
A Process Centred Environment for Cooperative Software
Engineering

Alf Inge Wang�

ABSTRACT
The cooperative aspects of software engineering have often been
either eliminated or ignored, because it has been to hard to model
cooperative activities in existing systems, or there has not been an
interest for doing so. This paper describes the CAGIS process cen-
tred environment (PCE) that initially has been designed for mod-
elling and providing support for cooperative software processes.
The CAGIS PCE consists of three main parts: A simple activity-
based workflow tool, a software agent system and a process mid-
dleware that glues the workflow tool and the software agent sys-
tem. The paper describes the overall architecture and each part of
the system.

Keywords: Cooperative Software Engineering, Software Process
Technology, Computer-Supported Cooperative Work, Multi-Agent
Systems

1. INTRODUCTION
Traditionally, modelling and enactment of software processes have
been focusing on ”forcing” and guiding people to work according
to a specified model, where interaction between people has been co-
ordinated through a strictly defined control/data flow. Cooperative
aspects of the software development process have often been either
eliminated or ignored, because it has been hard to model coopera-
tive activities in existing systems, or there has not being an interest
for doing so. Also, software development processes are human-
centred processes. In [2], Cugola and Ghezzi state that ”Human-
centred processes are characterised by two crucial aspects that were
largely ignored by most software process research: They must sup-
port cooperation among people, and they must be highly flexible”.
This paper addresses these two challenges, and proposes a highly
flexible framework for supporting cooperative software engineer-
ing (CSE) processes.
In the workflow and Computer-Supported Cooperative Work (CSCW)

�Dept. of Computer and Information Science, Norwegian Uni-
versity of Science and Technology (NTNU), N-7035 Trondheim,
Norway. Phone: +47 73594485, Fax: + 47 73594466, Email
alfw@idi.ntnu.no

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEKE’02 July 15-19, Ischia, Italy.
Copyright 2002 ACM 1-58113-556-4/02-0700 ...$5.00.

community, some work has resulted in the development of coop-
erative workflow systems. Most of these systems are role-based
systems, where the roles and the cooperative interactions between
these roles are modelled. Lately, software agents have been used to
model and enact cooperative activities. The software agents repre-
sent users in cooperative efforts and act according to the users’ re-
quirements to reach a specified goal. By using software agents, we
can benefit from the agents’ ability to learn and adapt to a changing
environment. Activity-based workflow and process systems on the
other hand, are efficient to model pre-planned activities that e.g.,
can be derived from a project-planning tool. Activity-based work-
flow is not suitable for modelling cooperation, because interaction
between roles are hard to represent in activity networks. Many
workflow systems have also a problem to represent and support dy-
namic processes. This paper presents a framework to combine soft-
ware agents with activity-based workflow, to gain flexibility and to
be able to model most aspects of a process.

2. THE CAGIS PROCESS CENTRED ENVI-
RONMENT

This section gives a detailed description of the CAGIS PCE [5] and
its main parts.

2.1 A Motivating Scenario
The scenario describes a part of a process of creating a new 3D
graphics game in a computer game company named CoolGames.
This scenario focuses two departments that cooperate using the In-
ternet because they are geographically distributed. Figure 1 illus-
trates a part of the development process for a new game for the two
departments.

A1: Code
gfx−engine
prototype

B1: Draw
concept−
drawings

A2: Estimate
resources

B2: Estimate
resources

A3: Code
gfx−engine

B3: Create
graphics

WS: Developers

WS: Designers

The Internet

A4: Test
gfx−engine

C2:Allocate
 resources

S1

S3

C1:Brain−
 storming

S2

Figure 1: A scenario used to illustrate the CAGIS PCE archi-
tecture

The developers start to implement a 3D graphics-engine prototype
(A1), while the designers are drawing some concept-drawings (B1).
They then decide to have some brainstorming (C1) where they share
ideas, drawings, and testing results from experiments with the 3D

graphics-engine. Based on the outcome of the brainstorm, the pro-
cess can either go back to A1 and B1, or to continue to A2 and B2.
In the activities A2 and B2, each department estimates how much
human resources they will need (own and others). A resource ne-
gotiation is then initiated (C2) between the two departments. If the
allocation process goes into a deadlock, the two departments must
change their estimates (go back to A2 and B2). After a successful
allocation, the process can proceed to the activities A3 and B3. The
activity A4 will be started as soon as the activity A3 is finished. In
figure 1 we can divide the process into three parts:

S1 Individual activities are activities that can be performed by
individuals (A1-A4 and B1-B3).

S2 Cooperative activities are activities that only can be per-
formed when two ore more persons are involved (C1-C2).

S3 Cooperative rules are relations between cooperative and in-
dividual activities (e.g. between C1 and A2) drawn in the
figure as dotted lines.

2.2 The CAGIS PCE Architecture
We have chosen an architecture consisting of these three main com-
ponents also shown in figure 2 providing process support according
to the classification described in the last part of section 2.1:

S1 The CAGIS SimpleProcess workflow tool provides local
process support for individual activities (A1-A4 and B1-B3
in figure 1).

S2 The CAGIS Distributed Intelligent Agent System (DIAS)
provides support for cooperative activities (C1 and C2).

S3 The CAGIS GlueServer makes it possible for the CAGIS
SimpleProcess workflow tool to interact with the software
agents by specifying the cooperative rules between individ-
ual workflow and cooperative workflow in a GlueModel (rep-
resented as dotted lines in figure 1).

Workflow
model

CAGIS SimpleProcess
CAGIS DIAS

Glue
model

CAGIS GlueServer

Workflow
model

CAGIS SimpleProcess

Workspace 1

Workspace 2

The Internet AMP

3.Report
 result

1.Report state

4.Activate
 reaction1.Report state

2.Initiate
 agent

4.Activate
 reaction

Figure 2: Architecture for the CAGIS PCE

A typical interaction between the different components in the CAGIS
PCE will work according to the four steps as shown in figure 2:

1. The CAGIS SimpleProcess workflow tool will report its state
to the CAGIS GlueServer, e.g. that it is finished with execut-
ing the activity A1 and B1 in the motivating scenario.

2. The CAGIS GlueServer will look through a GlueModel to
see if anything is specified for the activities A1 and B1, and
it will initiate brainstorming agents in the CAGIS DIAS (the
cooperative activity C1).

3. A brainstorming agent can typically return two results: suc-
cessful or unsuccessful. The result is reported to the Glue-
Server when C1 as finished.

4. The GlueModel can specify different reactions depending on
the result reported to the GlueServer (successful or unsuc-
cessful). Depending on the result, the GlueServer will acti-
vate a reaction in the CAGIS SimpleProcess (e.g. execute an
activity), the CAGIS DIAS (e.g. initiate new agents) or the
CAGIS GlueServer (e.g. change a definition of a cooperative
rule).

The CAGIS SimpleProcess and the CAGIS GlueServer commu-
nicate through CGI, and the CAGIS DIAS and the CAGIS Glue-
Server communicate through CORBA using the MASIF 1 standard.
The CAGIS PCE architecture is flexible since the CAGIS Glue-
Server can be used to interact with other agent systems through the
mobile agent interface, and the CAGIS GlueServer can also be used
to communicate with other workflow tools through the interoper-
ability workflow-XML binding framework. In this way, the CAGIS
PCE can federate systems offering a variety of process support.

3. CAGIS SIMPLEPROCESS
Flexibility has been the main motivation when designing the CAGIS
SimpleProcess,by allowing the process model to be re-arranged and
changed during enactment. This flexibility allows us to gradually
build a process model from existing process fragments, to allow
parts of the process to be unspecified, and to re-arrange and change
the sequence of activities of the process model run-time.

3.1 The Concept and the Process Modelling
Language

Process models in CAGIS SimpleProcess are specified in XML and
the document type declaration (DTD) of the CAGIS SimpleProcess
PML is as shown in figure 3. The figure shows that an activity has
a name, is located in a workspace and is defined by the parts: Pre-
link(s), postlink(s), a state, a due time, a feedback option, a descrip-
tion, and a code part. The code part is used to specify HTML-code
or an URL to a web page to be presented when an activity is ac-
tivated. The HTML-code can be used to present some texts and
pictures, list hyper-links to important documents and tools, present
the user HTML-forms, or executing Java-applets. Prelinks specify
the activities to be executed before current activity, and postlinks
specify the activities to be executed after current activity. An activ-
ity will go from the state Waiting to Ready, if all prelinks (the prior
activities) have the state Finish. The activity network works similar
to hyper-linked web pages with states.

3.2 The Architecture
The CAGIS SimpleProcess architecture is based on a traditional
web-architecture consisting of four CGI applications: A process
server responsible for managing process changes and process states,
a process modeller for modelling the process, an agenda manager
presenting user agendas and activities, and a monitor tool. The
CAGIS SimpleProcess has been implemented in Perl, and need an
Apache web-server to run.

�MASIF is short for Mobile Agent System Interoperability Facility
defined by the Object Management Group (OMG).

<?XML encoding=’’UTF-9’’?>
<!ELEMENT process (name,

(processfragment)+>
<!ELEMENT processfragment (name,

(workspace),
(activity)+)>

<!ELEMENT activity (name,
(workspace),
(prelink)*,
(postlink)*,
(state)?,
(due)?,
(feedback)?,
(description),
(code)*)>

<!ELEMENT name (#PCDATA)>
...

Figure 3: XML Document Type Declaration of the CAGIS Sim-
pleProcess PML

4. THE CAGIS DISTRIBUTED INTELLIGENT
AGENT SYSTEM

The CAGIS Distributed Intelligent Agent System (DIAS) is used in
the CAGIS PCE to provide support for cooperative activities where
more than one role participates. CAGIS DIAS consists of four main
parts: (1) Agents are set up to achieve a modest goal, with the char-
acteristics of autonomy, interaction, reactivity to environment, as
well as pro-activeness. There are three main types of agents: Sys-
tem agents, Interaction agents and User agents. (2) Agent Meeting
Places (AMP) are the agent places where agents exchange mes-
sages and services. (3) Workspaces are temporary containers for
relevant working data in a suitable format, together with processing
tools. (4) Repositories can be global, local or distributed, and are
persistent storages.
The CAGIS DIAS offers an high-level agent-API, that can be used
to implement cooperative activities such as trading of objects or
services (marketplace), electronic brainstorming, electronic voting,
resource negotiation, detection of file violation and synchronisation
of files, etc.

4.1 The Application Interface
The agents are in the CAGIS DIAS able to communicate using
KQML as a communication language using typically KQML per-
formatives such as ask-if, insert etc. The CAGIS DIAS agent API
provides methods for creating and killing agents, for message han-
dling, for registering and un-registering agents, for moving agents,
for negotiating between agents, for locating agents, and for infor-
mation queries.

4.2 The Architecture
Our multi-agent architecture is an extension and specialisation of
the more general Agora architecture proposed by Matskin et al.
[4] suitable for modelling and supporting all kinds of cooperative
work. The starting point for our multi-agent architecture was that
it should be open to existing tools, systems, and operating sys-
tems, and it should be easy to configure, maintain and expand.
We wanted the CAGIS DIAS to use free standard software com-
ponents whenever available, and use mobile agents, because they
provide efficient usage of network bandwidth, and less computa-
tion on the server is needed. Figure 4 shows the initial design for
our multi-agent architecture. We have used a multi-tier architecture
based on the agent, places, and things paradigm. The lower part of
the figure (component infrastructure and agent infrastructure) de-
fines the foundation, based on available standard implementations,
which will provide functionality and services to the prototype of the
multi-agent architecture. A central component both in workspaces

and AMPs in our architecture is the facilitator that simplifies the
implementation of agent communication, agent security, the medi-
ation between agents, and the monitoring of agents. The reason for
this is that the interaction between various entities can be controlled
from one central point.

Mobility support

Workspace

Communication Bus

Naming Trading Persistence

Relations Life cycle Events

Repository

Mediator Monitor

Coordinator Negotiator

Agent communication

Facilitator
Facilitator

AMP XML

JATLite and
KQML

Aglets
Java and
Java IDL

Local
Agent

Coordination
Agent

Negotiation
Agent

Workspace Repository

Legend

Service

 Agent
Meeting
 Place
 (AMP)

Figure 4: Recommended technologies for the CAGIS DIAS ar-
chitecture

Further, figure 4 illustrates the technologies we have used to imple-
ment the various parts of the CAGIS DIAS architecture. Java and
Java IDL have been used as the component infrastructure because
Java provides code portability and is broadly accepted standard.
KQML and JATlite were used to provide support for agent commu-
nication. Further to provide mobility support for agents, the Aglets
framework from IBM [3] was selected. The Aglets framework was
chosen because at the time we conducted the technology study, the
Aglets implementation was closest to OMG’s Mobile Agent Facil-
ity specification. In addition we suggested to use XML to represent
information and work-productions in the architecture because a lot
of XML tools are available in Java, and XML does not put any
restrictions on the format of the information it shall represent.

5. THE CAGIS GLUESERVER
The GlueServer is a piece of middleware used to provide interac-
tion between multi-agent systems (CAGIS DIAS) and the workflow
systems (CAGIS SimpleProcess). A GlueModel specifies the rela-
tionship between process fragments and agents, making it possible
for process fragments to delegate tasks to software agents, to use
software agents to evaluate what to do next after completion of ex-
ecution of a process fragment, or to monitor the environment for
events to detect exceptions.

5.1 The GlueModel
A GlueModel is specified in XML using the Glue Modelling Lan-
guage. Figure 5 shows the GlueModel for modelling the depen-
dencies between the activities A1 and C1 in the scenario presented
in figure 1. The GlueModel specifies that as soon as the workflow
tool reports that the process fragment A1:Code gfx-engine is fin-
ished, a brainstorming agent should be initiated in the agent system
representing the activity C1:Brainstorming. Based on the result re-
turned by this brain-storming agent (successful or unsuccessful),
the workflow tool should execute the process fragment A2 or A1
respectively.
Here is a more detailed explanation of the GlueModel. The first
part (02-05) of the GlueModel specifies the agent involved in the

01 <fragment-agent-pair>
02 <agent agent-class="agents.brainstorming" amp-id="CoolGamesAMP">
03 <interaction-type>Periodic invocation</interaction-type>
04 <result>successful|unsuccessful</result>
05 </agent>
06 <fragment fragment-id="Developers/A1:Code gfx-engine prototype">
07 <reaction>
08 <result>successful</result>
09 <action fragment-id="Developers/A2:Estimate resources"
10 body="execute_process_fragment_PFNUMBER"></action>
11 <result>unsuccessful</result>
12 <action fragment-id="Developers/A1:Code gfx-engine prototype"
13 body="reexecute_process_fragment_PFNUMBER">
14 </action>
15 </reaction>
16 </fragment>
16 </fragment-agent-pair>

Figure 5: CAGIS GlueModel example

cooperative activity by an agent class and an amp-id to the agent
place where the agent will interact with other agents (CoolGame-
sAMP). The interaction type specifies how the workflow system
and the agent system should interact. When Periodic invocation
is used, agents decide what to do next at the termination of a pro-
cess fragment. There are two other interaction types: 1) Prede-
fined interface meaning that the workflow tool delegates an activity
to an agent. 2) Dynamic monitoring where monitoring agents are
continuously probing the environments for certain events or states.
Whenever an agent detects an abnormal situation, this abnormal
situation is reported to the GlueServer that can initiate a reaction in
the workflow tool.The result tag is used to specify what values the
agent(s) can return.
The second part (06-16) of the GlueModel specifies the process
fragment by a process fragment ID. The rest of the process frag-
ment part is used to describe a reaction specified by result - action
pairs. The result is the possible results returned from the agent,
where as the action specifies what to do if there is a match. The
user can specify the GlueModel directly in XML, or use a tool with
a graphical user-interface for entering the information required.

5.2 The Architecture
Figure 6 shows the architecture of the CAGIS GlueServer consist-
ing of three main components:

� GlueEngine: The main purpose of the GlueEngine is to parse
the GlueModel and look for process fragment - agent pairs in
the model matching with state information received from the
workflow system or the agent system. If a process fragment
- agent pair is found, the GlueEngine will initiate a reaction
through the workflow interface (to a process fragment) or the
agent interface (initiate agent).

� Workflow Interface: The workflow interface interacts with
workflow systems through a XML-interface.

� Agent Interface: The agent interface interacts with agent
systems through a MASIF interface.

A typical interaction between the three components in the CAGIS
PCE can be as follows (the numbers are illustrated in figure 6):

1. The Workflow system reports its state to the GlueServer via
the workflow interface.

2. The GlueServer finds a process fragment - agent match in the
GlueModel using the GlueEngine.

3. The agent interface initiates an agent as specified in the Glue-
Model.

Workflow systems

Agent systemsAgent systems

Workflow systems

GlueModel
(fragment,agent)

(fragment,agent)
(fragment,agent)

(fragment,agent)

GlueServer

Agent systems

Workflow systems

Figure 6: CAGIS GlueServer architecture

4. The agent system reports the result of an agent interaction
back to the GlueServer through the agent interface.

5. The GlueServer will activate a reaction according to the Glue-
Model.

The GlueServer was also implemented in the Java programming
language, and the GlueModels are stored in XML. The agent sys-
tem interface was implemented with ORBIX CORBA according to
the MASIF standard, using an interface agent in DIAS.

6. CONCLUSION
The goal when designing and implementing the CAGIS PCE was to
make a PCE that provided cooperative support and was highly flex-
ible. In [5], we present an evaluation of the CAGIS PCE in regards
to this goal. In this evaluation, a conference organising process
consisting of cooperative and individual activities was modelled in
our CAGIS PCE, in Endeavors [1] and ProcessWeb [6]. The results
showed that Endeavors had some problems in modelling the coop-
erative activities, while ProcessWeb was most efficient for mod-
elling such activities. CAGIS PCE was overall most efficient in
modelling the process (both individual and cooperative activities).
We also measured the effort doing some specified process changes.
Because of the flexibility provided by the GlueServer and the Glue-
Model, the CAGIS PCE was more efficient that the others in han-
dling process changes. The main contribution of our work is there-
fore the GlueServer and GlueModel that allow agent(role)-based
and activity network-based process tools to live side by side.

7. REFERENCES
[1] G. Bolcer and R. Taylor. Endeavors: a process system integration

infrastructure. In Proceedings of the 4th International Conference on
the Software Process, pages 76 – 89. IEEE Computer Society Press,
1996.

[2] G. Cugola and C. Ghezzi. Software Processes: a Retrospective and a
Path to the Future. SOFTWARE PROCESS – Improvement and
Practice, 4(2):101–123, 1998.

[3] D. Lange and M. Oshima. Programming and deploying Java mobile
agents with Aglets. Addison-Wesley, 1998.

[4] M. Matskin, M. Divitini, and S. Petersen. An Architecture for
Multi-Agent Support in a Distributed Information Technology
Application. In International Workshop on Intelligent Agents in
Information and Process Management, page 12, Bremen, Germany,
15-17 September 1998.

[5] A. I. Wang. Using a Mobile, Agent-based Environment to support
Cooperative Software Processes. PhD thesis, Norwegian University of
Science and Technology, Dept. of Computer and Information Science,
NTNU, Trondheim, Norway, February 5th 2001.

[6] B. Yeomans. Enhancing the World Wide Web. Technical report,
Computer Science Dept., University of Manchester, 1996. Supervisor:
Prof. Brian Warboys.

