
	 	Software	Engineering	Perspectives	in	Computer	Game	Development,	Chapter	XX.	Publication	date:	Month	2018.	

Survey on Software Architecture, Creativity, and Game Technology

ALF INGE WANG, Norwegian	University	of	Science	and	Technology
NJÅL NORDMARK, Norwegian	University	of	Science	and	Technology

Software	 engineering	 and	 game	 development	 are	 different	 as	 in	 game	 development	 it	 is	 very	 dif4icult	 to	 elicit	
functional	requirements	from	the	users,	and	the	customers	buy	and	use	the	software	only	because	it	is	engaging	and	
fun.	 This	 book	 chapter	 presents	 results	 from	 a	 survey	 on	 how	 game	 developers	 think	 about	 and	 use	 software	
architecture	in	the	development	of	games,	on	how	creative	development	processes	are	managed	and	supported,	and	
on	use	of	game	technology.	The	results	presented	in	this	chapter	are	responses	from	thirteen	game	developers	on	a	
survey	 focusing	 on	 software	 architecture,	 creative	 development	 processes	 and	 game	 technology.	 The	 research	
questions	 answered	 are:	What	 role	 the	 software	 architecture	 plays	 in	 game	 development;	 How	 game	 developers	
manage	changes	to	the	software	architecture;	how	creative	development	processes	are	managed	and	supported;	and	
How	game	development	and	technology	have	evolved	the	last	couple	of	years.	The	results	of	the	survey	show	among	
other	things	that	software	architectures	play	a	central	role	in	game	development	where	the	main	focus	is	on	achieving	
software	 with	 good	 performance	 and	 high	 modi4iability,	 creative	 processes	 are	 supported	 through	 4lexible	 game	
engines	and	 tools,	use	of	 scripting	and	dynamic	 loading	of	assets,	 and	 feature-based	 teams	with	both	creative	and	
technical	 professions	 are	 incrementally	 using	 more	 game-speci4ic	 engines,	 tools	 and	 middleware	 in	 their	
development	now	compared	to	earlier.	

KEYWORDS
Software	architecture,	Software	process,	Game	development,	Creative	software	development,	Game	technology	

1 INTRODUCTION
Game	development	can	be	challenging	as	game	engines	and	game	hardware	and	development	platforms	
changes	rapidly,	and	code	modules	crafted	for	speci=ic	games	offer	less	than	30	percent	reuse	[1].	In	=irst	
decades	 of	 the	 video	 game	 history,	 game	 development	 was	 carried	 out	 by	 small	 teams.	 The	 software	
architectures	as	these	games	were	typically	made	out	of	a	few	modules	such	as	2d	graphics,	simulation,	
sound,	streaming	of	i/o	and	a	main	module.	At	this	time,	the	main	focus	was	on	how	to	create	an	exciting	
game	with	 the	 limited	 hardware	 resources	 available	 rather	 than	 a	 focus	 on	 software	 architecture	 and	
software	engineering.	The	growth	of	the	video	game	industry	along	with	the	progress	in	hardware	have	
resulted	 in	 vastly	 larger	 and	 more	 complex	 games	 rendering	 and	 simulation	 huge	 interactive	 virtual	
worlds	 developed	by	 large	multi-disciplinary	 teams.	 The	 growth	 in	 size	 and	 complexity	 of	 games	have	
resulted	in	similar	growth	in	size	and	complexity	of	game	architectures	[2].	The	game	projects	producing	
a	 typical	 AAA	 game	 title	 today	 are	 very	 large,	 and	 the	 game	 software	 itself	 has	 a	 complex	 software	
architecture	with	many	 interconnected	modules.	Many	quality	 attributes	 in	 game	development	 are	 the	
same	as	in	traditional	software	development	such	as	modi=iability,	reliability,	security	and	usability,	but	
one	 aspect	 that	 makes	 software	 architectures	 for	 games	 challenging	 is	 the	 absolute	 real-time	
requirements	 and	 the	 need	 to	 support	 the	 creative	 processes	 in	 game	 development	 [1].	 Game	
development	 requires	 often	 to	 a	 larger	 extent	 than	 traditional	 software	 development	 a	 multitude	 of	
computer	 science	 skills	 [3]	 as	well	 as	 other	 disciplines	 as	 art,	 game	 design,	 and	 audio/music	 [4].	 The	
direct	involvement	of	professions	with	very	different	background,	knowledge	and	skills	(e.g.	the	technical	
team	vs.	 the	 creative	 team)	poses	 challenges	 for	how	a	game	 is	developed.	Based	on	all	 the	 challenges	
described	above,	game	development	is	an	interesting	domain	for	software	engineering	research,	as	well	
as	the	fact	that	game	development	is	a	very	big,	successful	and	innovative	industry.		

XX

XX:2 • A.I. Wang and N. Nordmark

Software	Engineering	Perspectives	in	Computer	Game	Development	

	
So	 far,	 most	 of	 the	 software	 engineering	 research	 related	 to	 game	 development	 has	 focused	 on	
requirement	engineering,	and	there	is	a	lack	of	empirical	work	[5].	This	chapter	presents	a	study	on	how	
game	developers	 think	 about	 and	manage	 software	 architecture,	 how	 the	 creative	 processes	 affect	 the	
development,	 and	 how	 game	 development	 and	 game	 technology	 has	 changed	 in	 the	 recent	 years.	 The	
study	 investigates	 the	 relationship	 between	 creative	 design	 and	 software	 development,	 and	 how	 the	
technical	 and	 creative	 teams	 collaborate.	 The	 results	 presented	 is	 based	 on	 responses	 from	 a	 survey	
aimed	 at	 game	 developers.	 The	 initial	 survey	 was	 extended	 with	 a	 follow-up	 survey	 where	 in-depth	
questions	were	asked.	Along	with	our	own	experience	 from	game	development	and	with	 support	 from	
research	literature,	this	chapter	draws	a	picture	of	how	game	developers	work	with	and	manage	software	
architecture,	the	creative	development	process	the	use	and	how	game	development	and	technology	has	
changed	 the	 recent	 years.	 To	 our	 knowledge,	 this	 is	 the	 =irst	 study	 of	 this	 kind	 within	 software	
engineering.	 This	 book	 chapter	 is	 based	 a	 master	 thesis	 at	 the	 Norwegian	 University	 of	 Science	 and	
Technology	[6],	and	parts	of	this	study	has	previously	been	published	in	[7].	
	
The	rest	of	the	chapter	is	organized	as	follows.	Section	2	presents	related	work	on	software	architecture	
and	 games,	 and	 software	 engineering	 and	 games.	 Section	 3	 describes	 the	 research	 goal,	 research	
questions	and	research	method	used.	Section	4	presents	the	results	from	the	initial	survey	addressed	to	
game	 developers.	 Section	 5	 describes	 the	 results	 from	 the	 more	 focused	 follow-up	 survey.	 Section	 6	
discusses	the	validity	of	the	research	and	results	presented,	and	Section	5	concludes	the	chapter.		

2 RELATED WORK
As	 far	 as	we	 know,	 there	 are	 no	 similar	 studies	 that	 focus	 both	 on	 software	 architecture	 and	 creative	
processes	in	game	development.	However,	there	are	studies	that	focuses	on	the	software	architecture	in	
games	and	studies	focusing	on	the	creative	processes.	In	this	section,	we	will	present	work	in	the	=ield	of	
software	engineering	and	game	development.	
	
As	games	over	the	years	have	grown	into	large	complex	systems,	the	video	game	industry	is	facing	several	
software	engineering	challenges.	Kanode	and	Haddad	have	identi=ied	the	software	engineering	challenges	
in	game	development	to	be	[8]:	Diverse	assets	including	both	code	and	graphics	and	audio	assets,	a	large	
project	scope	that	can	be	dif=icult	to	de=ine,	high	risk	of	game	publishing,	project	management	with	a	very	
tight	schedules	and	involvement	of	many	professions,	inter-disciplinary	team	organization,	development	
process	that	includes	more	than	just	software,	and		third-party	technology.	In	this	article	we	will	mainly	
focus	on	project	management,	team	organization,	development	process,	and	cost	and	complexity	related	
to	third-party	technology.	Similarly,	Petrillo	et	al.	found	through	a	survey	of	game	postmortems	that	game	
development	 and	 traditional	 software	 development	 suffers	 from	 similar	 main	 problems	 such	 as	
unrealistic	 scope,	 over	 budget,	 and	 loss	 of	 professionals	 [9].	 A	major	 difference	 found	 was	 that	 game	
development	had	a	bigger	problem	with	crunch	time.	Lewis	and	Whitehead	describes	the	intersection	of	
software	 engineering	 and	game	development	 and	 investigates	 four	main	 areas:	 development	of	 games,	
how	games	are	designed,	how	middleware	supports	creative	processes,	and	how	games	are	tested	[10].	
This	 research	 focusing	 on	 two	 topics	 in	 our	 chapter:	 the	 difference	 between	 traditional	 and	 game	
development,	 and	 tool	 support	 for	 creative	processes.	As	 in	 traditional	 software	development,	 a	major	
challenge	of	 game	development	 is	 testing	 and	dealing	with	bugs.	 Lewis,	Whitehead	 and	Wardrip-Fruin	
have	 established	 a	 taxonomy	 of	 video	 game	 bugs	 extracted	 from	 online	 user	 documentation	 [11].	 The	
taxonomy	 covers	 bug	 areas	 like	 timing,	 position,	 graphical	 representation,	 change	 of	 value,	 arti=icial	
behavior,	information,	and	action.	There	have	also	been	several	proposals	from	the	research	community	
to	game	developers	to	adopt	software	engineering	practices,	such	as	the	use	of	ISO/IEC	29110	(lifecycle	

 	Survey on Software Architecture, Creativity and Game Technology • XX:3
	

	
	 Software	Engineering	Perspectives	in	Computer	Game	Development	

pro=iles	for	very	small	entities)	in	game	development	[12].	So	far,	the	impact	of	introducing	new	software	
engineering	practices	on	the	gaming	industry	has	been	limited.	
	
To	 our	 knowledge,	 only	 one	 systematic	 literature	 review	 related	 to	 software	 engineering	 and	 game	
development	 has	 been	 conducted	 [5].	 The	 goal	 of	 this	 review	was	 to	 establish	 the	 state	 of	 the	 art	 on	
research	concerning	software	engineering	in	the	video	games	domain.	The	result	of	this	literature	review	
showed	that	the	main	emphasis	in	this	research	domain	is	on	requirement	engineering,	as	well	as	coding	
tools	and	techniques.	Research	related	requirement	engineering	in	games	focuses	on	the	problem	of	going	
from	 a	 game	 concept	 that	 should	 be	 fun	 and	 engaging	 to	 functional	 requirements,	 and	 software	
architectures	and	software	designs	that	can	produce	game	software	realizing	the	game	concept	[13].	The	
initial	 requirements	 for	 a	 game	can	be	 labeled	emotional	 requirements	 containing	 the	game	designer’s	
intent	and	the	means	which	the	game	designer	expects	the	production	team	to	induce	that	emotional	state	
in	the	player	[4].	Another	area	within	software	engineering	and	game	development	is	research	on	coding	
tools	 and	 techniques	 including	 development	 of	 game	 engines	 [14-16],	 component-based	 game	
development	[17],	the	use	of	game	engines	and	tools	[18-21],	development	of	serious	games	[1,	22,	23],	
and	 challenges	 and	 solutions	 for	 networked	 multiplayer	 games	 [24-28].	 Further,	 there	 are	 articles	
focusing	on	software	architectures	[29-36],	and	design	patterns	[37-39]	for	games.	Such	articles	propose	
software	 architectures	 and/or	 design	 patterns	 to	 solve	 particular	 problems	 in	 game	 development.	
However,	unlike	our	chapter,	these	articles	say	very	little	about	the	processes	in	which	the	architectures	
and	patterns	are	used,	and	how	the	game	development	process	is	affected	by	various	roles.		
	
There	 are	 articles	 discussing	 the	 game	 development	 process	 and	 the	 involved	 roles.	 	 In	 [40],	 Scacchi	
presents	 how	 the	 free	 and	 open	 source	 development	 practices	 in	 the	 game	 community	 differs	 from	
traditional	 software	 engineering	 practices	 in	 that	 the	 process	 does	 not	 =it	 into	 a	 traditional	 life-cycle	
model	 or	 partially	 ordered	 as	 a	 spiral	 process.	 Also,	 the	 requirements	 are	 not	 found	 in	 requirement	
speci=ication	documents,	but	they	are	extracted	from	threaded	messages	or	discussions	on	web	sites.	In	
[41],	 a	 survey	 of	 problems	 in	 game	 development	 is	 presented	 based	 on	 an	 analysis	 of	 postmortems	
(summaries	of	what	went	 right	 and	what	went	wrong	 in	 completed	projects)	written	by	various	 game	
developers.	According	to	Flood,	all	game	development	postmortems	say	the	same	things:	the	project	was	
delivered	 behind	 schedule;	 it	 contained	 many	 defects;	 the	 functionalities	 were	 not	 the	 ones	 that	 had	
originally	been	projected;	and	it	took	a	lot	of	pressure	and	an	immense	number	of	development	hours	to	
complete	 the	 project	 [42].	 This	 description	 also	 =its	 well	 with	 typical	 problems	 within	 conventional	
software	 engineering.	 Petrillo	 et	 al.	 further	 details	 the	 speci=ic	 problems	 found	 in	 game	 development	
postmortems	to	be	unrealistic	scope,	feature,	cutting	features	during	development,	problems	in	the	design	
phase,	delays,	technological	problems,	crunch	time,	lack	of	documentation,	communication	problems,	tool	
problems,	 test	problems,	 team	building,	number	of	defects,	 loss	of	professionals,	 and	over	budget	 [41].	
The	problems	clearly	differentiate	game	development	from	conventional	software	development	are	more	
issues	related	to	unrealistic	scope,	feature	creep,	lack	of	documentation,	and	crunch	time.		
	
Several	studies	that	have	examined	the	tension	between	being	creative	and	working	structured	and	goal-
oriented	in	game	development	[43].	In	their	study,	Tschang	and	Szczypula	found	that	game	design	results	
from	individuals’	creative	actions,	idea	creation,	constructivism,	and	evolution	[44].	Another	study	of	65	
project	reports	by	Tschang	showed	that	the	same	processes	are	used	in	game	development	as	those	used	
in	the	creation	of	other	creative	products	[45].	A	case	study	of	how	game	studios	produce	games	by	Stacey	
and	 Nandhakumar,	 revealed	 that	 the	 game	 development	 process	 was	 a	 alternation	 of	 routine	 and	
improvisation	 [46].	 The	 need	 for	 improvisation	 in	 game	 development	 is	 routed	 in	 the	 fact	 that	 game	
development	is	all	about	innovation	and	about	producing	a	product	the	user	will	=irst	of	all	enjoy	and	have	
a	 great	 experience	with.	 The	unique	 and	 close	 relationship	between	 the	product	 and	 the	user	 in	 game	
development,	 produce	 a	 strong	 dependency	 between	 the	 game	 developer	 and	 the	 player	 community,	

XX:4 • A.I. Wang and N. Nordmark

Software	Engineering	Perspectives	in	Computer	Game	Development	

which	is	very	different	from	traditional	software	development	[47].	Although	game	development	always	
has	 been	 strongly	 in=luenced	 by	 creativity	 and	 artistic	 freedom,	 a	 study	 based	 on	 interviews	with	 the	
game	industry	by	Kultima	and	Alha	indicate	a	rise	of	instrumentalist	views	within	game	industry	opposed	
to	more	artistic	and	personal	view	[48].		
	
A	 study	by	Petrillo	 and	Pimenta	 investigates	 if	 (and	how)	principles	 and	practices	 from	Agile	Methods	
have	been	adopted	in	game	development	by	analyzing	postmortems	of	game	development	projects	[49].	
The	 conclusion	 of	 this	 study	was	 that	 game	 developers	 are	 adopting	 a	 set	 of	 agile	 practices,	 although	
informally.	This	means	that	game	developers	can	easily	start	using	agile	methods	like	Scrum	and	XP,	since	
they	have	already	several	agile	practices	in	place.	One	aspect	of	agile	methods	that	is	very	relevant	to	our	
research	is	the	emphasis	on	frequently	gathering	relevant	stakeholders	to	bridge	the	gap	between	of	all	
involved	in	the	project	[50].	This	is	related	to	our	study	where	we	investigated	how	the	creative	team,	the	
technical	team	and	the	management	collaborate	and	coordinate.		

3 RESEARCH GOAL, QUESTIONS AND METHODS
The	research	method	used	in	case	study	is	based	on	the	Goal,	Question,	Metrics	(GQM)	approach	where	
we	 =irst	 de=ine	 a	 research	 goal	 (conceptual	 level),	 then	 de=ine	 a	 set	 of	 research	 questions	 (operational	
level),	and	=inally	describe	a	set	of	metrics	to	answer	the	de=ined	research	questions	(quantitative	level)	
[51].	The	metrics	used	in	our	study	is	a	mixture	of	qualitative	and	quantitative	data	[52].	
	
The	research	goal	of	this	study	was	de=ined	as	the	following	using	the	GQL	template:	
	

The	purpose	of	 this	 study	 is	 to	examine	how	software	architecture	is	used	and	
how	creative	processed	are	managed	from	the	point	of	view	of	a	game	developer	
in	the	context	of	video	game	development.	

	
The	following	research	questions	were	de=ined	by	decomposing	the	research	goal:	
	
RQ1:	What	role	does	software	architecture	play	in	game	development?	
RQ2:	How	do	game	developers	manage	changes	to	the	software	architecture?	
RQ3:	How	are	the	creative	processes	managed	and	supported	in	game	development?	
RQ4:	How	has	game	development	evolved	the	last	couple	of	years?	
	
To	=ind	answers	to	the	research	questions,	we	used	a	combined	approach	that	included	a	questionnaire,	a	
follow-up	 survey	 and	 a	 literature	 study	 to	 support	 the	 =indings.	 The	 questionnaire	 consisted	 of	 20	
statements	 where	 the	 respondents	 state	 whether	 they	 agree	 or	 not,	 using	 the	 Likert’s	 scale	 [53].	 In	
addition,	 the	 questionnaire	 provided	 a	 free	 text	 comment	 for	 every	 statement.	 The	 statements	 in	 the	
questionnaire	were	constructed	from	the	research	goal	and	the	research	questions	presented	above.	The	
subjects	 of	 the	 study	were	 recruited	 from	 the	Nordic	 booth	 at	 the	 Game	Developer	 Conference	 in	 San	
Francisco,	 as	well	 as	 direct	 emails	 sent	 to	 game	 developers.	 The	 questionnaire	was	 answered	 both	 on	
paper	and	using	web-forms	created	using	surveymonkey.com.	
	
After	receiving	questionnaire	responses,	a	 follow-up	survey	with	eight	open-ended	questions	were	sent	
out	 to	 the	 respondents	 from	 the	 questionnaire	willing	 to	 give	more	 detailed	 answers.	 The	 survey	was	
conducted	on	the	web	only	using	surveymonkey.com.		

4 RESULTS FROM QUESTIONNAIRE

 	Survey on Software Architecture, Creativity and Game Technology • XX:5
	

	
	 Software	Engineering	Perspectives	in	Computer	Game	Development	

This	section	presents	the	quantitative	results	from	the	questionnaire,	comments	from	the	respondents,	as	
well	 re=lections	 from	 the	 research	 literature.	 Responses	 from	 thirteen	 game	 companies	were	 received.	
Figure	1	shows	 the	distribution	of	number	of	employees	of	 the	 thirteen	companies.	Only	one	big	game	
developer	responded	(with	500+	employees),	half	of	them	(50%)	had	5-10	employees,	and	the	rest	(42%)	
had	 between	 1	 and	 5	 employees.	 None	 of	 the	 game	 companies	 wanted	 their	 name	 to	 be	 public.	 The	
complete	results	from	the	questionnaire	and	the	follow-up	survey	presented	in	next	section	can	be	found	
in	[6].	

	

Fig. 1. Distribu-on of number of employees.

4.1 Design of SoBware Architecture (RQ1)
The	=irst	part	of	the	questionnaire	focused	on	the	design	of	software	architecture	in	game	development,	
and	the	responses	from	the	=irst	six	statements	are	shown	in	the	Tables	1-6.	

Table 1. “Design of software architecture is an important part of our game development process”.

Agree Neutral Disagree
75% 16% 9%

	
This	 statement	 assessed	 the	 importance	 of	 software	 architecture	 among	 game	 developers.	 The	 result	
shows	that	most	of	the	game	developers	 in	our	study	considered	software	architecture	to	be	important	
part	 of	 game	 development.	 One	 comment	 from	 the	 respondents	 clearly	 illustrate	 the	 importance	 of	
software	architecture	in	games	(the	given	response	on	Likert’s	scale	is	shown	in	parenthesis):		
	

• “Oversight	 in	 the	game	software	architecture	may	 lead	to	serious	dead	ends,	 leading	to	a	need	to	
rewrite	the	entire	system”.	(Agree)	

	
In	 the	early	years	of	 the	video	game	 industry,	simple	game	software	architectures	were	made	by	small	
teams	of	one	 to	 three	persons.	As	game	 technology,	user	demands	and	 the	game	 industry	have	grown,	
careful	design	and	planning	of	software	architectures	have	become	necessary	to	manage	the	complexity	
and	 size,	 and	 the	 involvement	 of	many	 involved	 developers	 [2].	 Although	 the	majority	 of	 respondents	
represent	smaller	game	developers,	the	complexity	of	game	engines	and	use	of	other	libraries	and	APIs	
demands	a	focus	on	software	architectures	to	create	platforms	that	can	cope	with	changing	requirements	
during	 the	 project	 [17].	 Another	 reason	 software	 architecture	 has	 become	 very	 important	 in	 game	
development	is	the	fact	that	the	quality	attributes	are	so	important.	It	is	impossible	to	have	success	with	a	
game	that	suffers	from	bad	performance	(low	and/or	unstable	framerates),	bad	usability,	poor	portability,	
poor	testability	(resulting	in	many	bugs),	and	limited	modi=iability	(hard	to	extend	after	release)	[29].	In	

XX:6 • A.I. Wang and N. Nordmark

Software	Engineering	Perspectives	in	Computer	Game	Development	

addition,	 for	massive	multiplayer	 online	 games	 (MMOGs),	 quality	 attributes	 such	 as	 security	 (to	 avoid	
cheating)	 and	 availability	 in	 crucial	 for	 success	 [54].	 Careful	 design	 and	 evaluation	 of	 the	 software	
architecture	 is	 the	main	 approach	 to	 achieve	 predictable	 and	 acceptable	 quality	 attributes	 in	 software	
development	[55].	
	
The	 second	 statement	 in	 the	 questionnaire	 addressed	 the	 purpose	 of	 software	 architecture	 in	 game	
development	(see	Table	2).	

Table 2. “The main goal of our software architecture is performance”.

Agree Neutral Disagree
59% 16% 25%

	
The	majority	of	 the	companies	 in	 the	survey	agreed	 that	 the	main	goal	of	 the	software	architecture	 for	
them	 was	 to	 ensure	 suf=icient	 performance.	 However,	 the	 respondents	 clari=ied	 that	 there	 are	 other	
quality	attributes	than	performance	that	must	be	taken	into	account.	Here	are	some	comments	regarding	
this	statement:	
	

• “Performance	plus	functionality”.	(Agree)	
• “Also,	 future	 change,	 ability	 to	 be	 data-driven,	 optimized	 deployment	 processes,	 ease	 [of]	

automation/script-ability,	and	testability”.	(Agree)	
• “Main	goals	are:	Performance,	Memory	consumption	and	Actual	purpose	of	the	software.	Real	time	

software	as	games	must	perform	according	to	the	platform	requirements	in	order	to	see	the	light	of	
the	day	regardless	of	the	content”.	(Agree)	

	
The	next	statement	in	the	questionnaire	investigated	the	relationship	between	the	game	concept	and	the	
software	architecture	(see	Table	3).	

Table 3. “Our game concept heavily influences the software architecture”.

Agree Neutral Disagree
75% 9% 16%

	
Over	 three	 out	 of	 four	 game	 developers	 agreed	 that	 the	 game	 concept	 heavily	 in=luences	 the	 software	
architecture.	This	result	was	a	bit	surprising,	as	usage	of	game	engines	should	ideally	make	the	software	
architecture	 less	dependent	on	game	concept	and	game	design.	One	respondent	provided	the	 following	
comment:		
	

• “Entirely	 depends	 on	 the	 game	 concept	 requirements,	 but	 in	 general:	 more	 generic	 –	 within	
boundaries	–	the	better.	This	highlights	that	the	 importance	of	separating	generic	modules	(core)	
with	 modules	 speciMic	 for	 a	 game	 (gameplay).	 Such	 an	 approach	 will	 allow	 reuse	 of	 core	
components,	 and	 at	 the	 same	 time	 provide	 sufMicient	 freedom	 in	 development	 of	 game	 concept“.		
(Agree)		

	
How	much	 the	 game	 concept	will	 in=luence	 the	 game	 software	 architecture	 is	 really	 a	 question	 about	
where	to	draw	the	line	between	the	game	and	the	game	engine.	Currently,	most	game	engines	target	one	
or	few	game	genres,	such	as	real-time	strategy	games	(RTS)	or	=irst-person	shooters	(FPSs).	As	there	is	

 	Survey on Software Architecture, Creativity and Game Technology • XX:7
	

	
	 Software	Engineering	Perspectives	in	Computer	Game	Development	

yet	no	 taxonomy	 that	 can	be	used	 to	 specify	 all	 types	of	 games,	 there	 exist	 few	game	engines	 that	 are	
independent	 of	 genres	 [29].	 Plummer	 tries	 to	 overcome	 this	 problem	 by	 proposing	 a	 =lexible	 and	
expandable	architecture	for	video	games	not	speci=ic	to	a	genre	[31].	However,	too	general	game	engines	
will	most	 likely	have	poor	performance	and	heavy	usage	of	memory	due	 to	overhead	 in	 the	code.	This	
means	that	the	design	of	game	engines	must	balance	performance	and	use	of	resources	vs.	modi=iability.	
Thus,	 games	 that	 stretches	 game	 genres	 will	 result	 in	 software	 architectures	 that	 deviate	 from	 the	
architecture	of	the	game	engine	[29].	
	
Statement	 four	 in	 the	 questionnaire	 asked	whether	 the	 creative	 team	 is	 included	 in	 the	 design	 of	 the	
software	architecture	(see	Table	4).	

Table 4. “The creative team is included in the design of the software architecture”.

Agree Neutral Disagree
75% 16% 9%

	
The	 large	 majority	 of	 the	 respondents	 agreed	 that	 the	 creative	 team	 is	 included	 in	 the	 design	 of	 the	
software	architecture.	 It	 should	be	noted	 that	 the	majority	of	 the	game	developers	 in	 this	 survey	were	
small	 companies,	 which	makes	 it	 easier	 for	 the	whole	 team	 to	 be	 involved	 in	 the	whole	 development	
process.	 In	 smaller	 companies,	 many	 employees	 play	 several	 roles	 and	 work	 both	 with	 software	
development	as	well	as	creative	design.	A	comment	 from	one	company	with	5-10	employees	highlights	
how	the	creative	team	can	be	involved	in	the	software	architecture:		
	

• “Only	 because	 I	 am	 a	 programmer	 and	 also	 the	 lead	 designer.	 Other	 creative	 people	 don’t	 know	
enough	to	be	productively	included”.	(Agree)	

	
It	is	interesting	to	note	that	the	only	large	developer	with	500+	employees	said	that	they	were	neutral	to	
this	 statement.	 We	 have	 seen	 at	 least	 three	 ways	 the	 creative	 team	 can	 contribute	 to	 the	 software	
architecture:	
	

1) Which	game	to	make:	The	decision	of	the	game	to	make	will	give	the	foundation	for	the	main	
constraints	of	the	software	architecture.	

2) New	 in-game	 functionality:	The	 creative	 team	might	 request	 new	 in-game	 functionality	 that	
changes	the	software	architecture.	

3) New	development	 features:	Request	 for	 new	development	 features	 (e.g.	 tool	 support	 and/or	
tool	integration)	might	lead	to	changes	in	the	software	architecture.	

	
Another	comment	related	to	this	statement	was:		
	

• “This	is	mostly	true	when	working	on	the	tools	the	creative	team	will	be	using.	It	rarely	applies	to	in-
game	speciMic	features.“	(Agree)	

	
Experiences	 from	 postmortems	 of	 game	 development	 projects	 show	 the	 importance	 of	 making	 the	
technical	and	creative	team	overlap	going	from	game	concept	into	developing	the	actual	game	software	
[41].	
	
The	next	statement	in	the	questionnaire	is	related	to	how	well	the	creative	team	is	supported	by	the	tools	
provided	for	development	(see	Table	5).	

XX:8 • A.I. Wang and N. Nordmark

Software	Engineering	Perspectives	in	Computer	Game	Development	

Table 5. “Our existing software suite provides features aimed at helping the creative team do their job”.

Agree Neutral Disagree
92% 8% 0%

	
The	 response	 concludes	 that	 the	 game	 engine	 and	 the	 supporting	 tools	 provide	 features	 helping	 the	
creative	team	in	their	work.	This	is	further	supported	and	re=ined	in	the	comments:	
	

• “Our	third-party	tools	do	not	do	this,	but	we’ve	developed	in-house	extensions	that	do.”	(Agree)	
• “Use	 two	 software	 tiers	 that	 aims	 at	 very	 different	 levels	 of	 artist	 integration:	 Visual	 Studio	 and	

Unity3D”.	(Agree)	
	
The	latter	comment	describes	the	situation	that	it	is	not	always	the	ideal	tools	the	creative	teams	have	to	
use.	 Ideally,	 the	 creative	 team	 should	 be	 supported	 by	 various	 GUI	 editors	 and	 high-level	 scripting.	
However,	in	practice,	it	might	be	necessary	to	dive	into	the	source	code	to	get	the	game	where	the	creative	
team	wants	it	to	go.	This	process	is	normally	carried	out	in	collaboration	with	the	technical	team.		
	
Table	 6	 shows	 the	 response	 to	 statement	 6	 regarding	 whether	 existing	 software	 architectures	 put	
restrictions	on	future	game	concepts.	

Table 6. “Our existing software architecture dictates the future game concepts we can develop”.

Agree Neutral Disagree
15% 47% 38%

	
A	strong	drive	 for	game	development	 is	creativity	and	coming	up	with	 innovative	 fresh	game	concepts.	
The	response	shown	in	Table	6	shows	that	this	is	for	the	most	part	true.	This	topic	relates	to	the	core	of	
how	 game	 companies	 see	 themselves	 and	 if	 they	 are	 constrained	 by	 existing	 technology,	 or	 can	 they	
create	whatever	the	creative	team	comes	up	with.	Half	of	the	respondents	are	neutral	to	this	statement,	
which	 show	 that	 in	 practice	 they	 have	 to	 go	 for	 the	middle	 ground.	 Here	 are	 some	 comments	 to	 this	
statement:	
	

• “We	have	engines	 that	gives	us	a	great	beneMit	when	building	new	games	and	we	would	prefer	to	
continue	on	the	same	engines.	However,	it	doesn’t	fully	dictate	the	games	we	will	make	in	the	future.	
This	is	primarily	market-driven.”	(Neutral)	

• “It	may	inMluence,	but	not	dictate	whenever	possible.”	(Neutral)	
• “It	makes	it	a	bit	more	expensive	to	go	to	certain	genres,	but	that’s	it.”	(Disagree)	

	
The	=irst	two	comments	show	that	game	developers	want	to	be	free	to	create	whatever	they	want,	but	at	
the	same	 time	 they	are	constrained	by	market,	 convenience	and	budget.	The	 third	comment	 (disagree)	
indicate	that	the	in=luence	exerted	by	the	existing	software	architecture	is	a	direct	result	of	a	cost-bene=it	
trade-off.	The	higher	cost	of	 change,	 the	more	 in=luence	 the	existing	software	architecture	exert	on	 the	
game	concepts.	

4.2 Changes to the SoBware Architecture (RQ2)

 	Survey on Software Architecture, Creativity and Game Technology • XX:9
	

	
	 Software	Engineering	Perspectives	in	Computer	Game	Development	

The	section	presents	on	results	from	the	questionnaire	on	statements	on	how	game	developers	cope	with	
changes	to	the	software	architecture	shown	in	the	Tables	7-12.	Table	7	shows	the	response	to	a	statement	
on	whether	the	creative	team’s	ideas	are	restricted	by	existing	game	engine.	

Table 7. “The creative team has to adopt their ideas to the existing game engine”.

Agree Neutral Disagree
31% 46% 23%

	
No	 clear	 conclusion	 could	be	drawn	based	on	how	 the	game	companies	 responded.	However,	here	are	
some	comments	might	explain	the	divergence	in	the	responses:	
	

• “Technical	realities	are	always	something	the	creative	side	has	to	work	around.”	(Agree)	
• “Depending	 on	 structure.	 For	 assets	 handling,	 yes,	 but	 creatively,	 not	 so	much.	 In	 latter	 case,	 the	

challenge	is	put	to	programmers	to	extend	usage.”	(Neutral)	
• “Most	of	the	time,	the	creative	team	is	not	 fully	aware	of	the	game	engine	 limitation’s,	so	 it	 is	not	

their	 job	 to	make	 it	 work	 by	 locking	 the	 creativity	 to	 things	 known	 to	 have	 been	 done	with	 the	
engine	before,	 the	people	who	implements	 just	need	to	make	the	 ideas	work	one	way	or	another.”	
(Disagree)	

• “That	is	not	the	way	we	do	it	here.	The	game	design	comes	Mirst,	then	we	build	what	is	necessary	to	
make	it	happen.”	(Disagree)	

	
These	 comments	 indicate	 a	 trade-off	 between	 creative	 freedom	 and	 the	 technical	 limitations.	 It	 is	
axiomatic	that	if	an	idea	not	supported	in	the	current	technology	should	be	implemented,	either	the	idea	
has	to	be	adapted	to	the	existing	technology,	the	technology	adapted	to	the	idea,	or	something	in	between.	
Which	one	to	be	chosen	depends	on	a	cost-bene=it	analysis.	
	
The	next	statement	asked	if	changes	of	the	software	architecture	can	be	demanded	by	the	creative	team	
(see	Table	8).		

Table 8. “During development, the creative team can demand changes to the software architecture”.

Agree Neutral Disagree
69% 31% 0%

	
The	 majority	 of	 the	 respondents	 agree	 that	 the	 creative	 team	 can	 demand	 changes	 to	 the	 software	
architecture	and	none	disagreed	to	this	statement.	There	were	two	comments	to	this	statement:		
	

• “Depends	how	far	in	development	and	how	big	of	a	change,	the	odds	of	re-factoring	an	entire	system	
late	 in	 production	 are	 close	 to	 nil,	 but	 the	 development	 team	 keeps	 an	 open	mind	 at	 all	 times.”	
(Neutral)	

• “But	again,	only	because	the	head	of	the	creative	team	is	president	of	the	company	and	also	wrote	
the	original	version	of	the	game	engine.	If	someone	who	doesn't	know	how	to	program	were	to	come	
to	me	and	demand	changes	to	the	software	architecture,	I	would	probably	not	listen	very	seriously.”	
(Agree)	

	

XX:10 • A.I. Wang and N. Nordmark

Software	Engineering	Perspectives	in	Computer	Game	Development	

Based	on	the	comments	two	statement	 in	Table	8,	game	developers	are	 inclined	to	prioritize	the	wants	
and	needs	of	the	creative	team,	given	that	the	cost-bene=it	trade-off	is	favorable.	Another	important	issue	
is	 the	 phase	 the	 project	 is	 in.	 The	 later	 in	 the	 project	 (production),	 less	 changes	 and	 request	 from	 the	
creative	 team	 is	possible.	Boehm	and	Basili	 estimate	 that	 requirements	error	 can	 cost	up	 to	100	 times	
more	after	delivery	if	caught	at	the	start	of	the	project	[56].	A	possible	solution	to	this	problem	is	to	spend	
more	time	in	the	preproduction	phases	(25%-40%	of	the	project	time)	before	moving	to	production,	as	it	
would	leave	relatively	few	surprises	in	the	production	phase	[57].	In	practice,	this	might	be	very	dif=icult	
as	 the	majority	of	playtesting	of	 the	 game	happens	 in	 the	production	phase,	which	might	 reveal	major	
problems	with	the	core	gameplay.	
	
Table	9	shows	the	response	to	decides	if	change-request	from	creative	team	should	be	implemented.		

Table 9. “Who decides if change-requests from the creative team are implemented?”

Technical team Management Creative team
10% 40% 50%

	
The	responses	 to	 this	question	were	mainly	divided	between	management	and	 the	creative	 team.	Here	
are	the	respondents’	comments	to	this	statement:	
	

• “Ultimately,	the	management	can	overrule	everybody,	but	I	would	like	to	check	the	3	options	here,	
the	creative	 team	judges	how	important	 the	change	 is,	 the	 technical	 team	decides	 if	 it	 is	realistic,	
and	the	management	makes	sure	it	can	be	afforded.	So	mostly,	it	is	a	team	decision.”	(Management)	

• “Actually,	 it	 is	 all	 of	 the	 above,	 but	 the	 question	 would	 not	 let	 me	 put	 that	 as	 an	 answer.”	
(Management)	

• “Sort	of.	The	technical	team	advices	what	is	possible,	and	as	such	has	the	Minal	word.	If	it	is	possible,	
the	decision	falls	on	management,	as	it	is	usually	related	to	economic	costs.”	(Technical	team)	

• “Depends	very	much	on	the	scale	of	change,	we	try	as	much	as	possible	to	keep	this	within	and	as	a	
dialogue	between	the	tech/creative	teams,	but	if	it	means	major	change	it	goes	to	management.	We	
also	aim	to	be	as	much	product/feature	driven	as	possible,	as	the	primary	owner	is	in	the	creative	
team.”	(Creative	team)	

	
The	 responses	 from	 the	 developers	 indicate	 that	 all	 three	 branches	 (administration,	 technical	 and	
creative)	 are	 involved	 in	 change	 decisions.	 More	 game	 developers	 have	 also	 started	 to	 adopt	 agile	
development	practices,	where	it	is	more	common	to	have	frequent	planning	and	decision	meetings	where	
various	professions	are	involved	[58].	
	
The	 next	 statement	 asks	whether	 the	 technical	 team	 implements	 all	 features	 required	 by	 the	 creative	
team	(see	Table	10).	

Table 10. “The technical team implements all features requested by the creative team”.

Agree Neutral Disagree
75% 15% 8%

	
The	majority	of	the	game	companies	agreed	that	the	technical	team	implements	all	features	requested	by	
the	creative	team.	There	were	several	comments	to	this	statement	that	provide	more	details:	

 	Survey on Software Architecture, Creativity and Game Technology • XX:11
	

	
	 Software	Engineering	Perspectives	in	Computer	Game	Development	

	
• “It	 can	happen	 that	 the	 creative	 team	contributes	on	 technical	aspects	during	prototyping	phase.	

Production	quality	code	is	however	left	to	the	technical	people.”	(Agree)	
• “Of	course,	if	the	requests	are	decided	to	be	implemented	in	the	Mirst	place.”	(Agree)	
• “It’s	very	much	a	dialogue,	we	try	not	to	have	too	formal	split	between	tech	and	creative	team	when	

thinking	 about	 this	 but	 prioritize	 what	 the	 user	 experience	 should	 be	 and	 when	 we	 can	 ship	 at	
target	quality.”	(Agree)	

• “Some	requested	features	are	not	tech.	feasible.”	(Disagree)	
	
Table	11	shows	the	results	from	the	statement	regarding	adding	features	to	a	near	complete	game	engine.	

Table 11. “It is easy to add new gameplay elements after the core of our game engine has been completed”.

Agree Neutral Disagree
82% 18% 0%

	
The	majority	of	 the	 respondents	agree	 that	 is	 easy	 to	add	new	gameplay	elements	after	 the	core	game	
engine	has	been	completed.	However,	 the	comments	related	 to	 this	 statement	suggest	 that	adding	new	
gameplay	elements	after	completing	the	core	game	engine	is	often	not	possible,	recommended	or	wanted:		
	

• “It	is	simple	during	prototyping	phase,	technology-wise.	However,	from	a	game	concept	point	of	
view,	it	is	highly	dis-recommended	and	the	fact	it	is	simple	does	not	motivate	the	team	to	stack	
up	features	because	the	existing	one	are	just	not	convincing	enough	:)”	(Agree)	

• “This	really	depends	a	lot	and	can	only	be	answered	on	a	case	to	case	effect.”	(Neutral)	
• “Depends	on	 the	 type	of	 element	–	 some	may	 require	 signiMicant	underlying	 engine	 changes.”	

(Neutral)	
	
One	of	the	most	common	motivations	for	designing	of	software	architecture	is	to	provide	a	system	that	is	
easier	to	modify	and	maintain.	In	game	development,	modi=iability	must	be	balanced	with	performance.	
There	are	mainly	two	contrasting	approaches	to	design	modi=iable	game	environments	[59]:	1)	Scripting	
that	requires	developers	to	anticipate,	hand-craft	and	script	speci=ic	game	events;	and	2)	Emergence	that	
involves	de=ining	 game	objects	 that	 interact	 according	 to	 rules	 to	 give	 rise	 to	 emergent	 gameplay.	 The	
most	common	approach	is	to	create	or	acquire	a	game	engine	that	provides	a	scripting	language	to	create	
a	game	with	prede=ines	behavior.	The	emergence	approach	involves	creation	of	a	simulation	of	a	virtual	
world	with	objects	 that	reacts	 to	their	surroundings.	The	use	of	scripting	makes	 it	complex	to	add	new	
gameplay	elements,	 as	 everything	 is	hardwired.	The	emergence	approach	makes	 it	much	easier	 to	 add	
new	 gameplay	 elements	 later	 in	 the	 project,	 with	 the	 price	 of	 being	 harder	 to	 test	 (large	 number	 of	
possible	game	object	interactions).	
	
The	next	statement	focused	on	the	creative	team’s	use	of	existing	tools	and	features	during	development	
(see	Table	12).	

Table 12. “During development, the creative team has to use the tools and features already available”.

Agree Neutral Disagree
47% 15% 38%

	

XX:12 • A.I. Wang and N. Nordmark

Software	Engineering	Perspectives	in	Computer	Game	Development	

There	is	not	possible	to	draw	a	conclusion	based	on	the	results	from	the	statement	above.	The	comments	
from	the	respondents	give	more	insights:	
	

• “The	ones	already	available	and	the	ones	they	request	along	the	way.”	(Agree)	
• “New	tools	can	be	made.	However,	it	is	certainly	best	to	keep	within	the	suite	offered.”	(Disagree)	
• “Our	current	engine	(Unity)	is	easily	extensible.”	(Disagree)	

	
This	statement	is	really	about	cost.	Adding	new	tools	and	features	during	development	is	costly	and	might	
also	 add	 risk	 to	 the	 project.	However,	 in	 some	 cases	 new	 tools	 and	 features	must	 be	 added	 to	 get	 the	
wanted	 results.	 	 The	only	 large	 company	with	500+	employees	 responded	neutral	 to	 this	 statement	 to	
indicate	that	it	depends	on	the	circumstances.	

4.3 SupporMng the CreaMve Processes (RQ3)
The	responses	on	statements	presented	 in	Table	13-16	relate	 to	how	creative	processes	are	supported	
through	 technology	 and	 processes.	 Table	 13	 shows	 the	 responses	 to	 a	 statement	 whether	 the	 game	
engines	used	by	the	game	companies	support	dynamics	loading	of	new	content	(not	require	recompiling	
or	build).	

Table 13. “Our game engine supports dynamic loading of new content”.

Agree Neutral Disagree
92% 8% 0%

The	response	from	the	game	developers	shows	that	current	game	engines	allow	dynamic	loading	of	new	
content.	However,	the	comments	to	this	statement	show	that	there	are	some	restrictions	in	terms	of	when	
and	how	it	can	be	done:	
	

• “At	some	extent,	in	editor	mode	yes,	at	run-time	only	a	subset	of	it.”	(Agree)	
• “With	some	constraints,	content	must	be	properly	prepped	of	course.”	(Agree)	

	
Different	game	engines	provide	different	=lexibility	regarding	changes	that	can	be	carried	out	at	run-time.	
Most	 game	engines	 support	 changes	 to	 the	 graphic	 as	 long	as	 the	 affected	graphical	 structures	 are	 the	
similar.	Similarly,	many	game	engines	allow	run-time	changes	using	a	scripting	language	that	can	change	
the	behavior	of	the	game.	However,	substantial	changes	to	the	gameplay	and	changes	of	the	game	engine	
itself	usually	cannot	be	changed	in	run-time.	
	
The	next	statement	asked	if	the	game	engine	used	had	a	scripting	system	than	can	be	used	by	the	creative	
team	(see	Table	14).	

Table 14. “Our game engine has a scripting system the creative team can use to try out and implement new ideas”.

Agree Neutral Disagree
70% 15% 15%

	
Most	of	the	respondents	say	they	have	a	scripting	system	that	can	be	used	by	the	creative	team.	However,	
there	are	also	game	developers	 in	the	survey	that	use	own	game	engines	without	scripting	capabilities.	
Especially	 for	small	game	developers,	 it	can	be	 too	expensive	and	too	much	work	to	create	support	 for	

 	Survey on Software Architecture, Creativity and Game Technology • XX:13
	

	
	 Software	Engineering	Perspectives	in	Computer	Game	Development	

scripting	 in	 their	 own	 game	 engine.	 In	 addition,	 small	 game	 developers	 do	 not	 necessarily	 have	 to	
competence	to	develop	such	=lexible	game	engines.	The	comments	related	to	this	statement	were:	
	

• 	“Yes,	but	could	be	better	and	more	Mlexible	(as	always...)”	(Agree)	
• “Our	‘scripting	system’	is	typing	in	C++	code	and	recompiling	the	game.”	(Disagree)	

	
A	 recognized	 problem	 of	 letting	 the	 creative	 team	 script	 the	 game	 engine,	 is	 that	 they	 usually	 do	 not	
understand	the	underlying	low-level	mechanisms	related	to	performance	[60].	Until	the	game	engines	can	
optimize	the	scripts	automatically,	the	technical	team	often	must	assist	the	creative	team	with	scripting.	
	
Table	 15	 shows	 the	 results	 to	 a	 statement	 that	 asked	whether	 the	 creative	 team	was	 included	 in	 the	
company’s	development	feedback	loop	or	not.	

Table 15. “The creative team is included in our development feedback loop (e.g., scrum meetings)”.

Agree Neutral Disagree
91% 9% 0%

	
As	the	majority	of	the	game	developers	in	this	survey	are	rather	small	organizations,	 it	 is	naturally	that	
the	creative	team	is	included	in	the	development	feedback	loop.	However,	even	the	large	game	developer	
in	the	survey	(500+	employees)	said	that	the	creative	team	was	included	in	development	feedback	loops.		
This	is	in	alignment	with	what	has	been	found	in	other	studies	[40,	49,	58].	The	only	comment	related	to	
this	statement	was:	
	

• “Depends	on	the	phase	of	the	project.”	(Neutral)	
	
The	next	statement	focused	on	rapid	prototyping	using	game	engines	(see	Table	16).	

Table 16. “Our game engine allows rapid prototyping of new levels, scenarios and NPCs/behavior”.

Agree Neutral Disagree
91% 9% 0%

	
This	statement	is	related	to	the	statement	in	Table	14,	and	the	response	was	also	the	same.	Game	engines	
supporting	 scripting	 normally	 provide	 rapid	 prototyping.	 There	was	 only	 one	 comment	 related	 to	 this	
statement:	
	

• “While	most	 of	 the	 systems	 are	 designed	with	 simplicity	 and	 fast	 iteration	 time	 in	mind,	 certain	
things	still	require	time	consuming	tweaking	tasks.”	(Agree)	

4.4 Changes over Time (RQ4)
Tables	17-20	shows	the	response	to	statements	that	investigate	how	game	development	has	changed	the	
last	 couple	 of	 years.	 Table	 17	 shows	 the	 results	 from	 statement	 on	 the	 change	 of	 usage	 of	 3rd	 party	
modules.	

Table 17. “Today our company uses more 3rd party modules than 3 years ago”.

XX:14 • A.I. Wang and N. Nordmark

Software	Engineering	Perspectives	in	Computer	Game	Development	

Agree Neutral Disagree
67% 22% 12%

	
The	 response	 to	 this	 statement	 seemed	 to	 be	 that	 the	majority	 uses	more	 third-party	modules	 than	 3	
years	ago.	This	con=irms	the	predictions	that	buying	a	good	middleware	will	provide	a	better	result	than	
what	an	organization	can	produce	at	the	same	prize	[61].	The	only	comment	to	this	statement	was	“It	is	
about	time	…”	for	more	usage	of	third	party	modules.		
	
Table	 18	 shows	 the	 results	 from	 statement	 on	whether	 game	 developer	 has	 become	 easier	 the	 recent	
years.	

Table 18. “It is easier to develop games today than it was 5 years ago”.

Agree Neutral Disagree
77% 8% 15%

	
The	vast	majority	in	the	survey	agrees	that	it	is	easier	to	develop	games	today	than	it	was	5	years	ago.	The	
complexity	of	games	and	the	players’	expectations	have	increased	over	the	years	[2],	but	the	tools	and	the	
engines	have	also	made	it	easier	to	manage	complexity	as	well	as	achieving	higher	=idelity.		The	comments	
from	 the	 respondents	 highlight	 that	 the	 technical	 part	 has	 probably	 become	 easier,	 but	 the	 overall	
challenge	of	game	development	probably	not:	
	

• “The	 challenges	 have	 changed,	 and	 the	 quality	 bar	 has	 risen,	 it	 is	more	 accessible	 to	 people	 less	
interested	in	nerdy	things	nowadays	(engines	like	Unity	reduced/removed	the	low-level	aspect	of	the	
development),	but	developing	a	great	game	 is	 still	as	challenging	as	before,	 the	problems	to	solve	
just	have	evolved.”	(Disagree)	

• “Technically	and	graphically,	yes.	Conceptually,	no.”	(Agree)	
	
The	next	statement	investigates	how	the	importance	of	middleware	has	changed	over	time	(see	Table	19).	

Table 19. “Middleware is more important to our company today than 3 years ago”.

Agree Neutral Disagree
65% 18% 18%

	
The	majority	 of	 respondents	 agreed	 that	middleware	 is	more	 important	 to	 the	 company	 today	 than	 3	
years	ago.	Table	20	shows	the	results	from	a	statement	comparing	how	game	development	and	software	
development	has	changed	over	time.	

Table 20. “Game development is more like ordinary software development today than 5 years ago”.

Agree Neutral Disagree
38% 24% 38%

	
The	feedback	on	this	statement	was	mainly	divided	into	two	camps.	It	is	interesting	to	note	that	the	large	
game	developer	with	500+	employees	answered	neutral	 to	 this	 statement.	 	The	only	 comments	 to	 this	

 	Survey on Software Architecture, Creativity and Game Technology • XX:15
	

	
	 Software	Engineering	Perspectives	in	Computer	Game	Development	

statement	came	from	those	disagreeing	that	game	development	is	becoming	more	like	ordinary	software	
development:	
	

• “Game	development	requires	a	more	eccentric	creative	problem	solving	than	development	in	most	of	
other	industries	and	this	will	probably	remain	true	forever	;)”	(Disagree)	

• “Nope.	It	was	software	development	then,	and	still	is	now.”	(Disagree)	
• “I	 think	 the	 tools	available	 today	moves	game	development	 further	away	 from	 ‘ordinary	software	

development’.)”	(Disagree)	
	
Several	 differences	 between	 game	 development	 and	 conventional	 software	 development	 have	 been	
identi=ied	 in	 the	 literature.	 One	 example	 is	 that	 games	 usually	 have	 more	 limited	 lifecycle	 than	
conventional	 software	 products	 and	 that	 the	maintenance	 of	 games	mainly	 only	 focuses	 on	 bug	 =ixing	
without	 charging	 the	 end-user	 [62].	 Another	 example	 is	 that	 game	 development	 does	 not	 include	
functional	requirements	 from	the	end-users.	Typical	end-user	requirements	 to	a	game	 is	 that	 the	game	
must	 be	 fun	 and	 engaging	 [13].	 The	 latter	 poses	 a	 challenge	 of	 going	 from	 preproduction	 phase	 that	
produces	 a	 game	 design	 document	 (and	 maybe	 a	 prototype),	 to	 the	 production	 phase	 where	 all	 the	
software,	game	design,	art,	audio	and	music	will	be	produced	[13].	From	a	software	engineering	point	of	
view,	a	challenge	in	game	development	is	to	create	functional	requirements	from	a	game	design	document	
that	describes	the	game	concept.		Another	difference	between	conventional	software	systems	and	games	
is	the	importance	of	usability.	A	software	system	might	be	used	if	it	provides	much	needed	functionality	
even	if	the	usability	is	not	the	best.	However,	a	game	with	low	usability	is	very	unlikely	to	survive	[63].	
Usability	tests	and	frameworks	are	also	used	within	game	development,	but	they	are	tailored	speci=ically	
for	the	game	domain	[64,	65].	

5 RESULTS FROM FOLLOW-UP SURVEY
In	this	section	you	can	=ind	a	summary	of	the	results	from	a	more	in-depth	survey	with	free	text	questions	
targeted	 six	 of	 the	 thirteen	 game	 developers	 from	 that	 responded	 to	 the	 questionnaire	 in	 previous	
section.	

5.1 Game Engines and Middleware
Four	out	of	the	six	respondents	said	they	use	external	game	engines	where	two	use	custom-made	or	their	
own.	External	game	engines	used	by	the	respondents	were	Away3D	(3D	engine	for	Flash/ActionScript),	
Unity	3D	and	Unreal	Engine	3.	In	addition	to	these	game	engines,	a	variety	of	external	tools	are	being	used	
such	as	Autodesk	Beast	(lightning),	Autodesk	Scaleform	(user	interfaces),	Bink	(video	codec	for	games),	
Box2D	 (physics),	 DirectX	 (multimedia	 API),	 FMOD	 (audio),	 libvorbis	 (audio	 codec),	 NVIDIA	 PhysX	
(phystics),	 SpeedTree	 (plugin/tools	 for	 tree	 and	 plants),	 Substance	 (texture	 designer),	 Flash	 (Web-
platform),	and	Umbra	(rendering	optimization).		
In	the	survey	we	asked	about	where	game	engines	are	heading	in	the	future,	and	the	following	key-points	
summarize	their	responses:	
	

• Multi-platform:	 The	 ability	 to	 create	 a	 game	 once	 and	 build	 it	 to	 run	 on	 different	 platforms	
allows	game	developers	to	reach	a	much	larger	audience,	and	at	the	same	time	being	able	to	focus	
on	the	work	of	creating	the	game	without	always	considering	porting.	

• Quality	 of	 features:	Whilst	 most	 game	 engines	 today	 frequently	 present	 new	 features,	 the	
quality	of	the	feature	is	more	important	than	the	quantity.	Even	if	a	really	impressive,	bleeding-
edge	feature	is	included	in	the	game	engine,	most	game	developers	will	not	use	it	until	it	works	
properly	and	is	simple	to	integrate	in	the	game.	

XX:16 • A.I. Wang and N. Nordmark

Software	Engineering	Perspectives	in	Computer	Game	Development	

• Simplicity:	The	usability	of	a	game	engine	has	improved	rapidly	since	the	earliest	game	engines	
to	those	who	dominate	the	market	today.	The	replies	indicate	that	this	trend	will	only	continue,	
and	 that	game	engines,	which	are	dif=icult	 to	use,	will	 fall	behind	 in	 the	competition.	However,	
ease	of	use	must	not	be	at	 the	expense	of	 freedom.	As	there	are	 limits	 to	how	much	freedom	a	
point-and-click	interface	can	provide,	the	companies	should	still	be	able	to	edit	the	source	code,	
allowing	them	to	develop	new	and	novel	features.	

• Completeness:	A	game	engine	 today	must	present	more	 than	“just”	a	 rendering	engine,	which	
accepts	 input	data,	 and	produces	a	game.	The	game	engine	needs	 to	have	a	host	of	 supporting	
features	 and	 tools,	 relieving	 the	 individual	 organizations	 from	 tasks	 like	 taking	 models	 from	
modeling	 tools	and	converting	 them	to	game	engine-compatible	data	 formats,	or	handling	save	
games.	

5.2 SoBware Architecture and CreaMve Team
Two	recurring	themes	were	recognized	in	how	the	creative	team	contributes	to	the	design	of	the	software	
architecture.	Firstly,	 the	creative	team	affects	the	software	architecture	indirectly	through	working	with	
the	technical	team.	Secondly,	 the	main	areas	they	affect	relate	to	how	tools	 interact	with	the	game.	This	
can	be	a	result	of	discussions	regarding	work=low	issues	or	based	on	the	functional	needs	of	the	creative	
teams.	Thus,	 the	 creative	 team	does	not	 affect	 the	 software	 architecture	directly,	 but	 through	 requests	
made	to	the	technical	team.	
	
To	specify	more	in	detail	how	the	creative	team	affects	the	software	architecture,	we	asked	about	which	
features	is	needed	to	help	the	creative	team	do	their	job.	The	responses	showed	that	all	companies	desire	
functionality	 letting	 the	 creative	 team	 import	 new	 assets	 and	 try	 them	 out	 in-game.	 This	 allows	 rapid	
prototyping	of	new	ideas,	which	again	demands	a	software	architecture	that	can	provide	such	run-time	
=lexibility.	The	goal	for	many	is	to	achieve	a	more	data-	and	tool-driven	development	that	empowers	the	
creative	team.	A	part	of	this	process	is	to	achieve	automatic	transition	from	tools	to	the	game.	In	practice,	
this	means	 that	 the	creative	 team	can	test	out	new	 ideas	 faster	and	more	 frequently,	and	thus	produce	
better	 and	more	 original	 games.	 Additionally,	 if	 the	 creative	 team	possesses	 some	programming	 skills,	
they	 could	 alter	 the	 source	 code	 on	 their	 own	 copy	 of	 the	 game	 project.	 This	 allows	 for	 a	 more	
fundamental	approach	to	 implement	new	features.	Alternatively,	“featured-oriented	teams”	can	be	used	
in	game	development,	as	suggested	by	one	of	the	respondents.	Such	a	team	consists	of	at	least	one	coder,	
one	 artist	 and	 one	 designer.	 The	 composition	 of	 roles	 allows	 them	 to	 focus	 on	 particular	 features	
represented	as	a	single	unit,	allowing	work	to	progress	quickly	without	having	to	wait	 for	any	external	
resources.	The	use	of	feature-oriented	teams	is	also	a	way	of	reducing	the	problems	related	the	transition	
from	preproduction	to	production	in	game	development	[13].	An	overlap	in	roles	in	technical	and	creative	
teams	 is	also	recommended	to	bridge	 the	code/art	divide	 that	many	game	development	projects	suffer	
from	[66].	

5.3 ImplemenMng Changes
From	 the	 feedback	 from	 the	 respondents	 we	 recognized	 a	 pattern	 for	 the	 decision	 process	 on	 how	
companies	are	reasoning	about	implementing	changes.	Firstly,	the	importance	of	the	feature	from	a	user	
experience	 perspective	must	 be	 assessed	 through	 asking	 how	much	 better	will	 the	 game	 be	with	 this	
feature	or	how	much	will	be	lost	if	it	is	not	implemented?	Secondly,	it	must	be	asked	how	much	it	will	cost	
in	terms	of	time	and	resources	to	implement	this	feature,	and	can	the	added	workload	and	extra	use	of	
resources	be	 justi=ied?	 If	both	parts	evaluate	positively,	 the	organization	will	 start	considering	how	the	
features	 should	 be	 implemented.	 This	 process	 starts	 in	 a	 discussion	 involving	 both	 the	 creative	 and	
technical	 team.	 Here	 the	 initial	 goal	 as	 seen	 from	 the	 creative	 team,	 is	 subjected	 to	 technical	

 	Survey on Software Architecture, Creativity and Game Technology • XX:17
	

	
	 Software	Engineering	Perspectives	in	Computer	Game	Development	

considerations.	Based	on	this	feedback	and	feed-forward,	the	creative	team	ends	up	with	a	speci=ication	of	
the	features.	The	technical	team	will	produce	a	prototype	based	on	this	speci=ication.	When	both	teams	
are	happy	with	the	prototype,	it	is	=ixed	into	production	quality	code.	
	
The	 last	 topic	we	 touched	upon	 in	 this	survey	was	about	who	are	 involved	 in	 the	decision	process	and	
how	 important	 are	 the	 opinions	 of	 the	 creative	 team,	 the	 technical	 team,	 and	 the	 management.	 The	
responses	from	the	survey	gave	some	indicators	for	how	these	decisions	take	place	in	game	development	
companies.	 Firstly,	 management	 has	 the	 =inal	 say	 if	 the	 change	 signi=icantly	 alters	 budget	 or	 time	
estimates.	This	is	not	to	say	that	it	is	not	done	without	involvement	from	either	the	creative	team	or	the	
technical	 team,	 but	 in	 the	 end,	 management	 decides.	 Secondly,	 for	 the	 companies	 that	 replied	 in	 our	
survey,	all	three	groups	(management,	creative	and	technical)	seem	to	be	treated	equally	in	the	decision	
process.	This	makes	sense	as	these	three	groups	have	three	different	responsibilities.	Management	should	
get	 the	game	 launched	on	 time	and	budget,	 the	creative	 team	should	produce	a	game	which	 is	 fun	and	
involving,	 and	 the	 technical	 team	 should	 enable	 the	 technology	 to	 drive	 the	 creative	 team’s	 content	
through	in	a	reliable	way.	

6 THREATS TO VALIDITY
This	section	addressed	the	most	important	threats	to	the	validity.	There	are	mainly	three	validities	that	
must	be	discussed:	intern,	construct,	and	external.	
	
The	 intern	 validity	 of	 an	 experiment	 concerns	 “the	 validity	 of	 inferences	 about	 whether	 observed	
covariation	 between	 A	 (the	 presumed	 treatment)	 and	 B	 (the	 presumed	 outcome)	 re=lects	 a	 causal	
relationship	 from	A	 to	B	 as	 those	 variables	were	manipulated	or	measured”	 [67].	 If	 changes	 in	B	have	
causes	other	than	the	manipulation	of	A,	there	is	a	threat	to	the	internal	validity.	The	main	internal	threat	
in	our	study	is	that	the	sample	of	subjects	in	the	experiment	was	not	randomized.	The	respondents	to	the	
questionnaire	were	recruited	in	two	ways.	The	=irst	group	was	game	developers	that	visited	the	Nordic	
booth	at	the	Game	Developer	Conference	that	volunteered	to	=ill	out	a	paper	questionnaire	at	the	booth.	
The	 second	 group	 consisted	 of	 game	 developers	 that	 responded	 to	 emails	 we	 sent	 to	 many	 game	
developers.	We	would	 have	 preferred	more	 respondents	 and	 especially	more	 larger	 game	 developers.	
However,	we	have	learned	that	it	is	very	dif=icult	to	get	game	developers	to	respond	to	questionnaires	as	
they	are	always	behind	schedule	and	overworked,	so	we	were	pleased	getting	thirteen	responses	in	the	
end.	
	
Construct	validity	concerns	the	degree	to	which	inferences	are	warranted,	from	(1)	the	observed	persons,	
settings,	 and	 cause	 and	effect	 operations	 included	 in	 a	 study	 to	 (2)	 the	 constructs	 that	 these	 instances	
might	represent.	The	question,	therefore,	is	whether	the	sampling	particulars	of	a	study	can	be	defended	
as	measures	of	general	constructs	[67].	Our	approach	was	to	=irst	create	a	questionnaire	with	the	goal	of	
answering	our	research	questions	that	were	decomposed	from	our	research	goal.	The	goal	of	our	research	
was	not	only	to	get	quantitative	responses,	so	we	encouraged	the	respondents	to	comment	on	how	they	
answered	 the	 twenty	statements.	Further	 to	get	more	qualitative	data,	we	conducted	a	survey	 to	 those	
game	companies	who	were	willing	to	go	more	into	details.			
	
The	issue	of	external	validity	concerns	whether	a	causal	relationship	holds	(1)	for	variations	in	persons,	
settings,	treatments,	and	outcomes	that	were	in	the	experiment	and	(2)	for	persons,	settings,	treatments,	
and	 outcomes	 that	 were	 not	 in	 the	 experiment	 [67].	 The	 results	 found	 in	 this	 study	 can	 mainly	 be	
generalized	 to	 smaller	 game	 companies	 (from	 1	 to	 10	 employees),	 since	we	 only	 had	 one	 large	 game	
developer	among	the	respondents.	Also,	since	we	only	received	thirteen	responses	to	the	questionnaire,	
the	quantitative	results	must	only	be	seen	as	indicators	on	how	game	developers	think	about	the	various	

XX:18 • A.I. Wang and N. Nordmark

Software	Engineering	Perspectives	in	Computer	Game	Development	

statements.	The	qualitative	data	in	the	questionnaire	and	survey	along	support	from	research	literature	
strengthen	the	results	and	its	validity.	

7 CONCLUSIONS
This	 chapter	 presents	 the	 =indings	 from	 a	 questionnaire	 and	 the	 follow-up	 survey	 on	 how	 game	
developers	use	and	manage	software	architecture	and	how	creative	development	processes	are	managed.	
The	results	presented	are	a	combination	of	the	response	from	thirteen	game	companies	and	=indings	in	
research	literature.		
	
The	 Mirst	 research	question	(RQ1)	addressed	the	role	software	architecture	plays	 in	game	development.	
The	game	developers	in	our	survey	stated	that	software	architecture	is	important	in	game	development,	
especially	 to	manage	 complexity	 and	 achieve	 quality	 attributes	 such	 as	modi=iability	 and	performance.	
Another	=inding	was	that	the	game	concept	heavily	in=luences	the	software	architecture	mainly	because	it	
dictates	 the	 choice	 of	 game	 engine.	 Further,	 the	 ways	 the	 creative	 team	 can	 affect	 the	 software	
architecture	is	through	the	creation	of	the	game	concept,	by	adding	in-game	functionality,	and	by	adding	
new	 development	 tools.	 Finally,	 a	 cost/bene=it	 analysis	 will	 decide	 whether	 an	 existing	 software	
architecture	 may	 dictate	 future	 game	 concepts	 or	 not.	 Whenever	 it	 is	 possible,	 reuse	 of	 the	 software	
architecture	is	wanted.		
	
The	second	research	question	(RQ2)	investigated	how	game	developers	manage	changes	to	the	software	
architecture.	We	 found	 that	 the	 creative	 team	 has	 to	 adjust	 some	 extent	 their	 game	 ideas	 to	 existing	
software	 architecture	 based	 on	 a	 cost/bene=it	 analysis.	 The	 creative	 team	 can	 demand	 changes	 to	 the	
software	 architecture	 during	 development,	 but	 this	 decision	 depends	 on	 how	 far	 the	 project	 has	
progressed	and	the	cost	and	bene=it	of	making	the	change.	Decisions	on	change-requests	are	usually	made	
by	 personnel	 from	 technical	 team,	 creative	 team	 and	management,	 but	 the	management	 has	 the	 =inal	
word	 due	 to	 economical	 justi=ications.	 Further,	 the	 technical	 teams	 to	 a	 large	 extent	 implement	 all	
features	and	 tools	requested	by	 the	creative	 team	(within	reasonable	 limits),	and	 that	most	developers	
said	it	was	easy	to	add	new	gameplay	elements	after	the	core	game	engine	was	complete	(although	not	
recommended	 late	 in	 the	 project).	 The	 literature	 highlighted	 two	 approaches	 to	 deal	 with	 adding	
gameplay	elements	to	a	game:	Scripting	–	where	the	behavior	of	the	game	is	pre-deterministic	and	acting	
according	 to	 a	 script,	 and	Emergence	 -	where	 the	behavior	 is	non-deterministic,	 and	a	 virtual	world	 is	
created	by	game	objects	that	reacts	the	environment	around	them.	The	former	has	the	advantage	of	being	
easier	to	test,	and	the	latter	has	the	advantage	of	being	easier	to	extend	gameplay.	
	
The	third	research	question	(RQ3)	addressed	how	the	creative	processes	are	managed	and	supported	in	
game	development.	Most	of	the	game	developers	in	this	study	said	they	used	game	engines	that	support	
dynamic	 loading	 of	 new	 game	 elements	 (although	 not	 everything	 in	 run-time).	 The	 majority	 of	 the	
respondents	use	game	engines	that	support	scripting.	Only	game	developers	with	own	developed	game	
engines	did	not	support	scripting.	Finally,	the	majority	of	the	developers	said	they	used	game	engines	that	
enable	 rapid	 prototyping	 of	 new	 ideas.	 The	 conclusion	 of	 this	 research	 question	 is	 that	 current	 game	
engines	 enable	 creative	 processes	 through	 support	 of	 GUI	 tools,	 scripting,	 and	 dynamic	 loading	 of	
elements.	
	
The	 forth	research	 question	 asked	 how	 game	 development	 has	 evolved	 the	 last	 couple	 of	 years.	 This	
question	 can	 be	 summarized	 as	 follows:	 There	 has	 been	 an	 increased	 use	 of	 third-party	 software,	
middleware	 has	 become	 more	 important,	 and	 it	 is	 technically	 easier	 to	 develop	 games.	 Although	 the	
majority	of	respondents	said	that	the	technical	aspects	of	game	development	have	become	easier,	game	
development	 in	 itself	 has	 not	 become	 easier	 due	 to	 higher	 player	 expectations	 and	 higher	 game	

 	Survey on Software Architecture, Creativity and Game Technology • XX:19
	

	
	 Software	Engineering	Perspectives	in	Computer	Game	Development	

complexity.	Similarly,	 there	was	no	clear	conclusion	whether	game	development	has	become	more	 like	
conventional	software	development.	The	main	differences	were	identi=ied	to	be	that	in	game	development	
there	 are	 no	 real	 functional	 requirements,	 the	 quality	 attributes	 performance	 and	 usability	 are	 more	
important,	and	game	development	has	its	own	set	of	tools	and	engines.	

ACKNOWLEDGEMENTS
We	would	like	to	thank	Richard	Taylor	and	Walt	Scacchi	at	the	Institute	for	Software	Research	(ISR)	at	the	
University	of	California,	Irvine	(UCI)	for	providing	a	stimulating	research	environment	and	for	hosting	a	
visiting	researcher	from	Norway.	
	

REFERENCES
[1]	 M.	Zyda,	“From	visual	simulation	to	virtual	reality	to	games,”	Computer,	vol.	38,	no.	9,	pp.	25-32,	2005.	
[2]	 J.	Blow,	“Game	Development:	Harder	Than	You	Think,”	Queue,	vol.	1,	no.	10,	pp.	28-37,	2004.	
[3]	 C.	E.	Crooks,	Awesome	3D	Game	Development:	No	Programming	Required:	Cengage	Learning,	2004.	
[4]	 D.	Callele,	E.	Neufeld,	and	K.	Schneider,	“Emotional	Requirements,”	IEEE	Softw.,	vol.	25,	no.	1,	pp.	43-45,	2008.	
[5]	 A.	Ampatzoglou,	and	I.	Stamelos,	“Software	engineering	research	for	computer	games:	A	systematic	review,”	Information	and	

Software	Technology,	vol.	52,	no.	9,	pp.	888-901,	2010.	
[6]	 N.	 Nordmark,	Software	Architecture	and	the	Creative	Process	 in	Game	Development,	 Master	 Thesis,	 Norwegian	 University	 of	

Science	and	Technology,	2012.	
[7]	 A.	I.	Wang,	and	N.	Nordmark,	"Software	architectures	and	the	creative	processes	in	game	development."	pp.	272-285.	
[8]	 C.	M.	Kanode,	and	H.	M.	Haddad,	"Software	engineering	challenges	in	game	development."	pp.	260-265.	
[9]	 F.	Petrillo,	M.	Pimenta,	F.	Trindade,	and	C.	Dietrich,	"Houston,	we	have	a	problem...:	a	survey	of	actual	problems	in	computer	

games	development."	pp.	707-711.	
[10]	 C.	Lewis,	and	J.	Whitehead,	"The	whats	and	the	whys	of	games	and	software	engineering."	pp.	1-4.	
[11]	 C.	Lewis,	J.	Whitehead,	and	N.	Wardrip-Fruin,	"What	went	wrong:	a	taxonomy	of	video	game	bugs."	pp.	108-115.	
[12]	 J.	Kasurinen,	R.	Laine,	and	K.	Smolander,	"How	applicable	is	ISO/IEC	29110	in	Game	Software	Development?."	pp.	5-19.	
[13]	 D.	Callele,	E.	Neufeld,	and	K.	Schneider,	"Requirements	engineering	and	the	creative	process	in	the	video	game	industry."	pp.	

240-250.	
[14]	 M.	Shantz,	“Designing	a	PC	game	engine,”	1998.	
[15]	 T.	C.	Cheah,	and	K.-W.	Ng,	"A	practical	implementation	of	a	3D	game	engine."	pp.	351-358.	
[16]	 R.	Darken,	P.	McDowell,	and	E.	Johnson,	“The	Delta3D	Open	Source	Game	Engine,”	IEEE	Comput.	Graph.	Appl.,	vol.	25,	no.	3,	pp.	

10-12,	2005.	
[17]	 E.	 Folmer,	 "Component	 Based	 Game	 Development–A	 Solution	 to	 Escalating	 Costs	 and	 Expanding	 Deadlines?,"	 Component-

Based	Software	Engineering,	pp.	66-73:	Springer,	2007.	
[18]	 C.	A.	M.	Antonio,	C.	A.	F.	Jorge,	and	P.	M.	Couto,	“Using	a	Game	Engine	for	VR	Simulations	in	Evacuation	Planning,”	IEEE	Comput.	

Graph.	Appl.,	vol.	28,	no.	3,	pp.	6-12,	2008.	
[19]	 J.	Kasurinen,	J.-P.	Strandén,	and	K.	Smolander,	"What	do	game	developers	expect	from	development	and	design	tools?."	pp.	36-

41.	
[20]	 M.	Zhu,	 and	A.	 I.	Wang,	 “RAIL:	A	Domain-Specific	Language	For	Generating	NPC	Behaviors	 In	Action/Adventure	Games,”	 in	

14th	International	Conference	on	Advances	in	Computer	Entertainment	Technology	(ACE	2017),	London,	UK,	2017.	
[21]	 M.	Zhu,	A.	I.	Wang,	and	H.	Trætteberg,	"Engine-cooperative	game	modeling	(ecgm):	Bridge	model-driven	game	development	

and	game	engine	tool-chains."	p.	22.	
[22]	 A.	I.	Wang,	“The	wear	out	effect	of	a	game-based	student	response	system,”	Computers	&	Education,	vol.	82,	pp.	217-227,	2015.	
[23]	 A.	 I.	Wang,	 and	 J.	 d.	 J.	 L.	 G.	 Ibánez,	 “Learning	 Recycling	 from	 Playing	 a	 Kinect	 Game,”	 International	 Journal	of	Game-Based	

Learning	(IJGBL),	vol.	5,	no.	3,	pp.	25-44,	2015.	
[24]	 C.	Bouras,	V.	Poulopoulos,	I.	Sengounis,	and	V.	Tsogkas,	“Networking	Aspects	for	Gaming	Systems,”	in	Proceedings	of	the	2008	

Third	International	Conference	on	Internet	and	Web	Applications	and	Services,	2008.	
[25]	 J.	Smed,	T.	Kaukoranta,	and	H.	Hakonen,	A	Review	of	Networking	and	Multiplayer	Computer	Games,	TUCS	Technical	Report	454,	

Turku	Centre	for	Computer	Science,	2002.	
[26]	 T.	Hampel,	T.	Bopp,	and	R.	Hinn,	 “A	peer-to-peer	architecture	 for	massive	multiplayer	online	games,”	 in	Proceedings	of	5th	

ACM	SIGCOMM	workshop	on	Network	and	system	support	for	games,	Singapore,	2006.	
[27]	 T.	Triebel,	B.	Guthier,	R.	Süselbeck,	G.	Schiele,	and	W.	Effelsberg,	“Peer-to-peer	 infrastructures	for	games,”	 in	Proceedings	of	

the	 18th	 International	Workshop	 on	 Network	 and	 Operating	 Systems	 Support	 for	 Digital	 Audio	 and	 Video,	 Braunschweig,	
Germany,	2008.	

[28]	 W.	Cai,	P.	Xavier,	S.	J.	Turner,	and	B.-S.	Lee,	"A	scalable	architecture	for	supporting	interactive	games	on	the	internet."	pp.	60-
67.	

XX:20 • A.I. Wang and N. Nordmark

Software	Engineering	Perspectives	in	Computer	Game	Development	

[29]	 E.	F.	Anderson,	S.	Engel,	P.	Comninos,	and	L.	McLoughlin,	“The	case	for	research	in	game	engine	architecture,”	in	Proceedings	
of	the	2008	Conference	on	Future	Play:	Research,	Play,	Share,	Toronto,	Ontario,	Canada,	2008.	

[30]	 S.	 Caltagirone,	 M.	 Keys,	 B.	 Schlief,	 and	 M.	 J.	 Willshire,	 “Architecture	 for	 a	 massively	 multiplayer	 online	 role	 playing	 game	
engine,”	J.	Comput.	Small	Coll.,	vol.	18,	no.	2,	pp.	105-116,	2002.	

[31]	 J.	Plummer,	“A	flexible	and	expandable	architecture	for	computer	games,”	Arizona	State	University,	2004.	
[32]	 W.	Piekarski,	and	B.	H.	Thomas,	"An	object-oriented	software	architecture	for	3D	mixed	reality	applications."	p.	247.	
[33]	 A.	I.	Wang,	“Extensive	Evaluation	of	Using	a	Game	Project	in	a	Software	Architecture	Course,”	Trans.	Comput.	Educ.,	vol.	11,	no.	

1,	pp.	1-28,	2011.	
[34]	 W.	Cai,	M.	Chen,	and	V.	C.	Leung,	“Toward	gaming	as	a	service,”	IEEE	Internet	Computing,	vol.	18,	no.	3,	pp.	12-18,	2014.	
[35]	 M.	 Zhu,	 A.	 Wang,	 H.	 Guo,	 and	 H.	 Trætteberg,	 “Graph	 of	 Game	 Worlds:	 New	 Perspectives	 on	 Video	 Game	 Architectures,”	

Manuscript	submitted	for	publication,	2012.	
[36]	 M.	Zhu,	A.	I.	Wang,	and	H.	Guo,	“From	101	to	nnn:	a	review	and	a	classification	of	computer	game	architectures,”	Multimedia	

systems,	vol.	19,	no.	3,	pp.	183-197,	2013.	
[37]	 P.	V.	Gestwicki,	“Computer	games	as	motivation	for	design	patterns,”	SIGCSE	Bull.,	vol.	39,	no.	1,	pp.	233-237,	2007.	
[38]	 A.	Ampatzoglou,	and	A.	Chatzigeorgiou,	“Evaluation	of	object-oriented	design	patterns	in	game	development,”	Information	and	

Software	Technology,	vol.	49,	no.	5,	pp.	445-454,	2007.	
[39]	 D.	Nguyen,	and	S.	B.	Wong,	“Design	patterns	for	games,”	in	Proceedings	of	the	33rd	SIGCSE	technical	symposium	on	Computer	

science	education,	Cincinnati,	Kentucky,	2002.	
[40]	 W.	 Scacchi,	 “Free	 and	Open	 Source	Development	 Practices	 in	 the	 Game	 Community,”	 IEEE	Softw.,	 vol.	 21,	 no.	 1,	 pp.	 59-66,	

2004.	
[41]	 F.	 Petrillo,	 M.	 Pimenta	 ,	 F.	 Trindade,	 and	 C.	 Dietrich,	 “What	 went	 wrong?	 A	 survey	 of	 problems	 in	 game	 development,”	

Computer		Entertainment	(CIE),	vol.	7,	no.	1,	pp.	1-22,	2009.	
[42]	 K.	Flood,	“Game	unified	process,”	GameDev.	net,	2003.	
[43]	 F.	 T.	 Tschang,	 “Balancing	 the	 tensions	 between	 rationalization	 and	 creativity	 in	 the	 video	 games	 industry,”	 Organization	

science,	vol.	18,	no.	6,	pp.	989-1005,	2007.	
[44]	 F.	T.	Tschang,	and	J.	Szczypula,	 “Idea	creation,	constructivism	and	evolution	as	key	characteristics	 in	 the	videogame	artifact	

design	process,”	European	management	journal,	vol.	24,	no.	4,	pp.	270-287,	2006.	
[45]	 F.	 T.	 Tschang,	 “Videogames	 as	 interactive	 experiential	 products	 and	 their	manner	of	 development,”	 International	Journal	of	

Innovation	Management,	vol.	9,	no.	01,	pp.	103-131,	2005.	
[46]	 P.	 Stacey,	 and	 J.	 Nandhakumar,	 “A	 temporal	 perspective	 of	 the	 computer	 game	development	 process,”	 Information	Systems	

Journal,	vol.	19,	no.	5,	pp.	479-497,	2009.	
[47]	 T.	 Burger-Helmchen,	 and	 P.	 Cohendet,	 “User	 communities	 and	 social	 software	 in	 the	 video	 game	 industry,”	 Long	 Range	

Planning,	vol.	44,	no.	5-6,	pp.	317-343,	2011.	
[48]	 A.	 Kultima,	 and	 K.	 Alha,	 "“Hopefully	 everything	 I'm	 doing	 has	 to	 do	 with	 innovation”:	 Games	 industry	 professionals	 on	

innovation	in	2009."	pp.	1-8.	
[49]	 F.	Petrillo,	and	M.	Pimenta,	"Is	agility	out	there?:	agile	practices	in	game	development."	pp.	9-15.	
[50]	 K.	Schwaber,	and	M.	Beedle,	“Agile	Software	Development	with	Scrum,”	2002.	
[51]	 V.	 R.	 Basili,	Software	modeling	and	measurement:	 the	Goal/Question/Metric	paradigm,	 University	 of	 Maryland	 for	 Advanced	

Computer	Studies,	1992.	
[52]	 C.	Wohlin,	P.	Runeson,	M.	Höst,	M.	C.	Ohlsson,	B.	Regnell,	and	A.	Wesslén,	Experimentation	in	software	engineering:	Springer,	

2012.	
[53]	 R.	Likert,	“A	technique	for	the	measurement	of	attitudes,”	Archives	of	psychology,	1932.	
[54]	 T.-Y.	Hsiao,	and	S.-M.	Yuan,	 “Practical	Middleware	 for	Massively	Multiplayer	Online	Games,”	 IEEE	Internet	Computing,	vol.	9,	

no.	5,	pp.	47-54,	2005.	
[55]	 L.	Bass,	P.	Clements,	and	R.	Kazman,	Software	Architecture	in	Practice,	3rd	ed.:	Addision-Wesley,	2012.	
[56]	 B.	Boehm,	and	V.	R.	Basili,	“Software	defect	reduction	top	10	list,”	Foundations	of	empirical	software	engineering:	the	legacy	of	

Victor	R.	Basili,	vol.	426,	2005.	
[57]	 E.	Bethke,	Game	Developer's	Guide	to	Design	and	Production:	Wordware	Publishing	Inc.,	2002.	
[58]	 P.	Stacey,	and	J.	Nandhakumar,	“Opening	up	to	agile	games	development,”	Communications	of	the	ACM,	vol.	51,	no.	12,	pp.	143-

146,	2008.	
[59]	 P.	Sweetser,	and	J.	Wiles,	“Scripting	versus	emergence:	issues	for	game	developers	and	players	in	game	environment	design,”	

International	Journal	of	Intelligent	Games	and	Simulations,	vol.	4,	no.	1,	pp.	1-9,	2005.	
[60]	 W.	White,	C.	Koch,	J.	Gehrke,	and	A.	Demers,	“Better	scripts,	better	games,”	Communications	of	the	ACM,	vol.	52,	no.	3,	pp.	42-47,	

2009.	
[61]	 A.	Rollings,	and	D.	Morris,	Game	Architecture	and	Design	-	A	New	Edition:	New	Riders	Publishing,	2004.	
[62]	 M.	McShaffry,	Game	coding	complete:	Cengage	Learning,	2013.	
[63]	 J.	 L.	 G.	 Sánchez,	 N.	 P.	 Zea,	 and	 F.	 L.	 Gutiérrez,	 "From	 usability	 to	 playability:	 Introduction	 to	 player-centred	 video	 game	

development	process,"	Human	Centered	Design,	pp.	65-74:	Springer,	2009.	
[64]	 H.	Desurvire,	and	C.	Wiberg,	"Game	usability	heuristics	(PLAY)	for	evaluating	and	designing	better	games:	The	next	iteration,"	

Online	Communities	and	Social	Computing,	pp.	557-566:	Springer,	2009.	

 	Survey on Software Architecture, Creativity and Game Technology • XX:21
	

	
	 Software	Engineering	Perspectives	in	Computer	Game	Development	

[65]	 S.	 Laitinen,	 “Better	 games	 through	 usability	 evaluation	 and	 testing,”	 Gamasutra.	 URL:	 http://www.gamasutra.	
com/features/20050623/laitinen_01.	sht	ml,	2005.	

[66]	 J.	Hayes,	“The	code/art	divide:	How	technical	artists	bridge	the	gap,”	Game	Developer	Magazine,	vol.	14,	no.	7,	pp.	17,	2007.	
[67]	 W.	 R.	 Shadish,	 T.	 D.	 Cook,	 and	D.	 T.	 Campbell,	Experimental	and	quasi-experimental	designs	for	generalized	causal	inference:	

Wadsworth	Cengage	learning,	2002.	

	

