
An Empirical Study of NetEm Network Emulation Functionalit ies

Audrius Jurgelionis∗, Jukka-Pekka Laulajainen†, Matti Hirvonen† and Alf Inge Wang∗
∗ Norwegian University of Science and Technology, Trondheim, Norway

Email: audrius@idi.ntnu.no, alfw@idi.ntnu.no
† VTT Technical Research Centre of Finland, Oulu, Finland
Email: jukka-pekka.laulajainen@vtt.fi, matti.hirvonen@vtt.fi

Abstract—In this paper we have evaluated the main func-
tionalities of NetEm, a popular Linux based network emulator,
which we have used to stress test the performance of the
Games@Large distributed gaming system. We have performed
a number of tests on different NetEm functionalities in order
to evaluate their practical performance conformity and validity
versus the NetEm description and theoretical expectations. We
have found that the NetEm behaviour conforms to expectations
for the emulation of delay and packet loss without correlation.
However, in the case of jitter emulation, the actual realized
jitter is lower than the given input value. It is an important
fact to be aware of when using NetEm for different application
testing. This paper also provides a baseline methodology for
network emulation tool validation.

Keywords-network emulator; network measurement; appli-
cation testing;

I. I NTRODUCTION

Network emulators are important tools for doing research
and development related to network protocols and applica-
tions. With network emulation it is possible to perform tests
of realistic network scenarios in a controlled manner, which
is not possible by only using real network devices without
emulation capabilities. One of the most popular network
emulators in the research world is NetEm. This free open-
source tool is widely used in different kinds of testbeds,
but few publications analyze its performance. In this paper,
we are presenting a study analyzing NetEm with test cases
concerning delay, jitter, and packet loss emulation.

NetEm was used as a test tool in the Games@Large
project [1] developing a platform for distributed gaming.
Network impairment emulation, such as delay and jitter, was
needed both in the project technical development as well as
in the user-centred research. As an example, user-centred
research identified that NetEm emulated jitter was causing
problems for the user-perceived gaming experience. In the
existing literature there was not enough information to really
understand how to solve these problems in the technical
implementation of the Games@Large system. Thus, it was
decided to investigate if NetEm’s emulated impairments
are accurate and statistically correct. Work presented in
this paper was motivated by the need of understanding the
operation of the test tool, in order to be able to make
reasonable decisions during the Games@Large development.

The paper is organized as follows. Section II briefly
describes related work, Section III presents NetEm and
the methods it is using to emulate network impairments,
Section IV presents our testbed, Section V presents mea-
surement methodology and the results of our evaluation, and
finally Section VI concludes the paper.

II. RELATED WORK

There are many network emulators that are being used in
research, but the most popular are NetEm, Dummynet, and
NIST Net [2]. These three solutions are of production quality
and they are widely used by researchers. Dummynet is a
standard part of FreeBSD and is implemented as part of the
packet filtering mechanism. Dummynet does packet filtering
on output. But it is completely self-contained and is not
easily extended. NIST Net is a Linux kernel extension that
provides complex delay, loss, and other emulation options.
NIST Net is running in the Linux kernel 2.4 but is not
available in the kernel 2.6. NetEm is included in the Linux
kernel 2.6 and is somehow flexible in terms of modification
possibilities. Thus it is currently widely used by researchers.
NetEm usage and applications range from testbeds for Next
Generation Networks (NGN) [3] evaluation to investigation
of various TCP algorithms [4] and quality assessment of
interactive voice applications [5]. However, few publications
describe analyses of the performance of NetEm itself. [6]
and [2] discuss the NetEm performance in detail, and [7]
includes discussion only on particular properties.

Desired network condition emulation for Nist Net, another
widely used network emulator, is tested and analysed in
[8], mainly with regard to packet loss, delay and jitter.
The report provides some methodology for the validation
of network emulation tools. [9] presents the key elements of
constructing an accurate network emulator.

Since NetEm’s source code is constantly modified and
there is no well documented description of its functionalities,
it is not always obvious whether the NetEm emulation is
correct, e.g. generated values are distributed according to the
theoretical definition of the distribution functions. Possible
design flaws in the NetEm software related to correlated
packet loss emulation have already been discovered in [10].
Thus it is worthwhile evaluating the NetEm’s functionalities.

This also shows the importance of having a common val-
idation methodology and a well documented functionality
as well as a validation result description that later could be
accessible by users of the network emulation tool.

III. N ETEM PARAMETER OVERVIEW

NetEm is an enhancement of the traffic control facilities
of Linux that allows adding delay, packet loss and other
scenarios. It has been largely improved in last few years
and is available in kernel 2.6. It is very easy to deploy as it
is implemented as a queuing discipline in Linux and can be
activated by the Linux tc utility [6].

A. Packet delay, jitter and their distribution functions

NetEm delay and its variation (jitter) parameters are
described by the average value (µ), standard deviation (σ),
and correlation (ρ). By default, NetEm uses a uniform
distribution (µ± σ), but any distribution table can be used.
The iproute2 includes tools to generate a normal distribution,
Pareto distribution, Pareto normal distribution, and a sample
based on experimental data [6]. According to [11], the actual
tables (normal, pareto, paretonormal) are generated as part of
the iproute2 compilation and placed in /usr/lib/tc directory.
A correlation value can be used in order to emulate a more
realistic delay behaviour.

B. Packet loss

Packet loss is implemented in NetEm by randomly drop-
ping a percentage of the packets before they are queued.
Loss is specified in the command interface as a percentage
of packets to drop [6]. An optional correlation may also
be added making the packet loss probability less random
by adding dependency on previous packet being dropped or
not. This makes it possible to emulate packet burst losses.

According to [10], the generation of loss with correlation
is not working properly in the current version of NetEm. As
a consequence, a patched version of NetEm implementing a
new loss generation algorithm was released.

IV. T ESTBED

The measurements were conducted using a testbed (Fig 1)
including three laptops. Two of them were identical (Core
2 Duo T9400, 2.53 Ghz, 4 GB, Windows XP Pro) and
they were used as the endpoints of the traffic flows and
the measurement. The third one (Pentium M 1400 MHz, 1
GB, CentOS 5.0, kernel 2.6.18, iproute2-ss061002) was used
as a bridging network emulator between the two endpoints.
100BASE-TX connections were used between the laptops.

The network emulator was configured with timed shell
scripts during the test cases. All the network impairments
were strictly set only to affect the measured test traffic and
not to influence the control traffic of the used measurement
tools.

Laptop #1 Laptop #2

D-ITG

QoSMeT

D-ITG

QoSMeT

Laptop #3

NetEm

Figure 1. Measurement setup.

A. Test Traffic

Simple constant bit rate over the User Datagram Protocol
(UDP) was used as test traffic. It was generated using
open source Distributed Internet Traffic Generator (D-ITG)
tool [12]. A packet size of 1000 bytes was used with a packet
rate of 300 packets per second (inter-departure time of 3.33
ms), resulting in a traffic flow of about 300 kilobytes per
second.

B. Measurement Tools

All the measurements were performed using QoSMeT
tool [13]. The measurement endpoints were synchronized
using Global Positioning System (GPS) to enable accurate
one-way delay measurements. In addition, one-way delay
jitter and packet loss were measured during the tests.

The one-way delay was defined in a same way as in RFC
2679 [14]:

D = Tr − Ts

whereTs is the time when the source sends the first bit of
a packet, andTr is the time when the destination receives
the last bit of the packet.

We define one-way delay jitter to be the variation of one-
way delay. This is measured as the absolute value of the
difference between two consecutive one-way delay samples
as follows:

J = |Dn −Dn−1|

whereDn is the one-way delay of then-th packet andDn−1

is the one-way delay of the(n-1)-th packet.
Packet loss is simply calculated as a proportion of lost

packets for a sliding window of one second in length.
In addition, standard deviation (σ) of delay was calculated

from the one-way delay samples as:

σ =

√

√

√

√

1

N − 1

N
∑

i=1

(Di − D̄)2

whereN is the number of delay samples used in calcula-
tion, Di is the ith one-way delay sample, and̄D the mean
value of the one-way delay samples.

0,125

0,25

0,5

1

2

4

8

16

32

64

128

256

512

1024

0 20 40 60 80 100 120 140

D
el

ay
 [m

s]

Time [s]

Delay

NetEm Delay

Figure 2. Measured and configured delay.

V. M EASUREMENTMETHODOLOGY AND RESULTS

Our study focused on adding delay, delay jitter and
packet loss to network flows. To eliminate the effect of
unwanted events such as high Central Processing Unit (CPU)
load on any of the laptops used, all unnecessary services
and applications running on the background were closed.
Further, the results of each test were inspected after each
test case and if any inaccuracies were noticed, the test case
was executed again. The natural besaline delay without any
NetEm added delay was measured to be on average 350
µs with a standard deviation below 50µs. The average
delay of 350µs caused by the test arrangement was later
subtracted from all the results to include only the effect
of NetEm. When using NetEm in application testing, the
effect of baseline delay should be compensated by setting
the NetEm delay to a value that is calculated by subtracting
the baseline delay from the targeted delay. Our test setup
didn’t introduce any packet losses so all losses in the tests
were caused by NetEm.

The following subsections present the results.

A. Delay

We tested the NetEm’s delay generation accuracy by
setting a targetted delay value with the ’tc’ command and
measuring if the realized one-way delay was the same. The
following delay values (ms) were used: 0, 0.25, 0.5, 1, 2,
4, 16, 32, 64, 128, 256, 512. Each of the delay levels was
tested for 10 seconds to gather 3000 delay samples.

Figure 2 presents the configured and corresponding re-
alized delay values. The difference between the set and
realized values is shown in Figure 3. The average error of
NetEm delay emulation in our measurements was around
500µs in all of the cases. For emulation of low delay values,
this level of error is unacceptable. Accuracy with average
error lower than 1 percent of the target delay can be achieved
only when emulating delays higher than 50 ms.

Figure 4 shows the delay values for individual packets
in a sample of an experiment. The figure shows a sawtooth
behaviour similar to the results of [2], confirming that our
measurement arrangement is valid. The variation of delay

0

0,5

1

1,5

2

2,5

3

3,5

4

0,25 0,50 1,00 2,00 4,00 8,00 16,00 32,00 64,00 128,00 256,00 512,00

D
e
la

y
E

rr
o

r
[m

s
]

NetEm Delay [ms]

3. Quartile

Max

Avg.

Min.

1. Quartile

Figure 3. Measured delay error.

7,5

8

8,5

9

9,5

10

10,5

66,9 66,92 66,94 66,96 66,98 67 67,02 67,04 67,06 67,08 67,1

D
e
la

y
 [
m

s
]

Time [s]

Delay NetEm Delay

Figure 4. Sawtooth behaviour of the NetEm emulated delay.

between packets is caused by the limited timer interrupt
speed (100 Hz) used in the Linux kernel of our network
emulator laptop. This means that packets can be released
by NetEm only 100 times a second, making some packets
being sent later than they should be.

B. Jitter

Table I
NETEM PARAMETER CONFIGURATION FOR JITTER TESTS

Delay, (ms) Jitter, (ms) Distribution

0 0 normal
256 1 pareto

2 paretonormal
4
8
16
32
64
128
256
512

Table I presents the values for delay, jitter, distribution,
and correlation settings used in the jitter tests. All the
combinations of the presented values were tested during the
measurements. Each of the delay levels was tested for 10
seconds to gather 3000 delay samples.

0,25

0,5

1

2

4

8

16

32

64

128

256

512

1024

2048

0,00 20,00 40,00 60,00 80,00 100,00 120,00

D
e
la

y
 [
m

s
]

Time [s]

Delay

NetEm Jitter

Figure 5. Measured delay for normal distribution and 0ms base delay.

0,25

0,5

1

2

4

8

16

32

64

128

256

512

1024

2048

0 20 40 60 80 100 120

D
e
la

y
 [
m

s]

Time [s]

Delay

NetEm Jitter

Figure 6. Measured delay for normal distribution and 256ms base delay.

Figure 7. Normal distribution of measured delay, jitter 32 ms.

Figure 5 presents the realized delay values along with
the configured jitter value when setting the base delay to 0
ms. Figure 6 presents the similar results for the base delay
of 256 ms. In both cases, the distribution is normal and the
correlation is 0. Similar figures were obtained for pareto and
paretonormal distribution.

The results show that jitter can be added without any base
delay configured for NetEm. Even in this case, the average
delay values mostly vary above the set jitter value. However,
with some jitter configurations, NetEm tends to introduce
some noticeably small delay values (e.g. Fig 5, NetEm jitter
below 32 ms or 512 ms). For other jitter configurations this
behaviour is not present (e.g. Fig 5, NetEm jitter 256 ms).

With a base delay, NetEm intuitively should use delay
values varying around the set base delay. This is not the

Figure 8. Pareto distribution of measured delay, jitter 32 ms.

Figure 9. Paretonormal distribution of measured delay, jitter 32 ms.

case, and the jitter configuration affects also by increasing
the mean level of delay.

The effect of distribution looks reasonable. Pareto and
paretonormal distributions stand up with sharper lower and
upper delay limit, while normal distribution has clearly
most of the samples around the mean value as common to
normal distribution [15]. Figures 7, 8, 9 show the distribution
of delay values when using NetEm for generating 32 ms
jitter on top of 256 ms base delay for normal, pareto, and
paretonormal distributions correspondingly.

Normal distribution looks more or less like it should.
Pareto distribution exhibits high peaks at the higher end
of the distribution and paretonormal (Fig. 9) looks like a
combination of normal and pareto distribution in Figure 7
and 8. It should be noted that the mean valueµ for all
distributions is not at the base delay of 256 ms as it should
but around 296 ms. This property of NetEm jitter generation
is not documented, but it is important to know when using
NetEm.

Figure 10 presents the combined results of all the jitter
levels for 0 correlation and 0 ms base delay using normal
distribution. The figure includes both the standard deviation
and the mean jitter (as the absolute value of difference
between two concecutive delay samples) of the measured
delay calculated as a sliding average of 300 samples together
with the configured jitter values. Jitter is configured as
standard deviation of delay for NetEm. The induced delay
should beµ ± σ, but the results show different. In all the

0,03125

0,0625

0,125

0,25

0,5

1

2

4

8

16

32

64

128

256

512

1024

0 20 40 60 80 100 120

Ji
tte

r [
m

s]

Time [s]

NetEm jitter
Delay std dev (sliding avg)
Absolute jitter (sliding avg)

Figure 10. Standard deviation and average jitter of measureddelay, base
delay 0 ms, normal distribution.

0,0625

0,125

0,25

0,5

1

2

4

8

16

32

64

0 20 40 60 80 100 120

C
al

cu
la

te
d

Pa
ck

et
 L

os
s

%

Time (s)

Packet loss [%]

NetEm packet loss [%]

Figure 11. Measured and configured packet loss.

cases the realized standard deviation is significantly less
than configured. The actual realized jitter is much lower,
indicating a significant correlation between the generated
delay values even though 0 correlation was used. These
findings are very important to be aware of when using the
NetEm’s jitter generation functionalities for research and
development purposes.

C. Packet Loss

The following values (%) were used in the packet loss
tests: 0.125, 0.25, 0.5, 1, 2, 4, 16, 32, 64. Each of the
packet loss levels were tested for 10 seconds to gather 3000
samples. We did not include cases with different packet loss
correlation values since this has been identified as a weak
point of NetEm already in [10].

Figure 11 presents the combined results for the packet
loss tests and the corresponding error values are presentedin
Figure 12. The results show that the average realized packet
loss stays within the limit of 99 percent accuracy with packet
loss values up to 4 percent. With higher values the accuracy
gets weaker.

VI. D ISCUSSION ANDCONCLUSIONS

The goal of our work was to investigate the NetEm
network emulator concerning aspects that were not covered
well in the previous work. The main results of the study
show that NetEm is able to generate constant delay higher

0,0625

0,125

0,25

0,5

1

2

4

8

16

32

0,125 0,25 0,5 1 2 4 8 16 32 64

P
a
ck

e
t
lo

ss
 e

rr
o

r %

NetEm packet loss %

3. Quartile

Max

Avg.

Min.

1. Quartile

Figure 12. Measured packet loss error (percent units).

than 50 ms and uncorrelated packet loss fairly accurately.
However, the outcome of additional jitter added on top of
the constant base delay is not so obvious. The delay values
are not varying around the given base delay level, but in
most of the cases on levels above it. On the other hand, the
resulting measurable standard deviation is lower than the
given value and the realized jitter is much lower than we
intuitively could expect.

This inadequacy could be caused by the delay calculation
algorithm which returns values with the correct statistical
distribution, but causes the observed mean and standard
deviation values to drift off. The source code analysis [16]
revealed that the NetEm delay calculation does not include
correction factors, e.g. used in Nist Net [17], to give the
right apparentµ andσ values. The correction is implemented
by an additional component, however, there is no detailed
explanation on how this component was derived.

The outcomes of our work, revealing how NetEm behaves
when emulating typical network impairments such as delay
or jitter, should be useful for other application testing.
Moreover, the method used for the verification of NetEm
functionalities presents a baseline validation methodology
for other network emulators.

ACKNOWLEDGMENT

This work was developed in the IST Games@Large
project [1], which is an Integrated Project under contract
no IST038453 and is partially funded by the European
Commission, and also carried out during the tenure of an
ERCIM fellowship.

REFERENCES

[1] Y. Tzruya, A. Shani, F. Bellotti, A. Jurgelionis,Games@Large
- a new platform for ubiquitous gaming, In: Broadband Europe
2006, Geneva, Switzerland (2006)

[2] L. Nussbaum, O. Richard.A Comparative Study of Network
Link Emulators, Proceedings of the 12th Communications
and Networking Simulation Symposium (CNS’09), March 22
- 27, 2009, San Diego, USA

[3] J. Fabini, P. Reichl, C. Egger, M. Happenhofer, M. Hirschbich-
ler, L. Wallentin,Generic Access Network Emulation for NGN
Testbeds, Proceedings of the 4th International Conference
on Testbeds and research infrastructures for the development
of networks and communities, TRIDENTCOM 2008, March
17-20, 2008, Innsbruck, Austria

[4] T. Yamamoto,Estimation of the advanced TCP/IP algorithms
for long distance collaboration, International Journal of
Fusion Engineering and Design, Volume 83, Issues 2-3, April
2008, Pages 516-519

[5] A. P. Couto da Silva, M. Varela, E. de Souza e Silva, R.
M.M. Leão, G. Rubino,Quality assessment of interactive voice
applications, Computer Networks: The International Journal
of Computer and Telecommunications Networking, Volume 52,
Issue 6, April 2008, Pages 1179-1192

[6] S. Hemminger,Network Emulation with NetEm, Proceedings
of the 6th Australia’s National Linux Conference (LCA2005),
April 2005, Canberra, Australia

[7] H-W. Jin, S. Narravula, K. Vaidyanathan, D. K. Panda,NemC:
A Network Emulator for Cluster-of-Clusters, Proceedings
of the 15th International Conference on Computer Commu-
nications and Networks, ICCCN 2006, 9-11 October, 2006,
Arlington, USA

[8] T. Hoßfeld, D. Hock, P. Tran-Gia, K. Tutschku, M. Fiedler,
Testing the IQX Hypothesis for Exponential Interdependency
between QoS and QoE of Voice Codecs iLBC and G.711, Uni-
versity of Würzburg, Institute of Computer Science, Research
Report Series, Report No. 442, March 2008

[9] Zhihao Guo, B. Malakooti, K. Bhasin, A. Holtz,Design
of Accurate and Efficient Network Emulation Systems with
Application to Inter-planetary Networks, Proceedings of the
2006 IEEE International Conference on Networking, Sensing
and Control, ICNSC ’06, 2006, pp. 895-900

[10] S. Salsano, F. Ludovici, A. Ordine, Technical Report,Defini-
tion of a general and intuitive loss model for packet networks
and its implementation in the NetEm module in the Linux
kernel, University of Rome, July 2009

[11] The Linux Foundation, NetEm Network Emulator,
http://www.linuxfoundation.org/en/Net:Netem, 2011

[12] A. Botta, A. Dainotti, A. Pescape,Multi-protocol and multi-
platform traffic generation and measurement, INFOCOM
2007 DEMO Session, May 2007, Anchorage, Alaska, USA

[13] J. Prokkola, M. Hanski, M. Jurvansuu, M. Immonen,Measur-
ing WCDMA and HSDPA Delay Characteristics with QoSMeT,
Proceedings of IEEE International Conference on Communi-
cations ICC 2007, June 2007, Glasgow, Scotland, UK.

[14] G. Almes, S. Kalidindi, M. Zekauskas,RFC-2679 A One
way Delay Metric for IPPM, 9/1999, Internet RFC 2679.

[15] M. H. DeGroot,Optimal Statistical Decisions, Wiley Clas-
sics Library. 2004. (Originally published (1970) by McGraw-
Hill.)

[16] Linux Cross Reference,Network emulator, http://lxr.free-
electrons.com/source/net/sched/schnetem.c, 2011

[17] M. Carson and D. Santay,NIST Net: a Linux-based network
emulation tool, SIGCOMM Comput. Commun. Rev. 33, 3
(July 2003), 111-126

