
Post-Mortem Analysis of Student Game Projects in a
Software Architecture Course

Successes and Challenges in Student Software Architecture Game Projects

Alf Inge Wang1

Dept. of Computer and Information Science,
Norwegian University of Science and Technology

Trondheim, Norway
alfw@idi.ntnu.no

Abstract—In 2008, a game development project was introduced in
a software architecture course at the Norwegian University of
Science and Technology. The motivation for introducing the
project was to let students learn how software architecture
practices and processes can improve the final product in an
inspiring and practical way. In the project, students organized in
groups had to establish functional and quality requirements,
design the software architecture of the game, evaluate the
architecture, implement the architecture and test the
architecture. After completing the project, all groups had to
perform a post-mortem analysis of the project to reflect on the
positive and the negative issues related to the project. This paper
summarizes and describes the results of this post-mortem
analysis along with the students’ experiences from performing a
post-mortem analysis of a game development project. The results
show that there are both positive and negative effects of teaching
software architecture in the context of a game development
project. Students found it motivating to learn about software
architecture through game development, but some students
found it hard to apply the theory when developing the game.
Most students were very positive to learn about new game
technology as a part of the course and it was very stimulating to
create an actual product. The main complaints were shortage of
time, that many found the evaluation of architecture (ATAM)
worthless, and that the project demanded too much
documentation. Most students commented positive on doing a
post-mortem analysis as a part of a game development project.

Game development project, software architecture, Post-mortem
analysis, XNA.

I. INTRODUCTION
Games are commonly used to teach kids, and have proven

to be beneficial for academic achievement, motivation and
classroom dynamics [1]. Teaching methods based on
educational games are not only attractive to schoolchildren, but
can also be beneficial for university students [2]. Research on
games concepts and game development used in higher
education is not unique, e.g. [3-5], but there is an untapped
potential that needs to be explored.

Games can mainly be integrated in higher education in
three ways. First, traditional exercises can be replaced by
games motivating the students to put extra effort in doing the

exercises, and giving the course staff an opportunity to monitor
how the students work with the exercises in real-time [6] [7].
Second, games can be used within a traditional classroom
lecture to improve the participation and motivation of students
[8] [9] through knowledge-based multiplayer games played by
the students and the teacher. Third, game development projects
can be used in computer science (CS) or software engineering
(SE) courses to learn specific CS or SE skills [10] [11]. This
paper focuses on a post-mortem analysis (PMA) of the latter,
where a game development project was introduced in a
software architecture course. The motivation for bringing game
development into a CS or SE course is to utilize the students’
fascination for games and game development to stimulate the
students to work more with course material through the project.
Many students dream of making their own games, and game
development projects stimulates the creativity of the students.
In addition, game technologies and game user interfaces are
now more commonly used in serious applications [12-15], and
development of serious games is on the rise. This makes it
more important for students to learn how to develop games and
utilize game technology.

From a game developer’s perspective, knowledge and skills
about how to develop appropriate software architectures are
becoming more important [16] [17]. Well-designed software
architectures are needed, as games are growing in size and
becoming more complex [18]. From a software architect’s
perspective, games are interesting due to the inherent
characteristics of the domain including real-time graphics and
network constraints, variation in hardware configurations,
changing functionality, and user-friendliness. Games are also
interesting from a software architect’s perspective, as there
exist no real functional requirements that stem from the users.
Typical user requirements for games are that the game should
be fun to play, it should have enough variety, and it should be
engaging [19].

This paper describes the results of a PMA of a game
development project in a software architecture course
conducted by students. The motivation for performing a PMA
was for the students to share and learn from their experience.
The intention of analyzing the students’ PMA data was to get a
detailed analysis of the positive and negative effects of

Work carried out as a guest researcher at Institute on Software Research
at University of California, Irvine.

combining game development and software architecture in the
same course. We wanted to analyze how the students perceived
the experience of doing a game development project in the
context of a software architecture course. The results of the
PMA highlight the positive and negative experiences learned
from projects and reveal the advantages and disadvantages of
having a game development project in a software architecture
course. This information should be used to improve the course.

The rest of the paper is organized as follows. Section II
describes the software architecture course. Section III presents
the PMA method the students used. Section IV describes the
research approach used to analyze the results of the PMA.
Section V presents the results of analyzing PMA data. Section
VI discusses the results. Section VII describes related work,
and Section VIII concludes the paper.

II. DESCRIPTION OF THE SOFTWARE
ARCHITECTURE COURSE

The software architecture course is a post-graduate course
offered to CS and SE students at the Dept. of Computer and
Information Science (IDI) at the Norwegian University of
Science and Technology (NTNU). The course’s workload is
25% of a semester, and about 70-80 students attend the course
every spring. The students are mostly of Norwegians (about
80%), but there are also 20% foreign students mostly from EU-
countries. About 10% of the students are female. The textbook
used in this course is the “Software Architecture in Practice,
Second Edition”, by Clements, Bass, and Kazman [20].
Additional papers are used to cover topics that are not
sufficiently covered by the book such as design patterns,
software architecture documentation standards, view models,
and post-mortem analysis [21-25]. The education goal of the
course is:

“The students should be able to define and explain central
concepts in software architecture literature, and be able to use
and describe design/architectural patterns, methods to design
software architectures, methods/techniques to achieve software
qualities, methods to document software architecture and
methods to evaluate software architecture.”

The course is taught in three main ways:

1. Ordinary lectures given in English

2. Invited guest-lectures from the software industry

3. A software development project that focuses on
software architecture

A. An Unusual Approach
The TDT4240 software architecture course at NTNU is

taught different than at most other universities, as the students
also have to implement their designed architecture in a project.
The motivation for doing so is to make the students understand
the relationship between the architecture and the
implementation, and to be able to perform a real evaluation of
whether the architecture and the resulting implementation

fulfill the quality requirements specified for the application.
The architecture project in the course has similarities with
projects in software engineering courses, but everything in the
project is carried out from a software architecture perspective.
Through the project, the students have to use software
architecture techniques, methods, and tools to succeed
according to the specified project requirements and the
documents templates. The development process in the project
will also be affected by the focus on software architecture, as
the development view of the architecture will specify how the
teams should be organized and how they should work.

The TDT4240 software architecture course has been rated
as one of the most useful and practical courses offered at the
Computer and Information Science department in surveys
conducted among prior students now working in the IT-
industry. The course staff has also seen the benefits of making
the students implement the architecture, as the students have to
be aware of the developing costs of fancy and complicated
architectural design.

B. Course Evaluation
30% of the grade given in the software architecture course

is the evaluation of the software architecture project all
students have to do, while 70% is given from the results of a
written examination. The goal of the project is for the students
to apply the methods and theory in the course to design and
fully document a software architecture, to evaluate the
architecture and the architectural approaches (tactics), to
implement an application according to the architecture, to test
the implementation related to the functional and quality
requirements, and to evaluate how the architectural choices
affected the quality of the application. The main emphasis
when grading the projects is on the software architecture itself,
but the implementation should also reflect the architecture and
the architectural choices.

C. The Software Architecture Project
The software architecture project consists of the following

phases:

1. Commercial Off-The-Shelf (COTS): Learn the
development platform/framework to be used in the
project by developing some simple test applications.

2. Design pattern: Learn how to utilize design patterns
by making changes in two architectural variants of an
existing system designed with and without design
patterns.

3. Requirements and architecture: Describe the
functional and the quality requirements, describe the
architectural drivers, and design and document the
software architecture of the application in the project
including several views and view-points, stakeholders,
stakeholder concerns, architectural rationale, etc.

4. Architecture evaluation: Use the Architecture Trade-
off Analysis Method (ATAM) [20, 26-27] to evaluate
the software architecture in regards to the specified
quality requirements.

5. Implementation: Do a detailed design and implement
the application based on the designed architecture and
based on the results from the ATAM evaluation. Test
the application against functional and quality
requirements specified in phase 3, evaluate how well
the architecture helped to meet the requirements, and
evaluate the relationship between the software
architecture and the implementation.

6. Project evaluation: Evaluate the project using a Post-
Mortem Analysis (PMA) method [28]. In this phase,
the students will elicit and analyze the successes and
problems they had during the project.

In the two first phases of the project, the students work on
their own or in pairs. For the phases 4-6, the students work in
self-composed teams of four students. The students spend most
time in the implementation phase (6 weeks), and they are also
encouraged start the implementation in earlier phases to test
their architectural choices (incremental development). During
the implementation phase, the students continually extend,
refine and evolve the software architecture through several
increments.

In previous years, the goal of the project has been to
develop a robot controller for the WSU Khepera robot
simulator [29] in Java with emphasis on an assigned quality
attribute such as availability, performance, modifiability or
testability. The students were asked to program the robot to
move a robot around in a maze, collect four balls and bring
them all to a light source in the maze. Robot controller was
chosen to be a case for the software architecture project, as the
problem of software architecture is well defined within this
domain. Several examples of software architecture patterns or
reference architectures for the robot controller domain are
available such as Control loop [30], Elfes [31], Task Control
[32], CODGER [33], Subsumption [34], and NASREM [35].

In 2008, a game development project was introduced. In the
Game project, the students were asked to develop a game using
Microsoft XNA framework [36] and C# [37]. All our students
have good skills and knowledge in Java, but very few knew
C#. The students got to decide what type of game they want to
develop themselves, but a certain level of complexity (more
than a specified number of classes) was required. Unlike the
robot domain, there was little appropriate literature on software
architecture and software architectural pattern for games. There
are some papers and presentations that describe architectures of
specific games [38-42], and books that give a brief overview of
game architectures [43-44], but no literature that gives depth
study of the typical abstractions you can observe in game
software. The most recurring architectural patterns described in
books and papers are model-view controller, pipe-and-filter,
layered and hierarchical task trees. In the 2008 version of the
software architecture course, the students could choose
between a robot and a game project. This paper only focuses
only on the game project.

III. POST-MORTEM ANALYSIS
According to Rising et al. [45], retrospective analysis as a

method for learning from work experience was identified in
1988 by Joseph Juran and named ”Santayana review” in
homage to the philosopher George Santayana. Since then,
many organizations have used many variations of the method
and under many different names. We adopt Dingsøyr’s
definition [46], such that retrospective analysis is a:

 “collective learning activity, which can be organized for
projects either when they end a phase or are terminated. The
main motivation is to reflect on what happened in a project in
order to improve future practice - for the individuals that have
participated in the project and for the organization as a whole.”

Dingsøyr lists the most common names for retrospective
analysis in [46]: ”project retrospectives”, ”post-mortem
analysis”, ”post-project review”, ”project analysis review”,
”quality improvement review”, ”autopsy review”, ”after action
review”, and ”touch down meetings”. In the software
architecture course, we have used a post-mortem analysis
(PMA) method that can be classified as a lightweight semi-
structured brainstorming process for eliciting experience from a
project. These characteristics fit well for a retrospective
analysis method used for student projects with limited time and
limited patience of the students.

The PMA method we used in the software architecture
course is a modified version of the method suggested by Birk
et al. [47]. The PMA process consists of four steps [28]:

1. PMA introduction: Introduce the PMA method and
explain the purpose of the review.

2. KJ-session 1: Elicit positive experience.

3. KJ-session 2: Elicit negative experience.

4. Causal map analysis: Perform root-course analysis on
the most important positive experience and the most
important negative experience using causal map.

A. KJ-session
The KJ-method is a focused brainstorm method [48],

resulting in affinity diagrams. KJ-sessions are conducted as
follows. Each participant receives a number of post-it notes and
is asked to write down what they regard as the most significant
experiences from the project. After everyone has finished
writing, each participant puts a note on a whiteboard while
explaining what he means by it. The process is repeated until
all the notes have been presented, as illustrated in Figure 1a).
Once all the notes have been placed on the whiteboard, the
whole group discusses them and groups them according to
similarity in concept. Each group of notes is then given a name,
as illustrated in Figure 1b). Possible connections between
groups can be marked with arrows if required. In our study,
each participant received five post-it notes and the entire
process was repeated twice; first for positive experiences (KJ-
session 1), then for negative experiences (KJ-session 2).

Figure 1. KJ example

B. Causal Map Analysis
The group selects a (positive or negative) experience they

want to analyze. All participants are given post-it notes and are
asked to write down the causes of the experience to be
analyzed. These notes are then presented and placed on the
whiteboard, much in the same way as when using the KJ-
method. The group then gathers at the whiteboard and groups
the causes where applicable. Arrows indicate the cause-effect
relationships. The members are then allowed to write new
notes that state deeper causes, or if causes are seen to be

missing, write those in and indicate them with arrows. When
the new causes have been placed on the whiteboard, the
process is iterated until the group is satisfied with the analysis.

Figure 2 shows a possible outcome of a causal map
analysis. The figure shows the resulting causal map from a
positive root-cause analysis on good assignment, which is an
identified group from the KJ-diagram in Figure 1. Here, every
oval represents a concept, every arrow indicates a cause-effect
relationship, and the whole map represents a specific situation.

Figure 2. Causal map example

C. Post-Mortem Analysis in Game Projects
The main motivation for bringing PMA into any software

project is to learn from own experiences in order to improve.
The improvement is a result of continuing the identified good
practices (successes) and changing the identified bad practices
(failures) into good practices. Game projects benefit also from
this same experience-based improvement process. One can
argue that PMA is even more important in game projects, as
game development teams are usually more diverse than
ordinary software teams consisting of programmers, artists,
designers, musicians, audio-engineers, testers, QA-staff,
modelers, etc. Because of the multi-disciplinary characteristics
of game development teams, it is very important to get
reflections from the various people involved to catch in
problems due to people from various professional background.
In the PMA conducted in the TDT4240 software architecture
course, the multi-disciplinary aspect was present to a large
degree, as the student were all programmers.

IV. RESEARCH APPROACH
The main contribution described in this paper is a summary

and a meta-analysis of the results of the students PMA of their
game project conducted in the context of a software
architecture course. The data in the analysis are collected from
PMA reports from 15 groups, which contain a positive and a
negative KJ-diagram, a positive and a negative causal map, and
experiences from conducting a PMA in a game development
project. This paper does not include an analysis of the PMA
data from the robot project, as the focus is only on the game
project. A comparison of game project and robot project can be
found in [49]. The analysis of data of the KJ-diagram and the
causal-maps must be performed in two different ways. For the
KJ-diagrams, it is possible to cluster similar item and identify
the most frequent positive and negative issues in the PMA
reports. However, this approach cannot be used for the causal-
maps as they represent an analysis of one particular case. In
order to analyze the results of the KJ-diagram, the following
approach was used:

1. Collect data: Extract the items identified in the KJ-
diagram in the PMA reports.

2. Group items according to main theme: All the KJ-
items was grouped according to a theme such as
Assignment (issues related to the assignment),
Programming (issues related to programming), and
Educational (issues related to learning).

3. Uniform items: Change to a uniform description of
items. In this step, all items were described on
according to a pre-defined pattern: [noun]
[adjective]/[verb] ([details]). Examples of uniform
descriptions of items can be “Assignment fun”, “XNA
good”, and “Group member bad”.

4. Merge items: Similar items were merged to the same
item description. Example of merging of items can be
“XNA framework good” and “XNA good” were
merged into “XNA good”.

5. Analysis: Find the most frequent themes that most
groups have covered, and find the most overall
frequent items found in the positive and negative KJ-
diagrams.

V. RESULTS
This section is divided into three main parts. The first part

describes the results of analyzing the KJ-diagrams, the second
part describes the most important root-cause analyses, and the
third part summarizes the students’ own experiences of
conducting a PMA in a game development project.

A. Results from Analyzing KJ-diagrams
The results from analyzing the KJ-diagrams consist of two

parts on two different abstraction levels: Themes the groups
have identified (high-level) and items (low-level).

1) Positive KJ-diagram Themes
The first part of the KJ-diagram analysis was to find the

themes most groups covered in their PMA. These themes were
found based on how the students grouped their items in the KJ-
diagram and identified what the students perceived as the most
important impacts on their project at a high abstraction level.
Figure 3 shows the distribution of themes from all groups that
were regarded as a success in relation to the game development
project.

Figure 3. Distribution of themes from positive KJ-diagrams

Figure 3 shows the 23% of items from the positive KJ-
diagrams were related to student group and group processes.
This is not a surprise, as the students have to work hard
together for two months in order to make a successful project.
16% of the items from the positive KJ-diagrams were related to
the result of the project. This result includes both the software
architecture documentation and the implementation of the
game itself. 12% of the items from the positive KJ-diagrams
were related to the XNA game framework. Even though the
students had to learn a new game framework as a part of the
software architecture course, most students regarded this as a
good thing. 9% of items from the positive KJ-diagrams were
related to the three themes educational – that the students
learned from the project, assignment – the assignment was

regarded as exciting, challenging and fun, and game
development – most students found it fascinating to learn how
to develop a game. 6% of the items found from the positive KJ-
diagrams were related to the two themes process – the software
development process, and the software architecture (SWA) –
apply a software architecture in practice. The remaining items
were related to positive aspects of C# (4%), the game the
students developed (3%), and other minor issues (3%).

2) Negative KJ-diagram Themes
The negative KJ-diagram themes were found based on how

the students grouped their items in the KJ-diagram and
identified what the students perceived as the most important
negative impacts on their project at a high abstraction level.
Figure 4 shows the distribution of themes from all groups that
were regarded as challenges or problems in the game
development project.

Figure 4. Distribution of themes from negative KJ-diagrams

Figure 4 shows the 20% of items from the negative KJ-
diagrams were related to software development process.
Typical issues were bad planning, bad estimation of resources,
poor follow-up and problems with coordination. 15% of the
items from the negative KJ-diagrams were related to the
software architecture (SWA). These issues ranged from
problems applying software architecture to a game to
understanding the concepts of software architecture. 12% of
the items from the negative KJ-diagrams were related to
problems related to group, group members and group
dynamics. 10% of items from the negative KJ-diagrams were
related to documentation. Documentation issues ranged from
too much documentation required to problems maintaining an
updated documentation of the project. 6% of the items from the
negative KJ-diagrams were related to the three themes
difficulties related to game development, technical problems
related to hardware and software issues and challenges of
handling the XNA framework. Other identified themes from the
negative KJ-diagrams lack of usefulness of the ATAM (5%),
problems related to coding (4%), ambiguity in assignment
documents (4%), lack of support from course staff (4%),
problems with Visual Studio (VS) (3%), and other issues (5%).

In the next two sections, we will look further into details
about the specific positive and negative issues related to the
game development project.

3) Positive KJ-diagram Items
The second part of the KJ-diagram analysis consisted of

looking at all issues identified in the students’ KJ-diagram,
clustering the items by describing them in an uniform way,
merging similar descriptions, and counting the number of items
identified by several groups. Table I shows a sorted list of
positive items identified by 20% of the groups or more. Note
that the descriptions of items are rephrased from original
wording (short keyword description) to improve readability.

Table I shows that the positive item identified by two out of
three groups was that they learned C# from the doing the game
development project. As most of our students are technology
focused and only knew Java from before, this was not a big
surprise. We can recognize the same trend in that 60% of the
groups identified the positive effect of learning XNA through
the project, XNA was regarded as exciting, fun and user
friendly (26.67%), and that it was positive to learn how to use
Visual Studio (20%).

TABLE I. POSITIVE ITEMS FROM KJ-DIAGRAMS

Description of positive KJ-item % of grps
1 Learned C# 66,67 %
2 Collaboration was good 60,00 %
3 Learned XNA 60,00 %
4 Game development is fun 53,33 %
5 Assignment was fun 46,67 %
6 Group members were good 46,67 %
7 Assignment that produces a real result 40,00 %
8 Games are fun 40,00 %
9 Group was good 26,67 %
10 Learned software architecture from practical project 26,67 %
11 Work distributed in the group was good 26,67 %
12 XNA was exciting 26,67 %
13 XNA was fun 26,67 %
14 XNA was user friendly 26,67 %
15 Assignment was challenging 20,00 %
16 Made the final delivery before the deadline 20,00 %
17 Game concept was good 20,00 %
18 Game was working 20,00 %
19 Graphical work is fun 20,00 %
20 Group dynamics was good 20,00 %
21 Group members were skilled 20,00 %
22 Group was motivated 20,00 %
23 Learned a lot 20,00 %
24 Motivation was good 20,00 %
25 Project was fun 20,00 %
26 The Software Architecture was good 20,00 %
27 Learned Visual Studio 20,00 %

Issues related to group and group dynamics are also clearly
prominent in Table I with identified items like collaboration
was good (60%), group members were good (46.67%), group
was good (26.67%), and work distribution in group was good
(26.67%). Based on observations from previous years, it seams
that the game development project has improved the group
dynamics in the software architecture course. A possible

explanation for this could be that the groups get a stronger
ownership to the project, as the product is specified by
themselves and not by the course staff like for the robot
project.

One of the reasons for introducing a game project in a
software architecture course was to motivate the students to put
more effort into the project and get motivated to take the
course. The results in Table I shows that a game development
project motivates the students: game development is fun
(53.33%), assignment is fun (46.67%), games are fun (40%),
assignment with a real result (40%), motivation was good
(20%), and project was fun (20%).

For the game development project to be successful in the
software architecture course, the students must learn software
architecture. The KJ-item analysis revealed that in addition to
learning new technology, the students identified positive
effects of learning software architecture through the project:
learned software architecture from a practical project (26.67%),
assignment was challenging (20%), and learned a lot (20%).
Also other KJ-items identified by less that 20% of the groups
were related to learning software architecture (not shown in
Table I), such as assignment shows need for good software
architecture, ATAM evaluation was good, made a reusable
game framework, various architecture and design patterns were
learned, software architecture eased the development, and
learned how to document a software architecture.

4) Negative KJ-diagram Items
The last part of the KJ-diagram analysis was to identify

recurring negative KJ-items described by the students in their
PMA reports. Table II shows a sorted list of negative items
identified by 20% of the groups or more.

Table II shows by far that the major headache in the game
development project was shortage of time (80%). This problem
is routed in over-ambitious game design and software
architecture, starting to late with the project (20%) and time
pressure from other courses (26.67%). All projects were
delivered within a couple day after then deadline. Some project
suffered from having incomplete implementation, but most
projects were complete. In this course, students have a
tendency to underestimate the effort to make a proper report
and to make a proper implementation. 60% of the groups
reported that the documentation required in this course was
massive. One third of the groups reported that documentation
was boring in their negative KJ-diagram. Another
documentation issue was that one third of the groups found the
documents requirements unclear. Other document-related
negative items found in KJ-diagrams in less than 20% of the
groups (not in Table II) included documentation got too low
priority, the document templates were to rigid, the updating of
documents were bad, the documentation was complex, and that
document requirements were not always followed. The
assignment requires the students to document the software
architecture according to the IEEE 1471 [23], which feels like
an overkill for many of the students. However, to make proper
software architecture documentation is a part of the education
goal of the course and must be a part of the course even if
students find this part boring and annoying. The students’ KJ-

diagrams reveals that there is room for improving
documentation templates and document requirements.

TABLE II. NEGATIVE ITEMS FROM KJ-DIAGRAMS

Description of positive KJ-item % of grps
1 Time was too short 80 %
2 Documentation was massive 60,00 %
3 ATAM was useless 46.67 %
4 Document requirements were unclear 33.33 %
5 Documentation is boring 33.33 %
6 Group meeting scheduling was difficult 33.33 %
7 Planning was bad 33.33 %
8 Quality attribute had too little focus 33.33 %
9 XNA was unknown 33.33 %
10 C# was unknown 26,67 %
11 Communication was bad 26,67 %
12 Game development was unknown 26,67 %
13 PC lab was limited 26,67 %
14 Process was bad 26,67 %
15 Time pressure from other courses 26,67 %
16 Visual Studio was unknown 26,67 %
17 XNA is Windows only 26,67 %
18 ATAM feedback was not used 20,00 %
19 Code was messy 20,00 %
20 Cooperation was bad 20,00 %
21 Course staff give feedback late 20,00 %
22 Feedback from course was poor 20,00 %
23 Game logics took too much time 20,00 %
24 Group members were not punctual 20,00 %
25 Patterns were not implemented 20,00 %
26 Quality attribute was difficult 20,00 %
27 Sickness of group member 20,00 %
28 Sleep little in the last part of the project 20,00 %
29 Started too late with the project 20,00 %
30 Subversion (SVN) and Visual Studio caused problems 20,00 %
31 Software architecture focus difficult due to XNA 20,00 %

46.67% of the groups described ATAM as useless in their
KJ-diagram and that the feedback from the ATAM session was
not used (20%). ATAM is an evaluation method where the
software architecture is evaluated against specified quality
requirements (quality scenarios). In our course, one group acts
as the evaluation team investigating another group’s
architecture. After completing the evaluation of one group, the
two groups switch roles. The educational goals of this part of
the project are 1) to force the students to learn the ATAM, and
2) to give the students an opportunity to get feedback on their
software architecture. The first goal is not so hard to achieve,
but the second goal is harder as the students lack experience to
give useful feedback on software architecture decisions. A
possible approach to improve issues related to the ATAM is for
course staff to participate more actively in the ATAM-sessions.
The second education goal of ATAM would benefit from this
approach, but the first would most likely suffer.

Large portion negative items found in the students’ KJ-
reports are related to the group and how the groups/project
were organized. One third of the groups found it difficult to
schedule group meetings, and planned the project badly. Other
related issues identified were bad communication (26.67%),
bad process (26.67%), bad cooperation (20%), not punctual
group members (20%), sickness (20%), and little sleep in the

last part of the project (20%). These issues are perfectly normal
challenges most team-based projects have to face.

Several groups also reported negative issues that were
related to the software architecture domain, such as the quality
attribute had too little focus in the project (33.33%), quality
attribute specification and usage were difficult (20%), software
architectural patterns and design patterns were not
implemented (20%), and it was difficult to focus on the
software architecture due to constraints in XNA (20%). For
most students, the most challenging part of the software
architecture course is to go from specifying the requirements
and software architecture of an application (game) to
implement the game accordingly. XNA puts restrictions on
how the software architecture can be designed, which can be
difficult to comprehend by the students in the first phase of the
project. To succeed, the project groups need to re-design the
architecture and implement the game through several iterations.
This concept is new and challenging for the students as they
are used to the waterfall software process [50]. Another
possible explanation for negative issues related to the software
architecture domain can be that 20% of the groups reported that
they got feedback on their software architecture late during the
project and that 20% reported that the feedback on the software
architecture from the course staff was poor.

Other issues that were a challenge in the game development
project are related to learning new technology and issues
related to this technology. One third of the groups mentioned
that XNA was unknown, and 26.67% that C# and Visual
Studio were unknown. The main effect of the new technology
was that the students had to spend extra time to learn a new
programming language (although very similar to Java), a new
programming framework, and a new programming
environment. The course staff were considering using game
frameworks in Java, but did not find any that provided a high-
level API, expressiveness, maturity, flexibility, and the level of
performance found in XNA [51]. Other negative issues related
to choosing XNA as a developing platform was that it runs
only on Windows (26.67%), it was difficult to provide
sufficient PC labs (26.67%) as thin-clients are used, and it was
difficult to get configuration-tool Subversion to work with
Visual Studio (20%). More and more students have laptops
running Mac OS X and Linux, making it hard to work with
XNA, which only runs on Windows.

Game development was identified in the KJ-diagrams to
have a negative impact on the project. 26.67% of the groups
identified the problem that game development was an unknown
domain (26.67%), and 20% documented that it took too much
time to implement the game logics.

B. Root-cause Analysis / Causal Maps
The second part of the PMA performed by the students

consisted of a root-cause analysis where the students focused
on finding the causes for the most important successes and the
most important challenge or problem in the project. The result
of the root-cause analysis was one positive and one negative
causal-map per group.

1) Positive Root-cause Analysis/Causal maps
Figure 5 shows the distribution of topics the students

focused on in their positive root-cause analysis.

Figure 5. Distribution of topics described in positive causal maps

Almost half of the groups (46%) focused on that the project
produced a good product being the game, the architecture, or
the implementation. One third of the groups (33%) focused
their positive causal root analysis on that they had a good
process in their project. Sub topics for the good process were
no problems during implementation, finished the project in
time and good group cooperation. The remaining groups did a
root cause analysis on topics “fun to make a game” (7%), “the
game design worked” (7%), and “increased experience” (7%).

Figure 6 shows a positive causal map from a group that
focused on “Nice product”. The figure shows a mixture of a
good development process, the focus on the software
architecture, XNA, fun assignment, and skilled group members
that caused the success of the project and the product. This
causal map is very representative for groups that focus their
root cause analysis on good product.

Figure 6. Positive causal map for nice product

Figure 7 (on next page) shows a positive causal map from a
group that focused on “Good process”.

Figure 7. Positive causal map for “Good process”

The causal map in Figure 7 reveals that game development
projects benefits from being inspirational and they allow the
students to use their creativity. The causal maps also reveals
that XNA had a positive effect on the development process.
Four out of five of the groups (80%) that focused on “Good
process” in their positive root cause analysis mention XNA as a
positive contribution in their causal map.

2) Negative Root-cause Analysis/Causal maps
Figure 8 shows the distribution of topics the students

focused on in their negative root-cause analysis.

Figure 8. Distribution of topics described in positive causal maps

The pie diagram in Figure 8 shows that the three major
problems or challenge in the game development project were
related to the implementation (33%), the development process
(33%), and issues concerning the software architecture (27%).
Negative issues related to the implementation were suboptimal
implementation, performance problems, challenges to
implement physics, and incomplete implementation. Negative
issues related to the process were that the plan was not

followed, bad documentation process, intense work in the last
moment, bad time management, and insufficient level of effort.
Negative issues related to the software architecture were
difficulties to focus on quality attributes (quality requirements),
challenges related to ATAM and wrong architectural approach.
Finally, 7% of the groups performed a root cause analysis
related to unclear report requirements (documentation).

Figure 9 shows a negative causal map from a group that
focused on “Incomplete implementation” (implementation).

Figure 9. Negative causal map for “Incomplete implementation”

The figure shows that the main causes for an incomplete
implementation was found to be insufficient computer labs,
trivialization of the scope of project, lack of experience and too
little communication. These are typical issues identified by
several groups.

Figure 10 shows a negative causal map from a group that
focused on “ Did not exactly follow plan and documents“
(process).

Figure 10. Negative causal map for “Not exactly follow plan”

Figure 10 shows typical issues that caused problems related
to following the process and documentation, such as poor
prestudy of XNA, poor XNA introduction from course staff,
and little documentation during implementation. The latter is
always a problem for students project, as they tend to do the

fun bit first (programming) and postpone the boring parts
(documentation).

Figure 11 shows a negative causal map from a group that
focused on “ Wrong architectural approach“ (architecture).

Figure 11. Negative causal map for “Wrong architectural approach”

The most recurring issues related to software architecture
problems by several groups are that they do not read required
syllabus during the project and that they have too much focus
on game design instead of architectural design. The latter is one
of the main disadvantages of introducing a game development
project in a software architecture course.

C. Experiences from Performing a PMA in a Game
Development Project
The overall comments about doing the PMA as a part of a

game development project was very positive from all groups.
Our PMA sessions last for four hours in total, and most
students expressed that this time was well spent. Few groups
mentioned that the PMA could just have been done through
just talking about the project, but the majority found it very
useful to have a more structured way of brainstorming about
the positive and negative aspects of the project. Here are some
examples of the experiences expressed in the students PMA
reports:

“Through the session we identified both factors which had
made the project go more fluidly, e.g. the group members
experience, the XNA framework, and factors that made the
project more difficult, e.g. a short time frame, lack of
experience with C# and problems grasping the testability
tactics in the book.”

“During the brainstorming analyzing the positive and
negative experiences and the reasons for it we got quite
excited. We realized that even though we had thought about the
negatives and the positives during the project, there were some
that we forgot or took for granted like a great group room and
well-organized project from the staff’s side. We had also
thought little of how some of the experiences had an effect
overall. All in all we think PMA is quite useful to mark the end
of that development stage and notice important experiences to
take with you for the next project.”

“We had never participated in a PMA before and were
curious about the execution of and results from such an event.
Our main concern was dealing with more paper work, but was

positively surprised by the post-it workshop and time set off to
discuss.”

“It is very useful for next projects we will develop in future
actions since we learnt the causes of positive and negative
aspects when developing a game/project.”

“We learned that skilled and experienced programmers are
valuable, in both the documentation phase, the ATAM session
and of course during implementation. We had to learn a great
deal about XNA and C# - in addition to methods and
architectural theory, that now makes us more competent of
doing such a project if we were to do it once again. We also
confirmed that it was the right thing to choose the game
project.”

“By brainstorming, we discussed about the positive and
negative aspects of the project. This is a good way to
understand how to improve our implementation process: in
fact, we can know both which steps we did in a good way and
which steps we didn’t’ do enough good and must be improved
in the next projects.”

“The group came very far on a good concept, but having
good quality in the code (well modularized and commented
code) eases the development process and saves time.”

“The group learned the importance of a good project
management and the use of internal milestones to increase the
effort at an early stage. “

 “In our project the open discussion around was the best
experience, it led us to think about the project in a different
way than we normally do, and the group was able to make
some conclusions that was not that clear in the first place.”

The experiences from students on the PMA indicate that the
PMA-methods used in our software architecture course should
be well suited to be used in commercial game development
project as well. Such PMA sessions do not required much time
(four-hours) and is easy to learn and comprehend.

VI. DISCUSSION AND LEASSONS LEARNED
In this section, we will discuss the main problems and

challenges in the game development project identified by the
students in the PMA and present some course improvements to
limit the negative effects of having a game development
project in a software architecture course.

The overall feedback from the students was positive to
learn software architecture through a game development
project. However, the PMA revealed several issues that are
possible to improve in future versions of the course.

Although, most students were very pleased having XNA as
a development platform in the software architecture course,
there is room for improvement. From the students’ feedback,
the introduction of XNA needs to be improved to make it
easier to learn the new technology. Another issue was students
with laptops not running Windows. One solution could be to
help the students to make it possible to run more than one
operating system on the laptop (this is possible both for Linux
and Mac OS X). Another solution is to use the monoxna cross
platform implementation of Microsoft’s XNA framework [52].

However, the monoxna project is still in early developing
phase. In addition, the PC labs need to be upgraded with
standalone PCs that can be used for game development (not
thin-clients like today). Another issue that was raised by the
students was that they did not understand enough of XNA and
the constraints of XNA to design a proper software architecture
that builds upon the framework. A solution to this problem is to
extend the COTS exercise in phase one of the project (see
Section II-C) to make the students learn the architectural
aspects of XNA better. If the COTS exercise is extended the,
pattern exercise must be changed, reduced or eliminated.
Another approach could be to combine the two first exercises
(COTS and pattern) in one bigger exercise where the students
have to learn XNA and to learn architectural and design pattern
in the context of XNA. This approach would help the students
to reflect on the architectural constraints of XNA. Gestwicki
and Sun describe on approach of how to teach design patterns
through game development [53].

Limited time was the main challenge for most groups in the
game development project. For many groups, starting too late
on the implementation is the main reason for the limited time
problem. This problem is most likely due to that the
implementation phase of the project has allocated most time,
and the students have a tendency to wait until the very last
moment to start doing the work. A possible course
improvement to minimize this negative effect would to make
the students deliver an intermediate result during the
implementation phase. This would force the students to start
the implementation earlier and in addition improve their
software architecture and implementation based on the
feedback from course staff.

Many groups identified the ATAM evolution to be useless.
This is not an easy problem to solve. It is important that the
students learn how to be the evaluation team in an ATAM
process as well as being evaluated. Thus, due to lack of
experience the result of the ATAM evaluation is less likely to
be as useful as a real ATAM evaluation would be. A possible
course improvement could be to use course staff in the
beginning of the ATAM sessions as a part of the evaluation
team to help the evaluation team to look into the right things.
Currently, this is a resource problem as there are only five
persons (including student assistants) are involved in teaching
the course and only one has practical ATAM experience.

The PMA analysis revealed some issues that must be
improved: feedback from course staff on the students
deliveries, document templates and improved teaching on the
process of game development.

VII. RELATED WORK
To our knowledge, an analysis of students’ post-mortem

analysis of their own game development projects in the context
of a software architecture course is unique and is not published
elsewhere. This section presents related work that describes
evaluation of using game development project in computer
science and software engineering courses, and some other work
related to computer science or software engineering and game
development.

Sweedyk and Keller describe how they introduced game
development in an introductory SE course [54]. The students
learned principles, practices and patterns in software
development and design through three projects. In the first
project, the students were asked to develop a 2D arcade game
with a theme based on campus life using the POP framework
over four weeks. The educational focus of the first project was
to gain familiarity with UML tools, learn and use a variety of
development tools and gain understanding of game architecture
and the game loop. In the second project, the students built a
one-hole miniature golf game over five weeks. The educational
focus of the second project was on learning and practicing
evolutionary design, prototyping and re-factoring, usage of
UML design tools, usage of work management tools and
design and implementation of a test plan. In the third and final
project, the students developed a game of their own choice
over five weeks. In this phase, the learning objectives were to
reinforce the practices and principles learned in two previous
projects, learn to apply design patterns and practice
management of complex software projects. The students’
response to this SE course has according to the authors been
extremely positive. They argue that game projects allow them
to better achieve the learning objectives in the SE course. Their
main concern was related to gender, as women were less
motivated to learn SE through game development projects. The
main difference with Sweedyk and Keller’s approach and ours
was that they have introduced three projects instead of one, and
the SE focus is different. For our purpose, more than one
project would take away the focus on the software architectural
learning and miss the opportunity to follow the evolution of the
software architecture through one project. The evaluation of the
game projects in [54] was a survey and was not a depth
evaluation of the project like presented in this paper.

Kajal and Mark Claypool describe another SE course where
a game development project was used to engage the students
and make the course more fun [55]. In this course, the students
worked with one game project where the students had to go
through all the phases in a software development process. The
preliminary results of comparing the game-based SE course
with a traditional SE course showed that the game version had
higher enrollment, resulted in average higher grades, a higher
distribution of A grades, and had a lower number of dropouts.
The feedback from the students in a survey conduced during
the course was also very positive. The focus of the evaluation
described in [55] was very different than in our study and
focused on the course and not the project in particular.

Volk describes how a game engineering course was
integrated into a CS curriculum motivated by the fact that game
development projects are getting more and more complex and
have to deal with complex CS and SE issues [56]. The
evaluation of the project was carried out in form of post-
mortems during the post-production phase of the project
similar to what described in this paper. However, the actual
post-mortem method used is not described. The experiences
from running this course showed that it was a good idea handle
the game engineering course more in a form of a real project,
that the students were very engaged in the course and the
project, that the lack of multidisciplinary teams did not hinder
the projects, that the transition from pre-production to

production was difficult (extracting the requirements), and that
some student teams were overambitious for what they wanted
to achieve in their project. Compared to our study, the only
similar finding was a tendency of overambitious teams.

McGovern and Fager describe how introductory AI was
taught in the context of an arcade-style gaming environment
[57]. The students were asked in a project to implement three
fundamental areas of AI (search, learning and planning) in an
already existing Spacewar game implementation. The learning
experience was evaluated using an anonymous survey where
the students should answer questions according to the Likert
scale as well as add comments of their own. The data analyzed
from the survey showed that the introduction of game had
made a significant contribution to the learning experience, and
motivated the students to take more AI courses. The project
described in this project is very different from our project, as
the students are only asked to add minor parts of code to an
existing system, while our students have to develop a game
from scratch. McGovern and Fager’s finding of improved
learning experience is alignment with our finding that showed
that students are motivated doing projects related to games.

Drake and Kerr describe an undergraduate course in
software development where the students develop a computer
strategy game using extreme programming (XP) [58]. They
argue that it is possible for undergraduate students to work on
large real-world projects such as a strategy game. The
evaluation of the student projects revealed some of the issues
found in our analysis of the students’ PMA such as it was hard
to create an architecture for the game early in the project, the
students were over-optimistic of how much they could
implement within the allocated time, that some games were a
bit fragile, and that the students were excited about the project.
As the students in Drake and Kerr’s study used XP, the
students managed to get a lot of the work in the project done in
an early phase unlike many of our students that got a very
heavy workload at the end of the project.

Youngblood describes how XNA game segments can be
used to engage students in advanced computer science
education [59]. Game segments are developed solution packs
providing the full code for a segment of a game with a clear
element left for implementation by a student. The paper
describes how XNA was used in an AI course where the
students was asked to implement a chat bot, motion planning,
adversarial search, neural networks and flocking. Finally the
paper describes seven design-principles specific for using game
segments in CS education based on lessons learned. Game
segments are not particularly relevant to a software architecture
course since they put to heavy constrains on the design of the
software architecture.

There are also some other papers that describes computer
science or software engineering courses where game have been
used as a part of the course [10, 60-61], but these they do not
give any insight into the students’ perception of the project.

VIII. CONCLUSION
This paper has described an evaluation of a student game

development project introduced in a software architecture
course seen from the students’ perspective. The issues that

contributed most to the positive aspects of the project were
found to be related to the group or group processes, the product
of the project, XNA, learning, the assignment, and doing game
development. More specifically, the issues that contributed
most to a positive project experience were that the students had
positive experience with and learned C# and XNA, the group
work and collaboration in the group were good, game
development and the games were fun, the assignment was fun,
and that they learned software architecture from a practical
project. The most prominent issues that contributed to a
negative perception of the game development project were
related to difficult development process, the software
architecture or software architecture theory, group issues and
the documentation. More specifically, three issues that were
perceived most negative by the students in relation to the
project were that the time was too short, the documentation
was too massive, and that ATAM was useless. Several groups
also reported that it was difficult to focus on the software
architectural issues of the project instead of game design and
that XNA made it difficult to design and implement the
architecture. The choice of using XNA as the game
development platform in the software architecture course had
both positive and negative effects on the project. Most students
were positive to the technology and to learning the technology.
However, some students felt that the XNA made it harder to
design and implement the architecture and lost time in the
project in having to learn new technology and tools. XNA
being a Windows only platform is also an issue as more and
more students run different operating systems on their laptops.

The results from PMA also revealed areas that should be
improved in the course such as better and faster feedback on
project deliveries, a dedicated PC lab for game development,
better introduction to the COTS, more course staff guidance in
ATAM sessions, and changes of the COTS exercise to include
architectural and design patterns to give a better starting point
when designing the software architecture.

Based on the overall results from the students’ PMA, we
conclude that introducing the game development project in the
software architecture course was a good idea. The main
benefits are motivated students, interesting assignment, good
products (software architectures and games), ownership of the
product, and good group processes. The main challenge is
some students can loose focus on software architecture and
spend too much time on game design and game
implementation.

Finally, the students’ feedback from conducting our
particular PMA session was very positive. The PMA session,
which consists of doing a positive and a negative KJ-diagram
session (structured brainstorming) and a positive and a negative
causal-map session (root-cause analysis), is a very effective
method for revealing positive and negative issues in game
development projects and learning to improve in future projects

ACKNOWLEDGMENT
We would like to thank the 2008 students of TDT 4240

software architecture course at the Norwegian University of
Science and Technology for providing the necessary
information. We would also like to thank Richard Taylor and

Walt Scacchi at the Institute for Software Research (ISR) at
University of California, Irvine (UCI) for providing a
stimulating research environment and for hosting a visiting
researcher from Norway. This work has been sponsored by the
Leiv Eriksson mobility program offered by the Research
Council of Norway.

REFERENCES
[1] R. Rosas, M. Nussbaum, P. Cumsille, V. Marianov, M. Correa, P.

Flores, V. Grau, F. Lagos, X. López, V. López, P. Rodriguez, and M.
Salinas, "Beyond Nintendo: design and assessment of educational video
games for first and second grade students," Comput. Educ., vol. 40, pp.
71-94, 2003.

[2] M. Sharples, "The design of personal mobile technologies for lifelong
learning," Comput. Educ., vol. 34, pp. 177-193, 2000.

[3] A. Baker, E. O. Navarro, and A. v. d. Hoek, "Problems and
Programmers: an educational software engineering card game," in
Proceedings of the 25th International Conference on Software
Engineering Portland, Oregon: IEEE Computer Society, 2003.

[4] L. Natvig, S. Line, and A. Djupdal, "Age of Computers: An Innovative
Combination of History and Computer Game Elements for Teaching
Computer Fundamentals," Proceedings of the 2004 Frontiers in
Education Conference, 2004.

[5] E. O. Navarro and A. v. d. Hoek, "SimSE: an educational simulation
game for teaching the Software engineering process," in Proceedings of
the 9th annual SIGCSE conference on Innovation and technology in
computer science education Leeds, United Kingdom: ACM, 2004.

[6] B. A. Foss and T. I. Eikaas, "Game play in Engineering Education -
Concept and Experimental Results," The International Journal of
Engineering Education vol. 22, 2006.

[7] G. Sindre, L. Nattvig, and M. Jahre, "Experimental Validation of the
Learning Effect for a Pedagogical Game on Computer Fundamentals,"
IEEE Transaction on Education, vol. 52, pp. 10-18, 2009.

[8] A. I. Wang, O. K. Mørch-Storstein, and T. Øfsdal, "Lecture quiz - a
mobile game concept for lectures," IASTED International Conference
on Software Engineering and Application (SEA 2007), November 19-21
2007.

[9] A. I. Wang, T. Øfsdal, and O. K. Mørch-Storstein, "An Evaluation of a
Mobile Game Concept for Lectures," in Proceedings of the 2008 21st
Conference on Software Engineering Education and Training - Volume
00: IEEE Computer Society, 2008.

[10] M. S. El-Nasr and B. K. Smith, "Learning through game modding,"
Comput. Entertain., vol. 4, p. 7, 2006.

[11] B. Wu, A. I. Wang, J.-E. Strøm, and T. B. Kvamme, "An Evaluation of
Using a Game Development Framework in Higher Education," in
Proceedings of the 2009 22nd Conference on Software Engineering
Education and Training - Volume 00: IEEE Computer Society, 2009.

[12] N. Holmes, "Digital Technology, Age, and Gaming," Computer, vol. 38,
pp. 108-107, 2005.

[13] A. Sliney, D. Murphy, and J. Doc, "A Serious Game for Medical
Learning," First international Conference on Advances in Computer-
Human interaction, February 10-15 2008.

[14] F. Mili, J. Barr, M. Harris, and L. Pittiglio, "Nursing Training: 3D Game
with Learning Objectives," Proceedings of the First international
Conference on Advances in Computer-Human interaction, pp. 10-15,
2008.

[15] L. v. Ahn, "Games with a Purpose," Computer, vol. 39, pp. 92-94, 2006.
[16] S. Caltagirone, M. Keys, B. Schlief, and M. J. Willshire, "Architecture

for a massively multiplayer online role playing game engine," J.
Comput. Small Coll., vol. 18, pp. 105-116, 2002.

[17] E. F. Anderson, S. Engel, P. Comninos, and L. McLoughlin, "The case
for research in game engine architecture," in Proceedings of the 2008
Conference on Future Play: Research, Play, Share Toronto, Ontario,
Canada: ACM, 2008.

[18] J. Blow, "Game Development: Harder Than You Think," Queue, vol. 1,
pp. 28-37, 2004.

[19] D. Callele, E. Neufeld, and K. Schneider, "Emotional Requirements,"
IEEE Softw., vol. 25, pp. 43-45, 2008.

[20] P. Clements and R. Kazman, Software Architecture in Practices:
Addison-Wesley Longman Publishing Co., Inc., 2003.

[21] J. Coplien, O., "Software design patterns: common questions and
answers," in The patterns handbooks: techniques, strategies, and
applications: Cambridge University Press, 1998, pp. 311-319.

[22] D. Perry, E. and A. L. Wolf, "Foundations for the study of software
architecture," SIGSOFT Softw. Eng. Notes, vol. 17, pp. 40-52, 1992.

[23] M. W. Maier, D. Emery, and R. Hilliard, "ANSI/IEEE 1471 and systems
engineering," Systems Engineering, vol. 7, pp. 257-270, 2004.

[24] P. Kruchten, "The 4+1 View Model of Architecture," IEEE Softw., vol.
12, pp. 42-50, 1995.

[25] A. I. Wang and T. Stålhane, "Using Post Mortem Analysis to Evaluate
Software Architecture Student Projects," in Proceedings of the 18th
Conference on Software Engineering Education \& Training: IEEE
Computer Society, 2005.

[26] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J.
Carriere, "The Architecture Tradeoff Analysis Method," Fourth IEEE
International Conference on Engineering Complex Computer Systems,
1998.

[27] A. BinSubaih and S. Maddoc, "Using ATAM to Evaluate a Game-based
Architecture," Workshop on Architecture-Centric Evolution (ACE
2006), June 3-7 2006.

[28] F. O. Bjørnson, A. I. Wang, and E. Arisholm, "Improving the
effectiveness of root cause analysis in post mortem analysis: A
controlled experiment," Inf. Softw. Technol., vol. 51, pp. 150-161, 2009.

[29] WSU, "Download WSU_KSuite_1.1.2.,"
http://carl.cs.wright.edu/page11/page11.html, March 12 2009.

[30] T. Lozano-Pérez, In Preface to Autonomous Robot Vehicles. New York,
NY: Springer Verlag, 1990.

[31] A. Elfes, "Sonar-based real-world mapping and navigation," in
Autonomous robot vehicles: Springer-Verlag New York, Inc., 1990, pp.
233-249.

[32] R. Simmons, "Concurrent Planning and Execution for Autonomous
Robots " IEEE Control Systems, vol. 1, pp. 46-50, 1992.

[33] S. A. Shafer, S. A. Stentz, and C. E. Thorpe, "An Architecture for
Sensor Fusion in a Mobile Robot," Proceedings of the IEEE
International Conference on Robotics and Automation, pp. 2002-2011,
April 7-10 1986.

[34] D. Toal, C. Flanagan, C. Jones, and B. Strunz, "Subsumption
architecture for the control of robots," ACM SIGCSE Bulletin, vol. 37,
pp. 138-142, September 2005.

[35] R. Lumia, J. Fiala, and A. Wavering, "The NASREM Robot Control
System and Testbed," International Journal of Robotics and Automation,
vol. 5, pp. 20-26, 1990.

[36] Microsoft, "XNA Development Center," http://msdn.microsoft.com/en-
us/xna/, March 12 2009.

[37] Microsoft, "The C# Language," http://msdn.microsoft.com/en-
us/vcsharp/aa336809.aspx, March 12th 2009.

[38] C. Vichoido, M. Estranda, and A. Sanchez, "A constructivist educational
tool: Software architecture for web-based video games," 4th Mexican
International Conference on Computer Science (ENC 2003), pp. 8-12,
September 2003.

[39] J. Krikke, "Samurai Romanesque, J2ME, and the Battle for Mobile
Cyberspace," IEEE Computer Graphics and Applications, vol. 23, pp.
16-23, 2003.

[40] G. Booch, "Best Practices in Game Development," in IBM presentation,
2007.

[41] A. Grossman, Post Mortems from Gamedeveloper: Elsevier, 2003.
[42] R. Darken, P. McDowell, and E. Johnson, "The Delta3D Open Source

Game Engine," IEEE Comput. Graph. Appl., vol. 25, pp. 10-12, 2005.
[43] Y. Rabin, Introduction to Game Development: Course Technology

Cengage Learning, 2008.
[44] A. Rollings and D. Morris, Game Architecture and Design - A New

Edition: New Riders Publishing, 2004.

[45] L. Rising and E. Derby, "Singing the Songs of Project Experience:
Patterns and Retrospectives," The Journal of Information Technology
Management, vol. 16, pp. 27-33, 2003.

[46] T. Dingsøyr, "Postmortem reviews: purpose and approaches in software
engineering," Information and Software Technology, vol. 47, pp. 293-
303, 2005.

[47] A. Birk, T. Dingsøyr, and T. Stålhane, "Postmortem: Never Leave a
Project without It," IEEE Softw., vol. 19, pp. 43-45, 2002.

[48] R. Scupin, "The KJ Method: a technique for analyzing data derived from
Japanese ethnology," Human Organization, vol. 56, pp. 233-237, 1997.

[49] A. I. Wang, "An Extensive Evaluation of Using a Game Project in a
Software Architecture Course," Submitted to Transaction on Computing
Education (ACM). March 2009.

[50] W. W. Royce, "Managing the Development of Large Software Systems:
Concepts and Techniques," Proc. WestCon, August 1970.

[51] A. I. Wang and B. Wu, "An Application of Game Development
Framework in Higher Education," International Journal of Computer
Games Technology, Special Issue on Game Technology for Training
and Education, vol. 2009, 2009.

[52] monoxna-project, "monoxna - Google Code,"
http://code.google.com/p/monoxna/, April 4 2009.

[53] P. Gestwicki and F.-S. Sun, "Teaching Design Patterns Through
Computer Game Development," J. Educ. Resour. Comput., vol. 8, pp. 1-
22, 2008.

[54] E. Sweedyk and R. M. Keller, "Fun and games: a new software
engineering course," in Proceedings of the 10th annual SIGCSE
conference on Innovation and technology in computer science education
Caparica, Portugal: ACM, 2005.

[55] K. Claypool and M. Claypool, "Teaching software engineering through
game design," in Proceedings of the 10th annual SIGCSE conference on
Innovation and technology in computer science education Caparica,
Portugal: ACM, 2005.

[56] D. Volk, "How to embed a game engineering course into a computer
science curriculum," in Proceedings of the 2008 Conference on Future
Play: Research, Play, Share Toronto, Ontario, Canada: ACM, 2008.

[57] A. McGovern and J. Fager, "Creating significant learning experiences in
introductory artificial intelligence," in Proceedings of the 38th SIGCSE
technical symposium on Computer science education Covington,
Kentucky, USA: ACM, 2007.

[58] P. Drake and N. Kerr, "Developing a computer strategy game in an
undergraduate course in software development using extreme
programming," J. Comput. Small Coll., vol. 22, pp. 39-45, 2006.

[59] G. M. Youngblood, "Using XNA-GSE Game Segments to Engage
Students in Advanced Computer Science Education," 2nd Annual
Microsoft Academic Days Conference on Game Development, February
22-25 2007.

[60] Y. Rankin, A. Gooch, and B. Gooch, "The impact of game design on
students' interest in CS," in Proceedings of the 3rd international
conference on Game development in computer science education Miami,
Florida: ACM, 2008.

[61] J. Ryoo, F. Fonseca, and D. S. Janzen, "Teaching Object-Oriented
Software Engineering through Problem-Based Learning in the Context
of Game Design," in Proceedings of the 2008 21st Conference on
Software Engineering Education and Training - Volume 00: IEEE
Computer Society, 2008.

