network latency
and jitter affects the performance and game play for twelve
different games representing four different game genres: first
person shooter, real-time strategy game, sport game and car
racing simulation. The result of this survey shows the player’s
perception of the magnitude of latency that is accepted for
an unimpaired game is about the same for all game genres:
80.7ms in average. The perception of how much network
latency that can be tolerated before it ruins the gameplay
is up to 150ms with an average of 118ms. For the football
(European) game FIFA, 100ms was the maximum latency
tolerated. It was a bit surprising that the players did not
perceive that first person shooters would require lower latency
than real-time strategy games which is characterised with a
slower gameplay.

In [14], Sheldon et. al describes results from a controlled
experiment to investigate the effect of latency on user per-
formance in the real-time strategy game Warcraft III. The
experiment considered three different type of activities in
the game: (1) building - players gather resources, construct
defences and recruit units, (2) exploring - players send units
out to determine geographical layout and location of other
players’ unit, and (3) combat - players engage their units with
other units in battle. The results of the experiment show that
there is no significant effect on the performance of the players
when the latency is increased (from 0 to 3500 ms). However,
for exploring there is some correlation between explore time
and latency (0.63). Analysis of users playing the game showed
that the users could compensate for latencies up to 500ms.
For latencies above 800ms, the game appeared erratic which
degraded the game experience.

Other work related to network issues and games can be
found in [2], [12], [13], [9], and [5].

VIII. CONCLUSION

In this paper we have presented issues and solutions for
managing latency issues related to mobile multiplayer real-
time games. The main problem is to ensure a coherent rep-
resentation of the game world for all involved players and to
ensure that player movement and actions are smoothly and
correctly represented for all players. The simplest solution

to this problem is of course to play the game over wireless
networks with low latency like WLAN. However, it is possible
to minimise the problems also for slower networks like GPRS
or EDGE, by choosing the right balance between client
collision detection and server management. The BrickBlock
game presented in this paper was a very demanding game in
terms management of object collision. More work should be
done on other types of games to improve the solutions for
latency in real-time games.

REFERENCES

[1] Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Em-
manuel Agu, and Mark Claypool. The effects of loss and latency on user
performance in unreal tournament 2003. In NetGames ’04: Proceedings
of 3rd ACM SIGCOMM workshop on Network and system support for
games, pages 144–151, New York, NY, USA, 2004. ACM.

[2] Y. W. Bernier. Latency Compensating Methods in Client/Server In-game
Protocol Design and Optimization. In Game Developers Conference,
February 2001.

[3] Thomas W. Brignall and Thomas L. Van Valey. An online community as
a new tribalism: The world of warcraft. Hawaii International Conference
on System Sciences, 00:179b, 2007.

[4] Marcel Busse, Bernd Lamparter, Martin Mauve, and Wolfgang Effels-
berg. Lightweight QoS-support for networked mobile gaming. In
NetGames ’04: Proceedings of 3rd ACM SIGCOMM workshop on
Network and system support for games, pages 85–92, New York, NY,
USA, 2004. ACM.

[5] Wu chang Feng, Francis Chang, Wu chi Feng, and Jonathan Walpole.
A traffic characterization of popular on-line games. IEEE/ACM Trans-
actions on Networking, 13(3):488–500, 2005.

[6] Kuan-Ta Chen, Polly Huang, and Chin-Laung Lei. Game traffic analysis:
an MMORPG perspective. Computer Networks, 50(16):3002–3023,
2006.

[7] CipSoft. Tibia Micro Edition - the first mobile online roleplaying game.
Web: http://www.tibiame.com/home/?language=en, 2007.

[8] Matthias Dick, Oliver Wellnitz, and Lars Wolf. Analysis of factors
affecting players’ performance and perception in multiplayer games.
In NetGames ’05: Proceedings of 4th ACM SIGCOMM workshop on
Network and system support for games, pages 1–7, New York, NY,
USA, 2005. ACM.

[9] Tobias Fritsch, Hartmut Ritter, and Jochen Schiller. CAN mobile gaming
be improved? In NetGames ’06: Proceedings of 5th ACM SIGCOMM
workshop on Network and system support for games, pages 44–47, New
York, NY, USA, 2006. ACM.

[10] Jan Krikke. Samurai Romanesque, J2ME, and the Battle for Mobile
Cyberspace. IEEE Computer Graphics and Applications, 23(1):16–23,
2003.

[11] mDisney Studios. Pirates of the Caribbean Multiplayer Game. Web:
http://disney.go.com/disneymobile/mdisney/pirates/, 2007.

[12] Y. S. Ng. Designing Fast-Action Games for the Internet. In Gamasutra,
September 1997.

[13] L. Pantel and L. C. Wolf. On the Impact of Delay on Real-Time
Multiplayer Games. In Systems Support for Digital Audio and Video,
May 2002.

[14] Nathan Sheldon, Eric Girard, Seth Borg, Mark Claypool, and Emmanuel
Agu. The effect of latency on user performance in Warcraft III. In
NetGames ’03: Proceedings of the 2nd workshop on Network and system
support for games, pages 3–14, New York, NY, USA, 2003. ACM.

[15] Alf Inge Wang, Anne Marte Hjemås, Martin Jarrett, and Eivind Sor-
teberg. Performance of Mobile Multiplayer Real-time Games over
Wireless Networks. In Submitted to 9th IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks, 2008.


