

ACM Trans. Computing Education, Vol. X, No. X, Article X, Pub. date: X 2011.

Extensive Evaluation of Using a Game Project in a
Software Architecture Course

A.I. WANG
Norwegian University of Science and Technology
__

This paper describes an extensive evaluation of introducing a game project to a software architecture course. In
this project, university students have to construct and design a type of software architecture, evaluate the
architecture, implement an application based on the architecture, and test this implementation. In previous years,
the domain of the software architecture project has been a robot controller for navigating a maze. In 2008, the
students on the software architecture course could choose between the two domains: Khepera robot simulation
in Java and XNA game development in C#. Independent of the domain chosen, the students had to go through
the same phases, produce the same documents based on the same templates, and follow exactly the same
process. This paper describes an evaluation where we wanted to investigate if a game development project could
successfully be used to teach software architecture. Specifically in the evaluation, the effect of the choice of
COTS (Commercial Off-The-Shelf) and domain is compared in relation to popularity of the project type, how
the students perceive the project, the complexity of the software architectures produced, the effort put into the
project, and the grades achieved for the project and the written examination. The main conclusion is that game
development projects can successfully be used to teach software architecture. Further, the results of the
evaluation show among other things that students that chose the Game project produced software architecture
with higher complexity, and put more effort into the project than the Robot project students. No significant
statistical differences were found in final grades awarded to the Game project students vs. Robot project
students. However, the Game project students obtained a higher grade in their project than in the written
examination whereas the Robot project students scored higher in the written examination than in their project.
Finally compared to the Robot project students, those that chose the Game project had fewer problems with
COTS hindering the architecture design and introducing technical challenges.

Categories and Subject Descriptors: K.3.2 [Computer and Information Science Education], D.2.11
[Software Architectures], K.8 [Personal Computing] – Games.

General Terms: Software Engineering Education, Evaluation, Game Development.

Additional Key Words and Phrases: Game Development, XNA, Robot simulation.

ACM File Format:
Wang, A. I. 2010. Extensive evaluation of using a game Project in a software architecture course. ACM Trans
on Computing Education, X, X, Article X (Januay 2011), 29 pages, DOI =
__

1. INTRODUCTION
Games in education have become increasingly popular in recent years, especially for
children and have proven to be beneficial for academic achievement, motivation and
classroom dynamics [Rosas et al., 2003]. Teaching methods based on educational games
are not only attractive to schoolchildren, but can also be beneficial for university students
[Sharples, 2000]. Research on games concepts and game development used in higher
education is not unique, e.g. [Baker et al., 2003] [Natvig et al., 2004] [Navarro&Hoek,
2004], but there is an untapped potential that needs to be explored. By introducing games
in higher education professors can access teaching aids that promote more activity among
students, provide alternative teaching methods to improve variation, enable social
learning through multiplayer learning games, and motivate students to work harder on
__
Author’s address: A.I.Wang, Dept. of Computer and Information Science, Norwegian University of Science and Technology,
Trondheim, Norway. Email: alfw@idi.ntnu.no
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee provided that the
copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication, and its
date of appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee. Permission may be requested from the
Publications Dept., ACM, Inc., 2 Penn Plaza, New York, NY 11201-0701, USA, fax: +1 (212) 869-0481, permission@acm.org
© 2001 ACM 1530-0226/07/0900-ART9 $5.00 DOI 10.1145/1290002.1290003 http://doi.acm.org/10.1145/ 1290002.1290003

X
9

X: 2 � A.I.Wang

projects and exercises. Games can mainly be integrated in higher education in three ways.
First, traditional exercises can be replaced by games motivating the students to put extra
effort in doing the exercises, and giving the course staff an opportunity to monitor how
the students work with the exercises in real-time [Foss&Eikaas, 2006] [Sindre et al.,
2009]. Second, games can be used within a traditional classroom lecture to improve the
participation and motivation of the students through knowledge-based multiplayer games
played by the students and the teacher [Wang et al., 2007] [Wang et al., 2008]. Third,
game development projects can be used in computer science (CS) or software
engineering (SE) courses to learn specific CS or SE skills [El-Nasr&Smith, 2006]
[Wu&Wang, 2009]. This paper focuses on an evaluation of the latter, where a game
development project was introduced to a software architecture course. The motivation for
bringing game development into a CS or SE course is to exploit the students’ fascination
for games and game development to stimulate them to work more with course material
through the project. Many students dream of making their own games, and game
development projects stimulate the creativity of the students. In addition, game
technologies and game user interfaces are now more commonly used in serious
applications [Homes, 2005] [Sliney et al., 2008] [Mili, et al., 2008] [Ahn, 2006], and
development of serious games is on the rise. This makes it more important for students to
learn how to develop games and utilize game technology.

From a game developer’s perspective, knowledge and skills about how to develop
appropriate software architectures are becoming more important [Caltagirone et al., 2002]
[Anderson et al., 2008]. Well-designed software architectures are needed, as games are
growing in size and becoming more complex [Blow, 2004]. From a software architect’s
perspective, games are interesting due to the inherent characteristics of the domain
including real-time graphics and network constraints, variation in hardware
configurations, changing functionality, and user-friendliness. Games are also interesting
from a software architect’s perspective, as there are no real functional requirements that
stem from the users. Typical user requirements for games are that the game should be fun
to play, it should have enough variety, and it should be engaging [Callele et al., 2008].

This paper describes an evaluation of introducing a game project in a software
architecture course to find an answer to the research question: “Are game development
projects suited for teaching software architecture?” The evaluation is a comparison of
how students who chose a Game project perform vs. students who chose a Robot project.
The students all go through the same phases and produce all the same documents based
on templates that are independent of the chosen domain. The evaluation will also look at
the students’ perception of the project, and the popularity of the two domains related to
demographics. The evaluation is based on data from a project survey, the project
deliverables from the students and other accessible course information.

The rest of the paper is organized as follows. Section 2 describes the software
architecture course. Section 3 presents the research questions and research method.
Section 4 gives the results of the evaluation. Section 5 discusses the results and addresses
the validity of the evaluation. Section 6 describes related work, and Section 7 concludes
the paper.

2. DESCRIPTION OF THE SOFTWARE ARCHITECTURE COURSE
The software architecture course is for post-graduate CS and SE students at the Dept. of
Computer and Information Science at the Norwegian University of Science and
Technology (NTNU). The course workload is 25% of a semester, and about 70-80

 � 9: 3

students attend the course every spring. The students are mostly Norwegian (about 80%),
but there are also 20% international students mostly from EU countries. About 10% of
the students are female. The textbook used in this course is “Software Architecture in
Practice, Second Edition”, by Clements, Bass, and Kazman [2003]. Additional papers are
used to cover topics that are not sufficiently covered by this book such as design patterns,
software architecture documentation standards, view models, and post-mortem analysis
[Coplien, 1998] [Perry&Wolf, 1992] [IEEE, 2000] [Kruchten, 1995] [Wang&Stålhane,
2005]. The learning outcomes from the course are that:

“The students should be able to define and explain central concepts in software
architecture literature, and be able to use and describe design/architectural
patterns, methods to design software architectures, methods/techniques to
achieve software qualities, methods to document software architecture and
methods to evaluate software architecture.”

The course is mainly taught in three ways:
1) Ordinary lectures given in English
2) Invited guest-lectures from the software industry
3) A software development project that focuses on software architecture

2.1 An Unusual Approach

Programming has for many years been used for teaching students of all ages more then
just programming. Papert [1980] inspired by Piaget’s theories on assimilation (the
process by which a person takes material into their mind from the environment…)
[Piaget, 1969] demonstrated how children could learn mathematics for example through
programming in Lego Mindstorm. Specialized programming languages and integrated
development environments have been developed to teach students programming as well
as other topics. Some examples are the Logo Turtle used for learning simple graphical
principles [Papert, 1980], StarLogo programming language that was developed to teach
students to do simulation of micro worlds (termites, traffic etc.) [Resnick, 1994], Alice
that was designed to teach students object-orientation as well as building 3D applications
[Pausch, 1995], and Scratch that was designed for rapid prototyping of media rich
applications [Resnick et al., 2003]. Alice and Scratch have also been used in courses
teaching students game development.

The software architecture course at NTNU (course code TDT4240) is taught in a
different way than at most other universities, as the students also have to implement their
designed architecture in a project. The motivation for doing so is to make the students
understand the relationship between the architecture and the implementation, and to be
able to perform a real evaluation of whether the architecture and the resulting
implementation fulfill the quality requirements specified for the application. The
architecture project in the course has similarities with projects in software engineering
courses, but everything in the project is carried out from a software architecture
perspective. Throughout the project, the students have to use software architecture
techniques, methods, and tools to succeed according to the specified project requirements
and the document templates. The development process in the project will also be affected
by the focus on software architecture, as the development view of the architecture will
specify how the teams should be organized and how they should work. The main
disadvantage of this approach is that the students get less time dedicated to do the

X: 4 � A.I.Wang

architectural design, as they have to spend time on the implementation. The main
advantage is that the students are learning software architecture through doing a whole
project where they can see the results of their architectural design as a product.

The TDT4240 software architecture course has been rated as one of the most useful
and practical courses offered at the Dept. of Computer and Information Science in
surveys conducted among ex-students now working in the IT industry. The course staff
has also seen the benefits of making the students implement the architecture, as the
students have to be aware of the developing costs of fancy and complicated architectural
designs.

2.2 Course Evaluation

In the software architecture course 30% of the grade awarded relates to the evaluation of
the software architecture project all students have to do, while 70% is awarded for the
results of a written examination. One grade per group is given for the project, while
individual grades are given on the written examination. In special cases, students can get
individual grades on the project if they have not contributed as much as the other group
members. The goal of the project is for the students to apply the methods and theory
examined in the course to design and fully document a type of software architecture,
evaluate the architecture and the architectural approaches (tactics), implement an
application according to the architecture, test the implementation related to the functional
and quality requirements, and evaluate how the architectural choices affect the quality of
the application. The course staff will evaluate the project according to evaluation criteria
described in a document that is available to all students at the beginning of the project.
The project is evaluated according to completeness of the architecture documentation as
described in the IEEE 1471 standard [IEEE, 2000], a working implementation according
to the defined requirements and the architecture, consistency between code and
architecture, structured and readable documentation, structured and readable code,
testable functional and quality requirements, architecture rationale, documentation
according to given templates, and a clear description how the project uses COTS. The
main emphasis when grading the projects is on the software architecture itself, but also
on how the implementation reflects the architectural choices.

A team of four consisting of a professor and three PhD candidates rates the projects.
The three PhD candidates rate one third of the projects while the professor rates all
projects; so all projects are evaluated by two people.

2.3 The Software Architecture Project
The software architecture project consists of the following phases:

1) Commercial Off-The-Shelf (COTS): Learn the development platform/framework
to be used in the project by developing some simple test applications.

2) Design pattern: Learn how to utilize design patterns by making changes in two
architectural variants of an existing system designed with and without design
patterns.

3) Requirements and architecture: Describe the functional and quality
requirements, describe the architectural drivers, and design and document the
software architecture of the application in the project including several views
and viewpoints, stakeholders, stakeholder concerns, architectural rationale.

4) Architecture evaluation: Use the Architecture Trade-off Analysis Method
(ATAM) [Clements et al., 2003] [Kazman et al., 1998] [BinSubaih&Maddock,

 � 9: 5

2006] to evaluate the software architecture in regard to the specified quality
requirements.

5) Implementation: Do a detailed design and implementation of the application
based on the designed architecture and on the results from the ATAM
evaluation. Test the application against functional and quality requirements
specified in phase 3, evaluate how well the architecture helped to meet the
requirements, and evaluate the relationship between the software architecture
and the implementation.

6) Project evaluation: Evaluate the project using a Post-Mortem Analysis (PMA)
method [Wang&Stålhane, 2005]. In this phase, the students will elicit and
analyze the successes and problems they had during the project.

In the first two phases of the project, the students work on their own or in pairs. For

phases 4-6, the students work in self-selected teams of four students. The students spend
most time in the implementation phase (6 weeks), and they are also encouraged to start
the implementation in earlier phases to test their architectural choices (incremental
development). During the implementation phase, the students continually extend, refine
and evolve the software architecture through several iterations.

In previous years, the goal of the project has been to develop a robot controller for the
WSU Khepera robot simulator in Java [WSU, 2009] with emphasis on an assigned
quality attribute such as availability, performance, modifiability or testability. The
students were asked to program the robot controller to move a robot around in a maze,
collect four balls and bring them to a light source in the maze. The robot controller was
chosen for the software architecture project, as the problem of software architecture is
well defined within this domain. Several examples of software architecture patterns or
reference architectures for the robot controller domain are available such as Control loop
[Lozano-Pérez, 1990], Elfes [Elfes, 1987], Task Control [Simmons, 1992], CODGER
[Shafer et al., 1986], Subsumption [Toal et al., 1996], and NASREM [Lumia et al.,
1990].

In 2008, the students were allowed to choose between a robot controller project and a
game development project. The process, the deliverables and the evaluation of the project
were the same for both types of projects – only the domain was different. In the Game
project, the students were asked to develop a game using the Microsoft XNA framework
[Microsoft, 2009a] and C# [Microsoft, 2009b]. All our students have good skills and
knowledge in Java, but very few knew C#. The students were allowed to decide what
type of game they wanted to develop themselves, but a certain level of complexity (more
than a specified number of classes) was required. Unlike the robot domain, there was
little appropriate literature on software architecture and software architectural patterns for
games. There are some papers and presentations that describe the architectures of specific
games [Vichoido et al., 2003] [Krikke, 2003] [Booch, 2007] [Grossman, 2003] [Darken
et al., 2005], and books that give a brief overview of game architectures [Rabin, 2008]
[Rollings&Morris, 2004], but no literature that gives an in-depth study of the typical
abstractions one can observe in game software development. The most recurring
architectural patterns described in books and papers are the model-view controller, pipe-
and-filter, layered and hierarchical task trees.

The evaluation presented in this paper is within the context of a software architecture
course, but the results presented should also be applicable to other courses as well, as the
robot and game domains are commonly being used to teach various topics in software
engineering and computer science. The robot domain has been used to teach various CS

X: 6 � A.I.Wang

topics such as expressions, loops, finite state machines, data structures, threading, fuzzy
logic, and embedded systems [Linder et al., 2001] [Delden and Zhong, 2008], and
artificial intelligence and real world vs. virtual world interfaces [Pfeifer, 1997] [Flowers
and Gossett, 2002] [Imberman, 2004]. Similarly the game domain has been used to teach
object-oriented programming [Chen and Cheng, 2007], object-oriented software
engineering [Ryoo, 2008], human-computer interaction [Shiray et al., 2009], software
design and software process [El-Nasr and Smith, 2006], artificial intelligence [Sung,
2009], algorithms [Faltin, 1999], design patterns and architecture [Gestwicki, 2007]
[Nguyen and Wong, 2002], and computer graphics [Sung et al., 2007]. The two domains
(robot and games) have even been combined to motivate learners to become interested in
programming, science technology, engineering and math [Lahey et al., 2008].

3. RESEARCH QUESTIONS AND RESEARCH APPROACH
The goal of the evaluation presented in this paper was to investigate if there were any
differences in how students perceived the project, and how they performed in the project
and the course related to their choice of project domain (Robot vs. Game). The Robot
project represents our benchmark of a successful project in teaching students software
architecture. The Robot project was chosen as a benchmark based on experience from
five previous years of successfully teaching students the practices, skills and techniques
in software architecture in a practical way [Wang&Stålhane, 2005]. This meant that if the
game project performed at the same level as the Robot project, the Game project was well
suited for teaching software architecture.

The comparison of the Robot and Game projects should help to discover the
differences and reveal the positive and negative effects of introducing a Game project.
However, the evaluation cannot be defined as a controlled experiment. The research
method used is based on the Goal, Question Metrics (GQM) approach [Basili et al., 1995]
where we first define a research goal (conceptual level), then define a set of research
questions (operational level), and finally describe a set of metrics to answer the defined
research questions (quantitative level). In our case, the metrics used to give answers to
the research questions are a mixture of quantitative and qualitative data.

3.1 Research Goal and Research Questions
The research goal of this study was defined as the following using the GQM template:

The purpose of this study was to evaluate the effect of using a game
development project from the point of view of a student in the context of a
software architecture course.

The following research questions (RQs) were defined by decomposing the research goal
above:

• RQ1: Are game projects popular among the students in a software architecture
course, and are there any specific groups that favor game projects?

• RQ2: Are there any differences in how the students perceive the project for
students choosing a Robot project vs. students choosing a Game project?

• RQ3: Are there any differences in the software architectures designed by
students doing a Robot project vs. students doing a Game project?

• RQ4: Are there any differences in the effort put into the project by students
doing a Robot project vs. students doing a Game project?

 � 9: 7

• RQ5: Are there any differences in the performance of students doing a Robot
project vs. students doing a Game project?

3.2 Data Sources and Metrics
Table I shows the data sources, the metrics and how the data are compared with respect
to the five research questions given in Section 3.1. Note that the qualitative data are
mainly used as a supplement to the quantitative data.

Table I. Data Sources, Metrics and Comparison Method

RQs Data sources Metrics Comparison method
RQ1 Course Data Numeric data: [project selection data,

demographic classification of students]
Percentwise distribution
chart.

RQ2 Project Survey 5-level Likert scale: [Strongly agree (1) -
Agree (2) - Neutral (3) - Disagree (4) -
Strongly disagree (5)]

Kruskal-Wallis Test.
Percentwise distribution
chart.

RQ3 Project Reports Numeric data: [Number of classes/modules,
Number of patterns, Number of levels in the
architecture]
Quantitative data: [Diagrams, Textual
descriptions]

Kruskal-Wallis Test.
Percentwise distribution
chart.
Comparison of statistical
average, standard
deviation, min and max.

RQ4 Source Code,
Implemented
Applications

Numeric data: [Number of Source files,
Lines of Source code, Number of
Comments]
Quantitative data: [Tests from running
applications]

Kruskal-Wallis Test.
Comparison of statistical
average, standard
deviation, min and max.

RQ5 Evaluation of
Projects,
Evaluation of
Examination

Numeric data: [Project Score and Final
Examination Score]

Kruskal-Wallis Test.
Comparison of statistical
average and median.
Percentwise distribution
chart.

Here is a more detailed description of the data sources in this evaluation:

• Course data: This is data that describes how many students participate in the
course, how many students chose the two types of project, and what kind of
students chose a particular project type.

• Project Survey: The survey consisted of 10 statements where the students
should choose from a 5-level Likert scale (from Strongly Agree to Strongly
Disagree). The survey was published on an e-learning system one week after the
students have completed their project. 83% of the students that had signed up for
the course responded (66 students).

• Project reports: Project reports from 22 teams were analyzed by counting
differences, analyzing diagrams and reading through the textual descriptions.

• Source code: The source code of all 22 teams was analyzed using the cloc
application [Danial, 2009] for counting comment lines, lines of code and
number of source code files.

• Implemented applications: The implemented applications were tested to
discover their robustness and how advanced they were.

X: 8 � A.I.Wang

• Evaluation of projects: The course staff gave a score and a grade (A to F)
based on an evaluation of the final project delivery according to a specified set
of project evaluation criteria. The score spans from 0-30 points.

• Evaluation of examination: The course staff gave a score and a grade (A to F)
on the final written examination. The score spans from 0-70 points.

4 RESULTS OF THE EVALUATION
This section presents the results of the evaluation giving answers to the five research
questions introduced in Section 3.1.

4.1 RQ1: Game Project Popularity and Demographics
One of the main reasons for introducing a game project to the software architecture
course was to motivate students to put extra effort into the project. One indicator of
whether students were motivated by the Game project was to see how many students
preferred the Game project to the Robot project. In spring 2008, 82 students had
registered for the software architecture course. The distribution of the students’ selection
of type of project is shown in Fig. 1. The pie chart shows that almost three out of four
chose the Game project. The number of students that preferred the Game project to the
Robot project was overwhelming and much higher than expected.

Fig. 1. The distribution of selection of type of software architecture project

Research question one (RQ1) also stated if there were any specific groups that favored
the Game Project. The only demographical data available for the students taking the
software architecture course were citizenship and gender. Fig. 2 shows how the groups
Norwegians, foreigners, males and females chose the project type.

 � 9: 9

Fig. 2. Student demographics and selection of project type

The chart shows that there are only minor variations in how these four groups choose the
project type. We expected more difference between the two groups male and female.
However, one can argue that both domains are rather masculine and that none of the
offered domains are especially tempting to females. It would be interesting to see if a
domain such as social network applications would have changed the choice of domain for
female students.

4.2 RQ2: Differences in how Students Perceived the Project
A project survey was conducted one week after the students completed their software
architecture project. The goal of this survey was to reveal possible differences in the
students’ perception of the project between teams working with Robot projects vs. teams
working with Game projects. Most statements in the survey made the students reflect on
how the project helped them to learn software architecture. First, the students had to
specify whether they had worked with a Robot or a Game project. Then, the students
were asked to do grade nine statements (PS1-PS9) by choosing an alternative from 1
(Strongly Agree) to 5 (Strongly Disagree). Finally, the students were asked whether they
would choose the other type of project next time (PS10), where the alternatives to choose
from were 1 (No) or 2 (Yes).

The hypothesis defined for this survey was the following:

H0: There is no difference in how students doing the Robot project vs. the Game
project perceive the software architecture project.

The Kruskal-Wallis Test was used to do the hypothesis tests. The Kruskal-Wallis test

is a non-parametric method for testing equality of population medians among groups
[Kruskal&Wallis, 1952]. This test was suitable for this survey, as we cannot assume a
normal population and the sample sizes of the two groups are different. Table II and
Table III show the results of the Kruskal-Wallis Test on the statements PS1-PS10. Note
that two p-values are given. The unadjusted p-value is conservative if ties are present,

X: 10 � A.I.Wang

while the adjusted p-value is usually more accurate, but it is not always conservative. Of
the 68 students answering the survey, 20 students worked with Robot projects while 48
students worked with Game projects.

Table II shows that for PS2 there is a significant difference (p≤0.05) for the two
groups’ responses. The students doing the Game project claimed that the COTS to a less
degree hindered good architecture design compared to Robot project students. This result
was unexpected, as the course staff believed the opposite would be true due to more
available software architecture resources related to robot controllers, and few
architectural restrictions in the Khepera robot simulation framework. Also the statement
PS3 had a rather low p-value (p=0.097) where the Game project students found it more
difficult to evaluate the other team’s architecture using ATAM than the Robot project
students.

Table II. Kruskal-Wallis Test of the statements PS1-PS5

Statement COTS N Median Rank Z
Robot 20 3.000 32.9 -0.17
Game 46 3.000 33.8 0.17
Overall 66 33.5
H = 0.03 DF = 1 P = 0.862

PS1: I found it hard to
come up with good
requirements versus
COTS

H = 0.03 DF = 1 P = 0.855 (adjusted for ties)

Statement COTS N Median Rank Z

Robot 20 4.000 41.8 2.31
Game 46 3.000 29.9 -2.31
Overall 66 33.5
H = 5.33 DF = 1 P = 0.021

PS2: I think the COTS
did not hinder the
design of a good
architecture versus
COTS H = 5.79 DF = 1 P = 0.016 (adjusted for ties)

Statement COTS N Median Rank Z

Robot 20 3.000 39.2 1.59
Game 46 2.000 31.0 -1.59
Overall 66 33.5
H = 2.53 DF = 1 P = 0.112

PS3: I found it
difficult to evaluate
the other team's
architecture in the
ATAM versus COTS H = 2.76 DF = 1 P = 0.097 (adjusted for ties)

Statement COTS N Median Rank Z

Robot 20 3.000 32.0 -0.41
Game 46 3.000 34.1 0.41
Overall 66 33.5
H = 0.17 DF = 1 P = 0.681

PS4: I think the COTS
made it easier to
identify architectural
drivers versus COTS

H = 0.20 DF = 1 P = 0.654 (adjusted for ties)

Statement COTS N Median Rank Z

Robot 20 3.000 36.9 0.94
Game 46 2.000 32.0 -0.94
Overall 66 33.5
H = 0.89 DF = 1 P = 0.346

PS5: I found it
difficult to focus on
our assigned quality
attribute versus COTS

H = 0.95 DF = 1 P = 0.329 (adjusted for ties)

Table III shows the results of Kruskal-Wallis tests where the statements PS7, PS8 and

PS10 had significant difference with p≤0.05. The most noticeable result is for PS7 where

 � 9: 11

the students doing the Robot project claim to have spent significantly more time on
technical matters than the students doing the Game project (p=0.001). This result was
unexpected as the XNA framework is much more extensive than the Khepera robot
simulator, and C# had to be learned. One explanation to this response can be that the
students found it very difficult to program the navigation of the robot in a maze utilizing
the sensors of the robot. The results from PS8 show that the students doing the Robot
project to a larger degree responded to have spent too much time trying to learn the COTS
at the start of the course compared to the students doing the Game project. This result
was even more unexpected than the result for PS7, as the XNA framework and C# is
much more complex than the Khepera robot simulator. Two possible explanations can be
that the students doing the Game project were better motivated to learn the COTS or
simply that the documentation for XNA was better than the Khepera robot simulator.
From the result of the test, we can also see that there is a tendency that Game project
students found it easier than the Robot project students to integrate architectural and
design patterns with the COTS (p=0.114), and that the Robot students perceived that they
have learned more about software architecture from the projects compared to the Game
students (p=0.187).

In statement 10 (PS10), the students were asked if they would have chosen the other
project next time. Table III shows that there is a statistically significant difference
between the Robot and the Game projects (p=0.028).

Table III. Kruskal-Wallis test of the statements PS6-PS10

Statement COTS N Median Rank Z
Robot 20 3.000 38.8 1.48
Game 46 2.500 31.2 -1.48
Overall 66 33.5
H = 2.19 DF = 1 P = 0.139

PS6: I found it easy to
integrate known
architectural or design
patterns versus COTS

H = 2.50 DF = 1 P = 0.114 (adjusted for ties)

Statement COTS N Median Rank Z

Robot 20 1.500 21.9 -3.23
Game 46 3.000 38.5 3.23
Overall 66 33.5
H = 10.43 DF = 1 P = 0.001

PS7: I spent more time
on technical matters
than on architectural
matters versus COTS

H = 11.18 DF = 1 P = 0.001 (adjusted for ties)

Statement COTS N Median Rank Z

Robot 20 2.000 26.7 -1.90
Game 46 3.000 36.5 1.90
Overall 66 33.5
H = 3.63 DF = 1 P = 0.057

PS8: I spent too much
time trying to learn
the COTS at the start
of the course versus
COTS H = 3.90 DF = 1 P = 0.048 (adjusted for ties)

Statement COTS N Median Rank Z

Robot 20 2.000 29.0 -1.25
Game 46 3.000 35.4 1.25
Overall 66 33.5
H = 1.56 DF = 1 P = 0.212

PS9: I have learned a
lot about software
architecture during the
project versus COTS

H = 1.74 DF = 1 P = 0.187 (adjusted for ties)

X: 12 � A.I.Wang

Statement COTS N Median Rank Z
Robot 20 1.000 38.4 1.37
Game 46 1.000 31.4 -1.37
Overall 66 33.5
H = 1.87 DF = 1 P = 0.172

PS10: I would chosen
the other project (game
instead of robot and
vice versa)

H = 4.85 DF = 1 P = 0.028 (adjusted for ties)

Fig. 3 shows the distribution of the students’ responses for PS10. Here there is a much

higher percentage of the Robot project students that would have chosen the other project
(30%) compared to the Game project students (9%).

Fig. 3. Response to PS10: Would have chosen another project

4.3 RQ3: Differences in the Design of Software Architectures
It is difficult to evaluate software architectures empirically, but we have chosen to do so
by comparing the number of architectural and design patterns the students used, the
number of main modules/classes identified in the logical view of the software
architecture, and the number of hierarchical levels in the architecture. We admit that that
there are many sources of errors in this comparison, as the two domains are so different.
However, the emphasis in this course is on using software architecture and design
patterns and presenting the different views of the software architecture in sufficient detail
with emphasis on the logical view. The empirical data should highlight the differences
between the two types of projects if any. The empirical data has been collected by
reading through and analyzing the final project reports from 6 Robot project teams and 16
Game project teams. Note that the process and document templates are the same for both
types of projects, so any noticeable differences were not expected.

Use of Architectural and Design Patterns

Table IV presents the descriptive statistics of the number of architectural and design
patterns used in the Robot and the Game projects. The table indicates that there are some
differences between the two types of projects.

 � 9: 13

Table IV. Number of architectural patterns and design patterns used

Architectural patterns Design patterns
Robot Game Robot Game

Average 1.00 1.63 1.0 1.13
Standard deviation 0.00 0.72 1.67 1.20
Max 1 3 4 3
Min 1 1 0 0

Table V presents Kruskal-Wallis tests to examine if there are any statistically
significant differences in the number of architecture and design patterns produced by the
two different project types. The results show that for architectural patterns, there is a
statistically significant difference (p=0.037). The main difference from looking at the
actual architectures and implementations was found to be that the Game projects were
larger and contained more complex structures. Five out of six teams working with Robot
projects chose different architectural patterns notably; Control loop (2 teams), Layers,
Subsumption, Switchboard, and Elfes.

Table V. Hypothesis tests on number of patterns used

Hypothesis COTS N Median Rank Z
Robot 6 1.000 7.5 -1.73
Game 16 1.500 13 1.73
Overall 22 11.5
H = 3.13 DF = 1 P = 0.0836

No difference in number
of used Architecture
patterns

H = 4.33 DF = 1 P = 0.0374 (adjusted for ties)

Hypothesis COTS N Median Rank Z

Robot 6 0.000 10.4 -0.44
Game 16 1.000 11.9 0.44
Overall 22 11.5
H = 0.23 DF = 1 P = 0.66

No difference in number
of used Design patterns

H = 0.27 DF = 1 P = 0.66 (adjusted for ties)

Fig. 4. The distribution of chosen architectural patterns for Game projects illustrates
the distribution of the architectural patterns used in Game projects. Half of the teams that
worked with Game projects have used the model view controller pattern and nearly
quarter of the teams have used the pipe & filter pattern. Note that some of these patterns
can also be denoted design patterns, but the students have described them as architectural
patterns if they have been used to form the main structure of the software architecture.

X: 14 � A.I.Wang

Fig. 4. The distribution of chosen architectural patterns for Game projects

Table IV also gives the number of design pattern used by the two different groups

(Robot vs. Game). The table shows that the Game project teams have on average 13%
higher number of design patterns (1.13) compared to the Robot teams (1.0). However,
Table V indicates no statistically significant difference for the number of design pattern
used for the two types of projects. From reading through the projects reports we found
that only two of six teams that worked with the Robot projects (33.33%) documented the
use of design patterns, while nine of sixteen teams that worked with Game projects
(56.25%) did so. This result was unexpected, as the teams consist of four members and
usually one of the team members stresses the use of design patterns. We do not know the
reason for this difference, but we suspect that the Game teams were more
implementation-oriented and thus were more interested in structuring the code using
patterns. The difference between the two domains does not explain why it should be
easier to utilize design patterns for games rather than for robot controllers.

Fig. 5 presents the distribution of design patterns used by Robot teams (to the left)
and by Game teams (to the right). The charts show that the Observer, the Abstract factory
and the State patterns were the most popular for both types of project. Further, that the
Singleton pattern was among the top three for Game teams.

Fig. 5. Distribution of usage of design patterns for Robot and Game teams

 � 9: 15

Software Architecture Complexity
It is hard to find one metric to measure the complexity of a type of software architecture.
Thus two metrics were chosen to indicate such complexity: 1) The number of main
modules or main classes described in the logical view of the software architecture, and 2)
The number of hierarchical levels in the model presented in the logical view of the
software architecture. The reason the logical view was chosen for computing complexity
is that the logical view is the main one that gives the best overview of the designed
architecture. Table VI lists the measurements of the number of main modules/classes and
the number of hierarchical levels in the logical view of the software architecture for
Robot and Game projects. The table shows that the Game project teams on average have
almost three more main modules/classes (25%) than the Robot teams. The difference in
the maximum number of main modules/classes is six (32%). Further, there is on average
14% higher number of levels in the architecture of Game projects compared to Robot
projects.

Table VI. Measurements of software architecture complexity

Number of main modules/classes Number of levels in architecture
Robot Game Robot Game

Average 8.67 11.63 1.50 1.75
Standard deviation 3.39 4.36 0.55 0.77
Max 13 19 2 4
Min 5 5 1 1

Table VII gives the results from Kruskal-Wallis tests on a number of main

modules/classes and numbers of levels in the architecture. The tests show that there is no
statistically significant difference between the two types of projects, although the
difference in number of main modules/classes has a rather low p value (p=0.13).

Table VII. Hypothesis tests on architectural complexity

Hypothesis COTS N Median Rank Z
Robot 6 8.500 8.1 -1.47
Game 16 11.500 12.8 1.47
Overall 22 11.5
H = 0.26 DF = 1 P = 0.1416

No difference in number
of main modules/classes

H = 2.31 DF = 1 P = 0.1283 (adjusted for ties)

Hypothesis COTS N Median Rank Z

Robot 6 1.500 10.3 -0.52
Game 16 2.000 12.0 0.52
Overall 22 11.5
H = 0.03 DF = 1 P = 0.6031

No difference in number
of levels in
architecture

H = 0.40 DF = 1 P = 0.5288 (adjusted for ties)

4.4 RQ4: Differences in the Effort put into the Project
We have no hard number or estimates on how many hours the project teams worked
during the software architecture project, so we needed to make an estimate. The project
reports did not reveal large differences in terms of quantity and quality that could indicate

X: 16 � A.I.Wang

that students choosing one type of project worked more than the other. We chose to look
at metrics from the implementation to give an estimate on how much effort was put into
the project. This is not a perfect measure, but it should give a good indication of the
complexity of the software architecture and the resulting implementation of the
application. Both COTS (Khepera simulator and XNA) provide high-level APIs
approximately at the same abstraction level, and Java and C# are comparable
programming languages with similar characteristics. The students were not given any
code base or code examples apart from that being given by the COTS. However, there are
a lot more code examples available for XNA compared to Khepera. The following
metrics were chosen to compute the effort of the student teams:

• Number of source Files (NoF)
• Number of Comments in code (NoC)
• Lines of source Code not counting empty lines or comments (LoC)

The following metrics that can indicate how the code was structured and how the

code is commented can be computed from the above:
• Lines of code per File (LpF): [LpF = LoC / NoF]
• Lines of code per Comment (LpC): [LpC = LoC / NoC]

Table VIII presents a comparison of the implementation metrics for the Robot and the

Game projects.

Table VIII. Implementation metrics from the architecture projects
Number of files

(NoF)
Number of

Comments (NoC)
Lines of Code

(LoC)
LoC per File

(LpF)
LoC per

Comment (LpC)

Robot Game Robot Game Robot Game Robot Game Robot Game
Avr 31 40 345 758 1798 3396 78 86 8 8
StD 19.7 29.0 260.1 716.5 568.5 2617.1 46.9 26.0 7.6 5.9
Max 58 118 779 2374 2453 11759 156 144 20 17
Min 10 14 77 47 853 802 30 52 2 2

Table IX shows the results from Kruskal-Wallis tests on the difference in the number
of files and the number of lines of code produced by the two different types of project.

Table IX. Hypothesis tests on project effort

Hypothesis COTS N Median Rank Z
Robot 6 29.500 10.3 -0.52
Game 16 34.000 12.0 0.52
Overall 22 11.5
H = 0.30 DF = 1 P = 0.6031

No difference in number
of files

H = 0.31 DF = 1 P = 0.5797 (adjusted for ties)

Hypothesis COTS N Median Rank Z

Robot 6 1833.5 7.8 -1.59
Game 16 2722.0 12.0 1.59
Overall 22 11.5
H = 2.04 DF = 1 P = 0.1118

No difference in number
of lines of code

H = 2.63 DF = 1 P = 0.1048 (adjusted for ties)

 � 9: 17

The results from the Kruskal-Wallis tests indicate that there is no statistically
significant difference between the two types of project, although there is a relative low p-
value for the difference in number of lines of code (p=0.10). Table VIII gives two results:
first, the Game project teams have produced on average almost twice as much code
(190% more) and second, the variation in LoC is much higher for Game projects (460%
higher). The great variation in the LoC written by Game projects is shown as this project
type has the team that has produced most lines of code as well as the team that has
produced least lines of code. The main difference between the two types of project is that
the most productive Game teams have implemented significantly more than the Robot
teams (almost 12000 LoC vs. 2500 LoC). This phenomenon can be explained by the
simple fact that the students get carried away with their game projects by adding new
gameplay elements and features. A study of the code of the student projects reveals that
Game projects on average contain more code directly related to the architecture compared
to Robot projects in addition to code related to game features. Another possible
explanation of the tendency of game projects producing more code can be that a lot of
XNA code is available on the Internet. As far as we could tell from the code in the
student projects, little of the code was taken from other sources as all game concepts were
original and they had to focus on the software architecture through the whole project.

Another noticeable tendency is that Game teams put more lines of code in each file
and that there is less variation between the Game teams in respect to how much code they
put in each file. Finally, there is little difference in how teams from the two types of
projects comment on the source code.

4.5 RQ5: Differences in the Project and Course Grades

As mentioned, the grade awarded in the software architecture course is computed by
combining the group grade on the project (30%), and the individual grade on the written
examination (70%). Ideally, these two components in the course should have counted
50% for each part to give appropriate credit to how much effort the students put into the
project. However, the regulations at the university do not allow project work to be
credited more than 30% of the grade when combined with a grade from a written
examination. The grading system at NTNU suggests the following template for grading
courses:

• A: Score ≥90%
• B: Score ≥80% and score<90%
• C: Score ≥60% and score<80%
• D: Score ≥50% and score<60%
• E: Score ≥40% and score<50%
• F: Score<40% (fail).

Since the grade on the project is given to groups and the grade on the written

examination for the individual, these two components cannot be compared directly. We
have chosen to investigate if there were any differences in how the group scored (0-30
points) on the project, and the individual score (0-70 points) on the written examination
for students that have chosen Game and Robot projects. The Kruskal-Wallis Test was
also used here to test if there were any statistically significant differences between the
two types of projects (Robot and Game), as we cannot assume a normal population and
the sample size of the two groups is different. Table X presents the results of the Kruskal-

X: 18 � A.I.Wang

Wallis test on the difference in project grades for Robot and Game groups, and the
individual examination grades given to students doing Robot and Game projects.

Table X. Kruskal-Wallis Test on difference in project score

Hypothesis COTS N Median Rank Z
Robot 6 24.000 9.8 -0.74
Game 16 25.000 12.2 0.74
Overall 22 25.000 11.5
H = 0.60 DF = 1 P = 0.4593

No difference in
project score groups
get from doing Robot
vs. Game project

H = 0.61 DF = 1 P = 0.4324 (adjusted for ties)

Hypothesis COTS N Median Rank Z

Robot 21 49.000 46 1.26
Game 59 44.000 38.5 -1.26
Overall 80 46.000 40.5
H = 1.61 DF = 1 P = 0.2077

No difference in the
examination score
students get from doing
Robot vs. Game project

H = 1.60 DF = 1 P = 0.2058 (adjusted for ties)

Table X shows that there is no statistically significant difference in the scores for the

two types of projects. The p-value of the examination score was rather low (p=0.21)
indicating that there is a tendency that students doing Robot projects do better on the final
examination. Considering the median, the Game project score is only slightly higher than
the Robot project grade (4% higher), while the examination score for students doing the
Robot project is 11% higher than Game projects. Fig. 6 illustrates the distribution of final
grades (the project and written examination combined) for the students that worked with
Robot projects vs. Game projects. The chart shows that there are only minor variations
between the two groups.

Fig. 6. Distribution of the final grades for the software architecture course

Fig. 7 gives the distribution of grades on the project and the written examination

respectively for the two types of projects (Robot vs. Game). Fig. 7 visualizes a tendency
that Game project students do better in the project and Robot project students do better in

 � 9: 19

the written examination. Note that the comparison of project grades shown in Fig. 7 gives
the distribution of grades of individual students, while the Kruskal-Wallis test was
performed on differences between groups.

Fig. 7. Distribution of grades on the project and the written examination

5. DISCUSSION
This section discusses the results presented in previous section and discusses some threats
to validity.

5.1 Discussion of the Results
The results presented in Section 4 gave strong indications that student are motivated by
game development projects. The popularity of the game project shows for our case that
the majority of students prefer to work with game development projects. The students
also seem motivated to put more effort into a game development project compared to
another type of project, which gave good results in terms of using course related
techniques and methods and produce proper documentation and implementation. The
results also indicate that the students choosing Game projects are more eager to utilize
software engineering practices like architectural patterns to improve the final product.
However, the evaluation results do not show that the students get better grades from
being motivated by the game project. Our results do not reveal any significant differences
between the grades students get on the project and/or the written examination based on
their selection of type of project. We noticed a weak tendency that Robot project students
do better on the written examination, but this result is not statistically significant.

Our data show that the Game project students put more effort into the project, but the
extra effort does not give higher final grades in the course. Through years of experience
teaching the software architecture course, we have seen that the things the students had to
learn to be able to do the project were forgotten before the final written examination. As
the projects are carried out by teams, there is always a danger that only few students in a
team read and learn the necessary skills to document and do the project, while other team
members only focus on other things such as programming. Another potential problem
with the game projects is that students focus too much on the game itself instead on
issues related to software architecture. If we just consider what the students have
delivered and documented in the project, game projects work very well for learning
software architecture in practice. The final game project reports were at least as good as
the ones from robot projects especially on the use of design and architectural patterns and
the design of the software architecture (the emphasis of the course). If game projects are
to be used in other CS or SE courses, it is very important that the stated learning

X: 20 � A.I.Wang

objectives from the project are enforced through evaluation criteria and delivery
templates.

To further investigate differences in grade variations between Robot project students
vs. Game project students, we analyzed the difference between project and examination
grades for every student. This analysis was carried out to examine our belief that Game
project students performed better in their project compared to the written examination,
and look at the relationship between the two subcomponents in the final grade. In the
analysis the students were classified into the following three groups:

• Same grade: Students with the same grade on the project and the written
examination (e.g. B in both the project and the written examination)

• Proj>Exam: Students with a higher grade on the project than the written
examination (e.g. B in the project and C in the written examination)

• Exam>Proj: Students with a higher grade on the written examination than the
project (e.g. C in the project and B in the written examination)

Fig. 8 shows the distribution of Game project and Robot project students classified as

above. The figure describes the tendency that Game project students (compared to Robot
project students) to a larger degree were awarded a higher grade on the project than the
written examination (76% for Game project students vs. 63% for Robot project students).
Further, that 16% of the Robot project students were awarded a higher grade on the
written examination than the project compared to the 8% of the Game project students.

Fig. 8 Distribution of grade differences on the project and the written examination

The Kruskal-Wallis test was used to see if there were any statistically significant

differences between the two groups. The data used in this test not only included the
classification of students as shown above, but the amount of difference between the
project and the exam grades. The results of the Kruskal-Wallis tests were as follows:

• GradeProject > GradeExam: H=15.695 DF=1 p=0.0001
• GradeExam > GradeProject: H=1.559 DF=1 p=0.2117

The results show there is a statically significant difference between Game project
students getting a higher grade on the project than the examination compared to the
Robot project students (p=0.0001). The main difference between the two domains is that

 � 9: 21

15% more Game project students compared to Robot project students have a grade
difference of two or more grades between the project and the examination (e.g. B on the
project and D or lower on the examination). The p-value regarding students getting a
higher grade on the examination than the project is not statistically significant, but it
shows the tendency that Robot project students to a higher degree than Game project
students score higher on the examination than the project.

The results from evaluating the use of a game project in a software architecture course
are both positive and negative. The positive effect is that students are better motivated for
the project and put more effort into it. This is shown through the utilization of
architecture and design patterns, the complexity of the software architecture, and the size
of the implemented application. The negative effect observed is that this extra motivation
of students does not necessarily improve their final grade. To counter this negative effect,
it is important to make the students learn more theory from the project and convince the
students as to why software architecture theory is important for game development. A
possible approach could be to give more examples of how software architectures are used
in game development projects, and have guest lectures from the game industry
emphasizing the need for software architecture in game development. However, to
succeed with such integration, it is crucial that the theoretical topics in the course are
better integrated with the game project. Further, it is important that the course staff clarify
how game development and software architecture are related in the syllabus.

5.2 Threats to validity
We now turn to what are considered to be the most important threats to the validity of
this evaluation.

Internal Validity
The internal validity of an experiment concerns “the validity of inferences about whether
observed covariation between A (the presumed treatment) and B (the presumed outcome)
reflects a causal relationship from A to B as those variables were manipulated or
measured” [Shadish et al., 2002]. If changes in B have causes other than the manipulation
of A, there is a threat to internal validity. Although our evaluation cannot be described as
a controlled experiment, it is worth considering some of the most evident internal validity
concerns.

There are two main internal validity threats to this evaluation. The first internal threat
is that the sample of two groups used in the evaluation (Robot and Game) is not
randomized. The students were allowed to choose either a Robot or a Game project. We
do not believe that one specific type of student chose one project over the other, thus
harming the evaluation results. The demographic data did not reveal any major difference
between the two groups. The second internal threat is if there were any differences how
the students had to perform the project independently of the domain chosen.
Independently of doing a Robot or a Game project, the students had to go through exactly
the same phases in the project and deliver exactly the same documents based on the same
document templates. We have identified two differences in how the two types of projects
were carried out. The first phase of the project was different for the two types of projects.
The students doing the Robot project had an exercise where they had to make the robot
do simple navigation and pick up balls, while the students doing the Game project had to
make sprites move and change and implement the Pong game in XNA. This exercise was
not a part of the data and material used to evaluate the project. In addition, the way we

X: 22 � A.I.Wang

evaluated the implementation was different for the two types of projects, as the Robot
project had fixed requirements while the Game project did not. We do not believe that
these differences have had any major impact in the way the students did or performed in
their projects.

Construct validity
Construct validity concerns the degree to which inferences are warranted, from (a) the
observed persons, settings, and cause and effect operations included in a study to (b) the
constructs that these instances might represent. The question, therefore, is whether the
sampling particulars of a study can be defended as measures of general constructs
[Shadish et al., 2002].

In the evaluation of using a game project in a software architecture course our
research goal was to investigate whether a game development project was suited for
teaching software architecture. The GQM approach was chosen to detail this goal into
five research questions with supporting metrics. In order to give answers to these five
research questions the data sources and metrics available from our software architecture
course were chosen. It cannot be claimed that the selected data sources and metrics in our
evaluation give evidence for all the conclusions, but they are all strong indicators
contributing to a picture that describes the differences between the two project types.
Through the evaluation we have used various methods for comparing the results. The
choice of methods is based on the best way of describing and visualizing the differences
between the two groups using the available data.

External validity
The issue of external validity concerns whether a causal relationship holds (1) for
variations in persons, settings, treatments, and outcomes that were in the experiment and
(2) for persons, settings, treatments, and outcomes that were not in the experiment
[Shadish et al., 2002].

The results reported in this paper are most relevant for other teachers thinking of
introducing game projects as a part of their software architecture course. Further, the
results are also relevant for teachers that want to introduce game projects in SE and CS
courses, as many of these courses have similar characteristics. A limitation of this study
is that the subjects in the evaluation are CS or SE students that have completed their first
three years. It is not evident that the results are valid for students without any or less than
three years background in CS or SE.

6. COMPARISON WITH PREVIOUSLY PUBLISHED RELATED WORK
This paper describes an evaluation of integrating a game project using XNA and C# in a
software architecture course. The main benefits from using a game project are that the
students get more motivated during the software development project. There are only few
papers available that describe an evaluation of using game projects in CS or SE courses.
This section describes the work presented along with papers that describe the integration
of games and CS/SE courses in general.

Youngblood [2007] describes how XNA game segments can be used to engage
students in advanced computer science education. Game segments are developed solution
packs providing the full code for a segment of a game with a clear element left for
implementation by a student. The paper describes how XNA was used in a artificial
intelligence course where the students were asked to implement a chat bot, motion

 � 9: 23

planning, adversarial search, neural networks and flocking. Finally the paper describes
seven design principles that are specific for using game segments in CS education based
on lessons learned. It would be possible to use game segments in our software
architecture course as well, but this approach would be likely to limit the architecture
components too much.

El-Nasr and Smith [2006] describes how the use of modifying or modding existing
games can be used to learn computer science, mathematics, physics and ascetic
principles. The paper describes how they used modding of the WarCraft III engine to
teach high school students a class on game design and programming. Further, they
describe experiences from teaching university students a more advanced class on game
design and programming using the Unreal Tournament 2003 engine. Finally, they present
observations from student projects that involve modding of game engines. The context of
this paper is very different from ours, as the students are focusing on game design and not
game architecture design or implementation of the game from scratch.

Sweedyk and Keller [2005] describe how they introduced game development in an
introductory SE course. The students learned principles, practices and patterns in
software development and design through three projects. In the first project, the students
were asked to develop a 2D arcade game with a theme based on campus life using the
POP framework over four weeks. The educational focus of the first project was to gain
familiarity with UML tools, learn and use a variety of development tools and gain
understanding of game architecture and the game loop. In the second project, the students
built a one-hole miniature golf game over five weeks. The educational focus of the
second project was on learning and practicing evolutionary design, prototyping and re-
factoring, usage of UML design tools, usage of work management tools and design and
implementation of a test plan. In the third and final project, the students developed a
game of their own choice over five weeks. In this phase, the learning objectives were to
reinforce the practices and principles learned in two previous projects, learn to apply
design patterns and practice management of complex software projects. The students’
response to this SE course has according to the authors of this paper was extremely
positive. They argue that game projects allow them to better achieve the learning
objectives in the SE course. Their main concern was related to gender, as women were
less motivated to learn SE through game development projects. The main difference with
Sweedyk and Keller’s approach and ours was that they have introduced three projects
instead of one, and the SE focus is different. For our purpose, more than one project
would take away the focus on the software architectural learning and miss the
opportunity to follow the evolution of the software architecture through one project.

Kajal and Mark Claypool [2005] describe another SE course where a game
development project was used to engage the students and make the course more fun. In
this course, the students worked with one game project where the students had to go
through all the phases in a software development process. The preliminary results of
comparing the game-based SE course with a traditional SE course showed that the game
version had higher enrollment, resulted in higher average grades, a higher distribution of
A grades, and had a lower number of dropouts. The feedback from the students was also
very positive. The results found here are very similar to the results reported from our
work. The paper does not detail what was graded in the course.

Volk [2008] describes how a game engineering course was integrated into a CS
curriculum motivated by the fact that game development projects are getting more and
more complex and have to deal with complex CS and SE issues. The experience from
running this course showed that it was a good idea to handle the game engineering course

X: 24 � A.I.Wang

more in a form of a real project, that the students were very engaged in the course and the
project, that the lack of multidisciplinary teams did not hinder the projects, that the
transition from pre-production to production was difficult (extracting the requirements),
and that some student teams were overambitious about what they wanted to achieve in
their project. In our software architecture course we experienced some of the same issues
as described in this paper: problems with extracting requirements and overambitious
teams.

Linhoff and Settle [2008] describe a game development course where the XNA
platform was used to allow the students to gain experience in all aspects of console game
creation. The course focused on the creation of fonts, icons, 3D models, camera and
object animation paths, skeletal animations, sounds, scripts and other supporting content
to the XBOX 360 game platform. In addition, the students were required to edit the
source code of a game to change variables, and copy-and-paste code. The students'
general response to the course was positive. The results also showed that students with a
programming background did better in the class. The focus of this study was very
different from ours, as the focus was not on architecture and programming rather on
game content development.

Zhu, Wang and Tan [2008] describe how games can be introduced in SE courses to
teach typical SE skills. The paper described how the two games SimSE and MO-
SEProcess were used to give students an opportunity to practice SE through simulations.
In SimSE, the students can practice a “virtual” SE process in a fully interactive way with
graphical feedback that enables them to learn the complex cause and effect relationships
underlying the process of SE. MO-SEProcess is a multiplayer online SE process game
based on SimSE in 3D implemented in Second Life. In this game, the players should
collaborate with other developers to develop a system by giving out tasks and following
up tasks. Although the models and simulations in SimSE were much more extensive than
the ones in MO-SEProcess, the use of Second Life brought some advantages. Among
these were better support for group sharing and collaboration and it made it possible to
create interactive learning experiences that would be hard to duplicate in real life. The
focus in this paper was also different from ours, as it focused on use of games in a SE
course and not game development per se.

Rankin and Gooch [2008] describe a study on how a game design project impacts on
students’ interest in CS. In a Computer Science Survey course, the students were given
the task to apply SE principles in the context of game design. The pre and post survey
results revealed that game design can have both positive and negative impacts on
students’ attitudes concerning enrollment in a game design course, pursuit of a CS
degree, further development of programming skills and enrollment in additional CS
courses. The post survey showed a 100% increase for students that previously had not
interest in game design, but an overall 70% decrease in the interest in game design. The
interest for pursuing a CS degree dropped from 50% to 30% after the game design
project. Further, 25% of the participants indicated an increased interest in further
developing their programming skills, while 40% demonstrated reduced interest. Finally,
20% of the students indicated they were less likely to enroll in CS classes, while 15%
indicated the opposite. The focus of this paper is on game design and not game
architecture and game implementation. The results described in this paper are very
different from the results we found in our evaluation.

Ryoo et al. [2008] describes an approach for teaching Object-Oriented Software
Engineering (OOSE) through problem-based learning in the context of a game project.
The OOSE concepts are taught through a group project going through several phases:

 � 9: 25

inception, elaboration, construction, and transition. The focus in the course is on
documenting a game using UML and implementing a prototype using Java. The approach
has not been evaluated.

7 CONCLUSIONS
This paper has evaluated the introduction of a Game project in a software architecture
course using an existing Robot project as a benchmark. The goal of this evaluation was to
get answers to five research questions.

The first research question asked if game projects are popular among students and if
there were any specific groups preferring game projects (RQ1). The results showed that
three out of four students chose the game project the first time this type of project
offered. There were not major differences in how female vs. male, or Norwegian vs.
foreign students chose their project type.

The second research question asked if there are any differences in how students
choosing Robot vs. Game projects perceived the software architecture project (RQ2). The
statistically significant findings (p≤0.05) were that students that worked with Robot
projects to a larger degree thought that the COTS (the robot simulator) hindered the
design of good architecture, that more time was spent on technical than architectural
issues, and that too much time was used in the beginning of the course to learn the COTS.
Some less significant findings (p≤0.11) revealed that students doing a Game project to a
larger degree thought it was more difficult to evaluate other teams using ATAM, and it
was easy to integrate known architecture and design patterns. Further, the students doing
a Robot project to a larger degree (p=0.19) claimed to have learned more about software
architecture during the project. Finally, the results showed that 30% of the students doing
a Robot project would have chosen the Game project if they had to do the project again.

The third research question asked if there are any differences in how students
choosing Robot vs. Game projects designed their software architectures (RQ3). The
analysis of the project reports showed that students doing a Game project utilized
architectural patterns to a larger degree (p=0.04). The most popular design patterns used
by all students were the Observer, the Abstract factory and the State pattern. Finally, the
evaluation found indications that the software architectures produced in Game projects
were on average more complex than the architectures produced in Robot projects (but not
statistically significant, p=0.13).

The fourth research question asked if there were any differences in the effort the
students put into the project when they worked with a Robot or a Game project (RQ4).
Since, we did not have the actual number of hours the teams worked, we compared the
two different project types by comparing the implementation. The results show that teams
working with Game projects produced on average almost twice as much code as teams
working with Robot projects (not statistically significant, p=0.10). The results also
showed that Game projects on average put more source code in each source file and the
amount of commenting was about the same for both types of projects.

The fifth and final research question asked if there are any differences in the
performance for students doing a Robot project vs. students doing a Game project (RQ5).
The comparison of the two types of projects showed that there was no statistically
significant difference in the project and examination grades for students doing Game
projects vs. students doing Robot projects. However, the comparison indicated that
students doing Game projects performed better on the project on average, while students
doing Robot projects performed better on the written examination on average. Further,

X: 26 � A.I.Wang

we found that Game project students to a larger degree than Robot project students were
awarded with higher grades in their project than in the written examination.

The goal of the work described in this paper was to evaluate the use of a game
development project in a software architecture course. The Robot project was used as a
benchmark for a successful project we have run for five years. Our results show that a
game development project can successfully be integrated into a software architecture
course. The most notably positive effect is that students are clearly motivated by game
projects which likely resulted in higher enrollments and more effort put into the project.
Further, that the improved motivation can improve the use of software engineering
practices such as use of architectural patterns, and higher programming productivity.
However, the improved motivation does not necessarily result in better grades in the final
examination.

ACKNOWLEDGEMENTS
I would like to thank Jan-Erik Strøm and Trond Blomholm Kvamme who were students
at my department for conducting the project survey. I am also grateful to Erik Arisholm
at the Simula Research Laboratory for helping out with statistical testing of data. I would
also like to thank Richard Taylor at the Institute for Software Research (ISR) at
University of California, Irvine (UCI) for providing a stimulating research environment
and for hosting a visiting researcher from Norway. Further, I acknowledge the assistance
from Stewart Clark at the Norwegian University of Science and Technology for
improving the language. The Leiv Eriksson mobility program supported by the Research
Council of Norway has sponsored this work. Finally, I wish to thank the reviewers for
giving very constructive feedback that was used to improve the paper.

REFERENCES
AHN, L.V. 2006. Games with a Purpose. IEEE Computer Magazine: 39(6), June, 92-94.
ANDERSON, E. F., ENGEL, S., COMNINOS, P., AND MCLOUGHLIN, L. 2008. The case for research in game engine

architecture. In Proceedings of the 2008 Conference on Future Play: Research, Play, Share, Toronto,
Ontario, Canada, November 03 - 05, pages 228-231.

BAKER, A., NAVARRO, E. O., AND HOEK, A.2003. Problems and Programmers: an Educational Software
Engineering Card Game. In Proceedings of the 25th International Conference on Software Engineering
(ICSE 2003), pages 614–619.

BASILI, V. R., CALDIERA, G. AND ROMBACH, H. D. 1995. Goal Question Metric Paradigm. In Encyclopedia of
Software Engineering, Volume 1, John Wiley & Sons, pages 527-532.

BINSUBAIH, A. AND MADDOCK S.C. 2006. Using ATAM to Evaluate a Game-based Architecture. Workshop on
Architecture-Centric Evolution (ACE 2006), Hosted at the 20th European Conference on Object-Oriented
Programming ECOOP 2006, July 3-7, Nantes, France.

BOOCH, G. 2007. Best Practices in Game Development. IBM Presentation March 12.
BLOW, J. 2004. Game Development: Harder Than You Think. In Queue: 1(10), February 28-37.
CALLELE, D., NEUFELD, E., AND SCHNEIDER, K. 2008. Emotional Requirements. IEEE Software Magazine 25(1),

January 43-45.
CALTAGIRONE, S., KEYS, M., SCHLIEF, B., AND WILLSHIRE, M. J. 2002. Architecture for a massively multiplayer

online role playing game engine. Journal of Computing Sciences in Colleges 18(2), December 105-116.
CHEN, W.-K. AND CHENG, Y.C. 2007. Teaching Object-Oriented Programming Laboratory With Computer

Game Programming. IEEE Transactions on Education 50, 197-203.
CLAYPOOL, K. AND CLAYPOOL, M. 2005. Teaching software engineering through game design. In Proceedings

of the 10th Annual SIGCSE Conference on innovation and Technology in Computer Science Education
(ITiCSE '05), Caparica, Portugal, 123-127, June 27 – 29.

CLEMENTS, P., BASS, L. AND KAZMAN, R. 2003. Software Architecture in Practice Second Edition. Addison-
Wesley.

 � 9: 27

COPLIEN, J.O. 1998. Software Design Patterns: Common Questions and Answers. The Patterns Handbook:
Techniques, Strategies, and Applications. Cambridge University Press, New York, 311-320.

DANIAL. A. 2009. CLOC – Count Lines of Code. Web: http://cloc.sourceforge.net/, Accessed March 12th 2009.
DARKEN, R., MCDOWELL, P. AND JOHNSON, E. 2005. The Delta3D Open Source Game Engine. In IEEE

Computer Magazine, May/June.
DELDEN, S.V. AND ZHONG, W. 2008. Effective integration of autonomous robots into an introductory computer

science course: a case study. J. Comput. Small Coll. 23, 10-19.
DISTASIO J. AND WAY T. 2007. Inclusive computer science education using a ready-made computer game

framework. In ITiCSE '07: Proceedings of the 12th annual SIGCSE conference on Innovation and
technology in computer science education, 116-120.

EL-NASR, M. S. AND SMITH, B.K. 2006. Learning through game modding. In ACM Computer Entertainment
4(1), Jan.

ELFES, A. 1987. Sonar-Based Real-World Mapping and Navigation. In IEEE Journal of Robotics and
Automation, no.3, 249-265.

FALTIN, N. 1999. Designing courseware on algorithms for active learning with virtual board games. SIGCSE
Bull. 31, 135-138.

FLOWERS, T.R. AND GOSSETT, K.A. 2002. Teaching problem solving, computing, and information technology
with robots. J. Comput. Small Coll. 17, 45-55.

FOSS, B.A. AND EIKAAS, T.I. 2006. Game play in Engineering Education - Concept and Experimental Results.
The International Journal of Engineering Education 22(5).

GESTWICKI, P.V. 2007. Computer games as motivation for design patterns. SIGCSE Bull. 39, 233-237.
GLASER, B. 1992. Basics of grounded theory analysis. Mill Valley, CA: Sociology Press.
GROSSMAN, A. 2003. Postmortems From Game Developer. Focal Press, January.
HOLMES, N. 2005. Digital Technology, Age, and Gaming. Computer 38, 11 (Nov. 2005), 108-107.
IMBERMAN, S.P. 2004. An intelligent agent approach for teaching neural networks using LEGO handy board

robots. Journal on Educational Resources in Computing 4, 4.
IEEE. 2000. IEEE Recommended Practice for Architectural Description of Software-Intensive Systems.

Software Engineering Standards Committee of the IEEE Computer Society.
LAHEY, B., BURLESON, W., N, C., JENSEN, R., FREED, N. AND LU, P. 2008. Integrating video games and robotic

play in physical environments. In Proceedings of the 2008 ACM SIGGRAPH symposium on Video games,
Los Angeles, California, ACM.

LINDER, S.P., NESTRICK, B.E., MULDERS, S. AND LAVELLE, C.L. 2001. Facilitating active learning with
inexpensive mobile robots. In Proceedings of the Proceedings of the sixth annual CCSC northeastern
conference on The journal of computing in small colleges, Middlebury, Vermont, United States.

LINHOFF, J. AND SETTLE, A. 2008. Teaching game programming using XNA. In Proceedings of the 13th Annual
Conference on innovation and Technology in Computer Science Education (ITiCSE '08), 250-254, Madrid,
Spain, June 30 - July 02.

LOZANO-PÉREZ, T. 1990. In Preface to Autonomous Robot Vehicles, Springer Verlag, New York, NY.
LUMIA, R., FIALA, J. AND WAVERING, A. 1990. The NASREM Robot Control System and Testbed. In

International Journal of Robotics and Automation, no.5, 20-26.
KAZMAN, R., KLEIN, M., BARBACCI, M., LONGSTAFF, T., LIPSON, H., AND CARRIERE, J. 1998 The Architecture

Tradeoff Analysis Method. Fourth IEEE International Conference on Engineering Complex Computer
Systems (ICECCS'98).

KRIKKE, J. 2003. Samurai Romanesque, J2ME, and the Battle for Mobile Cyberspace, IEEE Computer
magazine, 23(1).

KRUCHTEN, P. 1995. The 4+1 View Model of Architecture, IEEE Software, 12, 6, Pp. 42 – 50.
KRUSKAL, W. H. AND WALLIS, W. A. 1952. Use of ranks in one-criterion variance analysis. Journal of the

American Statistical Association 47 (260): 583–621.
MICROSOFT. 2009A. XNA Development Center. Web: http://msdn.microsoft.com/en-us/xna/, Accessed March

12th 2009.
MICROSOFT. 2009B. The C# Language. Web: http://msdn.microsoft.com/en-us/vcsharp/aa336809.aspx,

Accessed March 12th 2009.
MILI, F. BARR, J., HARRIS, M. AND PITTIGLIO, L. 2008. Nursing Training: 3D Game with Learning Objectives.

In Proceedings of the First international Conference on Advances in Computer-Human interaction, February
10 – 15.

NATVIG, L., LINE, S., AND DJUPDAL, A. 2004. Age of Computers: An Innovative Combination of History and
Computer Game Elements for Teaching Computer Fundamentals. In FIE 2004: Proceedings of the 2004
Frontiers in Education Conference.

NAVARRO, A. O. AND HOEK, A. 2004. SimSE: an Educational Simulation Game for Teaching the Software
Engineering Process. In ITiCSE ’04: Proceedings of the 9th annual SIGCSE conference on Innovation and
technology in computer science education, pages 233–233, New York, NY, USA. ACM Press.

X: 28 � A.I.Wang

NGUYEN, D. AND WONG, S.B. 2002. Design patterns for games. In Proceedings of the Proceedings of the 33rd
SIGCSE technical symposium on Computer science education, Cincinnati, Kentucky, ACM.

PAPERT, S. 1980. Mindstorms: children, computers, and powerful ideas. Basic Books, Inc.
PAUSCH, R., BURNETTE, T., CAPEHEART, A.C., CONWAY, M., COSGROVE, D., DELINE, R., DURBIN, J.,

GOSSWILER, R., KOGA, S. AND WHITE, J. 1995. ALICE: Rapid Prototyping System for Virtual Reality. IEEE
Computer Graphics and Applications 15, 8-11.

PERRY, D. P. AND WOLF, A.L. 1992. Foundations for the Study of Software Architecture. ACM Sigsoft Software
Engineering Notes: 17(4), 40-52.

PFEIFER, R. 1997. Teaching powerful ideas with autonomous mobile robots. Computer Science Education 7,
161-186.

PIAGET, J. AND BARBEL, I. 1969. The Psychology of the Child. Basic Books Inc.
RABIN, S. 2008. Introduction to Game Development, Course Technology Cengage Learning, 2008.
RANKIN, Y., GOOCH, A. AND GOOCH, B. 2008. The impact of game design on students' interest in CS. In

Proceedings of the 3rd international Conference on Game Development in Computer Science Education
(GDCSE '08), 31-35, Miami, Florida, February 27 - March 03.

RESNICK, M. 1994. Turtles, Termites and Traffic Jams, Explorations in Massively Parallel Microworlds. MIT
Press.
RESNICK, M., KAFAI, Y. AND MAEDA, J. 2003. A Networked, Media-Rich Programming Environment to
Enhance Technological Fluency at After-School Centers in Economically-Disadvantaged Communities. In
Propsal to the National Science Foundation, Web: http://www.media.mit.edu/~mres/papers/scratch.pdf.
ROLLINGS, A. AND MORRIS, D. 2004. Game Architecture and Design - A New Edition. New Riders Publishing.
ROSAS, R., NUSSBAUM, M., CUMSILLE, P., MARIANOV, V., CORREA, M., FLORES, P., GRAU, V., LAGOS, F.,

LOPEZ, X., LOPEZ, V., RODRIGUEZ, P., AND SALINAS, M. 2003. Beyond Nintendo: design and assessment of
educational video games for first and second grade students. Computers & Education, 40(1): 71–94.

RYOO, J., FONSECA, F., AND JANZEN, D. S. 2008. Teaching Object-Oriented Software Engineering through
Problem-Based Learning in the Context of Game Design. In Proceedings of the 2008 21st Conference on
Software Engineering Education and Training (CSEET 2008), April 14 - 17, pages 137-144.

SHARPLES, M. 2000. The design of personal mobile technologies for lifelong learning. Computer & Education,
34(3-4): 177–193.

SINDRE, G., NATTVIG, L., AND JAHRE, M. 2009. Experimental Validation of the Learning Effect for a
Pedagogical Game on Computer Fundamentals. IEEE Transactions on Education, 52(1), pages 10-18.

SLINEY A., MURPHY, D. AND J. DOC. 2008. A Serious Game for Medical Learning. In Proceedings of the First
international Conference on Advances in Computer-Human interaction, February 10 – 15.

SIMMONS, R. 1992. Concurrent Planning and Execution for Autonomous Robots In IEEE Control Systems, no. 1,
46-50.

SHADISH, W.R., COOK, T.D. AND CAMPBELL, D.T. 2002. Experimental and Quasi-experimental Designs for
Generalized Causal Inference, Houghton-Mifflin.

SHAFER, S.A., STENTZ, S.A. AND THORPE, C.E. 1986. An Architecture for Sensor Fusion in a Mobile Robot. In
Proceedings of the IEEE International Conference on Robotics and Automation, April 7-10, 2002-2011.

SHIRAI, A., RICHIR, S., IWAMOTO, T., KOSAKA, T. AND KIMURA, H. 2009. WiiRemote programming:
development experiences of interactive techniques that can be applied to education for young engineers. In
Proceedings of the ACM SIGGRAPH ASIA 2009 Educators Program, Yokohama, Japan2009 ACM.

SUNG, K. 2009. Computer games and traditional CS courses. Communication of the ACM 52, 74-78.
SUNG, K., SHIRLEY, P. AND ROSENBERG, B.R. 2007. Experiencing Aspects Of Games Programming In An

Introductory Computer Graphics Class. In Proceedings of the 38th SIGCSE Technical Symposium on
Computer Science Education, Covington, Kentucky, USA, ACM.

SWEEDYK, E. AND KELLER, R.M. 2005. Fun and games: a new software engineering course. ACM SIGCSE
Bulletin, 37(3), 138-142, September.

TOAL, D., FLANAGAN, C., JONES, C. AND STRUNZ, B. 1996. Subsumption architecture for the control of robots, In
13th Irish Manufacturing Conference (IMC-13), 703-711.

VICHOIDO, C., ESTRANDA, M. AND SANCHEZ, A. 2003. A constructivist educational tool: Software architecture
for web-based video games, 4th Mexican International Conference on Computer Science (ENC 2003), 8-12
September, Apizaco.

VOLK, D. 2008. How to embed a game engineering course into a computer science curriculum. In Proceedings of
the 2008 Conference on Future Play: Research, Play, Share, 192-195, Toronto, Ontario, Canada, November
3 - 5.

WANG, A.I., MØRCH-STORSTEIN, O.K., AND ØFSDAHL, T. 2007. Lecture quiz - a mobile game concept for
lectures. In The 11th IASTED International Conference on Software Engineering and Application (SEA
2007), November 19-21.

 � 9: 29

WANG, A.I., ØFSDAHL, T. AND MØRCH-STORSTEIN, O.K. 2008. An Evaluation of a Mobile Game Concept for
Lectures. In 21st IEEE-CS Conference on Software Engineering Education and Training (CSEE&T 2008),
April 14-17.

WANG, A.I. AND STÅLHANE, T. 2005. Using Post Mortem Analysis to Evaluate Software Architecture Student
Projects. In Proceedings of the 18th Conference on Software Engineering Education & Training, April 18 –
20.

WANG, A.I. AND WU, B. 2009. An Application of Game Development Framework in Higher Education,
International Journal of Computer Games Technology, Special Issue on Game Technology for Training and
Education, Volume 2009.

WSU. 2009. Download WSU_KSuite_1.1.2. Web: http://carl.cs.wright.edu/page11/page11.html, Accessed
March 12th 2009.

WU, B. AND WANG, A.I. 2009. An Evaluation of Using a Game Development Framework in Higher Education.
In 22nd IEEE-CS Conference on Software Engineering Education and Training (CSEE&T 2009), February
17-19, Hyderabad, India.

YOUNGBLOOD, G.M. 2007. Using XNA-GSE Game Segments to Engage Students in Advanced Computer
Science Education. In The 2nd Annual Microsoft Academic Days Conference on Game Development,
February 22-25.

ZHU, Q., WANG, T. AND TAN, S. 2007. Adapting Game Technology to Support Software Engineering Process
Teaching: From SimSE to MO-SEProcess. In Proceedings of the Third international Conference on Natural
Computation (ICNC 2007) - Volume 05, 777-780, August 24 - 27.

