
Experiences from Implementing a Mobile Multiplayer Real-time Game for
Wireless Networks with High Latency

Alf Inge Wang, Martin Jarrett, and Eivind Sorteberg
Dept. of Computer and Information Science

Norwegian University of Science and Technology
alfw/jarrett/sorteberg@idi.ntnu.no 

 

ABSTRACT

This paper describes results and experiences from designing, implementing, and testing a mobile
multiplayer real-time game for mobile phones over mobile networks with high latency. The paper
reports on network latency and bandwidth measurements from playing the game live over GPRS,
EDGE, UMTS and WLAN using both the TCP and the UDP protocol. These measurements describe
the practical constraints of various wireless networks and protocols when used for mobile multiplayer
game purposes, which determines what types of multiplayer games that can be played over the various
networks. Further, the paper reports on experiences from implementing various approaches to
minimize issues related to high latency. Specifically, the paper focus on a discussion about how much
of the game should run locally on the client verses on the server to minimize the load on the mobile
device and obtain sufficient consistency in the game. The game was named BrickBlock, and was
designed to reveal all kinds of implementation issues in development of a mobile network multiplayer
game. The goal of BrickBlock is for a player to push other players around and into traps where they
loose their lives, and to pick up power-ups on the way to make the task easier. The game relies heavily
on collision detection between the player and game objects, and between players. The paper presents
experiences from experimenting with various approaches that can be used to handle such collisions
and highlights the advantages and disadvantages of the various approaches.

KEY WORDS 
Multiplayer game, Mobile computing, Network performance, Game design, Latency.

1 Introduction 
Online games like World of Warcraft [1] have become very popular with more than 10 million paying
subscribers around the world (2008). Most current AAA titles released on consoles and PCs provide
some kind of online multiplayer support. This trend has also been picked up by mobile game
developers, but mainly in development of games for Sony Playstation Portable and Nintendo DS.
There exist fewer online multiplayer games for mobile phones due to challenges related to latency,
packet loss, and low bandwidth. Some examples of commercial and research mobile online games for
mobile phones are Pirates of the Caribbean [2], Samurai Romanesque [3], Tibia Micro Edition [4],
UbiSettlers [5], Real Tournament [6], and Knockabout [7]. One of the main challenges when
developing multiplayer online games is how to handle network latency. The latency of data packets
sent between clients and server causes inconsistencies of the players’ views, and can give certain
players advantages and ruin the fairness in the game [8]. For wired networks, the inconsistency
problem has largely been solved using the transaction mechanism rollback [9][10], where the game
rolls back to a consistent game state if a conflict of players’ views is detected. This approach works
quite well in low latency environments, but will not work in high latency environments.

The online multiplayer games for mobile phones on the market today are either turn-based games or
slow-paced games to avoid the inherent problem with high latency and low bandwidth of wireless
networks. Such games can live with round-trip delays of 1-3 seconds without ruining the gameplay.
However, real-time multiplayer games require much lower response times, and for online games over
wired networks round-trip delays above 150 ms can lead to un-smooth gaming experiences for first-

person shooter games [11]. Similarly, the acceptable round-trip delay for military simulations is
specified to be 100-300 ms [12]. Especially, in games that involve collision detection between players,
it is critical that all game events are updated frequently among the players. The update frequency of
game events depends on the game genre. For instance, fighting and shooting games require higher
frequency of game updates compared to strategy and role-playing games.

This paper describes experiences from the BrickBlock project where the focus was on investigating
the challenges and opportunities of multiplayer real-time games played over the most commonly
available wireless networks today: GPRS, EDGE, UMTS (3G), and WLAN (WiFi). WLAN has
successfully been used for multiplayer online gaming for years and was included as a benchmark. The
paper consists of two main parts. The first part describes network performance tests running instances
of the BrickBlock game over various wireless networks. The test was conducted in live wireless
networks, and measured the response time and the transfer speed. The paper reports on the practical
implications and identified challenges found in the BrickBlock game based on the results of the
network performance tests. The second part describes experiences from applying various approaches
for handling network issues related to collision handling and providing a fluent game experience for
the user. Due to the high latency of wireless networks, approaches that introduce unnecessary
transmissions cannot be used. The goal of the approaches presented in this paper was to give
acceptable game world consistency, a good load balance of CPU-usage between the server and the
mobile clients, and minimum transmission overhead.

The rest of the paper is organized as follows. Section 2 describes related work. Section 3 describes the
mobile multiplayer real-time game BrickBlock. Section 4 describes how the network performance
tests were run. Section 5 presents the results of the performance tests, along with a discussion of the
implications of the results. Section 6 describes various approaches minimizing the negative effects of
network latency Section 7 describes the results from testing the gameplay of BrickBlock over mobile
networks. Finally, Section 8 concludes the paper.

2. Related Work 
This section describes research related to networks and games. As there is little work on real-time
mobile multiplayer games, papers on real-time online multiplayer games for wired network are also
presented. The related work section is split into two parts. The first part looks at how network latency
and bandwidth affects games, and measurements of running games over wireless networks. The
second part looks at methods and mechanisms to minimize problems related to latency, low bandwidth
and packet loss.

2.1 Games and Network Performance 
Busse et. al describe experiences from running a ported online game over GPRS and UMTS using the
TCP protocol [13]. The game setup consisted of a two-player game where one client ran on a
PocketPC PDA and one client ran on the game server. The game server sent out game states 20 times
per second. The result from this test shows that for GPRS the average response time is about 1 second,
where as for UMTS the average response time is about 285 ms. The authors did not implement any
mechanisms to handle latency issues, and thus concluded that the game was unplayable over both
GPRS and UMTS.

Beigbeder et. al investigated the effect of loss and latency on user performance in the online first-
person shooter game Unreal Tournament (UT) 2003 running on PCs over wired network [14]. From
studying the UT 2003 servers, they found that maximum loss rate was about 3% and maximum
latency was about 140 ms. Although the introduction of loss and latency affected the players'
performance to some degree, the difference was not statistically significant. The players were able to
notice sluggishness in gameplay for latencies as low as 75 ms, and found the game less enjoyable at

latencies above 100 ms. Similarly, Quax et. al found that latency above 60 ms or above was
experienced as disturbing of players in Unreal Tournament [15].

Dick et. al analyzed how network latency and jitter affected the performance and perception in
multiplayer online games (wired) [16]. This paper presents a survey where players state their
subjective perceptions for how network latency and jitter affects the performance and gameplay for
twelve different games representing four different game genres: first-person shooter, real-time strategy
game, sport game and car racing simulation. The result of this survey shows the player's perception of
the magnitude of latency that is accepted for an unimpaired game is about the same for all game
genres: 80.7 ms in average. The perception of how much network latency that can be tolerated before
it ruins the gameplay is up to 150 ms with an average of 118 ms. For the FIFA soccer game, 100 ms
was the maximum latency tolerated.

Sheldon et. al describe results from a controlled experiment to investigate the effect of latency on user
performance in the real-time strategy game Warcraft III [17]. The results of the experiment show that
there is no significant effect on the performance of the players when the latency is increased (from 0 to
3500 ms). However, for exploring (determine geographical layout and location of other player’s units)
there is some correlation between explore time and latency. The results from analyses from playing the
full game showed that the round-trip times was about 100 ms. Analysis of users playing the game
showed that the users could compensate for latencies up to 500 ms. For latencies above 800 ms, the
game appeared erratic which degraded the game experience.

Pantel and Wolf investigated how network latency affected controlling a car over the network in a RC-
car simulator [18]. In the experiments, the latency was increased in steps of 50 ms up to 500 ms.
Pantel and Wolf found that for beginner and average drivers, lap times get worse from 50 ms.
Excellent drivers did not get noticeably longer lap times until the latency was 150 ms. Their
conclusion was that latency of 50 ms can hardly be noticed, 100 ms is acceptable if no high demands
with respect to realism are needed, 200 ms is clearly observable, and 500 ms is not acceptable.

Chen et al. describe results from studying players playing the massive multiplayer online role-playing
game Shen Zhou Online [19]. They found that players that experienced 150 ms latency had an average
game sessions lasting four hours compared to players that experienced 250 ms latency had an average
of one hour. Further, their results showed that the players’ departure rate from the online game was
sensitive to network quality that could be decomposed into latency, latency variation, and loss rate.

Henderson and Bhatti describe results from an experiment of introducing latency in the first-person
shooter game Half-Life [20]. On online discussions, first-person shooter players state that they cannot
live with latencies above 50 ms or 100 ms. Henderson and Bhatti’s results show that players can live
with latencies above 250 ms and that most players do not leave game servers until the latency is in
average about 300ms or above.

Nichols and Claypool investigated the effect of latency on online Madden NFL Football game [21].
They found that there is not much effect on user performance for latencies below 500 ms, and that
latency below 500 ms is not noticeable to the user. With latencies above 750 ms, the player will feel
that the game is “laggy”.

Multiplayer online games running over wireless network must cope with latency around 250 ms or
more [13]. From the various papers above, we can see that mobile network games like sports and real-
time strategy games probably will not give a negative user experience, while others like first-person
shooter and racing games will. The follow section will describe approaches to minimize the effect of
latency in network games.

2.2 Approaches to Minimize the Effect of Latency and Low Bandwidth in Games 
Latency in network games introduces challenges mainly in four areas: network efficiency and
utilization, visual consistency, game world consistency, and fairness.

The challenge related to network efficiency and utilization can be attacked in different ways. Fritsch et.
al present how Content Addressable Network (CAN) can be used to improve broadcasting over the
Internet tailored to support games by mapping an n-dimensional virtual area to the set of mobile nodes
[22]. The main benefit from using CAN is that fewer packages are required compared to simple
broadcasting. Zhu et. al present a shift coding approach that can be used in mobile peer-to-peer
multiplayer games to efficiently exchange game state updates between neighbor nodes [23].
Experimental results show that this approach can reduce network traffic. Another commonly used
technique to lower the bandwidth demand and latency variations in network games is the use of
buffering of game state messages [24]. Instead of broadcasting game state messages every time a user
event occurs, the events are buffered and transmitted in predefined intervals.

Movement prediction is an approach to overcome warping of game objects on the screen that move
around due to loss of data packets or low bandwidth. Warping means that moving objects seems to
jump from one location to another [25]. The most common approach to deal with visually
inconsistencies in network games is the dead reckoning technique [26, 27] used in the Distributed
Interactive Simulation (DIS) protocol [12]. In this technique, all clients simulate the game objects of
the other players using a defined set of algorithms that mimic the behavior of various players’ objects.
The precision of the game objects’ predicted positions depend on type of algorithm used. Some
algorithms give higher accuracy, but might demand more computational resources [28]. The DIS
protocol includes a state protocol data unit (PDU), which contains information about a game object
like identification, position, velocity, acceleration, orientation and other state information. This makes
it possible for a client to move game objects of other players smoothly using extrapolation based on
movement predictions between transfers of PDUs. The price of using dead reckoning is that every
client has to run an algorithm to extrapolate each entity in the game. This can be a potential a problem
for games running on mobile phones with limited CPU and memory. Also, if all the game objects
behave unpredictable all the time, dead reckoning offers little gain.

There exist several approaches to solving the issues related to game world consistency in network
games. One approach is the bucket synchronization mechanism where all game event messages are
stored by the receiver in a bucket [29]. At a given interval (all clients must be synchronized), all the
game event messages in the bucket are used to compute the local view of the global state. This
approach is especially useful for peer-to-peer games. Another well-known approach is to add
transaction support to deal with inconsistencies [30]. In the case of a detected inconsistency of the
local game state, the game can roll back to a consistent state using a timewarp algorithm. A similar
approach is to build a game upon a transactional distributed shared memory system [31]. Strict
transactional approaches or bucket synchronization do not work well for multiplayer games played
over mobile networks due to high latency and unreliable connections [7]. It is therefore necessary to
tolerate some inconsistency between the players’ views and states to enable a real-time experience.
Chandler and Finney describe an approach named Rendezvous to cope with consistency game state
consistency in high latency environment [32]. Rendezvous is an optimistic consistency mechanism
that tolerates managed inconsistency between views of shared state within a game, enabling each node
to visualize actions as they happen. The consistency is maintained through a shared state convergence
mechanism that produces a new global state by averaging values of local sates. An evaluation of
testing the implementation of Rendezvous mechanism in a mobile multiplayer soccer game shows that
it is possible to obtain a acceptable level of consistency without using a rollback mechanism.

Fairness in network games is measurements to avoid some player to have an advantage over others
due to latency [33]. Lin et. al propose a synchronized messaging service named Sync-MS to balance
the trade-off between response time and fairness [34]. Sync-MS uses two mechanisms Sync-out and

Sync-in. Sync-Out is used to queue up a message at the player’s client and deliver it to the game
application only after the same update message has arrived at all clients. Sync-in is used to enforce a
sufficient waiting period on each game state message dynamically to guarantee fair processing of all
messages. Zander et. al have developed an application that can be used with existing network games to
remove the latency differences, and thus giving players equal network conditions [35].
GauthierDickey et. al have made a low latency event ordering protocol, named NEO, which divides
time into rounds and uses the round duration to bound the maximum latency [36].

All the approaches apart from the Rendezvous described above are targeted for wired networks with
low latency and is therefore not well suited for wireless networks. For network games played over
wireless networks the challenge is to provide a responsive gameplay with sufficient consistency.

3. BrickBlock – a Mobile Multiplayer Network Game 
The BrickBlock game concept was developed to test real-time performance of wireless networks. This
section describes the BrickBlock game.

3.1 The Game Concept 
In BrickBlock, each player controls his brick around a two dimensional playfield. The goal of the
game is to push other players into certain areas defined as traps. When a player is pushed into a trap he
dies, looses points, and after some time respawns (re-appears). The winner of the game is the player
that has died least number of times within a predefined time. This concept opens for tactical play, as
the players most likely will collaborate in order to push and block one targeted player. Further, such
alliances must be temporary for one player to become the winner of the game. Ambitious players will
most likely jump from one alliance to another several times during a game session to make sure he is
always in the best position for the victory. In other words, BrickBlock is a game characterized by its
anarchy, chaos, and treachery – attributes that makes it an entertaining, unpredictable and social game.

Figure 1 shows an illustration of the game. When the game starts, the strength, size and speed of the
players' bricks are equal. This will change when a player consumes one of the three kinds of power-
ups provided: The Speed power-up gives the player increased speed, the Size power-up increases the
size of the player's brick, and the Strength power-up increases the player's pushing strength.

 

Figure 1: Illustration of the BrickBlock game 

3.2 The Game Architecture 
The architecture of the BrickBlock game is a combination of three architectural patterns: the client-
server, the layered, and the model-view controller pattern as shown in Figure 2.

The bottom layer consists of the Communication module that manages all communication between the
server and the client. The same communication and message-parsing interface is used on both sides to
provide a uniform communication between the server and the clients, and thus making it easier to
support various message formats such as plain text and XML.

 
Figure 2: Architectural Overview of BrickBlock

The Test module is not necessary for running the game itself, but is used to run network performance
tests between the server and the client. This module also implements the communication interface, and
can therefore be used as a communication module by the model layer.

The Model layer contains the information needed to represent the current state of the game. It also
keeps track of the messages needed to be sent, or being received. The model part on the server side
stores and manages information about the game that also is stored and managed by the clients. The
server contains the whole view of the game, while the clients have a more local temporary
representation of the game.

The View layer provides the graphical user interface for the server and the clients. The view module
on the server is very simple showing the players being connected and some settings. The view module
on the clients displays the game running including screens for a game lobby and the game itself. The
server was implemented in Java SE while the client was implemented in Java ME.

4. Testing Real‐Time Network Gaming in Live Wireless Networks 
One main goal in the investigation of the performance of real-time games in wireless networks was to
find the actual performance of such games in a real network environment. This ruled out the choice of
using computer simulations to calculate the network performance. We chose to measure the
performance using a real and network-demanding multiplayer real-time game consisting of a server
running on a standard PC and mobile clients running on two Sony Ericsson K750i, Sony Ericsson
K800i and Nokia N73 mobile phones. The performance tests were run several times at various times
of the day and on various days to capture normal data traffic variations.

The two most important measurements for network performance for real-time games are response time
and transfer speed. The former determines the expected latency of updating game changes across to
the clients. The latter determines how much data can be sent between the client and server, and limits
the number of players that can play the game simultaneously.

4.1 Response Time 
The response time test measures the Round-Trip Time (RTT) – the time a small packet uses from the
server to a client and back. The test module generates packets of only 4 bytes containing an id and a
separator character. The number of packets generated depends on the number of intervals and the

number of packets sent in each interval. These packets are sent with a delay of a fixed mount of
milliseconds, which increases with each interval. The test calculates the time values, extracting the
highest and lowest times, and calculates the average for the remaining of several runs.

Figure 3 shows how the RTT test was performed by sending a packet in intervals. With more packets
per interval, the time between transmissions is not increased before all packets in that interval have
been sent. The data packet is represented as a rectangle with a length l. The time the packet uses from
the server to the client and back is denoted as ti, where i the represents the number of the packet.
Finally, the transmission intervals are denoted as multiples of ΔI.

 
Figure 3: Measurement of Response Time

The purpose of the response time test is to find the transmission interval that gives the shortest RTT
resulting in low latency enabling smooth gameplay. However, every time the transmission interval is
increased, the total time to send a packet is also increased with the same amount of time. The
transmission interval with the lowest RTT may therefore not necessarily be the optimal transmission
interval.

4.2 Transfer Speed 
The transfer speed test measures the transfer time (transfer speed) of transmissions of different packet
sizes from the server to a client and back. The test uses the same interval setup as the response time
test (see Section 4.1). The test transmits a data packet of an initial size and the data packet size is
increased with specified amount bytes for each transmission. The packet consists of an id, a separator
character, an end-of-message character, and a number of characters to fill up the rest of the packet to
the desired size. The delay between each packet was defined according to the optimal interval found in
the response time test (see Section 4.1). The packet size is increased after the completion of a
transmission from the server to the client and back.

Figure 4 shows how the transfer speed test was performed. The packet to be sent is illustrated by the
rectangle and the size of the packet is the initial length l0, and the increment in size Δl. The time the
packet uses from the server and back is denoted as ti where i represent the number of the packet, and
the interval between transmissions is denoted ΔI.

 
Figure 4: Measurement of Transfer Speed

The purpose of the transfer speed was to compare the actual transfer speed of different mobile
network technologies, and the two transfer protocols TCP and UDP. The transmission time was
measured from when a packet was sent from server to client, and back. This test also found the highest
and lowest times, and calculated the average for the rest.

5. Results of the Performance Tests 
This section presents the results of the network performance tests described in previous section.

5.1 Results of the Response Speed Test 
For real-time multiplayer games like BrickBlock the response time has high significance, as the game
requires small data packets to be sent frequently. Thus, the response time values for the wireless
network technology measured in this test indicated the suitability of the network for running real-time
multiplayer games.

Figure 5 shows the measured response time for the wireless network technologies GPRS, EDGE,
UMTS, and WLAN, and transport protocols TCP and UDP. Figure 6 shows the measured response
times including the pause interval.

The charts in Figure 5 and 6 show that UDP performs much better than TCP on all networks. Further,
the transmission interval with the lowest response time is between 150 and 200 milliseconds,
depending on the mobile network technology used. WLAN has the lowest response time, followed by
UMTS, EDGE, and GPRS as expected.

 
Figure 5: Measured response time

From both Figure 5 and 6, WLAN clearly outperforms the other network technologies. The WLAN
response times always stays below 200 ms seconds for all transmission intervals, and with both
transport protocols. The lowest response times measured for the other network technologies using
UDP are 217 ms for UMTS, 291 ms for EDGE, and 445 ms for GPRS. The UMTS response time is
always less than that of EDGE using UDP. With TCP, the distance between the two is significantly
less and the EDGE response time is even lower than the UMTS response time for some intervals.
GPRS with UDP has close to identical performance as EDGE between 100 ms and 150 ms. However,
for the other send intervals, EDGE is closer to UMTS. With TCP, GPRS never has a response time
below 1500 ms, which can even make turn-based multiplayer games unresponsive.

In addition to find the optimal transmission intervals for lowest response time, we also ran several
tests to look at the variation for transmission intervals between 100 ms to 250 ms. The results showed
that transmission intervals around 250 ms had significant less variation than for shorter intervals. For
UDP, the standard deviation was 80.92 ms for GPRS, 27.59 ms for EDGE, 5.12 ms for UMTS, and
1.19 ms for WLAN. When the TCP protocol was used, the standard deviation increased at least
threefold.

 
Figure 6: Measured response time including transmission interval

Figure 6 shows the response times including the transmission interval, i.e. the total response time from
the previous packet is sent from the server to the server receives the return message from the client.
This indicates the range of transmission intervals that will provide the lowest total response time. The
longer the pause interval is, the longer the total response time will be. Figure 6 shows that pause
interval values between 50 and 250 ms will provide the best total response time. Table I shows the
minimum, maximum and average response times including transmission intervals. The numbers in
Table I show that the optimal game update intervals over the network are just above 500 ms for GPRS
and EDGE, 288 ms for UMTS, and 88 ms for WLAN. If the TCP protocol is used, the optimal update
intervals are 1580 ms for GPRS, 820 ms for EDGE, 580 ms for UMTS and 11 ms for WLAN.

Table I: Response Time including Transmission Intervals for Various Wireless Networks

Protocol UDP  TCP 

Network GPRS EDGE UMTS WLAN GPRS EDGE UMTS WLAN

Min 0.545s 0.510s 0.288s 0.088s 1.578s 0.823s 0.576s 0.110s

Max 0.971s 0.751s 0.674s 0.457s 1.980s 1.198s 1.195s 0.485s

Average 0.779s 0.614s 0.458s 0.215s 1.840s 1.036s 0.933s 0.282s

5.2 Results of the Transfer Speed Test 
The transfer speed measures how much data the network is able to transport per second. For a network
offering a high transfer speed, larger data packets can be transmitted without loss of performance. This
may have significant impact of how much data can be sent between the clients and the server without
any lag.

Figure 7 shows the results of the transfer speed tests (short transfer time is best). The test results show
the measured transfer time for each packet size. The figure shows the time a specified network
technology applying the UDP or TCP protocol uses to send a packet of a specified size from the server
to the client and back.

 
Figure 7: Measured transfer time

When using UDP as the transport protocol, the size of the packet does not matter up to a certain size.
In Figure 7, the transfer time using UDP is almost constant for all networks. WLAN has the lowest
transfer time by far; whereas the UMTS transfer time is around 200-250 ms longer. The EDGE
transfer time is additional 100 ms longer, and the transfer time using GPRS is yet another 150 ms. The
limit for a satisfactory transfer time depends on the transmission interval chosen and the amount of
data sent to the client. With UDP, the four different mobile network technologies all have transfer
times around 500 ms or less. This transfer time is measured from the server to the client and back, so
the time from the server to the client can be expected to be half the measured transfer time. Packet
sizes of the BrickBlock will not affect the response time when UDP is used.

However when using TCP, the packet size affects the transfer time more, except for WLAN. The
transfer time with TCP vary more over the different packet sizes. With some packet sizes, EDGE is
better than UMTS, but in average UMTS is better. GPRS with TCP has the most fluctuating transfer
time. The average of all the packet sizes is more than one second longer on GPRS with TCP than the
second worst network technology's average transfer time with TCP (EDGE).

The upper part of Table II shows the minimum, maximum and average transfer times for when
varying the packets from 40 to 760 bits. The two rows at the bottom of Table II show for what packet
sizes the lowest transfer time (min size) and highest transfer time (max size) were found. Table II
shows that for GPRS with UDP, the packet size is bigger for lowest transfer time (520 bits) than for
highest transfer time (200 bits). For the other networks and for TCP, the lowest transfer time is for

packet sizes smaller than for the higher transfer time. It is not obvious why GPRS using UDP breaks
this pattern, but Figure 7 shows that the graph for GPRS using UDP fluctuates almost like a very flat
sinus curve with minor variations.

Table II: Transfer Time for various Wireless Networks (40-760 bits)

Protocol UDP  TCP 

Network GPRS EDGE UMTS WLAN GPRS EDGE UMTS WLAN

Min 0.467s 0.349s 0.196s 0.006s 1.652s 0.763s 0.573s 0.029s

Max 0.531s 0.410s 0.277s 0.007s 2.862s 1.127s 0.979s 0.035s

Average 0.492s 0.366s 0.241s 0.007s 2.186s 0.897s 0.753s 0.032s

Min size 520 bits 440 bits 40 bits 40 bits 200 bits 120 bits 40 bits 200 bits

Max size 200 bits 760 bits 760 bits 760 bits 760 bits 680 bits 760 bits 760 bits

 

5.3 Large Data Packets 
The results in previous section shows that the transfer time does not vary much with typical sizes of
data packets used in games like BrickBlock (see Section 5.2). In an additional test, we wanted to find
the upper limit for package sizes (beyond 760 bits). This test was only run over UMTS using the UDP
protocol, as UMTS has the most suitable characteristics for mobile network games apart from WLAN.
Our test showed that the transfer time is relatively stable between 200 ms and 300 ms independent of
the packet size up to 11 616 bits. For package larger than 11616 bits, all packages are lost (practical
upper limit for package size using UDP).

5.4 Practical Impact Of Network Performance On Gameplay 
As expected from the specifications of the four networks considered in this paper, WLAN has the
shortest response time and fastest transfer speed, followed by UMTS, EDGE, and GPRS. Since
WLAN is not widely available on mobile phones in Europe, whereas UMTS is, UMTS is currently the
most promising network technology suited for multiplayer real-time games that can run on most new
phones. The transmission interval has significant effect on the response time. The response time
decreases with increased transmission intervals, but this will of course also increase the total response
time. In practice, multiplayer games that run over GPRS and EDGE using the UDP protocol can
expect game updates every 500-600 ms. This means that only turn-based or slow-paced games like
strategy games, role-playing games and board games can be played over these two networks. If UMTS
and UDP are used, game events can be updated about every 300 ms (3 updates per second). Thus real-
time games without very fast direct interaction between players can be played over this network. This
result also means that mobile multiplayer real-time games should include apply mechanisms to
compensate for the network latency to provide a smoother and more consistent gameplay. Multiplayer
games over WLAN and UDP can expect game updates every 9 ms (11 updates per seconds), which is
sufficient for most real-time games. For wireless networks where the user will be charged for every
byte transferred, the costs of playing the game will increase with more frequent game updates and the
number of players. As an example, a two-player game of BrickBlock over UMTS costs in Norway
about 15 cents/min. A four-player game costs 17 cents/min. We predict that an eight-player game will
cost about the double (30 cents/min) of a two-player game. New pricing policies for mobile online
games must be in place to make such games popular.

The transport protocols TCP and UDP perform very differently on the various mobile networks. GPRS
using UDP outperforms EDGE and UMTS using TCP. The transfer time tests indicate that the packet
size has no influence on the transfer time when using UDP as the transport protocol. Because of this,
the package size does not affect the transfer time as long as the size is less than 11 616 bits and UDP is

used. This means that for all the networks but WLAN, UDP must be used for real-time games. The
disadvantage is that UDP does not handle packet loss. The big difference in performance between
UDP and TCP is related to the way the two protocols treat retransmissions. TCP was designed for
wired, reliable networks where packet loss is due to congestion in the network. In wireless networks,
most packet loss is due to link failure [37]. Even if different TCP implementations perform different
over wireless networks, they all performs poorly compared to UDP. Another problem that must be
solved when using the TCP protocol over wireless network is to handle variations in delay and rate.
This problem can partly be solved by introducing acknowledge buffers that absorb the channel
variations and using TCP-aware scheduling and buffer sharing algorithms [38]. Further, TCP traffic
over wireless networks can be improved by choosing the optimal package size and managing
retransmissions in alternative ways [39]. However, mobile real-time games require frequent updates
with minimal latency without retransmissions, thus TCP is not a good solution.

The transfer time test showed that packages up to 11Kbits could be used without affecting the transfer
time. This should be sufficient for most mobile multiplayer games. The amount of data should be kept
to a minimum in any case to avoid network congestion issues and to minimize cost.

5.5 Challenges For Mobile Real‐time Multiplayer Games 
The goal of the BrickBlock project was to design a game that revealed issues related to network lag
and low network bandwidth shown clearly in the gameplay:

• It is critical that the positions of the players (the bricks) are correctly reproduced on all the
players' screens, as how bricks are positioned on the play area is critical to the gameplay.

• It is critical to detect when a brick (the player’s object) hits the walls limiting the play area and
collision with other objects such as power-ups and traps.

• It is critical to detect when two or more bricks collide to correctly move the bricks according
to the involved physical forces.

From preliminary tests running the first version of the game without any latency compensation
mechanisms over a GPRS wireless network; we noticed a number of problems:

• The position of the same brick was different on different players' screens. As such, the players
did not have one coherent representation of game world.

• The collision detection with walls did not always work, as it was performed on the server to
minimize the load of the mobile device [40]. Unfortunately, in some cases the server did not
discover when a brick hit the wall in time, and the brick would float outside the play area
(unstable state of the game).

• The most noticeable problem was inaccurate detection of collisions between players (bricks).
In some cases, players could simply run over other players without any collision detection at
all. In other cases, bricks were pushed around when it looked like they did not collide on one
of players' screens or the bricks ended up on top of each other (illegal state).

6. Handling Network Latency in BrickBlock 
This section presents our experiences from overcoming challenges related to latency in handling
collision [41] in the BrickBlock game. The focus of this section is the determination of when the
server should resolve consistency vs. when the clients should resolve consistency while minimizing
server involvement. The approaches we use to handle consistency are not new and have previous been
demonstrated in both wired LAN games and games over the Internet [6, 7, 10, 11, 14]. The goal of our
work was to focus on the engineering experience of wireless game development and find the

appropriate mix of server/client responsibility suitable for our wireless BrickBlock game and why this
is the case. Our paper does not contain any formal description or validation of consistency, as in our
case consistency is measured in how the user experience the game through the gameplay elements and
appearance rather than through an statistical analysis. Traditional conservative approaches using
transaction management and roll-back were not considered in this game, as they would introduce
additional transmissions, which would increase the already high latency.

6.1 Collision With Walls 
Wall collisions occur when a player's brick moves to a position where it is partly or completely located
outside the play area. This happens either when the player tries to move to this position, or when
another player pushes him to this position. The latter can be solved in two different ways. One
approach is not to allow a player to move if it pushes another player to be placed in an illegal position.
The problem with this solution is that the approximated position of the pushed player is not necessarily
completely correct due to network latency and the push should be allowed. Another approach is
allowing such a move, and only checking the local player's position against the wall. In this case, a
player may actually be pushed outside the wall but later corrected by the player being pushed or the
server (see Figure 8).

Figure 8. Externally Caused Wall Collision

 

Chosen approach: Both approaches have drawbacks by introducing temporary displacements of game
objects. We chose to implement the first approach letting wall collision be detected by the pushing
player avoiding introducing the need for extra correction of game object’s position.

6.2 Collision With Power‐Up Objects 
Another type of collision detection is collisions with power-up objects. When such an event occurs,
the power-up needs to be removed from the play area, and the player's attributes need to be updated
for all participants. The decision is whether the power-up collision should be performed locally on the
client or on the server. The advantage of client detection is that the player can get an immediate
response when the power-up has been picked up (using sound, graphics or vibration) and immediate
change of the brick’s attributes. The disadvantage is that multiple players can pick up the same power-
up due to latency of broadcasting the pick up to other players The advantage of server detection is that
only one player can pick up the power-up (a consistent game model), but the player will not get an
immediate response when he has picked up the power-up.

Chosen approach: Our solution is a hybrid approach doing first a local collision detection, then using
the server to ensure consistency. When a power-up collision is detected, player X will get an
immediate response (vibration or sound). A message is then sent to the server to check if another
player has picket up the power-up. If not, a message is broadcasted to all players that player X has
changed attributes and that the power-up must be removed. If two or more players have picked up the
power-up at the same time, the first player that first sent a power-up notification to the server will get
the power-up.

6.3 Collision With Traps 
A trap collision occurs when a player collides with the trap object on the play area. This will usually
happen when the player is pushed by other player(s) into the trap, or self caused accidents. Both these
cases are similar to the power-up collisions.

Chosen approach: Unlike with power-ups, it is not a problem if more than one player collides with the
trap at the same time, as several players can die at the same time. However, when a player dies, he
must respawn (re-appear) in an unoccupied part of the play area. This involves checking all players’
positions and finding an available spot. If several players die at the same time, the game must make
sure that none of the players respawn at the same place. The server will respawn the players in turn by
broadcasting an available position after updating scores and a short timeout.

6.4 Collision With Other Players 
Like collisions with power-up objects and traps, collisions with other players are quite simple to detect
using the client collision detection. The main difference is that players move around all the time. The
simplest case is when one player is standing still while another is pushing. This is just like collision
detection of game objects by updating the position of the pushed player by new positions sent by the
pushing player. But when both players move at the same time, the situation is more complex. The
following three situations might occur as shown in Figure 9.

Figure 9. Player Collisions with Simultaneous Movement

The left image of each case shows a possible representation of the player positions, whereas the right
image shows the actual positions of the players. The three situations illustrated in the figure can arise
when: 1) an existing collision is not detected because both players have moved into the same area, but
the position of at least one player has not yet been received, 2) a non-existing collision is detected
because both players who were in the same area have moved away, but the position of at least one
player has not yet been received, and 3) an existing collision is detected, but it is not completely
correct since the position of at least one player has not yet been received.

The first case may result in two players occupying the same board position for a short period of time,
until the new position has been received and the collision is detected. The second case is the exact
opposite of the first. The consequence can be that a player is pushed even though he has actually
managed to get away from the pushing player. If this happens too close to the trap, the player may
unintentionally die. However, like in the first case, the correction will come quickly enough to cause
any critical damage. For the third case, there is no consequence for how the players experience the
game. Whether this collision occurs at the edge of or at the centre of the brick, the result is the same
that the strongest brick moves the other in the strongest player’s movement direction.

Chosen approach: In BrickBlock, the server holds the most accurate picture of the total game state,
while each client knows best its own state. We have chosen to manage player collisions locally to
avoid unresponsive gameplay in collisions introduced by server-based collision detection. This means
that the collision is not always accurate, but it is very responsive for the user.

6.5 Handling Player Movement in Collisions 
Correct action must be taken when a collision between two players is detected. In BrickBlock, the
result of such collisions is a change of speed and movement direction for at least one of the players.
First, the strength ratio between the players involved is calculated. If one of the players is stronger
than the other, the strongest player will be able to push the other in the strongest player’s movement
direction. How much the player can be pushed depends on the strength ratio between the players, as
well as the movement speed of the strongest player.

Collision handling like collision detection can be handled on the server with more processing power or
on the client with shorter response time. The server has a more accurate game model than the involved
clients and can calculate relatively accurate positions for the pushing and the pushed player. However,
both players will be able to move forward a short time until the server receives the collision
notification and transmits the new positions. Thus, the players will experience that their bricks will be
moved backwards seemingly without reason. This solution is illustrated in Figure 10. The figure
shows a step-by-step procedure of how calculations will be performed and messages transmitted when
the server is responsible for handling player collisions. Step 5 is performed in parallel on the local and
remote client. According to the figure, the redrawing of positions is carried out in step 5 on the local
client. Step 2 and 4 are transmission between server and client that with a slow network can issue
visible and noticeable latency for the players.

 
Figure 10. Server-side Collision Handling

Chosen approach: To ease this problem, we let the pushing player have responsibility for calculating
the results of the collision. Figure 11 shows a step-by-step illustration of this approach. Here, the
redrawing of the players occurs already in step 3. Furthermore, no message transmission is necessary
before the play area is updated. This approach will give a far more responsive game experience from
the pushing player’s point of view. The movement of the involved players is calculated as a force
vector by the pushing player, which is sent to server and then broadcasted to all clients.

 
Figure 11. Client-side Collision Handling

Due to the latency in the network, a player may experience to be pushed without contact between the
players displayed on his phone and there may be situations where a push should occur, but does not
(similar to the situations illustrated in Figure 9). However, these minor inconsistencies are acceptable
and do not ruin the gameplay.

6.6 Movement Prediction 
The movement prediction is performed in BrickBlock by calculating a vector based on the two latest
known positions of the object. These positions are stored on the client and are replaced whenever a
new position is received. When a new position is received from the server, the new position and the
previous position are used to calculate a the movement vector by subtracting the old coordinates from
the new and multiplying the result with the player object's speed property. This movement vector is
then used to move the player object while waiting for the next position update from the server. This
procedure for movement prediction is further described in Listing 1.

Listing 1. Procedure for predicting movement

1 Last received position update from player A: (x0 , y0)
2 Receive position update for player A: (x1 , y1)
3 Movement X = x1 - x0
4 Movement Y = y1 - y0
5 If Movement X! = 0
6 Movement X = Movement X/Math.abs(Movement X) //Operate with 0's or 1's
7 If Movement Y! = 0
8 Movement Y = Movement Y/Math.abs(Movement Y)
9 Each time the play area is redrawn
10 A's position=A's position + (A's speed) [Movement X, Movement Y]

However, this approach has its drawbacks if a player suddenly changes direction as illustrated in
Figure 12. The figure illustrates a situation where the player has performed a 90° turn. The maximum
deviance will be in a 180° turn that cause a warp error distance of twice the movement distance.

Figure 12. Warping in movement prediction

 

In addition to warping of the player on the screen, the usage of movement prediction can also cause
problems for calculating collisions with other players, game objects or with walls. Another negative
effect of using movement prediction is that it demands some processing power on the mobile client. If

many players are playing the game, the movement prediction might strain the mobile phone’s CPU
and slow down the game. This is why we have chosen to implement a simple movement prediction
algorithm that requires little CPU.

6.7 Message Broadcast 
During gameplay, all clients will continuously send updates to the server about their local state. To
keep the clients up-to-date, the server needs to forward these updates to all clients as soon as possible.
The simplest approach is to make the server forward the client messages as soon they are received.
However, this approach may cause a congestion of messages and an increasing queue of messages to
be sent. Our chosen approach was to bundle several client messages into one message with updates
that will reduce the number of messages sent considerably. The server broadcasts the bundled message
regularly to all clients at the same time ensuring a more consistent view of the game by all players.
The main disadvantage with this approach is that it is crucial that the bundled message is not lost, as it
contains much more information. This problem can be solved introducing acknowledgement that will
double the latency in the system. A simpler and better approach is for the server to send incremental
message IDs, so the clients will know if they missed a message and can demand a re-transmission.

7. Experiences and Discussion 
The BrickBlock game was tested through gameplay sessions over various mobile networks. The
playability tests showed that the gameplay was very smooth on WLAN, fully playable with minor
latency issues on UMTS using UDP, and even playable over GPRS and EDGE networks. Our
approaches to minimize the effect of latency worked well most of the time.

In a mobile client-server system, the server’s computational power should be utilized to off-load the
less powerful mobile clients. In BrickBlock, we found that we could not let the server be in change of
the collision management, as the game would suffer too much from unresponsiveness. Our approach
was to let the mobile client of the player executing an action be responsible for detecting the collision
with walls, power-ups, traps and other players. This approach gives a responsive user experience, but
can cause some acceptable temporary inconsistencies of the various players’ views. The server is
mainly used to forward messages, to ensure consistency when picking up power-ups, and to ensure
that players do not respawn at the same spot.

Our use of movement prediction worked well most of the time and gave a much more enjoyable and
smoother game experience. The main negative effect was occasional warping of players. One solution
to eliminate the warping effect is to introduce animation when changing the direction of player
controlled game objects. This means that the player cannot do sudden direction changes, but have to
wait until the animation is finished. This approach is used in the game “Pirates of the Caribbean” when
turning a ship [2]. Similarly, an animation could be used in collisions between two game objects to
give time to do a consistency check with the server, and position the game objects correct. Another
simple solution to avoid warping is to reduce the speed of the players’ game objects.

Another problem related to our movement prediction occurred occasionally when a the game object of
a player continued to move on other players’ clients after the player had stopped due to a lost data
packet. One solution to this problem is to introduce a transaction mechanism for messages that
requires an acknowledgement before a message is accepted [30]. Similarly, effective retransmission
algorithms can be used [42]. Both these approaches will double the response time of the system and
are thus not desirable. For BrickBlock, this problem is not critical as packet losses are rare, and players
have to move around all the time.

8. Conclusion 
In this paper we have presented results from performance tests running a real-time multiplayer game
over various wireless networks. The results show that UMTS can be used for real-time games when
the UDP protocol is used, and when the game software compensates for the network latency. For most
wired online games, the gameplay gets affected when the latencies are higher than 150 ms. For mobile
online games played over UMTS, at least twice the latency must be tolerated. This means that the
game must be designed to minimize the effects of latency carefully. For collision handling, it is
important that local collision management is used to give the player an immediate response. The
server can be used to forward messages and ensure consistencies in player-to-player interaction.
Mobile multiplayer real-time games must be design carefully to minimize the negative effects of
latency. Important design considerations for such games are the speed of game objects, restriction of
sudden direction changes, utilization of animation to camouflage visual or game world inconsistencies,
local collision detection, use of movement prediction, and bundling of messages. The purpose of this
work presented in this paper was to present a practical implementation of a game designed for stress
testing network issues in a wireless environment similar to typical online games. The proposed
solution for handling consistency is based on a variety of previous works where we through user tests
found a suitable balance between the client and the server for determining and handling collisions. We
hope our work can inspire others to pursue development of and research on wireless multiplayer real-
time games.

Acknowledgement 
We would also like to thank Richard Taylor at the Institute for Software Research (ISR) at University
of California, Irvine (UCI) for providing a stimulating research environment and for hosting a visiting
researcher from Norway. The Leiv Eriksson mobility program supported by the Research Council of
Norway has sponsored this work. We would also like to thank the editor and the reviewers of IJCGT
for providing useful feedback used to improve the paper.

References 
[1] T. W. I. Brignall and T. L. V. Valey, "An Online Community as a New Tribalism: The World of

Warcraft," in Proceedings of the 40th Annual Hawaii International Conference on System Sciences:
IEEE Computer Society, 2007.

[2] mDisney-Studios, "Pirates of Caribbean Multiplayer Game," Web:
http://disney.go.com/disneymobile/mdisney/pirates/, May 4th 2009.

[3] J. Krikke, "Samurai Romanesque, J2ME, and the Battle for Mobile Cyberspace," IEEE Computer
Graphics and Applications, vol. 23, pp. 16-23, 2003.

[4] CipSoft, "Tibia Micro Edition - the first mobile online roleplaying game," Web:
http://www.tibiame.com/, May 4th 2009.

[5] C. Hiedels, C. Hoff, S. Rothkugel, and U. Wehling, "UbiSettlers--A Dynamically Adapting Mobile P2P
Multiplayer Game for Hybrid Networks," in Fifth IEEE International Conference on Pervasive
Computing and Communications Workshops (PerComW'07) White Plains, New York, USA, 2007, pp.
109-113.

[6] D. McCaffery and J. Finney, "Low Latency Optimisation of Content Based Publish Subscribe for Real-
Time Mobile Gaming Applications," in Fourth International Workshop on Distributed Event-Based
Systems Columbus, Ohio, USA, 2005, pp. 438-443.

[7] A. Chandler and J. Finney, "Rendezvous: supporting real-time collaborative mobile gaming in high
latency environments," in Proceedings of the 2005 ACM SIGCHI International Conference on
Advances in computer entertainment technology Valencia, Spain: ACM, 2005.

[8] J. Brun, F. Safaei, and P. Boustead, "Managing latency and fairness in networked games,"
Communication of the ACM, vol. 49, pp. 46-51, 2006.

[9] D. R. Jefferson, "Virtual time," ACM Transaction on Programming Languages and System, vol. 7, pp.
404-425, 1985.

[10] M. Mauve, "How to Keep a Dead Man from Shooting," in Proceedings of the 7th International
Workshop on Interactive Distributed Multimedia Systems and Telecommunication Services: Springer-
Verlag, 2000.

[11] G. Armitage, "Sensitivity of quake3 players to network latency," in ACM SIGCOMM Internet
Measurement Workshop 2001 Berkley, CA, USA, 2001.

[12] IEEE, "Standard for Distributed Interactive Simulation--Communication Services and Profiles," in
IEEE Standard 1278.2-1995: The Institute of Electrical and Electronics Engineers, 1995.

[13] M. Busse, B. Lamparter, M. Mauve, and W. Effelsberg, "Lightweight QoS-support for networked
mobile gaming," in Proceedings of 3rd ACM SIGCOMM workshop on Network and system support for
games Portland, Oregon, USA: ACM, 2004.

[14] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and M. Claypool, "The effects of loss and
latency on user performance in unreal tournament 2003," in Proceedings of 3rd ACM SIGCOMM
workshop on Network and system support for games Portland, Oregon, USA: ACM, 2004.

[15] P. Quax, P. Monsieurs, W. Lamotte, D. D. Vleeschauwer, and N. Degrande, "Objective and subjective
evaluation of the influence of small amounts of delay and jitter on a recent first person shooter game,"
in Proceedings of 3rd ACM SIGCOMM workshop on Network and system support for games Portland,
Oregon, USA: ACM, 2004.

[16] M. Dick, O. Wellnitz, and L. Wolf, "Analysis of factors affecting players' performance and perception
in multiplayer games," in Proceedings of 4th ACM SIGCOMM workshop on Network and system
support for games Hawthorne, NY: ACM, 2005.

[17] N. Sheldon, E. Girard, S. Borg, M. Claypool, and E. Agu, "The effect of latency on user performance in
Warcraft III," in Proceedings of the 2nd workshop on Network and system support for games Redwood
City, California: ACM, 2003.

 [18] L. Pantel and L. C. Wolf, "On the impact of delay on real-time multiplayer games," in Proceedings of
the 12th international workshop on Network and operating systems support for digital audio and video
Miami, Florida, USA: ACM, 2002.

[19] K.-T. Chen, P. Huang, and C.-L. Lei, "How sensitive are online gamers to network quality?,"
Communication of the ACM, vol. 49, pp. 34-38, 2006.

[20] T. Henderson and S. Bhatti, "Networked games: a QoS-sensitive application for QoS-insensitive
users?," in Proceedings of the ACM SIGCOMM workshop on Revisiting IP QoS: What have we learned,
why do we care? Karlsruhe, Germany: ACM, 2003.

[21] J. Nichols and M. Claypool, "The effects of latency on online madden NFL football," in Proceedings of
the 14th international workshop on Network and operating systems support for digital audio and video
Cork, Ireland: ACM, 2004.

[22] T. Fritsch, H. Ritter, and J. Schiller, "CAN mobile gaming be improved?," in Proceedings of 5th ACM
SIGCOMM workshop on Network and system support for games Singapore: ACM, 2006.

[23] Y. Zhu, Y. Liu, H. Ngan, Q. Chen, C. Qian, J. Ma, and D. Zhang, "Shift Coding: Efficient State Update
in Mobile Peer-to-Peer Multiplayer Games," in 2007 International Conference on Parallel Processing
Workshops (ICPPW 2007), Xi'an, China, 2007.

[24] T.-C. Chiueh, "Distributed Systems Support for Networked Games," in 6th Workshop on Hot Topics in
Operating Systems (HotOS-VI) Cape Cod, MA, USA, 1997.

[24] C. Diot and L. Gautier, "A Distributed Architecture for Multiplayer Interactive Application on the
Internet," IEEE Networks Magazine, vol. 13, pp. 6-15, 1999.

[25] T. Alexander, Massively Multiplayer Game Development First ed.: Charles River Media, 2003.
[26] H. Batista, V. Costa, and J. Pereira, "Games of War and Peace: Large Scale Simulation over the

Internet," in Seventh International Conference on Virtual Systems and Multimedia (VSMM'01) Berkley,
California, USA, 2001.

[27] J. Aronson, "Dead Reckoning: Latency Hiding for Networked Games," Gamasutra September 19 1997.
[28] Z. Qu, H. Gao, and Y. Zhu, "Research on High-accuracy Position Prediction Algorithm in Online

Game," in 2008 International Symposium on Electronic Commerce and Security, 2008, pp. 78-81.
[29] C. Diot and L. Gautier, "A Distributed Architecture for Multiplayer Interactive Application on the

Internet," IEEE Networks Magazine, vol. 13, pp. 6-15, 1999.
[30] J. Vogel and M. Mauve, "Consistency control for distributed interactive media," in Proceedings of the

ninth ACM international conference on Multimedia Ottawa, Canada: ACM, 2001.
[31] M. Schoettner, M. Wende, R. Goeckelmann, T. Bindhammer, U. Schmid, and S. P., "A Gaming

Framework for a Transactional DSM System," in Third IEEE International Symposium on Cluster
Computing and the Grid (CCGrid'03) Tokyo, Japan, 2003.

[32] A. Chandler and J. Finney, "Rendezvous: supporting real-time collaborative mobile gaming in high

latency environments," in Proceedings of the 2005 ACM SIGCHI International Conference on
Advances in computer entertainment technology Valencia, Spain: ACM, 2005.

[33] J. Brun, F. Safaei, and P. Boustead, "Managing latency and fairness in networked games,"
Communication of the ACM, vol. 49, pp. 46-51, 2006.

[34] Y.-J. Lin, K. Guo, and S. Paul, "Sync-MS: Synchronized Messaging Service for Real-Time Multi-
Player Distributed Games," in 10th IEEE International Conference on Network Protocols (ICNP'02),
2002.

[35] S. Zander, I. Leeder, and G. Armitage, "Achieving fairness in multiplayer network games through
automated latency balancing," in Proceedings of the 2005 ACM SIGCHI International Conference on
Advances in computer entertainment technology Valencia, Spain: ACM, 2005.

[36] C. GauthierDickey, D. Zappala, V. Lo, and J. Marr, "Low latency and cheat-proof event ordering for
peer-to-peer games," in Proceedings of the 14th international workshop on Network and operating
systems support for digital audio and video Cork, Ireland: ACM, 2004.

[37] M. Berger, S. Lima, A. Manoussakis, J. Pulgarin, and B. Sanchez, "A Performance Comparison of TCP
Protocols over Mobile Ad Hoc Wireless Networks," in Proceedings of the Electronics, Robotics and
Automotive Mechanics Conference - Volume 02: IEEE Computer Society, 2006.

[38] M. C. Chan and R. Ramjee, "Improving TCP/IP Performance over Third-Generation Wireless
Networks," IEEE Transactions on Mobile Computing, vol. 7, pp. 430-443, 2008.

[39] B. S. Bakshi, P. Krishna, N. H. Vaidya, and D. K. Pradhan, "Improving Performance of TCP over
Wireless Networks," in Proceedings of the 17th International Conference on Distributed Computing
Systems (ICDCS '97): IEEE Computer Society, 1997.

[40] M. Satyanarayanan, "Fundamental challenges in mobile computing," in Proceedings of the fifteenth
annual ACM symposium on Principles of distributed computing Philadelphia, Pennsylvania, United
States: ACM, 1996.

[41] S. Hadap, D. Eberle, P. Volino, M. C. Lin, S. Redon, and C. Ericson, "Collision detection and proximity
queries," in ACM SIGGRAPH 2004 Course Notes Los Angeles, CA: ACM, 2004.

[42] S.-H. Kim, B.-J. Choi, M.-S. Jung, and K.-S. Park, "A Real Time Network Game System Based on
Retransmission of N-based Game Command History for Revising Packet Errors," in 5th ACIS
International Conference on Software Engineering Research, Management & Applications (SERA
2007) Busan, South Korea 2007, pp. 917-923.

