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ABSTRACT 
The paper describes experiences from implementing a 
simple snake game, which can be controlled by the user’s 
brainwaves using the NeuroSky mindset. The NeuroSky 
mindset is an inexpensive Brain-Computer Interface (BCI) 
device allowing developers to process EEG signals that can 
be used to control a computer. The BCI opens for new ways 
for humans to interact with computers, and can be used for 
many purposes such as aids for people with physical 
disabilities. A major challenge with inexpensive Brain-
Computer Interfaces like the NeuroSky mindset is to 
discover which patterns of the brain signals that are 
sufficient accurate and reliable to be used to control a game, 
as well as can be used as real-time input of interactive 
multimedia applications. Our prototype incorporates all 
parts of a functioning BCI system, which includes acquiring 
the EEG signals, processing and classifying the EEG 
signals, and using the signal classification to control a game. 
The paper share experiences from implementing a BCI 
controlled game as well as results of testing the game on 
users. Our experiments found that in our prototype, the user 
can control the snake game using EEG signals with above 
90% accuracy. Our solution differentiates from other 
appliances of the NeuroSky mindset that it does not require 
any mental pre-training for the user.  
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1.   Introduction  
 
Research and development of Brain-Computer Interfaces 
(BCIs) have mainly focused on applications in a medical 
context, typically helping paralyzed or disabled patients to 
interact with the external world by mapping brain signals to 
human cognitive and/or sensory-motor functions [1]. 
Neurofeedback has successfully been used in detection and 
treatment of people with AD/HD [2]. The BCI research 
community has recognized systems that make BCIs more 
user-friendly, real-time, manageable and suited for people 
that are not forced to use them, like clinical patients, and 
those who are disabled. BCI devices have also become 
affordable and available that makes it important to explore 
various usages of such devices, and how they can be 

integrated with multimedia applications. BCI development is 
not longer constrained to making software for patients or for 
treatment, and there is a shift towards software for people 
with ordinary health. Especially, game developers are seeing 
the potential of using BCIs to enhance the game experience 
through new gameplay and new ways of interacting with 
games. By introducing BCI to entertainment, developers are 
motivated to make more user-friendly, faster, cheaper and 
public available BCI-systems. The targeted group of users 
are not forced to utilize BCI systems, and thus need to be 
motivated for doing so apart for the coolness factor of 
controlling a computer with the mind.  

NeuroSky is a company with the slogan “Bio Sensors for 
Everyone”, which in late 2009 released an EEG device 
named NeuroSky mindset at a low price aimed at the 
consumer market. The product shipped with software 
development tools, and a brainwave-sensing headset 
consisting of loudspeakers, a microphone and one brain 
wave sensor. The headset is worn like regular headphones 
where the brain wave sensor is placed on the users forehead. 
In addition the mindset has 3 sensors on the left ear, which 
are used as a reference for the brain wave signal on the 
forehead. The mindset has a microchip which pre-processes 
the EEG signal and transmits the data to the computer via 
Bluetooth. 

This paper reports from an experimental project where 
the goal was to develop and evaluate a brain-controlled 
interactive multimedia application to discover the 
opportunities and limitations of low-cost consumer BCI-
devices such as the NeuroSky mindset. The research 
questions we wanted to find answers to were: 

RQ1: How well does one static sensor on the forehead 
performs compared to a grid of sensors placed across the 
scalp? 

RQ2: What are the advantages and limitations of the 
NeuroSky mindset? 

RQ3: What kind of classification of brainwaves is 
possible to use in a neural network? 

RQ4: What kind of user experience does a brain-
controlled interactive multimedia application provide? 

RQ5: How little practice and training time is it possible 
to get away with before starting to use the system without 
affecting the performance of the BCI-system?   

 
The rest of the paper is organized as follows: Section 2, 

presents related works, Section 3 gives an overview of the 
BCI multimedia system we developed, Section 4 describes 
our experiments, and Section 5 concludes the paper. 



2.   Related Works 
 
NASA and Sony developed a Playstation controller that was 
used to train pilots to be more alert and attentive during a 
flight. Correct brain patterns were rewarded with a more 
responsive game controller and vice versa. A study was 
conducted where a group of children with ADHD were 
treated, half of them used traditional neurofeedback training 
and the other half used the Playstation video game with 
neurofeedback. Both groups improved equally, but the 
children playing the game enjoyed their training more, and 
their parents generally reported to notice a higher level of 
improvement than the parents from the other group [3].  

intendiX is a personal EEG-based spelling system [4]. 
The user is wearing a cap with several electrodes and is 
presented with a matrix containing all the letters of the 
alphabet. The rows and columns are then flashed quickly and 
randomly, and whenever the system flashes a row or column, 
it registers your reaction. This is enough to pin down the 
letter that you want to spell when focusing on it. The system 
does this at a fairly high speed and it should be possible to 
spell at a rate of 5 to 10 character a minute after 10 minutes 
of usage. However, it puts a lot of strain on the user using the 
system as they are continuously receiving stimuli [5]. 

Kellies et al. experimented with severely epileptic 
patients that were going to have the seizure-stricken parts of 
their brain removed [6]. The operation required that parts of 
the skull were opened, and then microelectrodes were 
installed on the surface to help narrow down the area that 
needed to be removed. The researchers exploited this by 
placing the microelectrodes directly on to the Face-Motor 
Cortex and Wernicke’s area that are crucial for speech. 
Scientists matched the right word, from a string of 10 words, 
to the corresponding EEG signals between 28 and 48 percent 
of the time, which is better than chance. This could in the 
future make it possible for disabled people to communicate, 
using a speech synthesizer to read to matched words out 
loud.    

An earlier study by Wolpaw and Macfarland used the 
amplitude or the power levels for vertical movement, and the 
difference between the power levels for horizontal 
movement to allow the user to select from four icons, one at 
each corner of the screen [7]. 

There are also examples of games utilize BCIs such as 
Adventures of NeuroBoy where the player can move, 
levitate, push, pull and burn things using the player’s mind, 
and Mindball where the mind is used to control the speed of 
a ball. For the former game, attention and meditation values 
decide what is happening in game, and increased meditation 
value will lift objects and increased attention will burn 
objects. For the latter game, the drowsiness and relaxation 
band powers are used to control the speed of the ball. One 
example of a game that only uses the NeuroSky attention 
value is the MainBlaster game where a Nintendo Wiimote is 
used to target objects on the screen, and when maximum 
attention value is reach, the target explodes [8]. 

In [9], the main approaches for utilizing BCI in games 
and entertainment are outlined. There are two main 
approaches described: 1) control by affective state, where the 
cognitive activity is measured to allow detection of what the 
user is experiencing during a specific task; and 2) issuing 
commands using brain signals. The most interesting in the 

article is the discussion about using the BCI to monitor the 
mental state of the player to dynamically change the 
gameplay to adapt to the players state of mind.      
 
 
3.  BCI Multimedia System Description 
 
The goal of our interactive BCI multimedia system was to 
use brain signal input to provide computer interaction. This 
process can be viewed as a process of four steps as shown in 
Figure 1. 

 
Figure 1. The BCI process flow 

 
Our interactive BCI multimedia system was developed 

according to the process flow in Figure 1 for the Windows 
platform in C# using the .Net framework. An overview of 
our BCI system is shown in Figure 2. 

 
Figure 2. BCI system overview 

 
Our BCI system consists of six parts where the Bluetooth 

interface and the Mindset Interface are provided by 
NeuroSky. The Mindset interface consists of libraries that 
handles the connection, disconnection, and receives a 
container with data consisting of raw data which is updated 
every 10 milliseconds and the rest of the data updated every 
second. The rest of the data consists of signal strength, 
various bands (Delta, Theta, Alpha1, Alpha2, Beta1, Beta2, 
and Gamma), attention value, mediation value and eye blink 
signal.   

The Toolbox component contains mainly the Fourier 
Transform algorithm. The algorithm was verified with a 
10Hz sine wave using function F(t)=sin(2π10t), giving a 
spectrum that only have a power bar at 10Hz. Further the 
toolbox contains the disk operator that can read and write 
samples to disk so that sessions can be saved and re-opened. 
It also contains the handling of plotting of data in graphs. 

The Neural Net component is based on a solution 
available at [10]. A network setup screen was written to 
enable easy modification of the following parameters: 
Maximum training cycles, learning rate, number of nodes in 
the hidden layer, adjustment of input type to the network, 
and the activation function in each layer. 

The BrainMonitor is the main component that provides 
an event-handler and a graphical user interface that consists 
of Mindset Control where the user can configure the 
connection and view the data container, a real-time raw EEG 
record, sample view, scenario buttons, neural network 



training, parameter settings, neural network testing and 
sample control buttons.  

The Game component contains samples screens and the 
game logic and visualization for the snake game.  
 
 
4.  Experiments With BCI For Interaction 
 
This section describes the set-up and results from 
experimentation using a BCI in a multimedia application for 
interaction carried out in three phases. 
 
 
4.1  Phase 1: EEG Eye-Blink Classification set-up 
 
Our first test evaluated how well EEG Eye-Blink could be 
classified using neural networks. The software configuration 
for this test was written to generate new sample objects that 
added themselves as observers of the mindset data stream, 
and filled up an array of raw EEG data until it reached the set 
sample size. This size was set to 128 data points, making 
each sample 1280 milliseconds to complete. By observing 
the real-time EEG record in the BrainMonitor program, it 
was evident that an eye blink gave a major fluctuation in the 
EEG signal. This made eye blink a perfect candidate as a 
classifier, and also indicated that eye blink could be useful 
for controlling an interactive multimedia application. The 
baseline was thinking of nothing in particular, keeping the 
eyes open. To gather a collection of EEG samples to be used 
for network training, a scenario program was written that 
would do this automatically while giving task instructions. 
Figure 3 shows a screenshot of the sample screen for the 
scenario program. 

 
Figure 3. Sampling screen for the Eye-Blink classification 
 
The test scenario was split into two parts. Part one 

gathered five samples from the baseline task, and part two 
gathered five samples from the blink task. All samples were 
saved to disk so the could be used later. The collection of 
samples from each part in a scenario is called a set. 

The neural network architecture for this task consisted of 
five inputs related to the five power bands of a sample: delta, 
theta, alpha, beta, and gamma. These bands were obtained by 
conducting Fast Fourier Transform (FFT) on the raw EEG 
data, and then dividing them into buckets according to their 

frequency range. Each band value was scaled with respect to 
the highest frequency in each individual sample, ensuring 
that all values were in the interval between 0 and 1. Because 
there were only two features, one output node was sufficient, 
where all the baseline samples were trained to have the value 
0 and the blink samples were trained to have the value 1. The 
learning rate was set to 0.25, learning cycles to 5000 and 
number of hidden nodes to 3. The activation function for the 
input layer was linear and sigmoid was used both for the 
hidden and the output layer.  
 
 
4.2  Phase 1: EEG Eye-Blink Classification Results 
 

We wanted two different tests to evaluate how effective eye 
blink was as a user input. The first test was just as described 
in previous section, while we introduced noise in the second 
test by tapping on the forehead. The classification results 
from test one is shown in Table 1. 

Table 1. The classification results from eye blink experiment 
Scenario Task Set 1 Set 2 Set 3 Set 4 Set 5 Average 
Baseline    
(Eyes closed) 

0.82 0.96 0.94 0.97 0.96 0.93 

Eye blink 0.01 0.01 0 0.01 0.03 0.01 
 

The results showed that eye blink worked very well as an 
input and our system was able to classify eye blink correctly 
at an average of 99%. Although noise was expected from the 
headset, we did not anticipate that it would be very sensible 
to movements. Because of this, it was decided to conduct all 
baseline experiments and sampling with eyes open without 
any movement of head and body. The disadvantage of this 
approach is that it becomes very tiresome for the eyes. 
Indeed, this noise issue and the fact that the only electrode on 
the mindset is placed in the forehead brings up the question 
whether the blinking disturb the only input signal to make it 
unreliable? Figure 4 shows a plot of how attention and 
meditation levels were influenced by eye blink. 

 
Figure 4. Attention and mediation levels for baseline and blink task 

 
Figure 4 clearly shows that the NeuroSky algorithms that 

calculate attention and meditation were influenced by eye 
blinking. During the baseline part, the average attention and 
meditation level were approximately between 80-100 and 
50-60, respectively. When the blink part started, both these 
levels dropped drastically, especially attention. This was 
counter-intuitive, because when waiting for the blink 
commands, and respond to them appropriately, should bring 



the test person to a higher level of alertness and focus, and 
not make them more inattentive. The blinks in this particular 
scenario may have been exaggerated and caused major 
disturbance, but the tendency across all the experiments was 
that whenever there was an absence of blink, the attention 
level went to the top, and that the same level was very 
difficult to reach even when blinking normally. But would 
this still be true if the electrode was placed elsewhere on the 
scalp? This was tried, but it was unsuccessful to get a signal. 
And because the electrode is static, the options were limited 
without breaking the mindset. In some studies, placement of 
frontal electrode is used to control that the samples they take 
from other electrodes do not contain blink artifacts [11, 12]. 
However, the fact remained that the results indicated that 
persons using the mindset should not blink during sampling. 
This was not ideal when considering making use of it in a 
real-time system and for longer periods, like in gaming. 

When comparing the power spectrum for baseline and 
eye blink, the difference was evident. Blink gave a 
simultaneously high boost of delta (more than 4 times in 
average), theta and alpha amplitudes, and a decrease in 
gamma. Blink detection could be done by monitoring, for 
instance, delta, theta, and gamma. If delta and theta values 
increased simultaneously and the gamma decreased, that 
would be a blink signature. The amount of change from pre-
values could indicate strength. This indicated that for BCIs 
like NeuroSky, no neural network was needed. Finally, 
blinking could also be detected by using a camera, and it is a 
muscle movement. Thus, it is not regarded as true brain 
communication. Our system should be able to classify more 
than muscle movement. 

Up to this point in the project, the neural network had 
been trained and tested with single samples, representing 
1280 milliseconds of EEG information each. This was fine 
when only dealing with blink detection, because that is a 
very defined and short event (testing of blink was still redone 
to ensure consistency in all tests, in all steps). However, 
when dealing with mental states, it was safe to assume that 
this was not so, without long practice at least. The discovery 
was that the samples needed to be reflecting a time period 
much greater than 1.3 seconds. This was done by taking the 
average of all the band powers from all samples in a scenario 
set. The difference between band powers of the single 
sample and the set was evident. 

The drawback with this approach was that it now took 
approximately 20 seconds to generate input for the network. 
In a game setting and real-time environment, this is a long 
time, and it is a major limitation. 

 
 

4.3  Phase 2: EEG Mental Task Classification Set-up 
 
In phase 2, we carried out three experimental tasks to get 
better insight into how BCI can be used for interactive 
multimedia applications.  

The first experimental task was to see if it was possible to 
characterize the mental state of thinking about and 
visualizing movement. Such a mental state would be useful 
to control a game e.g. to say that a character should start to 
move. This is a mental task that is common to use in EEG 
experiments [13]. Collection of data sets was done by 
sampling baseline first, followed by visualizing movement: 

Raising and lowering one arm, both arms, and legs. 
However, despite all efforts and numerous trails, there were 
no consistent findings that proved to be classifiable. This 
lead to the second experimental task in this phase. 

The second experimental task was that visually invoked 
movement could help change the mental state of the test 
person faster and more consistently. By combining motion 
intention and Event Related Potentials (ERP), it could be 
possible that the P300 effect would have an impact on the 
band powers. ERP describes the phenomena that external 
stimuli such as a tone or a light flash can generate responses 
in the EEG wave. The P300 effect means that the observable 
amplitude peak occurs 300ms after an event. A new test 
scenario screen was implemented and the screenshot is 
shown in Figure 5. The test scenario screen had a cartoon 
game character that moved an arm up and down repetitively 
towards the forehead. The test person was instructed to do 
the same, and follow the rhythm of the motion – to receive 
and respond to external stimuli. 

 
Figure 5. Sampling screen with visual movement 

 
Again, recording and sampling were done with eyes open 

during the whole session. The scenario was split into two 
parts: sampling motion first and baseline second. As input to 
the neural network three types were tried: 5 band powers 
(delta, theta, alpha, beta and gamma); 5 band powers (5 
inputs to the network) and meditation and attention values (7 
inputs to the network); and specific band powers (delta, 
theta, alpha1, alpha2, beta1, beta2, gamma1, gamma2) (8 
inputs to the network). Numerous trails and tests were 
conducted, but no results were found indicating that this was 
a usable approach toward for classifying a mental state. 
However, from the classification results it became clear that 
using meditation and attention values as additional inputs to 
the neural network in addition to the 5 band powers only 
made things worse. 

The third experimental task consisted of the mental task 
of visual counting, which has been used successfully in other 
research such as in a study of [14]. This task also matches 
the functionality of the frontal lobe, as it is related to 
mathematics and problem solving. This experimental task 



was conducted in two variations: one with eyes open and one 
with eyes closed. The task was carried out in two parts. In 
the first part, 20 baseline samples were recorded. In the 
second part, 20 visual counting samples were recorded. The 
20 samples from each part were used to generate 1 training-
set per feature, averaged and normalized (scaled to the 
maximum value of 1.0).  The experimental task with eyes 
open gave some results, but they were not satisfying. Our 
assumption was that by doing the same experimental task 
with eyes close would increase the difference in band 
powers, as when eyes are closed the perception process is 
halted in the brain, as there are no visual inputs. This is also 
supported in literature where in a study by Zhang et al. it was 
recorded a major alpha waves increase for 20 EEG subjects 
when eyes were closed opposed to eyes open [15]. 

Table 2 shows the results from using counting as input 
both with eyes open and eyes closed. The results from eyes 
open are taken from the best among the sessions that were 
conducted where 4 of 5 sets were correct both with baseline 
and count. For eyes open, we achieved an average of 3 
correct classifications out of 5. In one session only 1 of 5 was 
correctly classified. With eyes closed, the results were 
improved as shown in the table where 5 out of 5 sets were 
correctly classified. We found also an increase of alpha 
activity and decrease of all other waves when eyes were 
closed.  

Table 2. Results from counting with eyes open vs. eyes closed. 
Scenario Task Set 1 Set 2 Set 3 Set 4 Set 5 Average 

Eyes open 
Baseline    0.93 0.95 0.95 0.8 0.87 0.9 
Counting    0.01 0.07 0.06 0.09 0.94 0.23 

Eyes closed 
Baseline     0.93 0.74 0.93 0.95 0.98 0.91 
Counting    0.11 0.3 0.06 0.05 0.18 0.14 
 
 
4.4  Phase 2: EEG Mental Task Classification Set-up 
Results 
 
The results from phase 2 indicate the possibility to classify 
baseline and mental count states with a probability greater 
than 90%. This result is achieved when combining sampling 
with eyes open and eyes closed. Experiments with eyes open 
had a correct classification about 60%. There were some 
exceptions with an average of 20% and some that made it 
above 90%. To summarize, we found that the classifications 
using counting provided unstable results. There can be a 
number of reasons for this: One electrode is not sufficient to 
get the information, the chosen tasks was not suitable with 
regards to the location of the electrode, the band frequencies 
were not the best choice for signal analysis in this context, 
and/or neural networks were not the most suitable 
classification method in this context.  

Most EEG studies uses 4 electrodes or more placed at 
some distance from the forehead. This is an indication that 
perhaps one electrode is just not enough. Also this might 
indicate that it is more difficult to find a function or task that 
can be directed towards the electrode location. Our results 
also revealed that the classifications work much better with 
eyes closed. For an interactive multimedia application this is 
not ideal, as the user should respond to events on the screen. 
Having the baseline task done with eyes closed may not be 

ideal for gameplay, but it gives a very good opportunity to 
rest the eyes. As the results from phase 1 shows, blinking the 
eyes cause a major disturbance on the EEG signals. This 
means that the ideal mode of input is not to blink the eyes 
during interaction with the multimedia system. In practice, a 
BCI-based game that cannot solve this problem in another 
way, need to include sessions were the user can rest her or 
his eyes which at the same time can be used to get the 
baseline. 

Mentally visualizing movement has been much used in 
other EEG experiments with very good classification ratings 
[16]. We did not get any recognizable classifications for 
visual movement in our projects. Most likely, the location of 
the electrode can explain this result. Unfortunately, we could 
not verify this explanation by moving the electrode since it is 
unmovable and can only be placed on the forehead. To look 
for other explanations, we experimented with using the 
attention and meditation levels as extra input to the neural 
network. However, these levels did not vary sufficiently to 
be used for classification.  

Our results also showed that EEG signals could vary 
even for the same person, showing that EEG signals are non-
stationary. This indicated that new neural networks should be 
trained with fresh input for every session.  
  
 
4.5  Phase 3: Controlling a Game with EEG 
 
Based on the results from phase 1 and 2, the focus of phase 3 
was to experiment with a real-time interactive multimedia 
application.  We chose to implement a version of the well-
known game snake, where the user controls a snake that 
moves forward, to the left or to the right. The goal is to 
locate and eat apples, which makes the snake longer, and to 
survive without crashing into its tale.  

 
Figure 6. Overview of control flow of the snake game 

 
An illustration of the control flow of the application is 

shown in Figure 6. First the user connects the Mindset to the 
BrainMonitor software. The second step is to provide the 
application with training samples that will later be used to 
classify user input. In step three, the neural network is 
trained and when this step is completed, the user can start the 
game (step four). The game loop consists of classifying 
incoming EEG signals (step five) and executing game 
control commands (step six) to change direction of the snake. 



The first three steps are required to initialize the game and 
train the neural network, while the last three steps represent 
the game itself.  

A challenge when using BCI to interact with a 
multimedia application in real-time is of course that it takes 
time to classify incoming EEG-signals. This makes it 
challenging to provide real-time behavior. We chose to solve 
this problem with an hybrid-approach which lets the user get 
real-time responses to user input as well as the game gets the 
proper time to collect samples for classification. It takes 20 
seconds to do a proper classification. In our Snake game, the 
snake moves slowly forward without any input from the user. 
If the user wants to change the direction of the snake, the 
user needs to blink her or his eyes. An eye blink can be 
recognized almost in real-time and only introduce a short 
latency. After the eye blink, the game will go into sampling 
mode to find whether the player wants to change the 
direction of the snake to the left or to the right. The system 
waits 1.5 seconds before going into sampling mode to avoid 
contamination of the blink artifact. The snake stops its 
movement during the sampling mode. To get the best 
classification, the user should close her or his eyes during 
sampling mode. The user will know that the sampling is over 
when the game plays a “ding” sound. The snake will turn to 
the left if baseline is detected (no particular mental state) and 
to the right if mental counting is detected. The state diagram 
of the snake control is shown in Figure 7. 

 
Figure 7. State diagram for controlling the snake 

 
The experimental tests of the game followed the flow 

described in Figure 6. There were two types of tests: 1) play 
and 2) control. Both types of tests followed the steps 2 to 6 
and the headset was not moved during the tests. For step 2, 
20 samples of baseline (eye closed) and 20 samples of 
mental counting (eyes open) were taken and used to train the 
network. The network was then tested using the same sets to 
ensure that they classified correctly. Value close to 1 
represented the baseline, while value close 0 represented to 
mental count. 

To avoid a 20 seconds long sample collection while 
playing, it was reduced to 10 seconds, averaging 10 samples 
into a single input instead of 20. 

 
 

4.5.1  Experimental Test One: Play Test 
 
For the first experimental test, the user played the game 
following the process described in Figure 6 as well as using 
old data for training the neural network. The purpose was to 
see if those training sets were usable after disconnecting and 
relocating the headset. If this approach succeeded, it would 
be possible to make user profiles that would reduce the time 

to start a game by bypassing the setup steps. The test stopped 
when the game was over (snake crashed into its tale). During 
the test, the following statistics were recorded:  number of 
correct classifications, number of wrong classifications, 
number of correct blinks, number of missed blinks, number 
of faulty blinks (the system incorrectly enters sampling mode 
after the user blinks normally without intention of going into 
sampling mode), and total game time. Note that the 
NeuroSky kit produce an amplitude according to the strength 
of the eye blink which makes it possible to put a threshold to 
distinguish between a purposeful blink and a normal blink. 
 
 
 4.5.2  Experimental Test Two: Control Test 
 
In this task, the user classified a baseline with eyes open, and 
a counting task with eyes closed to see how much the state of 
the eyes affected the results. 

 
 
4.6 Phase 3: Controlling a Game with EEG Results 
 
The game was played through several sessions and multiple 
players. The results for the experimental task one (Play Test) 
where the training sets were not reused are shown in Table 3. 

Table 3.Results from experimental task one with fresh training sets 
Measure Average 
Playtime    7 min 
% of time used to collect samples 46% 
Apples eaten 4,5 
Accuracy of classification 97% 
Correct detected eye blinks 83% 
Missed detected eye blinks 13% 
Faulty detected eye blinks 6% 

 
As we can see from Table III, the average playing time 

was 7 minutes where on average 46% of the time was used to 
collect samples. The average number of apples eaten per 
game was 4,5 with a range from 3 to 8 apples. The accuracy 
of the left and right controls was 97%; where as the 
correctness of detecting eye blinks was 83%. When reusing 
training sets, no correct classifications were achieved.  

For experimental task two (Control Test), with eyes 
closed the average recognition certainty of the baseline task 
was 96%, and reduced to 64% when doing mental counting 
instead. With eyes open, average recognition certainty of the 
mental counting was 90%, and was reduced to 30% when 
conducting the baseline task. 

Our results from phase 3 clearly show the potential of a 
BCI system that enables users to play a snake game 
controlling everything with EEG signals. Correct 
classification and eye-blink detection in the play tests for the 
subjects were over 90%. These results were acquired without 
any pre-mental training of the users that have never used 
EEG equipment before.  Further, the control tests indicated 
that it was not just the two eye states, open and closed, that 
affected the EEG signal. With eyes open, it was possible to 
successfully classify a baseline task when attempted, and 
likewise, it was possible to identify a count task when eyes 
were closed. In general, when not doing the mental tasks 
correctly, the classification probability was lowered with 



40% to 50%. This suggests, that perhaps with more 
experience and practice it will be possible to obtain faster 
and more accurate brain wave control and thus make the eye 
state redundant. Still these states are the key to correct 
classification in the current system, at least for beginners. 
The subjects of the experiment had a good experience using 
EEG to control the snake. Compared to the test experiments 
in phase 2, the game testing was much more relaxed and less 
strainful for the eyes. This was mainly due to that the system 
used a blink strength feature that allowed normal blinking to 
go undetected, and that closed eyes was a key feature for the 
baseline task. This was a satisfying solution since the game 
needed to pause to collect samples anyway, and the user was 
in control of when this would happen. Also, since mouse, 
keyboard or a game controller is not used, the user can adjust 
the sitting position more freely. From our findings, we 
believe that it is important for BCI-games to utilize the 
sampling phase required for such interfaces to be a part of 
the game plot and include mental tasks to be a natural part of 
the story and the game play of the game.  

In this paragraph a summary of the observations from 
playing the game is given. If the user was focused, it was 
easy to handle and control the game. One time, when the 
snake was in a tight spot and the user had to make a baseline 
turn (left turn), the excitement led to too much mental 
activity and was therefor classified as a counting task (the 
snake died). Further, since the snake rotates, it was not 
always so obvious what the left and the right side of the 
snake were. We also noticed some latency from the physical 
blink to the detection by the system, making it important to 
time the blinking well. The users reported a mastering 
feeling when they were able to get the classification results 
as intended. Further, the users reported that the time used to 
collect samples did not feel bothersome long. 
 
 
5.  Conclusion 
 
This paper has presented results that shows that is it possible 
to build a Brain-Computer Interface system that allow users 
to play a game and controlling it with their brain waves using 
the NeuroSky mindset EEG equipment featuring only one 
electrode on the forehead. EEG signals from the user are sent 
to the computer via Bluetooth. The signal is then processed 
and the waves band power is calculated using the Fourier 
transform. This information is used as input to a neural 
network that is trained to classify two different mental tasks. 
Then this classification is used to control the movements 
(left and right turn) of a snake successfully. 

The biggest challenge and what consumed most of the 
time in the project was not the implementation itself, but 
doing tests with the use of real-time EEG input. The paper 
describes three experimental phases along with results that 
have given insights into how EEG signals work and the 
challenges of BCI systems. The first phases included to 
implement all the components of the system and make them 
communicate with each other, and then enable the system to 
classify blinks in the incoming EEG signal samples. This 
was done with a success rate close to 99%. The solution 
worked, indeed, but was not adequate to classify mental 
tasks. This was improved in phase two, were a new method 
was discovered that required ten times as many samples and 

thus more effort from the user. Still, it became possible to 
classify two mental states: baseline (relaxed, calm and not 
thinking of anything in particular), and mental counting. The 
first results only gave 60% probability of correct 
classification, but this was further improved to above 90%. 
This high rate was only attainable when eye states (eyes open 
and closed) were used actively by the user in addition to the 
tasks. However, this enabled the realization of phase 3, 
where a version of the game Snake was designed and 
implemented to work with the EEG input. The results from 
the user tests show that the snake’s movements were 
correctly controlled with accuracy between 90 and 100%. 

Regarding the research questions described in Section I, 
the following conclusions were made based on the results 
and findings in the project: 

RQ1 (one static sensor compared to grid of sensors): 
One electrode on the forehead cannot replace a grid of, or 
several, electrodes. No papers of previous studies were found 
where only one electrode had been used. The experience 
from this study was that mental efforts that are relatively safe 
to classify with a grid of electrodes did not work with just 
one. However, there might be other reasons for this than just 
the single electrode, but our experiences indicate that one 
sensor is not adequate for classifying various kinds of mental 
activities.  

RQ2 (advantages and limitations of the NeuroSky 
mindset): Having the experience of using both the NeuroSky 
mindset and traditional EEG equipment, NeuroSky fulfills 
the expectations. More interestingly, the limitation that was 
most profound with the mindset was the static electrode 
placement. It can be moved to a certain degree, but not 
sufficiently to be placed at other places than the forehead. 
Also, one or two additional sensors would have helped. An 
alternative headset is the Emotive headset featuring 14 
electrodes. It headset is only slightly more expensive. The 
main limitation of placement of the sensor is that the EEG 
signals are heavily influenced by eye blink. However, the 
reason the electrode is placed on the forehead is because 
people do not have hair there, which is a requirement for this 
type of the NeuroSky mindset’s dry sensor. 

RQ3 (what kind of classification of brainwaves is 
possible using a neural network): The type of classification 
achieved using a neural network was that of band power 
patterns, where the difference between the power bands is of 
such degree that they are distinguishable, and where the right 
mental tasks are chosen that will promote this pattern in the 
users’ EEG. 

RQ4 (what kind of user experience does a brain-
controlled interactive multimedia application provide): The 
resulting BCI system enables an entertaining way for training 
brainwave control. The test-persons thought is was more fun 
to play our snake game, than the NeuroBoy software that 
comes with the NeuroSky mindset.  

RQ5 (how little mental practice and training time is it 
possible to get away with without affecting the performance 
of the BCI-system): It required no mental pre-training to use 
the resulting system, only 1-2 minutes of preparation time, 
where EEG samples needed to be taken for the training of 
the neural network. With these samples, the network learned 
the difference between the two mental task patterns based on 
the users current EEG. It was assumed that some pre-training 



would be needed in order to learn how to do the tasks, but 
this was not the case. 

Compared to the games that have used the NeuroSky 
mindset and the attention value only, this game stand out as 
more easy to use. It is easier to control the output of mental 
efforts and thus the accuracy is higher. In a context were the 
output is binary, the accuracy is additionally higher. The 
classification (rather than a threshold) takes longer time, so 
the game is slower. But is works, and it is still fun. Also, 
there is no mental pre-training needed in order to play, one 
just have to focus on the task. In the other games, the 
parameters that control the attention levels are unknown. If 
the game reacts by increased beta waves and lower theta 
waves, one would have to figure out how to manipulate these 
waves in a trail-and-error style. In neurofeedback therapy, 
this is perhaps wanted, but if one just want to play, the snake 
game is much easier. Our project has shown that it is 
possible to provide interactive multimedia systems with a 
BCI that does not require any mental training before playing 
the game or must be played with expensive BCI equipment. 
Our snake game should be ideal for mental training of e.g. 
kids with AD/HD or for paralyzed patients that want to kill 
some time. 

There are two directions we want to continue our 
research with our BCI prototype. Firstly, we want to further 
develop the BCI system, improve the game, signal 
processing and classification procedures, and feature 
extensions. Improvements we would like to see are 
implementation of automatic blink strength threshold 
adjustment, possibility to classify several features, add P300 
recognition to assist in classification verification, provide an 
interface in the BrainMonitor program to existing games, and 
provide an activator output that can provide physical objects 
to move to make a more involving experience. Secondly, we 
would like to do large-scale experimental tests with many 
users that include EEG surveys and monitoring to verify our 
results, explore classification possibilities and explore 
placement possibilities of the mindsets electrode. We would 
also like to experiment with different kinds of commercial 
available BCI headsets, to explore how the difference in 
number and placement of electrodes affect the results and 
effectiveness of the equipment for usage for interactive 
multimedia applications.   
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