
An Application of a Game Development Framework in Higher Education
Alf Inge Wang and Bian Wu

Dept. of Computer and Information Science
Norwegian University of Science and Technology

alfw/bian@idi.ntnu.no

ABSTRACT
This paper describes how a game development framework was used as a learning aid in a
software engineering course. Games can be used within higher education in various ways to
promote student participation, enable variation in how lectures are taught, and improve
student interest. In this paper, we describe a case study at the Norwegian University of
Science and Technology (NTNU) where a game development framework was applied to
make students learn software architecture by developing a computer game. We provide a
model for how game development frameworks can be integrated with a software engineering
or computer science course. We describe important requirements to consider when choosing a
game development framework for a course, and an evaluation of four such frameworks based
on these requirements. Further, we describe some extensions we made to the existing game
development framework to let the students focus more on software architectural issues than
the technical implementation issues. Finally, we describe a case study of how a game
development framework was integrated in a software architecture course, and the experiences
from doing so.

KEY WORDS
Game development framework, Software architecture, Software engineering education

1 Introduction 
Games have been used in schools for many years to help children learn skills in math,
language, geography, science and other domains in an interesting and motivating way.
Research shows that integrating games within a classroom with children can be beneficial for
academic achievement, motivation and classroom dynamics [24]. There is also evidence that
the teaching methods based on educational games are not only attractive to schoolchildren,
but also to university students [19]. There have been conducted research on games concept
and game development used in higher education before, e.g. [3, 16, 11], but we believe there
is an untapped potential that needs to be explored. Games can provide teachers in higher
education teaching aids that can promote more active students, provide alternative teaching
methods to improve variation, and enable social learning through multiplayer learning games.

Games can be integrated in higher education in three ways. First, games can be used instead
of traditional exercises motivating students to put extra effort in doing the exercises, and
giving the teacher and/or teaching assistants an opportunity to monitor how the students work
with the exercises in real-time [29, 30]. Second, games can be used within lectures to improve
the participation and motivation of students [1, 31]. In this approach, the students and the
teacher participate in knowledge-based games. Third, the students are required to develop a
game as a part of a course using a game development framework (GDF) to learn skills within
computer science or software engineering [32]. This paper focuses on the latter, where game
development and a GDF is used in student projects to learn software engineering skills,
extending the use of games as a teaching aid in higher education. The motivation of making
students develop games to learn software engineering is to bring the students’ enthusiasm
from playing games to learn to courses through game development. In addition, we wanted to
investigate if the specific features of a GDF are suitable for teaching software engineering,
and how game development can be integrated with the education process. More specifically,
we wanted to explore how the use of game development and the GDF would affect the
learning of software architecture with focus on the technical aspects of the GDF.

This paper focuses on how the technical aspects of a GDF affect the learning of software
architecture, the selection of appropriate GDF for a software architecture course, and how a
GDF can be applied in a software engineering course. The main contribution of this paper is a
presentation of a novel GDF concept that can be used in courses that includes software
development, experiences from actual usage of the GDF, and some course design
considerations.

The rest of the paper is organized as follows. Section 2 describes and motivates for how a
GDF can be used in higher education and what criteria should be considering when choosing
one. Section 3 describes a case study of applying a GDF in a software architecture course.
Section 4 describes experiences from using a GDF in a software course. Section 5 describes
similar approaches, and Section 6 concludes the paper.

2 Game Development Frameworks in Higher Education 
This section presents the motivation for applying GDFs in higher education, a model for how
GDFs can be integrated with a course, and requirements for how to choose the appropriate
GDF for educational purposes.

2.1 GDF and Education 
The main motivation for introducing GDF in software engineering (SE) or computer science
(CS) courses is to motivate students to put more effort into software development project in
order to improve software development skills. Game development offers an interesting way of
learning and applying the course theory. By introducing a game development project in a
course, the students have to establish and describe most of the functional requirements
themselves (what the game should be like). This can be a motivating factor especially for
group-based projects, as each group will develop a unique application (the game), it will
encourage creativity, and it will require different skills from the group members (art,
programming, story, audio/music). The result will be that the students will have a stronger
feeling of ownership to the project. Furthermore, students also could learn about game
development technology. The main disadvantages by introducing a game development project
and a GDF into a SE or CS course is that the student might spend too much time on game-
specific issues and that the project results might be difficult to compare. It is critical that the
students get motivated applying a GDF in a course, and that they get increased motivation for
learning and applying course theory through a game development project.

Tom Malone has listed three main characteristics that make things fun to learn: they should
provide the appropriate level of challenge, they should use fantasy and abstractions to make it
more interesting, and they should trigger the player’s curiosity [26]. These characteristics can
directly be applied when developing a game for learning purposes. However, we can also
consider these characteristics when introducing a GDF in a SE or CS course. By allowing the
students to develop their own games using a GDF, such projects are likely to trigger students’
curiosity as well as provide a challenge for students to design fun games with their
knowledge, skills, imagination and creativity. The level of the challenge can be adjusted
according to the project requirements given in courses by the teacher. Thus, the challenge
level can not only be adjusted to the right level for most participants, but also tailored for
individual differences. As the students will work in groups, group members helping other
group members can compensate for the individual differences. An open platform and agile
courses requirements should be provided for students to design their own games, combined
with their ability, fantasy and comprehension of lecture content.

The main benefit of using a GDF as a teaching aid is that it can be a motivating initiative in
courses to learn about various topics such as software requirements, software design, software

architecture, programming, 2D and 3D graphic representation, graphic programming,
artificial intelligence, physics, animation, user interfaces, and many other areas within
computer science and software engineering. It is most useful for learning new skills and
methods within a specific domain but also useful for testing and rehearsing theory by
applying know skills and knowledge in a project using a GDF.

2.2 Circulatory Model of Applying a GDF in a Course 
There are several good reasons for introducing a GDF and game development projects in CS
and SE courses as described in previous section, but in order to make it a success it is
important that the GDF is well integrated with the course. Based on our experiences, we have
developed a circular model for how to apply a GDF in a CS or SE course through six steps
(see Figure 1). The model is intended for courses where a software development project is a
major part of the course.

Figure 1. Circulatory model of GDF’s application in courses

To choose one appropriate development platform according to the course content, it is
important to consider the process of the course related to the development project. This
process starts with choosing an appropriate GDF (step A) for the course related to some
requirements (described in the next section). Next, the design of exercises and projects (step
B) must reflect the limitations and constraints of the chosen GDF. In the initial phase of the
student project, it is important that the students get the required technical guidance and
appropriate requirements (step C) related to the GDF. It is important that the students get to
know the GDF early, e.g. by introducing an exercise to implement a simple game in the GDF.
It is critical that there is sufficient course staff that knows the GDF well enough to give the
required feedback. The next step is for the students to start designing and implementing (step
D) their own game according to the constraints within the course and the GDF. After the
students have delivered their final version of their project implementation and documentation,
the students should get the chance to evaluate and analyze (step E) their own projects to learn
from their successes and mistakes. This information should then be used to provide feedback
in order to improve the course (step F). The feedback from the students might indicate that
another GDF should be used or that the course constraints on the projects should be altered.
The core of this model is that the teacher should encourage the students to explore the course
theory through a game development project using a GDF, and give the opportunity to improve
the game development project through feedback from the students.

2.3 Criteria for choosing the right GDF 
How to choose an appropriate GDF that easily can be integrated with course content should
be based on the educational goals of the course, the technical level and skills of students, and
the time available for projects and/or exercises. Based on experiences from using GDFs and
from student projects in CS and SE courses, we have come up with the following
requirements for choosing a GDF for a CS or SE course:

A: Choose GDF 
based on course 
 

B: Design exercises 
and projects 
 

C: Guidance and 
requirement 
  D: Students design & 

implementation 
 

F:  Feedback and 
improvement 

E: Analysis and 
evaluation  

Teacher 

Student 

Guidance    Feedback   

1) It must be easy learn and allow rapid development. According to Malone’s
recommendation of how to make things fun to learn, it is crucial that we provide the
appropriate level of challenge. If the GDF is too much of a challenge and requires too
much to learn before becoming productive, the whole idea of game development will
be wasted, as the student will loose motivation. An important aspect of this is that the
GDF offers high-level APIs that makes it possible for the students to develop
impressive results without writing too many lines of code. This is especially critical
in the first phase of the project.

2) It must provide an open development environment to attract students’ curiosity.
Malone claims that fantasy and curiosity are other important factors that make things
fun to learn. By providing a relatively open GDF without too many restrictions on
what you can produce, the students get a chance to realize the game of their dreams.
This means that the GDF itself should not restrict what kind of game the students can
make. This requirement would typically rule out GDFs that are tailored for producing
only one game genre such as adventure games, platform games or board games. In
addition, ideally an open development environment should offer public and practical
interfaces for developers to extend their own functions. In this respect, open source
game development platforms are preferred.

3) It must support programming languages that are familiar to the students. The
students should not be burdened to have to learn a new programming language from
scratch in addition to the course content. This would take away the focus of the
educational goals of the course. We suggest to choose GDFs that support popular
programming languages that the students know like C++, C# or Java. It is also
important that the programming languages supported by the GDF have high-level
constructs and libraries that enable the programmers to be more productive as less
code is required to produce fully functional systems. From an educational point of
view, programming languages like Java and C# are better suited than C and C++, as
they have more constraints that force the programmers to write cleaner code and there
is less concern related to issues like pointers and memory leakage. From a game
development perspective, programming languages like C and C++ are more attractive
as they generally produce faster executables and thus faster games.

4) It must not conflict with the educational goals of the course. When choosing a GDF it
is important that the inherent patterns, procedures, design and architecture of the GDF
are not in conflict with the theory taught in the course. One example of such a conflict
could be that the way the GDF enforces event handling in an application is given as
an example of bad design in the textbook.

5) It must have a stable implementation. When a GDF is used in a course, it is essential
that the GDF has few bugs so the students do not have to fight a lot of technical
issues instead of focusing on the course topics. This requirement indicates that it is
important that the GDF is supported by a company or a development community that
have enough resources to eliminate serious technical insufficiencies. It is also
important that the development of the GDF is not a dead project, as this will lead to
compatibility issues for future releases of operating systems, software components
and hardware drivers.

6) It must have sufficient documentation. This requirement is important both for the
course staff and the students. The documentation should both give a good overview
of the GDF as well as document all the features provided. Further, it is important that
the GDF provides tutorials and examples to demonstrate how to use the GDF and its
features. The frameworks should provide documentation and tutorials of high quality
enabling self-study.

7) It should be inexpensive (low costs) to use and acquire. Ideally, the GDFs should be
free or have very low associated cost to avoid extra costs running the course. This
requirement also involves investigating additional costs related to the GDF such as
requirements for extra or more powerful hardware, and/or requirements for additional
software.

The goal of the requirements above is to save the time and effort the students have to spend
on coding and understanding the framework, making them concentrate on the course content
and software design. Thus, an appropriate GDF could provide the students exciting
experiences and offer a new way of learning through a new domain (games). The
requirements above are also important for the course staff, as they will help to find a GDF
that would cause less effort spent on technical issues, and incompatibility between GDF and
the course contents.
From the requirements above, we acknowledge that there is a conflict between requirement
one and two. The level of the freedom the developer is given to make whatever game he likes
could be in conflict with providing a development environment that allows rapid development
and is easy to learn. A more open GDF usually means that the developer must learn more
APIs as well as the APIs themselves usually are lower level, and thus harder to use. However,
it is possible to get a bit of both worlds by offering high-level APIs that are relatively easy to
use, but still allow the developer to access underlying APIs that gives the developer the
freedom in what kind of games that can be made. This means that the GDF can allow
inexperienced developers to just modify simple APIs or example code to make variants of
existing games, or to allow more experienced developers make unique games by using more
of the provided underlying APIs. How hard the GDF is to use will then really depend on the
ambition of the game developer and not on the GDF itself. This can also be a motivating
factor to learn more about the GDF’s APIs.

3 Case Study: Applying a GDF in a Software Architecture 
Course 
This section describes a case study of a software architecture course at the Norwegian
University of Science and Technology (NTNU) where a GDF was introduced.

3.1 The Software Architecture Course 
The software architecture course is a post-graduate course offered to CS and SE students at
NTNU. The course is taught every spring, its workload is 25% of one semester, and about 70
postgraduate students attend the course every semester. The students in the course are mostly
of Norwegian students (about 80%), but there are about 20% foreign students mostly from
EU-countries. The textbook used in this course is the “Software Architecture in Practice,
Second Edition”, by Bass, Clements and Kazman [23]. Additional papers are used to cover
topics that are not sufficiently covered by the book such as design patterns, software
architecture documentation standards, view models, and post-mortem analysis [2, 8, 6, 22].
The education goal of the course is:

“The students should be able to define and explain central concepts in software
architecture literature and be able to use and describe design/architectural patterns,
methods to design software architectures, methods/techniques to achieve software
qualities, methods to document software architecture, and methods to evaluate
software architecture.”

The course is taught in four main ways:

1) Ordinary lectures given in English
2) Invited guest lectures from the software industry
3) Exercise in design patterns
4) A software development project with emphasis on software architecture

30% of the grade is based on an evaluation a software architecture project that all students
have to do, while 70% is given from the results of a written examination. The goal of the
project is for the students to apply the methods and theory in the course to design a software
architecture and to implement a system according to the architecture. The project consists of
the following phases:

1) COTS (Commercial Off-The-Shelf) exercise: Learn the development platform to be
used in the project by developing some simple test applications.

2) Design pattern: Learn how to utilize design pattern by making changes in an existing
system designed with and without design patterns.

3) Requirements and architecture: Describe the functional and the quality requirements,
and design the software architecture for the application in the project.

4) Architecture evaluation: Use the Architecture Trade-off Analysis Method (ATAM)
[23, 36] to evaluate the software architecture in regards to the quality requirements.
Here one student group will evaluate another student group’s project.

5) Implementation: Do detailed design and implement the application based on the
created architecture and based on the results from previous phase.

6) Project evaluation: Evaluate the project after is has been completed using a Post-
Mortem Analysis (PMA) method.

In the two first phases of the project, the students work on their own or in pairs. For the
phases 4-6, the students work in self-composed groups of four students. The students spend
most time on the implementation phase (6 weeks), and they are also encouraged start the
implementation in earlier phases to test their architectural choices (incremental development).
In previous years, the goal of the project has been to develop a robot controller for a robot
simulator in Java with emphasis on an assigned quality attribute such as availability,
performance, modifiability or testability.

3.2 Choosing a GDF for the Software Architecture Course 
Fall 2007, we started to look for appropriate GDFs to be used in the software architecture
course spring 2008. We looked both for GDFs where the programmer had to write the source
code as well as visual drag-and-drop programming environments. The selection of candidates
was based on GDFs we were familiar with and GDFs that had developer support. Further, we
wanted to compare both commercial and open source GDFs. From an initial long list
candidate GDFs, we chose to evaluate the following GDFs more in detail:

• XNA: XNA is a GDF from Microsoft that enables development of homebrew cross-
platform games for Windows and the XBOX 360 using the C# programming
language. The initial version of Microsoft XNA Game Studio was released in 2006
[18], and in 2008 Microsoft XNA Game studio 3.0 was released that includes support
for making games for XBOX Live. XNA features a set of high-level API enabling the
development of advanced games in 2D or 3D with advanced graphical effects with
little effort. The XNA platform is free, and allows developers to create games for the
Windows, Xbox 360 and Zune using the same GDF [20]. XNA consists of an
integrated development environment (IDE) along with several tools for managing
audio and graphics.

• JGame: JGame is a high-level framework for developing 2D games in Java [33].
JGame is an open source project and enables developers to develop games fast using
few lines of code as JGame will take care of typical game functionality such as sprite-
handling, collision detection, and tile handling. JGame games can be run as stand-
alone Java-games, Java applets games running in a web-browser or on mobile devices
(Java ME). JGame does not provide a separate IDE, but is integrated with Eclipse.

• Flash: Flash is a high-level framework for interactive applications including games
developed by Adobe [34]. Most programming in Flash is carried out in Action script
(a textual programming language), but the Flash environment also provides a

powerful graphical editor for managing graphical objects and animation. Flash
applications can run as stand-alone applications or in a web-browser. Flash
applications can run on many different operating systems like Windows, Mac OS X
and Linux as well as on mobile devices and game consoles (Nintendo Wii and Sony
Playstation 3). Programming in Flash is partly visual by manipulating graphical
objects, but most code is written textually. Flash supports development of both 2D
and 3D applications.

• Scratch: Is a visual programming environment developed by MIT Media Lab in
collaboration with UCLA that makes it easy to create interactive stories, animations,
games, music and art – and share the creations on the web [17]. Scratch works similar
to Alice [5] allowing you to program by placing sprites or objects on a screen and
manipulate them by drag-and-drop programming. The main difference between
Scratch and Alice is that Scratch is in 2D while Alice is in 3D. Scratch provides its
own graphical IDE that includes a set of programming primitives and functionality to
import various multimedia objects.

An evaluation of the four GDF candidates is shown in Table 1. From the four candidates, we
found Scratch to be the least appropriate candidate. The main disadvantage with Scratch was
that it would be very difficult to teach software architecture using this GDF, as the framework
did not allow exploring various software architectures. Further, Scratch was also very limited
in what kind of games that could be produced, limiting the options for the students. The main
advantage using Scratch is that it is very easy to learn and use. JGame suffered also from
some of the same limitations as Scratch, as it put some restrictions on what software
architecture that could be used and it had little flexibility in producing a variety of types of
games. The main advantage using JGame was that is was an open source project with access
to the source code and that all the programming was done in Java. All CS and SE students at
NTNU learn Java in the two first introductory programming courses. An attractive alternative
would be to use Flash as a GDF. Many developers use Flash to create games for kids as well
as games for the Web. Flash puts little restrictions on what kind of games you can develop
(both 2D and 3D), but there are some restrictions on what kind of software architecture that
you can use in your applications. The programming language used in Flash, Action Script, is
not very different from Java so it should be rather easy for the students to learn. The main
disadvantage using Flash in the software architecture course was the license costs. As the
computer and information science department does not have a site license for the Flash
development kit, it would be too expensive to use. XNA was found an attractive alternative
for the students, as it made it possible for them to create their own XBOX 360 games. XNA
puts little restrictions on what kinds of software architectures you apply in you software, and
it enables the developers to create almost any game. XNA has strong support from its
developer (Microsoft) and has a strong community of developers along with a lot of resources
(graphics, examples, etc). The main disadvantages using XNA as a GDF in the course were
that the students had to learn C# and that the software could only run on Windows machines.
Compared to JGame and other Java-based GDFs, XNA has a richer set of high-level APIs and
a more mature architecture.

Table 1 Evaluation four GDF candidates 
Selection
requirement

XNA

JGame

Flash

Scratch

1 Easy to learn Relatively easy to
learn, but requires to
learn several core
concepts to utilize the
offered possibilities.

Easy to learn, but
requires to learn a
small set of core
concepts.

Relatively easy to learn,
but requires to learn
several core concepts to
utilize the offered
possibilities.

Very easy and intuitive to
learn and supports dynamic
changes to the game in run-
time.

2 Open develop
environment

XNA puts little
restrictions on what
kind of games that can
be developed and
supports development
of both 2D and 3D

JGame supports a
limited set of games
mainly classical 2D
arcade games. Open
source project.

Flash puts little
restrictions on what kind
of games that can be
developed and supports
development of both 2D
and 3D. Not open source

Scratch limits the options of
what kind of games the user
can make through the
limited options provided in
the graphical programming
environment. Not open

games. Not open
source project.

project. source project.

3 Familiar
programming
language

All programming is
done in C#.

All programming is
done in Java

Some programming can
be done using drag-and-
drop, but most will be
written in Action Scripts.

All programming is done in
the visual drag-and-drop
programming language
Scratch.

4 Not in conflict
with educational
goals

XNA puts little
restrictions on what
kinds of software
architectures that can
be used.

JGame puts some
restrictions on what
kinds of software
architecture that can
be used.

Flash puts some
restrictions on what
kinds of software
architectures that can be
used.

Scratch puts strict
restrictions on what kinds
of software architectures
that can be used.

5 Stable
implementation

XNA has a very stable
implementation and is
updated regularly.

JGame has a
relatively stable
implementation and
is updated regularly.

Flash has a very stable
implementation and is
updated regularly.

Scratch has a relatively
stable implementation and
is updated regularly.

6 Sufficient
documentation

XNA is well
documented and offers
several tutorials and
examples. Many books
on XNA are available.

JGame is not well
documented, but
some examples
exist.

Flash is well
documented and offers
several tutorials and
examples. Many books
on Flash are available.

Scratch is ok documented
and has some examples and
tutorials available.

7 Low costs XNA is free to use. A
$99 for a year of
membership is
required to develop
games for XBOX 360.

JGame is free to use. The Flash development
kit costs $199 per license
(university license).

Scratch is free to use.

Based on the evaluation described above, we chose XNA as a GDF for our course. From
previous experience we knew that it does not require much effort and time to learn C# for
students that already know Java.

3.3 XQUEST – An Extension of the Chosen GDF 
After we had decided to use XNA as a GDF in the software architecture course, we launched
a project to extend XNA to make XNA even easier to use in the student project. This project
implemented XQUEST (XNA QUick & Easy Starter Template) [27], which is a small and
lightweight 2D game library/game template developed at NTNU that contains convenient
game components, helper classes, and other classes that can be used in the XNA game
projects (see Figure 2). The goal of XQUEST was to identify and abstract common game
programming tasks, and create a set of components that could be used by students of the
course to make their life easier. We choose to focus only on 2D. There are a few reasons for
this. First, the focus of the student projects is software architecture, not making a game with
fancy 3D graphics. Second, students unfamiliar with game programming and 3D
programming may find it daunting to have to learn the concepts needed for doing full-blown
3D in XNA, such as shader programming and 3D-modelling, in addition to software
architectures. To keep the projects in 2D may reduce the effect of students focus only on the
game development and not on the software architecture issues.

Figure 2. The XQUEST library shown in the XNA development environment

3.4 Teaching Software Architecture using XNA  
XNA was introduced in the software architecture course to motivate students to put extra
effort in the student project with the goal to learn the course content such as attribute driven
design, design and architectural patterns, ATAM, design of software architecture, view points
and implementation of software architecture. This section will go through the different phases
of this project and describe how XNA affected these phases.

3.4.1 Introduction of XNA Exercises 
In the start of the semester the course staff gave an introduction to course where the software
architecture project was presented. Before the students started with their project, they had to
do an exercise individually or in pairs where they got to choose their own partner. The goal of
the first exercise was to get familiar with the XNA framework and environment, and the
students were asked to complete four tasks:

1) Draw a helicopter sprite on the screen and make it move around on its own.
2) Move around the helicopter sprite from previous task using the keyboard, change the

size of the sprite when a key was pressed, rotate the sprite when another key was
pressed and write the position of the sprite on the screen.

3) Animate the helicopter sprite using several frames and do sprite collision with other
sprites.

4) Create the classical Pong game in XNA.

Before the students started on their XNA introduction exercise, they got a two-hour technical
introduction to XNA. During the semester, two technical assistants were assigned to help
students with issues related to XNA. These assistants had scheduled two hours per week to
help students with problems, in addition to answer emails about XNA issues.

3.4.2 Requirement and Architecture for the Game Project 
After the introduction exercise was delivered, the students formed groups of four students.
Students that did not knew anyone, were assigned to groups. The course staff then issued the
project task where the goal was to make a functioning game using XNA based on students’
own defined game concept. However, the game had to be designed and implemented

according to their specified and designed software architecture. Further, the students had to
develop a software architecture that focused on one particular quality attribute assigned by the
course staff. We used the following definitions for the quality attributes in the game projects:
Modifiability, the game architecture and implementation should be easy to change in order to
add or modify functionality; and Testability, the game architecture and implementation should
be easy to test in order to detect possible faults and failures. These two quality attributes were
related to the course content and the textbook. A perfect implementation was not the ultimate
quest of this XNA game project, but it was critical that the implementation reflected the
architectural description. It was also important that the final delivery was well-structured,
easy to read, and made according to the template provided by the course staff.

The first phase of the project was the requirement and architecture phase where the students
should delivery requirements and the software architecture of the game along with a skeleton
code reflecting the architecture. The requirements document focused on a complete functional
requirement description of the game and several quality requirements for the game described
as scenario focusing on one particular quality attribute. The architectural description was the
most important part of the final delivery of for the game project, and the students had to
document their architecture according to IEEE 1471-2000[14]. The architecture
documentation could be altered several times before its final delivery. Table  2 lists main
attributes required in the architectural description in the game projects.

Table 2 List of architecture description for the game project 

Architectural
Description Attributes

Details of the Implementation

1 Architectural Drivers

The main drivers that affect the system mostly, including the attribute on which the
students focus.

2 Stakeholders and Concerns Stakeholders of the system, and their concerns.
3 Selection of Architectural

Viewpoint
A list of the viewpoints used, their purpose, target audience and from of description.
Places to look for possible viewpoints include the book [23], and the 4+1 article by
Kruchten [15].

4 Quality Tactics

Including all attributes and more detailed for the focused ones.

5 Architectural Patterns The major patterns of your architecture, both architectural and major design ones.
6 Views

A separate section for each required views: logic, process and development views or
other views added by students.

7 Consistency Among Views Discuss the consistency between each described view.
8 Architectural Rationale In this section and sub-sections, add why things are chosen.

We also required that the students wrote the code skeleton for the architecture they had
designed. This was done to emphasize the importance of starting the implementation early,
and to ensure that students designed an architecture that was possible to implement.

3.4.3 Evaluation of the Game Project 
After the requirements, the architecture and the code skeleton were delivered, the student
groups were assigned to evaluate each other’s architecture using ATAM. The whole idea was
for one project group to evaluate the architecture of the other group’s game to give feedback
on the architecture related to the quality focus of the software architecture [37]. It included
attribute utility tree, analysis of architectural approach, sensitivity points, trade-off points,
risks and non-risks, and risk themes.

3.4.4 Detailed Design and Implementation  
The focus of implementation phase was to design, implement and test the game application.
The documentation delivered in this phase focused on the test results from running the game
related to the specified requirements, and the discussion of the relationship between the
implemented game and the architectural documentation [8, 6]. Table 3 lists what should be
delivered in the implementation phase:

Table 3 Design & Implementation phase description 
Implementation

Deliverables
Details of Implementation

1 Design and
Implementation

A more detailed view of the various parts of the architecture describing of game
design.

2 User’s Manual To guide the users the steps to compile and run the game.
3 Test report Contain both functional requirements and quality requirements (quality

scenarios).
4 Relationship with the

architecture
List the inconsistencies between the game architecture and the implementation
and the reasons for these inconsistencies.

5 Problems, Issues and
Points learned

Listing problems and issues with the document or with the implementation
process.

For the test report part in the Table 3, the functional requirements and quality requirements
had the attributes like shown in List 1, 2. The test reports should also include a discussion
about the observation of the test unless there was nothing to discuss about the test results.

F1: The role in game should be able to jump along happily
Executor:
Date:
Time used:
Evaluation:

Super Mario III
23.3.2005
5min
Fail: White role cannot jump!

List 1 Attributes of functional requirements

A1: The role in game should not get stuck
Executor:
Date:
Stimuli:
Expected response:
Observed response:
Evaluation:

Snurre Sprett
24.3.2005
The role should be able to move around for 10 min
Success in 8 of 10 executions
Success in 3 of 10 executions
Fail

List 2 Attributes of quality requirements

At the end of this phase, the students had to submit their final delivery of their projects that
included all documents, code and other material from all project phases. The course staff
evaluated all the groups’ deliveries and gave grades by judging document and implementation
quality, document and implementation completeness, architecture design, and readability and
structure of code and report.

3.4.5 The Game Project Workshop 
In this workshop, selected groups had to give short presentations about the project goal,
quality attribute focus, proposed architectural solution with some diagrams or explanations,
and an evaluation of how well did the solution worked related to functional requirements and
quality focus. Further, the selected groups ran demos of their games and it was opened for
questions from the audience.

The workshop provided an open mind environment to let students give each other feedback,
brainstorm about improvements and ideas, and to discuss their ideas to give a better
understanding of the course content and game architecture design.

3.4.6 Post‐Mortem Analysis  
In the final task in the project, every group had to perform a post-mortem analysis of their
project. The focus of the PMA was to analyze successes and problems of the project. The
PMA was documented in a short report that included a positive (successes) and a negative
(problems) KJ-diagram (structured brainstorm map); a positive and a negative causal map (a
diagram that shows cause-effect relationships), and experiences from using PMA [2]. The
PMA made the students reflect on their performance in the project and gave them useful
feedback to improve in future projects and inputs for the course staff to improve the course.
The main topics analyzed in the PMA were issues related to group dynamics, time

management, technical issues, software architecture issues, project constraints, and personal
conflicts.

4 Experiences of using GDF in Software Architecture  
The experiences described in this section are based on the final course evaluation, feedback
from the students during the project, and the project reports.
 
The final course evaluation made all students (mandatory) taking the course answer three
questions. The results reported below are a summary of the students’ responses related to the
project and the GDF.

1) What have been good about software architecture course?

• About the project itself: “Cool project”, “Really interesting project”, “We had a lot
of fun during the project”, “It is cool to make a game”, “Fun to implement something
practical such a game”, “Videogame as an exercise is quite interesting”, “I really
liked the project”, “The game was motivating and fun”.

• Project and learning: “Good architectural discussion in the project group I was in”,
”Learned a lot about software architecture during the project”, “The project helped to
understand better the arguments explained in the lectures, having fun at the
meantime”, “Fun project where we learned a lot”, “I think that the creation of a
project from the beginning, with the documentation until the code implementation,
was very helpful to better understand in practice the focus of the course”, “The game
project was tightly connected to the syllabus and lectures and gave valuable
experience. The main thing I learned was probably how much simpler everything gets
if you have a good architecture as a basis for your system”, “The interplay of game
and architectural approaches”.

• The project being practical work: “I think it was pretty good that you guys made us
do a lot of practical work”, “To choose C# as a platform is a good idea as it is used a
lot in the software industry, at the same time it is very similar to Java so it is rather
easy to learn the language.

• Interplay between groups: “It was also good to see the results of the others' projects
in the final presentation”.

2) What have been not so good about the course software architecture?

• XNA support: “The way the student assistants were organized, during the
implementation periods at least they should be available in a computer lab and not
just in the classroom”, “Maybe the use of XNA Framework XQUEST was very
difficult because I never use it. Maybe some extra lecture focus on the use of
XQUEST Framework was better”, “We didn’t have lectures on XNA, could have got
some more basic info...Hmm…”

• XNA vs. software architecture: “Took a lot of time getting to know c#, I liked it,
but I did not have the time to study architecture”, “The use of game as a project may
have removed some of the focus away from the architecture. XNA and games in
general limits the range of useful architectures.”

3) What would you have changed for next year's course?

• Project workload: “Maybe just little more time to develop the game”, “I would
change the importance of the project. I think that the workload of the project was very
big end it can matter the 50% of the total exam.”

• XNA support: “Perhaps have some c# intro?”, “It would be helpful to have some lab
hours”.

• Project constraints: “Maybe more restrictions on game-type, to ensure that the
groups choose games suited for architectural experimentation.”

The responses from the students were overall very positive. In the previous years, the students
in the software architecture course had to design the architecture and implement a robot
controller for a robot simulator in Java. The feedback from the XNA project was much more
positive than the feedback from the robot controller project. Other positive feedback we got
from the students was that they felt they learned a lot from the game project, that they liked
the practical approach of the project and having to learn C#, and the interaction between the
groups (both ATAM and the project workshop).

The negative feedback from the course evaluation was focusing on lack of XNA support and
technical support during the project, and that some student felt that there was too much focus
on C#, XNA and games and too little on software architecture.

The suggestions to improve the course was mainly according to the negative feedback,
namely to improve XNA support and to adjust the workload of the project. One student also
suggested limiting the types of games to be implemented in project to ensure more focus on
software architectural experimentation.

4.2 Snapshots from some Student Projects  
Figure 3 shows screenshots from four student game projects. The game at upper left corner is
a racing game, the game at the upper right corner is a platform game, and the two games
below are role-playing games (RPGs). Some of the XNA games developed were original and
interesting. Most games were entertaining, but were lacking contents and more than one level
due to time constraints.

Figure 3. Game based on XNA framework

(Top left: Racing; Top right: Codename Gordon; Bottom: RPG)

5 Related Work 
This paper describes experiences from utilizing the special features of a GDF in a software
architecture course. The main benefits from applying a GDF in a CS or SE course is that the
students get more motivated during the software development project. As far as we know,
there are few papers that describe the usage of a professional GDF concept applied in
universities courses that is not directly target for learning game development, especially no
papers about usage of XNA in higher education. However, there are some related approaches
in education described in this section.

El-Nasr and Smith describes how the use of modifying or modding existing games can be
used to learn computer science, mathematics, physics and ascetic principles [32]. The paper
describes how they used modding of the WarCraft III engine to teach high school students a
class on game design and programming. Further, they describe experiences from teaching
university students a more advanced class on game design and programming using the Unreal
Tournament 2003 engine. Finally, they present observations from student projects that
involve modding of game engines. Although the paper claims to teach students other things
than pure game design and programming, the GDFs were used in the context of game
development courses.

The framework Minueto [4] is implemented in Java and it is used by students in their second
year of undergraduate studies at McGill University in Montreal, Canada. The framework
encapsulates graphics, audio and keyboard/mouse inputs to simplify Java game development.
It allows development of 2D games, such as card games and strategy games, but it lacks in
support for visual programming and suffers from limited documentation.

The Labyrinth [9] is implemented in Java and it is a flexible and easy-to-use computer game
framework. The framework enables instructors to expose students to very specific aspects of
computer science courses. The framework is a finished game in the Pac-Man genre, highly
modular, and it lets the students change different aspects of the game. However, it cannot be
used to develop different genres of game and there is little room for changing the software
architecture of the framework.

The JIG (Java Instructional Gaming) Project [28] is a collaborative effort between Scott
Wallace (Washington State University Vancouver) and Andrew Nierman (University of Puget
Sound) in conjunction with a small group of dedicated students. It has three aims: 1) to build
a Java Instructional Game Engine suitable for a wide variety of students at all levels in the
curriculum; 2) to create a set of educational resources to support the use of the game engine at
small, resource-limited, schools; and 3) to develop a community of educators that use and
help improve these resources. The JIG Project was proposed in 2006, after a survey of
existing game engines revealed a very limited supply of existing 2D Java game engines. JIG
is still in development.

GarageGames [12] offers two game engines written in C++. The Torque Game Engine targets
3D games, while the Game Builder provides a 2D API and encourages programmers to
develop using a proprietary language (C++ can also be used). Both engines are aimed at a
wide audience, including students and professionals. The engines are available under separate
licenses ($50 per license per year for each engine) that allow full access to the source code.
Documentation and tutorials cover topics appropriate for beginners and advanced users.

The University of Michigan’s DXFramework [10] game engine is written in C++. The current
version is targeted specifically for 2D games, although previous versions have included a 3D
API as well. This engine is designed for game programming education and is in its third
major iteration. The DXFramework is an open source project. Compare to XNA,

DXFramework has no competitive advantage as it has limited support for visual programming
and it is not easier than XNA to learn.

The University of North Texas’s SAGE [21] game engine is written in C++ and targets 3D
games, not 2D. Like the DXFramework, SAGE is targeted specifically for game
programming educational usage. The source code can be downloaded and is currently
available without license.

Marist College’s GEDI [7] game engine provides a second alternative for 2D game design in
C++, and is also designed with game programming educational use in mind. Source code can
be downloaded and is currently available without license, but GEDI is still in the early phases
of development. Only one example game is distributed with the code, and little
documentation is available.

For business teaching, Arena3D [25] is a game visualization framework with its animated 3D
representations of the work environments, it simulates patients queuing at the front desk, and
interacts with the staff. IBM has also produced a business game called INNOV8 [13] which is
“an interactive, 3-D business simulator designed to teach the fundamentals of business
process management and bridge the gap in understanding between business leaders and IT
teams in an organization”.

6 Conclusion and Future Work. 
In this paper we have presented a case study of how a GDF was evaluated, chosen and
integrated with a software architecture course. The main goal of introducing a GDF and a
game development project in this course was to motivate students to learn more about
software architecture during the game development project. The positive feedback from the
students indicate that this was a good choice as the student really enjoyed the project and
learn software architecture from carrying out the project.

We will continue to explore the area of using games, games concept and game development
in CS and SE education and evaluate how this affects the students’ motivation and
performance. The choice of XNA as a GDF proved to be a good choice for our software
architecture course. The main disadvantage using XNA is the lack of support for non-
Windows operating systems like Linux and Mac OS X. Mono.XNA is a cross platform
implementation of the XNA game framework that allows XNA to run on Windows, Mac OS
X and Linux using OpenGL [35]. The project is still in an early phase. An alternative to solve
this problem is to let the students choose between different GDFs, e.g., XNA and a Java-
based GDF. The main challenge for this approach is the course staff needs to know all the
GDFs offered to the students to give proper technical assistance. Based on the feedback from
the students, the technical support is very important and must be considered before providing
choices of more GDFs.

Acknowledgement 
We would like to thank Jan-Erik Strøm and Trond Blomholm Kvamme for implementing
XQUEST and for their inputs to this paper. We would also like to thank Richard Taylor and
Institute for Software Research (ISR) at University of California, Irvine (UCI) for providing a
stimulating research environment and for hosting a visiting researcher.

Reference 
[1] A. I. Wang, O. K. Mørch-Storstein, T. Øfsdahl, “Lecture quiz - a mobile game concept for
lectures”, The 11th IASTED International Conference on Software Engineering and Application (SEA
2007), November 19-21, 2007.
[2] A. I. Wang, T. Stålhane, “Using Post Mortem Analysis to Evaluate Software Architecture Student
Projects”, In Proceedings of the 18th Conference on Software Engineering Education & Training, April
18 - 20, 2005.
[3] A. Baker, E. O. Navarro, and A. Hoek, “Problems and Programmers: an Educational Software
Engineering Card Game”, In Proceedings of the 25th International Conference on Software
Engineering (ICSE 2003), pages 614–619, 2003.
[4] A. Denault. Minueto, “An undergraduate teaching development framework”, Master's thesis,
School of Computer Science McGill University, 2005.
[5] Carnegie Mellon University, “Alice.org”, Web: http://www.alice.org/, Retrieved June 2008.
[6] A. Rollings and D. Morris, “Game Architecture and Design - A New Edition”, New Riders Games,
pages 462-500, 2003. Web: http://www.k‐team.com
[7] R. Coleman, S. Roebke, L. Grayson, “GEDI: a game engine for teaching videogame design and
programming”, Journal of Computing Science in Colleges, 21(2), 72–82, 2005.
[8] J. O. Coplien, “Software Design Patterns: Common Questions and Answers”, The Patterns
Handbook: Techniques, Strategies, and Applications, Cambridge University Press, New York, pp. 311-
320, 1998.
[9] J. Distasio and T. Way, “Inclusive computer science education using a ready-made computer game
framework”, ITiCSE '07: Proceedings of the 12th annual SIGCSE conference on Innovation and
technology in computer science education, pages 116-120, 2007.
[10] C. Johnson and J. Voigt, “DXFramework”, Web: http://www.dxframework.org, Retrieved June,
2008.
[11] A. O. Navarro and A. Hoek, “SimSE: an Educational Simulation Game for Teaching the Software
Engineering Process”, In ITiCSE ’04: Proceedings of the 9th annual SIGCSE conference on Innovation
and technology in computer science education, pages 233–233, New York, NY, USA, 2004. ACM
Press.
[12] GarageGames, “GarageGames”, Web: http://www.garagegames.com, Retrieved June, 2008.
[13] IBM, “INNOV8 – a BPM Simulator”, Web: http://www-
304.ibm.com/jct03001c/software/solutions/soa/innov8.html, Retrieved June 2008.
[14] IEEE, “IEEE Recommended Practice for Architectural Description of Software-Intensive
Systems”, Software Engineering Standards Committee of the IEEE Computer Society, 2000.
[15] P. Kruchten, “The 4+1 View Model of Architecture”, IEEE Software, 12, 6, Pp. 42 – 50, 1995.
[16] L. Natvig, S. Line, and A. Djupdal, “Age of Computers: An Innovative Combination of History
and Computer Game Elements for Teaching Computer Fundamentals”, In FIE 2004: Proceedings of
the 2004 Frontiers in Education Conference, 2004.
[17] Lifelong Kindergarten Group, MIT Media Lab, “Scratch | Home | imagine, program, share”, Web:
http://scratch.mit.edu/, Retrieved June.2008.
[18] Microsoft corporation, “XNA developer center”, Web:
http://msdn.microsoft.com/en-us/xna/aa937794.aspx, Retrieved June,2008
[19] M. Sharples, “The design of personal mobile technologies for lifelong learning”, Computer &
Education, 34(3-4):177–193, 2000.
[20] B. Nitschke, “Professional XNA Game Programming: For Xbox 360 and Windows”, Wiley
Publishing, Inc.,2007.
[21] I. Parberry, “SAGE: a simple academic game engine”, Web: http://larc.csci.unt.edu/sage,
Retrieved June 1, 2008.
[22] D. P. Perry, and A.L. Wolf, “Foundations for the Study of Software Architecture”, ACM Sigsoft
Software Engineering Notes, 17(4), Pp. 40-52, 1992.
[23] P. Clements L. Bass and R. Kazman, “Software Architecture in Practice Second Edition”,
Addison-Wesley, 2003.
[24] R. Rosas, M. Nussbaum, P. Cumsille, V. Marianov, M. Correa, P. Flores, V. Grau, F. Lagos, X.
Lopez, V. Lopez, P. Rodriguez, and M. Salinas, “Beyond Nintendo: design and assessment of
educational video games for first and second grade students”, Computers & Education, 40(1): 71–94,
2003.
[25] Rockwell Automation Inc, “Arena Simulation Software”, Web: http://www.arenasimulation.com/,
Retrieved June 2008.

[26] T. W. Malone, “What makes things fun to learn? Heuristics for designing instructional computer
games”, In SIGSMALL ’80: Proceedings of the 3rd ACM SIGSMALL symposium and the first SIGPC
symposium on Small systems, pages 162–169, New York, NY, USA, 1980. ACM Press.
[27] T. Blomholm Kvamme and J.-E. Strøm, “Evaluation and Extension of an XNA Game Library
used in Software Architecture Projects”, Master thesis at Department of Computer and Information
Science, Norwegian University of Science and Technology (NTNU), June 2008.
[28] Washington State University Vancouver and University of Puget Sound, “The Java Instructional
Gaming Project”, Web: http://ai.vancouver.wsu.edu/jig/, Retrieved June. 2008
[29] G. Sindre, L. Nattvig, M. Jahre, “Experimental Validation of the Learning Effect for a Pedagogical
Game on Computer Fundamentals”, IEEE Transaction on Education, pages 10-18, 52(1), February
2009.
[30] B.A. Foss and T.I. Eikaas, “Game play in Engineering Education - Concept and Experimental
Results”, The International Journal of Engineering Education 22(5), 2006.
[31] A. I. Wang, T. Ø. and O. K. Mørch-Storstein: “An Evaluation of a Mobile Game Concept for
Lectures”, 21st IEEE-CS Conference on Software Engineering Education and Training (CSEE&T
2008), Charleston, S. Carolina, USA, April 14-17, 2008,.
[32] M. S. El-Nasr and B. K. Smith, “Learning through game modding”, ACM Computer
Entertainment 4(1), Jan. 2006.
[33] JGame project, “JGame: a Java game engine for 2D games”, Web:
http://www.13thmonkey.org/~boris/jgame/, Retrieved November 2008.
[34] Adobe, “animation software, multimedia software – Adobe Flash CS4 Professional”, Web:
http://www.adobe.com/products/flash/, Retrieved November 2008.
[35] Monoxna, “monoxna – Google Code”, Web: http://code.google.com/p/monoxna/, Retrieved
November 2008.
[36] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J. Carriere, "The Architecture
Tradeoff Analysis Method,", Fourth IEEE International Conference on Engineering Complex
Computer Systems (ICECCS'98), 1998.
[37] A. BinSubaih, S.C. Maddock (2006), "Using ATAM to Evaluate a Game-based Architecture",
Workshop on Architecture-Centric Evolution (ACE 2006), Hosted at the 20th European Conference on
Object-Oriented Programming ECOOP 2006, July 3-7, 2006, Nantes, France.

 

