
Peer2Me - Rapid Application Framework for Mobile Peer-to-Peer Applications

Alf Inge Wang, Tommy Bjørnsgård and Kim Saxlund
Department of Computer and Information Science
Norwegian University of Science and Technology

N-7491 Trondheim, Norway
alfw@idi.ntnu.no, tommybj@idi.ntnu.no,saxlund@idi.ntnu.no

ABSTRACT

This paper presents the Peer2Me framework that enables
developers to create mobile peer-to-peer applications. The
framework provides an API that is easy to adopt, yet ca-
pable of creating advanced peer-to-peer applications. The
framework was built to provide applications providing pure
peer-to-peer network where all nodes have the same respon-
sibility and services. Further, the framework provides ser-
vices to transparently manage the detection of new and lost
peers. The message component of the framework makes it
possible to exchange any kind of data between peers includ-
ing Java objects. The Peer2Me has been implemented in
Java 2 Micro Edition (J2ME) and runs on standard mo-
bile phones. The framework supports management and
communication of mobile ad hoc networks (MANETs) like
Bluetooth. The paper describes the architecture, the API
and some of the applications developed using the Peer2Me
framework. Further, we share and discuss experiences from
developing mobile peer-to-peer applications.

KEYWORDS: Rapid application development, Mobile
ad hoc networks, Peer-to-peer networks, Bluetooth,
J2ME.

1. INTRODUCTION

Traditionally, the client-server was the mainstream ap-
proach for doing distributed computing. However, the cen-
tralisation of services and information in the client-server
approach easy becomes a problem in terms of performance
bottleneck and reduced availability because of single-point
of failure. The peer-to-peer architecture removes this prob-
lem by allowing all involved computer act as equals in the
network [19]. This makes it possible to balance the network
load and provide a more fail-proof network by using alter-
native routing in case a network connection between two
nodes fails. It was programs for music-file sharing like Nap-
ster that really showed the potential of peer-to-peer comput-
ing [5]. Since Napster, peer-to-peer computing has become

mainstream and peer-to-peer applications for chatting and
file sharing are now included into operating systems like
Microsoft Windows Vista and Mac OS X Tiger.
Currently, most peer-to-peer applications and architectures
are designed to work in a fixed and wired infrastructure like
the Internet. The development of wireless network tech-
nologies, mobile devices and programming environment for
mobile devices have made it possible to move the peer-to-
peer computing to a wireless environment [11, 14]. By
bringing peer-to-peer computing to the mobile and wireless
platform, we have to struggle with the classical challenges
of mobile computing within the areas of wireless commu-
nication (heterogeneous networks, low and variable band-
width, disconnection, etc.), mobility (find closest server,
network handover, where to store data etc.) and porta-
bility (limited CPU, memory, battery, displays, keyboards,
etc.) [18]. However, mobile peer-to-peer computing also
offers new opportunities that can be utilised like providing
location-based services [6, 13] and social computing [7, 8]
using short-range networks.

Figure 1. Digital Spheres Intersecting

Most wireless devices support some kind of personal area
network (PAN) technologies like irDA and Bluetooth [16].
PAN is often used to transfer data between mobile devices
and PCs, or between mobile devices and peripherals like
headsets and keyboards. A PAN can be seen as a digital
sphere around the mobile device enabling the exchange of
data to nearby devices. This digital sphere can also be used
to provide mobile computer supported cooperative work

(mobile CSCW) [22]. Figure 1 shows how mobile CSCW
can be provided by overlapping digital spheres where data
can be exchanged between applications run on two user
devices. In such an environment, the support for mobile
peer-to-peer is essential and the support and establishment
of mobile ad hoc networks (MANETs) are necessary. A
MANET is a self-configuring network where peers can join
and leave the network dynamically making the wireless net-
work topology unstable and unpredictable [17]. MANETs
can be utilised in situations where persons with mobile de-
vices meet and there is a need for exchanging data.
MANETs enable mobile users to interact in new ways. The
interaction between users can either be explicitly initiated
by the users, it can be automatically initiated by the mobile
devices, or a hybrid of the two [20]. Such applications can
be used for initiating collaboration between users of same
interests, e.g., an application for finding people with same
research interest at a conference [21]. Further, MANETs
can be used to create application for proximity chats and
file exchanges, or simply for leisure like games.
The Peer2Me project was initiated to enable rapid develop-
ment of proximity-based peer-to-peer applications for mo-
bile devices on the Java 2 Micro Edition (J2ME) platform.
Our main goal was to develop a high-level programming
framework that made it possible for developers to only use
simple primitives and methods to manage the complexity
of peer-to-peer MANETs. It was also essential that the
Peer2Me framework was transparent and hid the network
technology used for communication. The Peer2Me frame-
work enables researchers and application developers to ex-
plore utilisation of MANETs and how MANET applications
can provide collaborative support for mobile users. The
main contribution of this paper is to describe the Peer2Me
framework and experiences we from building and using the
framework.
The rest of the paper is organised as follows. Section 2
describes the architecture and the design of the Peer2Me
framework. Section 3 describes how the framework can
be used in applications. Section 4 presents experiences we
have gained from developing Peer2Me applications. Sec-
tion 5 relates our framework to similar approaches. Finally,
Section 6 concludes the paper.

2. THE Peer2Me FRAMEWORK

This section describes the architecture, and design and im-
plementation issues related to the Peer2Me framework.

2.1. Peer2Me and J2ME
Sun Microsystems developed Java 2 Micro Edition (J2ME)
[15] to provide a general execution platform for resource-
constrained devices. J2ME consists of various configu-
rations, profiles and optional packages to support various

kinds of equipment. For mobile devices like mobile phones
and PDAs, the Connected Limited Device Configuration
(CLDC) is the most common configuration that is tailored
for devices with wireless network capacities. In the same
way the Mobile Information Device Profile (MIDP) is the
most used profile for such devices. The MIDP provides an
environment for creating and managing applications, called
MIDlets, including GUI libraries [15]. Most mobile phones
sold today supports J2ME and MIDP 2.0. In addition, some
mobile phone models support a variety of optional packages
that that provides API for various purposes like location, 3D
graphics, multimedia support, security, speech etc. Figure
2 shows how our Peer2Me framework fits into the J2ME
environment.

Figure 2. The Peer2Me Framework and J2ME

Our framework is built upon MIDP 2.0. In addition, the
Peer2Me framework uses two optional packages:

• JSR82: J2ME API to access and manage Bluetooth
networks.

• JSR75: J2ME API to access Personal Information
Management (PIM). The JSR75 makes it possible to
read and write to the file system as well as access data
(both read and write) in the built-in address book and
calendar of the mobile device.

The current Peer2Me implementation only supports Blue-
tooth networks, but the architecture is made modular to also
support other types of networks when they become sup-
ported in the J2ME environment.

2.2. The Peer2Me High-level Architecture
The Peer2Me architecture is based on a layered architec-
tural pattern where each layer is assigned with its own re-
sponsibility, and one layer is based on the layer below. By
using the layered approach, the architecture would gain pos-
itive characteristics like modularity and transparency. The

Figure 3. The Peer2Me High-level Architecture

negative effect by using this approach could be slower ex-
ecution if the applications often have to go up and down
several layers to carry out the operations. As the Peer2Me
framework should be used on resource constrained execu-
tion platform, we decided to use few layers in the architec-
ture. Figure 3 shows the high-level architecture of Peer2Me.
Figure 3 shows the main parts of the Peer2Me architecture
(note that the MIDlet is not a part of the Peer2Me frame-
work).

• Node: A node is a logical representation of a peer, i.e.,
a mobile phone running the framework. Two or more
nodes can form a mobile ad hoc network.

• Group: A group is a collection of nodes that know of
each other’s existence. All the nodes in a group can
communicate with each other.

• Service: A service is a description and an identifier
of an application running the framework. To enable
Peer2Me applications running on mobile devices to
interact, they all have to run the same service. This
means that the service provides the ability for applica-
tions to see that the provide the same service.

• Network: A network is an abstraction of the net-
work layer representing the communication medium
accessed by the framework instance. The network
layer can consists of several network implementations
that also can be run simultaneously. Note that if
some functionality is specific to the network technol-
ogy used, it must be directly accessed in the specific
network implementation (e.g., Bluetooth).

• Message: A message is an entity that can be ex-
changed between the nodes. A message can be sent

to single nodes or to groups and can contain text, seri-
alised objects, or any data type or binary data such as
pictures, video, documents etc.

• Session: A session represents the lifetime of all the
communication between the nodes in a group. A ses-
sion keeps track of known nodes, groups and available
network mediums.

• Framework: A framework represents the core entity
between the application and the rest of the system. The
framework hides all the complexity for the application
developer and provides the interface to Peer2Me.

• Application: A Peer2Me application will be imple-
mented as a MIDlet running on top of the Peer2Me
framework.

2.3. Design and Implementation Decisions
This section describes design and implementation decisions
made in Peer2Me to provide a transparent high-level API.

Pure versus hybrid peer-to-peer model: Pure peer-to-
peer approach where all the peers have the same respon-
sibility for managing resources and communication is not
supported directly in Bluetooth. The Bluetooth technology
is based on a master-slave communication protocol, where
the Bluetooth master will search for nearby Bluetooth de-
vices that will become slaves when communicating. The
master-slave configuration is essential the same as client-
server and suffers from the same problems of single point
for failure. A possible solution to avoid this problem could

Figure 4. Message structure

be to make the master node delegate the server responsibil-
ity to a new node in case of a failure, but this would require
a very complex protocol without getting a high availability
of the system. In Peer2Me we implemented a pure peer-
to-peer protocol avoiding the difficulties of the master-slave
paradigm. The master-slave connections are established dy-
namically when there is a need for one node to send a mes-
sage to another node or nodes. This means that in Peer2Me
all the nodes know all other nodes, and every node have the
same responsibility.

Communication protocol: Bluetooth provides two dif-
ferent protocols for implementing communication between
peers: RFCOMM and OBEX. RFCOMM emulates a RS-
232 serial connection, which provides a stream-based in-
terface. The advantage using RFCOMM is that it is very
straightforward to implement in J2ME, but it has some ma-
jor disadvantages. RFCOMM only supports one session at a
time between two devices, and the maximum amount of ac-
tive RFCOMM services a Bluetooth device can have is 30.
When RFCOMM is used, the receiving Bluetooth device
must read the stream and later parse the stream. OBEX is
much more versatile than RFCOMM and provides support
for setting up a session of two communicating devices. The
information is sent between the devices in the form of a put
or a request pattern. In contrast to RFCOMM, OBEX also
fully supports headers (also user defined) to describe the
context of the message. Peer2Me uses the OBEX protocol
that enables the support for a variety of types of messages
including serialisable objects. It also makes it possible to
only send the headers, making it possible for the client to
decide to receive the data or not.

Messages: Peer2Me provides a very flexible message
handling. Figure 4 shows the structure of a message in
Peer2Me. A message consists of one or more message

parts. Each message part can be of one out of three main
types: A file, a primitive data type and a serialisable ob-
ject. All the data types supported in J2ME (int, double,
float, string, boolean, char, long and short) can be used in
a message type. This means that Peer2Me should be ca-
pable of managing and sending any information between
peers. Since Peer2Me supports transfer of objects between
peers, the framework could also be used to create a mobile
peer-to-peer agent system. In order for the framework to
send objects over the network, the object must be serialised.
Currently, there are no serialisable interfaces available for
J2ME, so we had to create our own. Our interface provides
two methods: one for serialising and one for deserialising.

Detecting new nodes: MANETs are characterised by a
very dynamic network topology where nodes continually
are added and removed from the network. The discovery
of new nodes was in Peer2Me implemented using the Blue-
tooth discovery protocol provided in J2ME that searches for
all nearby Bluetooth devices. It then filters and performs a
service search for all mobile phones detecting all devices
running a specific Peer2Me service. If the discovery de-
tects any new nodes, references to the new nodes are cre-
ated so that a connection can be established later on. After
a completed search, the node shares the result with all the
notes it has found. This process is illustrated in Figure 5. In
5A, node A searchers and discovers B and C. In 5B, node
A sends messages to B and C, which contain information
about all the nodes in the vicinity. In 5C, all the nodes can
start to establish connections and exchange data. A search
for new nodes is initiated when a Peer2Me application is
run. How often the search for new nodes is run during the
execution of an application is up to the application devel-
oper to decide.

Figure 5. Detection of new nodes

Detecting lost nodes: In our Peer2Me framework, it was
important to provide a mechanism to effectively detect
when nodes were lost. The two traditional approaches for
detecting that parts of the system are (not) available are to
use the ping/echo and the heartbeat approach. We chose to
implement the ping/echo approach, as this approach is more
reliable. While for heartbeat, the nodes send out a message
at a given interval, it requires the other nodes to constantly
listen for specific messages containing the heartbeat, with-
out the necessity to acknowledge the message. Under nor-
mal circumstances, the heartbeat approach would generate
fewer messages than ping/echo. The ping/echo approach
would normally generate m = 2(n − 1) while heartbeat
would generate m = (n − 1), where m = number of mes-
sages and n = number of peers. The heartbeat approach gen-
erates half the messages compared to ping-echo. However,
by using the OBEX protocol (in contrast to RFCOMM), the
acknowledgement is unnecessary. In OBEX, the peer can
simply try to establish a connection to check if the peer
is available and alive. A failed connection will cause the
node to remove the destination peer from its list. The cost
of performing a connection test in OBEX is very low, as
only a small header is needed to be transferred. A heart-
beat approach would have required sending a message and
would have required more data traffic over the network. The
ping/echo mechanism can run constantly on the devices, as
it uses a separate channel in OBEX, not interrupting the nor-
mal communication. The nodes are themselves responsible
for detecting losses of other nodes and losses of nodes are
not broadcasted. This makes it also possible to change the
interval of performing the ping/echo depending on the avail-
able bandwidth of the network.

Initialisation of the framework: The first time a
Peer2Me application is run, the framework has to be ini-
tiated from the MIDlet (the application) by calling the
method initialize(). The initialisation will be performed
through the layers of the framework by initialising the ses-
sion layer, the network layer and the Bluetooth implemen-
tation. The last step of the initialisation process is to create

a network listener (in current version a Bluetooth listener).
The network listener makes it now possible for other nodes
running the application to perform a service discovery and
find this node. After the framework has been initiated, the
MIDlet can start a search for other nodes as shown in Fig-
ure 6. The search is performed through the layers of the
framework and the MIDlet is alerted when a node is found.

Other design considerations: When testing J2ME appli-
cations in the actual execution environment, there was no
support for a console for test output on the mobile devices.
Even though this is available on simulators running on PCs,
it is essential to be able to track errors on the mobile de-
vices. From our experience of developing mobile applica-
tions for over 5 years, we know that applications running
fine on simulators do not necessarily behave the same way
on the physical mobile phone. To catch and manage run-
time errors, the Peer2Me framework provides a strong han-
dling of exceptions that catches typical Peer2Me errors like
lack of initialisation of framework, file, group and node not
found etc. In addition to the exception handling, we also
provide a log package that can be used by all classes in the
framework that stores and manages runtime-messages. The
log is useful for debugging as well as getting real-time in-
formation of the framework’s progress and well-being.

3. Peer2Me APPLICATION DEVELOP-

MENT

As mentioned in the beginning of this paper, a main goal of
the Peer2Me project was to create a framework for rapid ap-
plication development of mobile peer-to-peer applications.
In this section, we will describe through code examples the
main parts of the Peer2Me API that an application devel-
oper has to use.

3.1. Initialisation of a Peer2Me application
Before you start to create any Peer2Me application, you
need to import all the necessary parts of the framework:

Figure 6. A sequence diagram for the initial search for nodes

Framework, FrameworkSubscriber, Message, Bluetooth
and Node. The rest of the initiation of the Peer2Me frame-
work is shown in Listing 1.

Listing 1. Initialisation of Peer2Me
1p u b l i c c l a s s Chat2Me ex tends MIDlet implements

FrameworkSubsc r ibe r , Commandl i s t ene r {
2p r i v a t e Framework framework ;
3
4framework = Framework . g e t I n s t a n c e (”MyGroup” , ”

Chat2Me ” , new B l u e t o o t h () , t h i s) ;
5framework . i n i t i a l i z e () ;
6framework . s e a r c h () ;

In line 1, the MIDlet created must implement the Frame-
workSubscriber interface from the Peer2Me framework.
The CommandListener is a J2ME interface to catch events
from the user interface. Then a framework variable must
be created (line 2). The lines 4 and 5 initiate the frame-
work with the parameters for name of group, name of ser-
vice, the network used and a reference to the MIDlet itself.
The device running the application is now available for ser-
vice discovery from other devices running Peer2Me. Line
6 searches for nearby devices running the same Peer2Me
service.

3.2. Event-handling in Peer2Me
After the framework has been initiated, the Peer2Me ap-
plication need to implement the four methods, nodeDis-

covered, nodeLost, searchCompleted and messagePart pro-
vided by the FrameworkSubscriber interface. The nodeDis-
covered is invoked when a new node is found in the net-
work. Note that there is no automatic search for new nodes
in Peer2Me after the initial search (line 6 in Listing 1) has
been completed. The application programmer must include
a search for new nodes in the application herself.
The methods nodeLost is invoked when the background
ping/echo mechanism has detected that one of the nodes
in the group is not reachable anymore. Detection for lost
nodes is run in background by the framework in a separate
thread.
The searchCompleted method is called when the initial
search (line 6 in Listing 1) has completed.
Listing 2 show an example of how nodeDiscovered,
nodeLost and searchCompleted can be implemented.
In the implementation of the first two methods, the
node.getNodename() method is used to notify the user
through the GUI that the node has joined or left. For the
latter method, the application sets the GUI in focus and re-
freshes the GUI.

Listing 2. Example of use of nodeDiscovered
1p u b l i c vo id n o d e D i s c o v e r e d (Node node) {
2d i a l o g . append (node . getNodename () +” has j o i n e d ”

, n u l l) ;
3}
4
5p u b l i c vo id nodeLos t (Node node) {

6d i a l o g . append (node . getNodename () +” has l e f t ” ,
n u l l) ;

7}
8
9p u b l i c vo id s e a r c h C o m p l e t e d () {
10d i s p l a y . s e t C u r r e n t (d i a l o g) ;
11}

Another method that can be invoked by the framework is the
messageReceived method. This method is invoked when-
ever the node receives a message from another node. This
methods is further described in Section 3.3.

3.3. Manage Messages in Peer2Me
As described in Section 2.3, the management of messages
in Peer2Me is flexible in terms of what data can be sent
between peers. In addition, the management of message
interface is easy to use and understand for the application
programmer. Listing 3 shows an example of how two dif-
ferent types of messages can be created and sent to another
node. Note that every element added to a message uses a
key string as an identifier (the second parameter).

Listing 3. Create and send message
1Message message = new Message () ;
2message . addElement (1 , ” t y p e ”) ;
3message . addElement (” H e l l o wor ld ! ” , ” i n f o ”) ;
4message . a d d R e c e i p t (node) ;
5framework . sendMessage (message) ;
6
7Message message2 = new Message () ;
8message2 . addElement (2 , ” t y p e ”) ;
9message2 . addElement (true , ” i n f o ”) ;
10message2 . a d d R e c e i p t (node) ;
11framework . sendMessage (message2) ;

Listing 4 shows how a message can be received. In this
example, the message element is used to identify what type
of data is sent in the message element called ”info”.

Listing 4. Receive message
1p u b l i c vo id messageRece ived (Message message) {
2i n t t y p e = message . g e t I n t (” t y p e ”) ;
3sw i t ch (t y p e) {
4case 1 :
5S t r i n g i n f o = message . g e t S t r i n g (” i n f o ”) ;
6break ;
7case 2 :
8boolean i n f o = message . g e t B o o l e a n (” i n f o ”) ;
9break ;
10d e f a u l t :
11break ;
12}
13}

As seen from the listing, the message handling is flexible,
but yet easy to use.
As described in this section, the Peer2Me API is high-level
and requires few concepts to deal with the complexity of
peer-to-peer computing. In the following section, we will

describe experiences from using the framework to create
applications.

4. EXPERIENCES AND EVALUATION
In this section we will share some experiences from creating
Peer2Me application and evaluate the framework.

4.1. Peer2Me Applications
The work with the Peer2Me framework started in 2003
by analysing several mobile peer-to-peer scenarios that in-
volved collaborative aspects. At this stage of the project we
investigated scenarios like multi-player strategy games like
risk, real-time Bluetooth games, synchronisation of infor-
mation on mobile devices when users pass each other, sup-
port for planning the next meeting, etc. All these scenarios
were characterised by users that were at the same location
where the mobile phones needed to exchange some data.
Through the history of Peer2Me (current version is 2.0), we
have also developed several Peer2Me applications. Here is
a short description of some of them:

• PeerQuiz: A quiz-game for users with mobile phones
being in the same area. PeerQuiz is initiated by one
user sending a set of questions to all surrounding users.
All users that accept the challenge will have to choose
between possible answers for a set of questions, and
a winner will be declared based on most correct an-
swers. Figure 7 shows the screenshots of the PeerQuiz
application and Figure 8 shows a picture taken where
4 students played PeerQuiz in a public area.

Figure 7. Screenshots of the PeerQuiz application

• PeerShare: This is a file-sharing application for mo-
bile phones that uses Bluetooth to transfer files be-
tween the devices. Any kind of files can be exchanged,
but usually mp3-files and ring-tones are exchanged.

Screenshots from the PeerShare application is shown
in Figure 9.

Figure 8. User test of the PeerQuiz application

• Peer2MeAnalyzer: This application is used to test
performance of the Bluetooth network in a peer-to-
peer topology. The application can measure discovery
time, connection time, data transfer speed and enable
tests of network range of Bluetooth devices.

• Chat2Me: A proximity-based multi-user chat applica-
tion for mobile phones.

• Converging top ten list: An application for automati-
cally updating prioritised lists when mobile users pass
each other. This application can e.g. be used to find
the top-ten beer price list of the campus area.

• Business card exchange [21]: This application makes
it possible for the mobile devices to people in an area to
search for people with the same interests and exchange
electronic business cards if any are found (or beep the
user).

• Find next meeting: This application is used for peo-
ple in the same room or area to find possible dates
and times for a meeting within a certain time slot by
searching each of the users calendar on the mobile
phone.

• Peer voice message exchange: This application
makes it possible to exchange voice messages directly
between mobile devices.

The various applications developed have different charac-
teristics. Some of the applications uses asynchronous data
exchange, while others requires real-time data exchange. In
some of the applications, the user will initiate interaction
with other users, some applications interaction without any
user intervention, while others are hybrids [20]. Although
we have developed a few applications, we believe that we
have only scratched the surface of possible Peer2Me appli-
cations.

Figure 9. Screenshots of the PeerShare application

4.2. Emulators vs. Mobile phones
During the development of the Peer2Me framework and
Peer2Me applications we used both emulator environments
and mobile phones for testing. One might think that if the
software runs smoothly on an emulator, it will do the same
one a mobile phone. However, this is not the case. One
main difference between running J2ME applications on an
emulator and on an actual phone is performance. When
running on an emulator, you do not have to consider per-
formance issues. When running on a mobile phone, this
becomes essential. We discovered this problem from test-
ing early versions of the framework running several threads
on the mobile phones. Running from two up to four threads
would not cause any problems on most phone models we
tested. However, running up to ten threads resulted the
phone to stop responding or simply turning itself off. This
experience resulted in an implementation of the framework
with few threads and careful synchronisation of the threads.
Another important limitation is the memory consumption.
When running on an emulator, we do not have to think about
this problem. When running on a mobile phone, memory is
essential.

4.3. Peer2Me Technical Data and Performance
The Peer2Me framework has been optimised to provide
a small footprint to reduce use of memory and storage
capacity. The footprint of Peer2Me version 2.0 is only
37,5kBytes. The typical footprint of a simple MIDlet appli-
cation running Peer2Me is about 10kBytes. The footprint of
the version 1.0 of Peer2Me was 47.2kBytes even it did not
provide all the functionality and not the same high-level API
as in version 2.0. We have been able to provide a more ad-
vanced framework, with higher abstraction level and reduc-
ing the footprint by almost 10kBytes. We also carried out

some performance tests on the v1.0 version and v2.0 version
of the framework. The v1.0 used the RFCOMM protocol,
while the v2.0 used OBEX. In v1.0, the average transfer rate
of data between nodes was 7kBytes/sec. In v2.0, the aver-
age transfer rate of data between nodes was 18kBytes/sec
(over 250% improvement). We believe that the improved
performance using OBEX is because RFCOMM divides the
data-stream into many small packets that all will be sent
with overhead. In OBEX, it is possible to send data up to
10kBytes as one packet with minimal overhead.

4.4. Is Peer2Me suited for Rapid Develop-
ment?

The main goal of the Peer2Me project was to provide a
high-level API for J2ME for creating mobile peer-to-peer
applications that hides the underlying complexity. We have
achieved this goal by providing the application program-
mers with only few concepts to learn: A simple initiation,
search of nodes, easy to use yet powerful message handling
and few event interfaces to manage node dynamics. To
compare how our framework compares to using the Blue-
tooth API in J2ME directly, we implemented a Bluetooth
chat application, Chat2Me, and compared it to the BlueChat
application developed by Ben Hui [2]. The applications
provided the same level of functionality, but Chat2Me pro-
vided a more advanced GUI. If we compare only the total
number of lines, the BlueChat consisted of 242 while the
Chat2Me consisted of 138 lines of code. This means that
the BlueChat required 175% more lines of code. We also
compared the network specific code, and here the BlueChat
application consisted of 42 lines while Chat2Me consisted
of 16. The reduction was over 250% lines of code. We
have also arranged workshops with several programmers to
see how much time it was required to program the network
code for a mobile peer-to-peer application using Peer2Me
compared by using the Bluetooth API provided in J2ME
directly. The results showed that by using the Peer2Me
framework, the application programmer could create mo-
bile peer-to-peer application within an hour. From our own
experiences using the standard Bluetooth API in J2ME, it
would require from 8 to 16 hours to do the same thing.

5. RELATED WORK
There are several projects that have developed frameworks
for developing peer-to-peer application in MANETs. We
will in this section present the most prominent projects.
JXTA [14, 4] is an open-source framework for developing
P2P applications. JXTA provides a set of protocols and
APIs for general-purpose, computer-to-computer commu-
nication and is platform and network independent. JXME
[1] is JXTA for Java 2 Micro Edition (J2ME) and is a
lightweight implementation of JXTA for mobile devices.

It is specifically aimed at devices without sufficient com-
putation and/or communication resources to participate in
the network on their own. The JXME implementation pro-
vides full JXTA functionality through the use of a relay
host. There is also a JXME proxiless initiative, but there
is currently no stable implementation. As JXTA does not
have a pure peer-to-peer version working for J2ME, it can-
not be compared to Peer2Me.

Mobile Chedar [12] is a middleware being an extension to
the Chedar peer-to-peer network allowing mobile devices to
access the Chedar network and communicate to other Mo-
bile Chedars. The goal of the Chedar software is similar to
Peer2Me: To provide a convenient API for peer-to-peer ap-
plication developers. The Mobile Chedar is implemented in
J2ME and Bluetooth is used for communication. In contrast
to Peer2Me, the Mobile Chedar is based on a hybrid peer-to-
peer model that uses a Mobile Chedar gateway node as the
master in the network. The Mobile Chedar gateway node is
run on a PC that also provides an Internet gateway for the
mobile nodes. However, this approach suffers from having
a single point of failure like client-server solutions.

Proem [10] is a framework for developing and deploying
P2P collaborative applications in a mobile ad-hoc network-
ing environment. The main objective of Proem is to provide
a common framework for rapid development of applications
for ad-hoc network environments. The framework is imple-
mented in Java, and can be run on various wireless mobile
devices. Proem is designed to be independent of underlying
network transport protocols, and can be implemented on top
of TCP/IP, HTTP, Bluetooth and others. The original Proem
was based on a Java Standard Edition, limiting the devices
to run Proem to powerful PDAs. There have been attempts
to create a J2ME version of Proem that have not succeeded.

The JMobiPeer [3] framework is very similar to Peer2Me
in many respects. It provides support for discovery, group
management and peer management. In addition JMobiPeer
offers interoperability with JXTA. The implementation of
JMobiPeer is based on J2ME. However, the actual execu-
tion of JMobiPeer has only been tested on emulators on
standard PCs. This is probably because the framework has
high requirements on CPU and memory. In addition, the
framework does not reveal any details on the API or if they
provide a pure or hybrid peer-to-peer solution.

MOBY [9] provides a network for mobile peer-to-peer ex-
change of services and data. MOBY offer a dynamic service
location and client mapping to achieve an adaptive network
optimising performance and reliability. MOBY uses heav-
ily JINI functionality and can there for not be run in a J2ME
environment.

6. CONCLUSION

In this paper we have presented the Peer2Me framework
for rapid development of mobile peer-to-peer applications.
Despite the limitations in J2ME with a stripped down Java
class-library and the limited resources on mobile phones
in terms of CPU and memory we have managed to de-
velop a full-fledged framework that transparently manages
a MANET. The Peer2Me API is very simple to learn and
consists only of a few lines for framework initialisation and
implementation of four methods that will be invoked for
events (like when a node is unavailable). Our message in-
terface is easy to use but powerful and flexible enough to
exchange any data type including serialisable objects. The
latter makes it possible to use Peer2Me as the foundation
of a mobile agent system for MANETs. In order to do so,
the state of the objects need to be extracted before sending
the agent, and the object must be re-initiated with the same
state on the receiving node.
The main contribution of the Peer2Me project is to provide
a high-level API for peer-to-peer computation for mobile
phones using Bluetooth. The Peer2Me framework is very
useful for exploring computer support for spontaneous col-
laboration (when users occasionally meet) and for mobile
collaboration in general. Through our applications we have
demonstrated some areas where Peer2Me can be used. We
will continue to explore various ways to utilise the Peer2Me
framework to support mobile collaboration.

ACKNOWLEDGEMENT

We would like to thank Thomas Fossum, Lars Kirkhus,
Anders R. Sveen, Michael Sars Norum, Carl-Henrik Wolf
Lund, Steinar Hestnes and Torbjørn Vatn for their invalu-
able effort in the Peer2Me project.

REFERENCES
[1] C. W. A. Arora and K. S. Pabla. jxme: JXTA Platform

Project. Web: http:
www.jxme.org, February 2005.

[2] Benhui.net. Connecting PC and Phone
with Java Bluetooth API - Part 1. Web:
http://benhui.net/modules.php?name=Bluetooth, 2006.

[3] M. Bisignano, G. D. Modica, and O. Tomarchio. JMo-
biPeer: A Middleware for Mobile Peer-to-Peer Computing
in MANETs. In First International Workshop on Mobility
in Peer-to-Peer Systems (MPPS) (ICDCSW’05), pages 785–
791, 2005.

[4] J. Brendon and J. Wilson. JXTA. New Riders Publishing,
2002.

[5] D. Clark. Face-to-face with peer-to-peer networking. Com-
puter, 34(1):18–21, 2001.

[6] N. Davies, K. Cheverst, K. Mitchell, and A. Efrat. Using
and determining location in a context-sensitive tour guide.
Computer, 34(8):35–41, 2001.

[7] N. Eagle and A. Pentland. Social Serendipity: Mobilizing
Social Software. IEEE Pervasive Computing, 04(2):28–34,
2005.

[8] L. E. Holmquist, J. Wigstrom, and J. Falk. The Humming-
bird: Mobile Support for Group Awareness. In Demonstra-
tion at ACM 1998 Conference on Computer Supported Co-
operative Work, 1998.

[9] T. Horozov, A. Grama, V. Vasudevan, and S. Landis. MOBY
- A Mobile Peer-to-Peer Service and Data Network. In 2002
International Conference on Parallel Processing (ICPP’02),
pages 437–444, 2002.

[10] G. Kortuem. A methodology and software platform for
building wearable communities. PhD thesis, University of
Oregon, December 2002.

[11] G. Kortuem, J. Schneider, D. P. Thaddeus, G. C. Thompson,
S. Fickas, and Z. Segall. When Peer-to-Peer comes Face-to-
Face: Collaborative Peer-to-Peer Computing in Mobile Ad
hoc Networks. In First International Conference on Peer-to-
Peer Computing, Linköping, Sweeden, 27-29 August 2001.

[12] N. Kotilainen, M. Weber, M. Vapa, and J. Vuori. Mobile
Chedar A Peer-to-Peer Middleware for Mobile Devices. In
Third IEEE International Conference on Pervasive Com-
puting and Communications Workshops (PERCOMW’05),
pages 86–90, 2005.

[13] S. Long, R. Kooper, G. D. Abowd, and C. G. Atkeson. Rapid
prototyping of mobile context-aware applications: The cy-
berguide case study. In Mobile Computing and Networking,
pages 97–107, 1996.

[14] N. Maibaum and T. Mundt. JXTA: A Technology Facili-
tating Mobile Peer-To-Peer Networks. In International Mo-
bility and Wireless Access Workshop (MobiWac’02), pages
7–13, Fort Worth, Texas, USA, 12 October 2002.

[15] S. Microsystems. Java 2 Platform, Micro Edition (J2ME).
Web: http://java.sun.com/j2me/, 2005.

[16] B. A. Miller and C. Bisdikian. Bluetooth Revealed.
Addison-Wesley, 2 edition, 2002.

[17] P. Mohapatra, C. Gui, and J. Li. Group communications in
mobile ad hoc networks. Computer, 37(2):52–59, 2004.

[18] M. Satyanarayanan. Fundamental Challenges in Mobile
Computing. In Fifteenth ACM Symposium on Principles of
Distributed Computing, Philadelphia, PA, 1996.

[19] M. P. Singh. Peering at peer-to-peer computing. IEEE In-
ternet Computing, 05(1):4–5, 2001.

[20] A. I. Wang, M. S. Norum, and C.-H. W. Lund. Issues re-
lated to Development of Wireless Peer-to-Peer Games in
J2ME. In First Conference on Entertainment Systems (EN-
SYS 2006), page 6, Guadeloupe, French Caribbean, Febru-
ary 23-25 2006.

[21] A. I. Wang, C.-F. Sørensen, and T. Fossum. Mobile Peer-
to-Peer Technology used to Promote Spontaneous Collabo-
ration. In The 2005 International Symposium on Collabo-
rative Technologies and Systems (CTS 2005), page 8, Saint
Louis, Missouri, USA, May 15-19 2005.

[22] M. Wiberg and Åke Grönlund. Exploring Mobile CSCW:
Five areas of questions for further research. In Pro-
ceedings of IRIS23 (Information Research in Scandinavia),
Trollhättan, Sweden, 2000.

	. INTRODUCTION
	. THE Peer2Me FRAMEWORK
	. Peer2Me and J2ME
	. The Peer2Me High-level Architecture
	. Design and Implementation Decisions

	. Peer2Me APPLICATION DEVELOPMENT
	. Initialisation of a Peer2Me application
	. Event-handling in Peer2Me
	. Manage Messages in Peer2Me

	. EXPERIENCES AND EVALUATION
	. Peer2Me Applications
	. Emulators vs. Mobile phones
	. Peer2Me Technical Data and Performance
	. Is Peer2Me suited for Rapid Development?

	. RELATED WORK
	. CONCLUSION

