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Abstract

This paper presents results from a quasi-experiment that investigates how the se-

quence in which maintenance tasks are performed affects the time required to per-

form them and the functional correctness of the changes made. Specifically, the

study compares how time required and correctness are affected by 1) starting with

the easiest change task and progressively performing the more difficult tasks (Easy

First), versus 2) starting with the most difficult change task and progressively per-

forming the easier tasks (Hard First). In both cases, the experimental tasks were

performed on two alternative types of design of a Java system to assess whether the

choice of design strategy moderates the effects of task order on effort and correct-

ness.

The results show that the time spent on making the changes is not affected

significantly by the task order of the maintenance tasks, regardless of the type of
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design. However, the correctness of the maintainability tasks is significantly higher

when the task order of the change tasks is Easy First compared to Hard First,

again regardless of design. A possible explanation for the results is that a steeper

learning curve (Hard First) will cause the programmer to create software that is

less maintainable overall.

Key words: Object-oriented design, object-oriented programming, maintainability,

maintenance planning, maintenance process, software maintenance, schedule and

organizational issues.

1 Introduction

The effort required to make changes correctly to a software system depends

on many factors. These factors include characteristics of the software system

itself (e.g., code, design and architecture), documentation of the system, the

development environment and tools, and human skills and experience. For

example, an empirical study by Jørgensen and Sjøberg [17] showed that the

frequency of major unexpected problems is lower when tasks are performed by

maintainers with a medium level of experience than when they are performed

by inexperienced maintainers. However, using maintainers with even greater

experience did not result in any further reduction. Further, the results of

another empirical study [3] showed that the effect of the design approach to a

system on the time spent on, and correctness of, changes made depends on the

experience of the maintainers. In the study presented herein, we investigated

how the breakdown and sequential ordering of maintenance tasks affects the

time required to carry out change tasks and the resulting quality of the system.

If we could find any indications that the way in which change tasks are ordered

affects the maintainability of the system, the result would represent a high
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return on investment for software companies, because little effort is required

to rearrange the task order. More specifically, we wanted to assess the effects

of ordering maintenance tasks with respect to difficulty level. The level of

difficulty of a maintenance task is determined by the complexity of the change

(how many classes are affected by the change), the size of the change, and the

estimated time required to perform the task.

In some cases, the priority of maintenance tasks is constrained by client pri-

orities: must have, good to have, and time permitting features/fixes[16] or or-

ganisational goals[7]. In other cases, there are fewer constraints on how to

break down and arrange the maintenance tasks, in which case one can choose

freely among alternative strategies to prioritize or sequence the tasks. This

paper provides empirical evidence regarding two alternative strategies per-

taining to the sequence of performing the change tasks: Easy First, where

the maintainers start with the easiest change task and progressively perform

the more difficult tasks and Hard First, where the maintainers start with the

most difficult change task and progressively perform the easier tasks. We re-

port results from two controlled experiments (which, taken together, form one

quasi-experiment [henceforth, the experiment]) that investigate whether the

sequence of change tasks affects the correctness and the effort spent on per-

forming change tasks. Each of the controlled experiments examined one of

the two alternative strategies. Hence, the experiment attempted to assess two

competing hypotheses:

1) By starting with the easy maintenance tasks first, the learning curve will not

be very steep, thus enabling the maintainers to obtain a progressively better

overview of the software system before having to perform more difficult tasks.

In this way, the maintainer is less likely to devise suboptimal solutions when

3



performing the difficult tasks. This is closely related what is defined as the

bottom-up strategy regarding program comprehension, in which programmers

look for recognizable small patterns in the code and gradually increase their

knowledge of the system [19].

2) By starting with the difficult maintenance tasks first, the learning curve

will be steep, as the programmer must obtain a more complete overview of

the system before being able to perform changes. However, due to the bet-

ter overview, the maintainer might be less likely to devise suboptimal task

solutions. This is related to the top-down strategy regarding program com-

prehension, in which the programmer forms hypotheses and refinements of

hypotheses about the system that are confirmed or refuted by items of the

code itself [6].

The experiment was performed in order to garner empirical evidence as to

which, if either, of the two approaches is better in terms of the correctness

of the changes made and the time spent on them. The learning curve of a

system depends on how the system is structured. Hence, we also included two

different design styles in the experiment: (i) a centralized control style design,

in which one class contains most of the functionality and extra utility classes

are used; and (ii) a delegated control style design, in which the functionality

and data were assigned to classes according to the principles for delegating

class responsibility advocated in [8].

The subjects were 3rd to 5th year software engineering students. The software

system to be maintained was a coffee vending machine. The change tasks were

relatively small (from 15 minutes to 2 hours per task). Finally, the subjects had

no prior knowledge of the system. Given these experimental conditions, the
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results reported herein are not likely to be valid for experienced maintainers or

maintainers who already have obtained a detailed understanding of the system

that is to be maintained. However, we still believe that the scope of the study is

highly relevant in an industrial context. This is because in our experience, it is

common to assign new and inexperienced programmers to maintenance tasks,

and unless careful consideration is given to the nature of the tasks assigned,

such programmers may affect adversely the maintainability of the system.

In addition, it has become more common to outsource the maintenance of

a system to consultants who have no, or very little, prior knowledge of the

system [24,23].

The remainder of this paper is organised as follows. Section 2 describes the

theoretical background for the study and differentiates between program com-

prehension and software maintenance. Section 3 describes the design of the

experiment and states the hypotheses tested. Section 4 presents the results.

Section 5 discusses what we consider to be the most important threats to

validity and how we addressed them. Section 6 concludes.

2 Maintainability of Object-Oriented Software

The ISO 9126 [15] analysis of software quality has six components: function-

ality, reliability, usability, efficiency, maintainability, and portability. The ISO

9126 model defines maintainability as a set of attributes that bear on the ef-

fort needed to make specified modifications. Furthermore, maintainability is

broken down into four subcharacteristics: analysability, changeability, stabil-

ity and testability. However, these subcharacteristics are problematic in that

they have not been defined operationally. Our experiment investigated how the
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process by which a software system is learned affects maintainability; hence, it

is principally the subcharacteristic analysability that is examined. Analysabil-

ity is related to the process of understanding a system before making a change

(program comprehension).

In addition to analysability, the experiment is related to changeability. Ar-

isholm [1] views changeability as a two-dimensional characteristic: it pertains

to both the effort expended on implementing changes, and the resulting qual-

ity of the changes. These are also the quality characteristics we measured in

the empirical study presented in this paper. There are several papers that

describe studies that focus on making changes to a system ([5], [14], and [13]).

However, most of these studies focus on the results of changes to the software

and not the process of changing it, so they are not particularly relevant to our

work.

The last two subcharacteristics that make up maintainability, stability and

testability, are not relevant to our experiment.

In the following subsection, we elaborate upon the notion of analysability as

it relates to software maintenance.

2.1 Analysability of Object-Oriented Software

We define analysability as the degree to which a system’s characteristics can

be understood by the developer (by reading requirement, design and imple-

mentation documentation, and source code) to the extent that he can perform

change tasks successfully. To be able to maintain and change a system effi-

ciently (i.e. in a short time) and correctly (i.e. with intended functionality and
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a minimum of side-effects) the maintainer must understand the system well.

This understanding can be achieved gradually, all at once, or somewhere in

between. The process of coming to understand a system is also closely related

to whether the change tasks will affect the whole system or only small parts

of it. These issues are addressed below.

Analysability is closely related to program comprehension. Program compre-

hension requires that the maintainer represent the software mentally [11,22].

A number of models have been proposed to describe the cognitive processes

by which program comprehension may be achieved. Brooks model describes

program comprehension as the initial developer’s reconstruction of the knowl-

edge domain [6]. In this model, program comprehension is achieved by recre-

ating mappings from the real-world problems (problem domain) to the pro-

gramming domain through several intermediate domains (e.g., inventories,

accounting, mathematics, and programming languages). The intermediate do-

mains are used to close the gap between the problem and programming do-

mains. Letovsky has proposed a high-level comprehension model that consists

of three main parts: a knowledge base, a mental model, and an assimilation

process [18]. The maintainer constructs a mental representation by combin-

ing existing knowledge (e.g. programming expertise, domain knowledge) with

the external representation of the software (documents and code) through a

process of assimilation. Soloway, Adelson and Ehrlich have proposed a model

based on a top-down approach [27]. This model assumes that the code or type

of code is familiar and that the code can be divided into subparts. The model

suggests breaking down the code into familiar elements that will form the

foundation for the internal representation of the system. Pennington’s model

is based on a bottom-up approach to program comprehension. Two mental
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representations are developed: a program model and a situation model [22].

The program model represents a control-flow abstraction of the code. The sit-

uation model represents the problem domain or the real world. Shneiderman

and Mayer have proposed another model, according to which the process of

program comprehension transforms the knowledge of the program that is re-

tained in short-term memory into internal semantic knowledge via a chunking

process [25]. Mayrhauser and Vans have proposed a model they have named

”integrated metamodel”, which consists of four main components: the top-

down model, situation model, program model and knowledge base [31]. The

knowledge base is the foundation upon which the other three models are built,

via a process of comprehension. This approach combines Penningtons bottom-

up approach with Soloway, Adelson, and Ehrlichs top-down approach.

Another way of describing how programmers and maintainers achieve an un-

derstanding of a software system is to distinguish between opportunistic and

systematic strategies. Littman et al. observed that these two strategies were

used by programmers who were assigned the task of enhancing a personnel

database program [20]. On the opportunistic (on-the-fly) approach, program-

mers focus only on the code related to the task, while on the systematic

approach, they read the code, and analyse the control flow and data flow to

gain a global understanding of the program. Littman et al. found that pro-

grammers who used the opportunistic approach only acquired information

about the structure of the program, while programmers who used the system-

atic approach acquired, in addition, knowledge of how the components in the

program interact when it is executed. Further, the study showed that pro-

grammers who used the opportunistic approach made more errors because of

their lack of understanding of how the components in the program interact.
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The various models of program comprehension may be categorized as top-

down, bottom-up or a combination of the two. In the study presented in

this paper, the Hard First sequence for performing change tasks represents a

top-down approach, while the Easy First sequence represents a bottom-up ap-

proach. When using the top-down approach, the maintainer must build up an

overview of the system before he can make any changes to it. The maintainer

will try to break the system as a whole down into smaller and smaller parts un-

til he understands the whole system. When using the bottom-up approach, the

maintainer will start by concentrating on the particular portions of the code

that are to be modified. As the maintainer realizes that more parts of the code

need to be changed, he will gradually acquire an understanding of more and

more, and possibly all of, the system. This basic dichotomy regarding models

of program comprehension is complicated a little when we consider the differ-

ent design approaches. The delegated control style could enforce a top-down

approach, because when making changes to the system, the maintainer must

take the rather extensive interaction among the classes into consideration. For

the centralized control style, most of the changes will be made to the main

class, which contains most of the code.

Further, the easy- and hard-first task order can be related to opportunistic

and systematic program strategies for comprehension, respectively. The op-

portunistic approach maps very well to the easy-first task order, where only

small parts of the system will be affected first and incrementally more parts

will be affected. For the hard-first task order, it is necessary to understand

how the different parts of the system interact before any changes can be made.

The process of program comprehension depends on many factors, such as the

characteristics of the program [22], [12], individual differences between the
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programmers with respect to skill and experience [29], [12] and the charac-

teristics of the programming task itself [28]. For example, for simple tasks,

the changes will probably only affect small portions of the code, but for more

complex changes, the programmer must take into account the interaction be-

tween different parts of the system. Thus, in order to make more complex

changes, it is important for the programmer to understand thoroughly the

structure of the program and the interactions among its components. Re-

sults from studies by Pennington [22] show that for a task that requires recall

and comprehension, the programmer will form an abstract view of the pro-

gram that models control flow. To modify the program, the programmer will

form a situation model that describe the how the program will affect real-

world objects. For example, the situation model describes the actual code

”numOfMonitors = numOfMonitors−sold” as ”reducing the inventory by

the number of monitors sold”.

Several empirical studies have investigated program comprehension and soft-

ware maintenance (see [30]). These studies were conducted to collect infor-

mation to support the program comprehension models or to validate them,

and range from observational (behavioural) studies to controlled experiments.

Many of the models described in the previous paragraph (e.g. Pennington’s

model) are based on experiences of very small programs or parts of a pro-

gram with 200 or lines of code or fewer. Corritore and Wiedenbeck describe

an empirical study that investigated the mental representations of maintainers

when working on software developed by expert procedural and object-oriented

programmers [11]. In this study, the program being maintained consisted of

about 800 lines of code, and hence was considered to be rather large. Empirical

studies have also been conducted on real large-scale systems that contained
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over 40K lines of code [31]. The program that was maintained in our experi-

ment was a small system that contained about 400 lines of code. The focus of

our experiment was different from that of the empirical studies cited in this

paragraph. We sought to investigate the resulting maintainability of the sys-

tem after changes have been made to it and not how the subjects comprehend

the system per se.

3 Design of Experiment

The results described in this paper are based on data from two controlled

experiments, forming one quasi-experiment:

• Controlled experiment 1: The first of the two experiments evaluated the

effect of a delegated (DC) versus a centralized (CC) control style design of a

given system on maintainability [3]. In this controlled experiment, 99 junior,

intermediate and senior Java consultants and 59 undergraduate and gradu-

ate students from the University of Oslo (UiO) participated. The subjects

started with the easiest change task and progressively performed the more

difficult tasks (Easy First). Only the data from the 59 (3rd to 5th year) stu-

dents from the UiO that participated in that experiment (henceforth, the

UiO experiment) are reused in this paper. The 99 java consultants were not

included because the second experiment (see below) only contained (mostly

4th year) students, and we wanted to ensure that the level of education and

experience of the subjects in the two experiments was similar. As discussed

below, a pretest was used to further adjust for skill differences.

• Controlled experiment 2: The second controlled experiment was con-

ducted with 66 (mostly 4th year) students at the Norwegian University of
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Science and Technology (NTNU), and was a loose replication of the first. In

the NTNU experiment, the students started with the most difficult task (on

either the CC or DC design) and progressively performed the easier tasks

(Hard First).

Thus, the two individual experiments formed a 2x2 factorial quasi-experiment

[9] that had a total of 125 students as subjects, all of whom had comparable

levels of education and experience. To further adjust for individual skill dif-

ferences between the treatment groups, all subjects in both of the controlled

experiments performed the same pretest programming task. The results of the

pretest were then used in an Analysis of Covariance model on the effect on

task order on maintainability [9]. This is a common approach for analysing

quasi-experiments.

In both experiments, the subjects performed the maintenance tasks using

professional development tools. To manage the logistics of this experiment,

the subjects used the web-based Simula Experiment Support Environment

(SESE) to download code and task descriptions.

Figure 1 gives an overview of the experiment design that shows the differences

between the UiO and NTNU experiments. The first three steps were the same

for the UiO and NTNU experiments. However, for Tasks c1–c3, the subjects

carried out four variants of the treatment with variation in two dimensions:

Task order (Hard First vs. Easy First) and Control style (DC vs. CC). The

last step (Task c4) was the same for both experiments, but with two variations

(DC and CC).
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Fig. 1. An overview of the experiment design

3.1 Hypotheses

We now present informally the hypotheses tested in the experiment. The hy-

potheses aim to assess whether the task order (Easy First vs. Hard First)

affects the dependent variables Duration and Correctness and whether the de-

sign (CC vs. DC) moderates the potential impact of the task order on duration

and correctness, as depicted in Figure 2.

Fig. 2. Conceptual research model
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The null-hypotheses of the experiment were as follows:

• H01 - The Effect of Task Order on Duration. The time taken to perform

change tasks is equal for the easy-first and hard-first task order.

• H02 - The Moderating Effect of Design on Duration. The difference

in the time taken to perform change tasks for easy-first and hard-first task

order does not depend on design.

• H03 - Effect of Task Order on Correctness. The correctness of the

maintained programs is equal for easy-first and hard-first task order.

• H04 - Moderating Effect of Design on Correctness. The difference in

the correctness of the maintained programs for easy-first and hard-first task

order does not depend on design.

Section 3.6 provides further details of the variables and statistical models used

to test the above hypotheses.

3.2 Design Alternatives Implemented in Java

Two alternative designs (CC and DC) of the coffee-machine were used as ob-

jects in the experiments, and were implemented in Java using similar coding

styles, naming conventions, and amount of comments. For the centralized con-

trol style design one class contained most of the functionality and extra utility

classes were used, while for the delegated control style design the functionality

and data were assigned to classes according to the principles for delegating

class responsibility advocated in [8]. All the names in the code used to iden-

tify variables and methods were long and descriptive. UML sequence diagrams

were also provided, so that the subjects could obtain an overview of the main
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scenario for the two designs. The sequence diagrams are provided in [2].

3.3 Maintenance Tasks

The maintenance tasks of the experiment consisted of six change tasks: a

training task, a pretest task, and four (incremental) main experimental tasks

(c1 - c4). In the UiO experiment, the students performed the main tasks in

the order c1, c2, c3 (Easy First), and then c4. In the NTNU experiment, the

students performed the tasks in the order c3, c2, c1 (Hard First) and then c4.

The c4 task occupied the same place in the sequence for both the UiO and

NTNU experiments, as a benchmark task.

To support the logistics of the experiments, the subjects used the web-based

Simula Experiment Support Environment (SESE) [4] to complete a question-

naire on experience, download code and documents, upload task solutions, and

answer task questions. The SESE tool was used for both experiments. The tool

was also used to measure how much time the subjects spent on completing

the change tasks. The experience questionnaire, detailed task descriptions, and

change task questionnaire are provided in [2]. For each task in the experiment

(see Figure 1), the following steps were carried out:

• Download and unpack a compressed directory containing the Java code to

be modified. (This step was performed prior to the first maintainability task

for the coffee-machine design change tasks (c1 – c4), because these change

tasks were related.)

• Download task descriptions. (Each task description contained a test case

that each subject used to test the solution.)
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• Perform the task using a chosen Java development environment/tool.

• Pack the modified Java code and upload it to SESE.

• Complete a task questionnaire.

3.3.1 Training Task

The training task required the subjects to change a small program so that it

could read numbers from the keyboard and print them out in reverse order.

The purpose of this task was to familiarize the subjects with the experimental

procedures.

3.3.2 Pretest Task

The pretest task asked the subjects to implement the same change on the

same design for an automated bank teller machine. The change was to add

transaction log functionality to a bank teller machine, and was not related to

the coffee-machine designs. The purpose of this task was to provide a com-

mon baseline for assessing and comparing the programming skill level of the

subjects. The pretest task had almost the same size and complexity as the

subsequent three change tasks c1, c2, and c3 combined.

3.3.3 Main Tasks

The change tasks for the Coffee machine consisted of four changes:

• c1. Implement a coin-return button.

• c2. Introduce bouillon as a new drink choice.

• c3. Check whether all ingredients are available for the selected drink.
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Table 1

Subject Allocation to treatment groups

CC DC Total

Easy First (UiO) 28 31 59

Hard First (NTNU) 33 33 66

• c4. Make one’s own drink by selecting from the available ingredients.

After completing tasks c1 – c3, all the resulting systems would be functionally

identical if the subjects had implemented them according to the provided

specifications, regardless of whether the subjects had performed the tasks on

the DC or CC design or in the easy-first or hard-first task order. Thus, task c4

could be used as a benchmark to measure the maintainability of the systems

(as indicated by the time spent and the correctness of c4) after implementing

c1 – c3. Task c4 was more complex than tasks c1, c2 and c3.

3.4 Group Assignment

In both the UiO and NTNU experiments, a randomized experimental design

was used. Each subject was assigned randomly to one of two groups, CC and

DC. In addition, the UiO students performed the maintainability tasks in the

easy-first task order, while the NTNU students performed them in the hard-

first task order (see Figure 1). The subjects in the CC group were assigned

to the CC design and the subjects in the DC group were assigned to the DC

design. Table 1 describes the distribution of number of subjects in the four

groups used in the quasi-experiment. The reason for the uneven distribution

for Easy First (UiO) is that two of the subjects did not show up.
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3.5 Execution and Practical Considerations

For the UiO experiment, graduate and undergraduate students in the De-

partment of Informatics at UiO were contacted through e-mail and asked to

participate. For the NTNU experiment, all students were recruited from the

same software architecture course at the Department of Computer and Infor-

mation Science at NTNU. In this course, most students are graduate students

(4th year), but some are undergraduate (less than 10%). For the students at

NTNU, the experiment was integrated as a voluntary exercise in the software

architecture course. In both experiments, the students were paid about 1000

Norwegian Kroner (about $150) for participating in the experiment. The pay

corresponds to eight hours wages as a course assistant and it was required

that the students either complete the tasks of the experiment or work for up

to eight hours with tasks in the experiment. At both universities, the results of

the experiment were presented to the students when preliminary results from

the analysis were available.

3.6 Variables and Model Specifications

This section defines in more precise terms the variables of the experiment,

how data was collected for these variables, and the models for analysis used

to test the hypotheses.

3.6.1 Variables

3.6.1.1 Duration Before starting on a task, the subjects wrote down the

current time. When they had completed the task, they reported the total
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time (in minutes) that they spent on that task. Two measures of Duration

were considered as dependent variables: 1) The elapsed time in minutes to

complete change tasks c1 – c3, and 2) the elapsed time in minutes to complete

change task c4. Nonproductive time between the tasks was not included. For

the Duration measure to be meaningful, we considered the time spent only for

subjects with correct solutions.

3.6.1.2 Correctness For each task, test cases were devised to test the

main scenario of the changed function. For each test run, the difference be-

tween the expected output of the test case (this test output was given to the

subjects as part of the task specifications) and the actual output generated by

each program was computed. The results of the functional tests and the actual

code delivered were also inspected manually to assess the degree of correctness

further. For each task, a binary, functional correctness score was given. A task

solution was assigned the value ’1’ if the task was implemented correctly and

’0’ if it contained serious logical errors. On the basis of the individual task

correctness scores, two measures of correctness were considered as dependent

variables: 1) The correctness of tasks c1 – c3 (’1’ if all three tasks were correct,

’0’ otherwise), and 2) the correctness of task c4.

3.6.1.3 TaskOrder Whether the subjects performed the tasks starting

with the Easy First (c1, c2, c3, c4) or Hard First (c3, c2, c1, c4) task order.

3.6.1.4 Design The two alternative Java implementations of the coffee

machine; centralized (CC) or delegated (DC).
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3.6.1.5 Pretest Duration (pre dur) The time taken (in minutes) to

complete the pretest task (t1). The individual pretest result was used as a co-

variate that modelled the variation in the dependent variables that could be

explained by individual skill differences. Such an approach is known as Analy-

sis of Covariance (ANCOVA), and is commonly used to adjust for differences

between groups in quasi-experiments [9]. In our experiment, differences could

be expected due to the fact that the experiment was conducted in two phases

(UiO and NTNU) with two distinct samples of students.

3.6.2 Model Specifications

A generalized linear model (GLM) approach [21] was used to perform an

ANCOVA to test the hypotheses specified in Section 3.1. The GENMOD pro-

cedure provided in the statistical software package SAS was used to fit the

models. A justification for the specifications of the model follows.

Since this experiment was a quasi-experiment, the models needed to account

for differences between the groups due to a lack of random assignment. The

pretest measure pre dur was used to specify ANCOVA models that adjust

the observed responses for the effect of the covariate, as recommended in [9].

The covariate was log-transformed to reduce the potential negative effect that

outliers can have on the model fit, among other things.

Furthermore, the Duration and Correctness data was not normally distributed,

which also affected the model specifications. GLM is the preferred approach

to analysing experiments with non-normal data [32]. In GLMs, one specifies

the distribution of the response y, and a link function g. The link function

defines the scale on which the effects of the explanatory variables are assumed
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to combine additively. The time data was modelled by specifying a Gamma

distribution and the log link function. The Gamma distribution is suitable for

observations that take only positive values and are skewed to the right, which

is the case for time data that has zero as a lower limit and no clear upper

limit (though it cannot be longer than eight hours in this experiment). Note

that an alternative approach would be to simply log-transform the variable, by

computing the log of each response log(y) as the dependent variable, and using

a log-linear model to analyse the data on the assumption that log(y) would

be approximately normally distributed. However, unlike such an approach,

GLM takes advantage of the natural distribution of the response y, in our

case Gamma for the time data. Furthermore, the expected mean µ = E(y),

rather than the response y, is transformed to achieve linearity. As elaborated

upon in [21,32], these properties of GLM have many theoretical and practical

advantages over transformation-based approaches.

The correctness measure was fitted by specifying a Binomial distribution and

the logit link function in the GENMOD procedure. This special case of GLM is

also known as a logistic regression model, and is a common choice for modelling

binary responses.

Table 2 specifies the models. Given that the underlying assumptions of the

models are not violated 1 , the presence of a significant model term corresponds

to rejecting the related null-hypothesis. The following terms were used to test

the hypotheses:

• The TaskOrder variable models the main effect of the Easy First versus

Hard First task order on duration and correctness (to test hypotheses H01

1 An empirical assessment of the model assumptions are provided in Section 5.1

21



Table 2

Complete model specifications

and H03).

• The Design variable models the main effect of the control style DC versus

CC on duration and correctness, as an indicator of system complexity. The

interaction term between TaskOrder and Design, TaskOrder x Design, mod-

els the moderating effect of the design on the effect of task order (to test

hypotheses H02 and H04).

• The log-transformed covariate Log(pre dur) adjusts for individual skill dif-

ferences.

4 Results

This section presents the results from our quasi-experiment.
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4.1 Descriptive Statistics

The descriptive statistics of the experiment are shown in Table 3. The Correct-

ness and Duration data are reported, both accumulated over the first three

tasks (c1 – c3) and for the final task (c4). The Total N shows the number

of subjects assigned to the given treatment combination (e.g., CC and Easy

First). The Correct N column shows how many subjects actually solved the

given task(s) correctly, and the Correct % column shows the proportion of sub-

jects with correct solutions. As already discussed, Duration is only reported

for subjects with correct solutions on the given task(s), so the descriptive

statistics for duration (Mean, Std, Min, Q1, Med, Q3, Max) are based on the

Correct N number of observations. Note that all tasks (c1 – c3) are considered

to be correct if all subtasks (c1, c2 and c3) are correct.

Table 3

Descriptive statistics of correctness and duration

The main results (Easy vs. Hard First for CC and DC for c1 – c3) are visualized

in Figure 3. Duration is shown on the left Y-axis, while the percentage of

correct solutions is shown to the right. There are some indications that there

are interactions between control style and task order that affect Duration

and Correctness. For example, for the CC design, Correctness is better when

starting with the easiest task first. In contrast, for the DC design, Correctness

23



is better when starting with the most difficult task first. The interaction effects

are reversed when considering Duration. For the CC design, the mean total

Duration required to perform all three tasks correctly is longer when starting

with the easiest task first. In contrast, for the DC design, Duration is shorter

when starting with the most difficult task first.

Fig. 3. The effects of design and task order on Duration and Correctness (tasks c1

– c3)

When considering Duration and Correctness only for the final task (c4), the

picture changes (see Figure 4). Regardless of task order, more subjects who

worked on the CC design seem to have correct solutions. Furthermore, the

subjects who were assigned to the hard-first task order have fewer correct

solutions than those who started with the easy task first. However, there are

no apparent interaction effects.
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Fig. 4. The effects of design and task order on Duration and Correctness (tasks c4)

4.2 Hypothesis Tests

The results of the hypotheses regarding Correctness and Duration for the first

three tasks (c1 – c3) are shown in Tables 4 and 5, respectively. The results

suggest that TaskOrder does not have a significant impact on Correctness or

Duration. There is some support for the hypothesis that control style (De-

sign) affects correctness (p=0.07). There are no significant interaction effects

between Design and TaskOrder.

On the basis of the ANCOVA models, we also calculated the adjusted, least

square means [2] for each model term, to assess and visualize the effect sizes

for the two approaches to Design (CC and DC) and TaskOrder (Easy First

and Hard First) after adjusting for individual differences as indicated by the

pretest. These estimates might be more reliable than the descriptive statistics,

because they adjust for group differences. Since the model for the dependent

variable Duration used the log link function, the least square means estimates
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Table 4

ANCOVA results regarding Correctness (tasks c1 – c3)

Source DF Chi-Square Pr > ChiSq

pre LogDur 1 8.71 0.0032

Design 1 3.09 0.0785

TaskOrder 1 0.09 0.7683

Design*TaskOrder 1 0.71 0.4003

Table 5

ANCOVA results regarding Duration (tasks c1 – c3)

Source DF Chi-Square Pr > ChiSq

pre LogDur 1 26.24 <.0001

Design 1 0.05 0.8147

TaskOrder 1 0.15 0.6977

Design*TaskOrder 1 0.45 0.5025

produced by the GENMOD procedure were first transformed back to the orig-

inal time scale (in minutes) by taking the exponential of the adjusted least

square means estimates. Similarly, the least square means of the logit, i.e.,

µ = log(p/(1− p)), was transformed back to the expected probability of hav-

ing a correct solution (p = exp(µ)/(exp(µ) + 1). The results (including 95%

confidence intervals) are shown in Table 6 and Table 7 for Correctness and

Duration, respectively. Table 7 shows that the most noticeable difference in

estimates for correctness is a 16% difference for design (CC vs. DC) as ex-

pected, while the difference in estimates for the effect of task order is only 2%.

Further, the estimates for Duration in Table 7 show very small variations (a

maximum of 5%).
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Table 6

Least Squares Means estimates for Correctness (tasks c1 – c3)

Table 7

Least Squares Means estimates for Duration (tasks c1 – c3)

When only considering the final task (c4) that we used as a benchmark, the

results suggest that there are significant effects of both Design (p=0.0022)

and TaskOrder (p=0.0001) on Correctness (Table 8). There are no significant

interaction effects between Design and TaskOrder. For Duration there are no

significant effects (Table 9). The corresponding effect size estimates are given

in Table 10 and Table 11 for Correctness and Duration, respectively. The least

square means estimates for both main effects and interactions are visualized

in Figure 5.

We used change task c4 as a benchmark for testing the maintainability of

the system. Hence, the main results of the experiment concern the tests of the

hypotheses for c4. We summarize the results of the hypothesis tests as follows:
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Table 8

ANCOVA results regarding Correctness (tasks c4)

Source DF Chi-Square Pr > ChiSq

pre LogDur 1 13.26 0.0003

Design 1 9.41 0.0022

TaskOrder 1 14.97 0.0001

Design*TaskOrder 1 1.15 0.2839

Table 9

ANCOVA results regarding Duration (tasks c4)

Source DF Chi-Square Pr > ChiSq

pre LogDur 1 6.20 0.0128

Design 1 1.09 0.2972

TaskOrder 1 0.76 0.3846

Design*TaskOrder 1 1.66 0.1973

Table 10

Least Squares Means estimates for Correctness (tasks c4)

• H01 - The Effect of Task Order on Duration. The time on performing

change tasks is equal for easy-first and hard-first task order: Accepted.

• H02 - The Moderating Effect of Design On Duration. The difference
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Table 11

Least Squares Means estimates for Duration (tasks c4)

Fig. 5. The effects of design and task order on Duration and Correctness (task c4)

in time taken to perform change tasks for easy-first and hard-first task order

does not depend on design: Accepted.

• H03 - Effect of Task Order on Correctness. The correctness of the

maintained programs is equal for easy-first and hard-first task order: Re-

jected.

• H04 - Moderating Effect of Design on Correctness. The difference in

the correctness of the maintained programs for easy-first and hard-first task

order does not depend on design: Rejected.
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4.3 Summary of results

The most interesting results seem to pertain to Correctness for the final task

c4, as depicted in Figure 5. We can see that the average proportion of correct

solutions (aggregated across both task orders) was significantly higher for

the CC design (41%) than for the DC design (15% correct). Moreover, the

proportion of correct solutions was significantly higher when the task order

was Easy First (46%) as opposed to Hard First (12%) (aggregated across both

design approaches). If we consider the effects of task order on correctness for

the two design approaches separately, we can see that the tendency was the

same for both designs, but the effect was stronger for the CC design than

for the DC design. For the CC design, subjects using the easy-first task order

produced significantly more correct solutions (69%) than did subjects using the

hard-first task order (18%). For the DC design the effect is less dominant, but

here also, subjects using the easy-first task order produced a higher proportion

of correct solutions (25%) than those using the hard-first task order (8%).

Interpretation of these results requires care. If we first consider the design

approach’s effect on correctness, a previous experiment showed that it is easier

for programmers with limited experience (students, junior and intermediate

consultants) to maintain systems that use the CC approach than it is for

them to maintain systems that use the DC approach [3]. That experiment

also showed that experienced programmers (senior consultants) can maintain

systems that use the DC approach more efficiently than they can systems that

use the CC approach. This indicates that the DC approach requires a certain

level of skill and experience to benefit from it. It is likely that the increased

requirements with regards to skills and experience are due to delocalized plans
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[27], where the functionality is delegated across different objects in the system,

which makes it more difficult to comprehend. These results are confirmed by

the results reported in this paper.

One possible reason for the effects of task order is that by maintaining a

system using an easy-first task order, the learning curve will not be so steep.

This means that the maintainer will learn the system in several increments,

through which the maintainers knowledge of the system will gradually become

more complex. In contrast, a hard-first task order will force the maintainer to

understand most aspects of the system at once (during the first change task).

However, one could argue that by using the hard-first approach, the maintainer

should have been able to create a more maintainable system, because he must

have a good overview of the system in order to make the first change. For

our subjects, this is not the case. It is possible that the result would be the

opposite for more experienced maintainers/programmers, but we do not have

any empirical data to support or refute this claim.

Theories of program comprehension may offer explanations of why using the

CC approach and the easy-first task order results in a more maintainable

system. In Section 2 we characterised the CC-design approach and the easy-

first task order as representing a bottom-up approach to program comprehen-

sion, while the DC-design approach and the hard-first task order represent a

top-down approach to program comprehension. According to Pennington [22],

when programmers are maintaining code that is completely new to them, they

will first create a mental representation of a control-flow program abstraction

that identifies the elementary blocks of the code and that will gradually be

refined. Penningtons bottom-up model fits very well with the CC approach

and Easy-First task order, where the control structure and organisation of the
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design are simple and the change tasks do not require a complete overview of

the system. In contrast, a top-down approach to understanding a system is

typically used when the code or type of code is familiar [27]. The process of

understanding the program will typically consist of breaking the system down

into familiar elements of that system type. Theoretically, new code could be

understood using a top-down approach, but for this to be so, the maintainer

must have experience of systems with similar structures. This could also be a

possible explanation for why experienced programmers could benefit from the

DC approach [3]. Experienced programmers have worked with many systems

and can thus recognise structures (patterns) from previous work. A process

of program comprehension will always try to use existing knowledge to ac-

quire new knowledge. Existing knowledge can be classified into two types:

general and software-specific [30]. The former is typically knowledge about

programming languages, algorithms and such like, while the latter pertains to

understanding a specific application. In our experiment, the subjects mainly

had some general knowledge, but very little software-specific knowledge. Top-

down program comprehension usually requires software-specific knowledge to

be used successfully; hence, the lack of software-specific knowledge on the part

of our subjects may explain our results.

Our experiment also shows that there is no significant difference in the time

spent on maintaining a system, regardless of task order and design style. Note

that we only consider the time taken to implement a correct change of the

system.

In summary, our results suggest that inexperienced programmers who have

little prior knowledge of the system that is to be maintained are more likely

to implement correct changes when using an easy-first (as opposed to hard-
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first) task order and a centralized (as opposed to a delegated) design style.

The time spent on making the changes did not vary significantly by task order

or design approach.

5 Threats to Validity

We now discuss what we consider to be the most important threats to the

validity of the experiment and offer suggestions for improvements in future

experiments.

5.1 Validity of Statistical Conclusions

The validity of statistical conclusions concerns (1) whether the presumed cause

and effect covary and (2) how strongly they covary. For the first of these

inferences, one may incorrectly conclude that cause and effect covary when,

in fact, they do not (a Type I error) or incorrectly conclude that they do not

covary when, in fact, they do (a Type II error). For the second inference, one

may overestimate or underestimate the magnitude of covariation, as well as

the degree of confidence that the estimate warrants [26].

The GLM model assumptions were checked by assessing the deviance residu-

als [21]. For the duration models (Table 5 and Table 9), plots of the deviance

residuals indicated no outliers or overinfluential observations. Furthermore, a

distribution analysis of the deviance residuals indicated no significant devi-

ations from the normal distribution. Thus, the model fit was good. For the

logistic models (Table 4 and Table 8), a plot of the deviance residuals again

indicated no potentially overinfluential observations. We also performed a Hos-
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mer and Lemeshow Goodness-of-Fit test, which did not indicate a lack of fit

(p=0.27).

In summary, there are no serious threats to the validity of statistical conclu-

sions due to lack of fit of the model. Assessments of the ANCOVA assumptions

are discussed as threats to internal validity.

5.2 Internal Validity

The internal validity of an experiment concerns ”the validity of inferences

about whether observed covariation between A (the presumed treatment) and

B (the presumed outcome) reflects a causal relationship from A to B as those

variables were manipulated or measured” [26]. If changes in B have causes

other than the manipulation of A, there is a threat to internal validity.

The experiment was conducted in two phases and in two distinct locations, and

this lack of random assignment to the TaskOrder treatment could result in skill

differences between the treatment groups, which in turn would bias the results.

To address this potential threat, each subject performed a pretest task, which

was used to adjust for group differences by means of an analysis of covariance

(ANCOVA) model [9]. An important assumption of ANCOVA is that the slope

of the covariate can be considered equal across all treatment combinations.

This assumption was checked for all models. For the duration model for tasks

c1 – c3 (Table 5), there was in fact a significant interaction effect between

pre LogDur and TaskOrder. Thus, the ANCOVA assumption was violated in

this case. Fortunately, since there was no statistically significant difference

in the mean pretest value of the treatment groups, we could also perform a
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regular ANOVA, i.e., without the covariate, to check whether the violation

affected the statistical conclusions 2 . The results of the ANOVA confirmed

the results of the ANCOVA model reported in Table 5: no significant effects

of the treatments. For the other models (Table 4, Table 8 and Table 9), no

interaction terms involving the covariate Log(pre dur) were significant, which

indicates that the homogeneity in the slopes assumption was not violated

for those models. Thus, we conclude that the ANCOVA models successfully

adjusted for skill differences between the treatment groups, as indicated by

the pretest.

A related issue is that for the analyses of duration, we removed subjects with

incorrect solutions. The removal introduced a potential bias, particularly since

we removed a larger proportion of observations from the hard-first group.

Following the same arguments as above, the inclusion of the pretest in the

ANCOVA models will adjust for skill differences, even if the differences were

caused by removing subjects with incorrect solutions.

5.3 Construct Validity

Construct validity concerns the degree to which inferences are warranted, from

(a) the observed persons, settings, and cause and effect operations included

in a study to (b) the constructs that these instances might represent. The

2 In situations where there is no difference in the mean value of the covariate

(the pretest) between the treatment groups, the difference between ANCOVA and

ANOVA is that the ANOVA model has a larger error term than the ANCOVA

(since ANCOVA accounts for variability due to the covariate, hence reducing the

error term).
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question, therefore, is whether the sampling particulars of a study can be

defended as measures of general constructs [26].

5.3.1 Task Order

An important threat to the construct validity in our quasi-experiment is

whether the experiment design reflects changes of the task order correctly

(Easy First vs. Hard First). If we consider the description of the change tasks

c1, c2 and c3 (see Section 3.3.3), we can see that c1 is really a small and simple

change, c2 is a bit more complicated because it involves more of the objects

in the system, and c3 is a change that will affect most objects in the system.

If we consider the average time spent on these three tasks, the subjects spent

about twice as long on c2 as on c1 and three times as long on c3 as on c2.

Thus, the change tasks c1 – c3 are progressively more difficult.

5.3.2 Design

Another important threat to the construct validity concerns the extent to

which the actual design alternatives used in the treatment reflect the concept

studied. Since there are no operational definitions for control styles of object-

oriented software, a degree of subjective interpretation is required. Another

problem is to define the degree of centralization in a centralized design and the

degree of decentralization in a delegated design. It is hard to judge whether

our two designs (CC vs. DC) are representative of existing systems. However,

given the expert opinions in [10] and our own assessment of the designs, it is

quite obvious that the DC design has a more delegated control style than has

the CC design. However, it is always possible to create designs that are more
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centralized than CC (e.g. that consist of a single class) and a more delegated

control style than the DC design. We chose to use example designs developed

by others [10] as treatments that we believe are realistic and representative.

By using this approach, we can avoid biased treatments and it will be easier

to replicate the experiments.

5.3.3 Correctness

The dependent variable Correct was a coarse-grained, binary measure of cor-

rectness that indicates whether the subjects produced a functionally correct

solution for each change task (c1-c4). A significant amount of effort was spent

on ensuring that the correctness scores were valid (as described in Section

3.6.1). A possible alternative approach could be to use alternative methods to

measure the correctness, e.g. counting the number or severity of faults. The

main problem with such an approach is that the measures would be more

subjective, which would make future replication and evaluation difficult.

5.3.4 Duration

As described in Section 3.6.1, time was spent on measuring the effort ex-

pended on performing the change tasks. In the experiments conducted at UiO

and NTNU, we worked hard to minimise disturbance of the subjects that could

affect the time they spent on the tasks. The subjects carried out the exper-

iment in computer labs monitored by university staff, and the students were

informed that they should only take breaks or have lunch between the change

tasks and not during. The equipment and the data servers were also checked

and monitored before and during the two controlled experiments, to make sure
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that the subjects did not lose any time because of problems with hardware or

software. In addition, the training task in the two experiments (see Figure 1)

ensured that the subjects had the same familiarity with the experiment envi-

ronment (SESE) and the programming environment. We observed no major

disturbances during the two experiments.

5.4 External Validity

The issue of external validity concerns whether a causal relationship holds (1)

for variations in persons, settings, treatments, and outcomes that were in the

experiment and (2) for persons, settings, treatments, and outcomes that were

not in the experiment [26].

5.4.1 Fatiguing Effects

Despite our effort to ensure realism, the working conditions for the subjects did

not represent a normal day at the office. This lack of realism was caused by the

controlled environment, where, for example, the subjects were not permitted

to ask others for help. In a normal working situation, it is likely that one would

be less stressed and could take longer breaks than in an experimental setting.

Our experiment setting/environment might cause fatigue to a degree that is

not representative of realistic settings.

5.4.2 Systems and Tasks

Clearly, the experimental systems in this experiment were very small compared

with industrial object-oriented software systems. Furthermore, the change
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tasks were relatively small in size and duration. However, the change task

questionnaires received from the participants after they had completed the

change tasks indicated that the complexity of the tasks was quite high. Note

also that change tasks can be small in industry as well. Nevertheless, we can-

not rule out the possibility that the observed effects would have been different

if the systems and tasks had been larger.

The scope of the experiment was limited to maintenance tasks where the

maintainer had no prior knowledge of the system. Thus, it is uncertain whether

the results are representative for maintenance where the maintainer knows the

design in beforehand.

5.4.3 Representativeness of Sample

The subject sample used in this experiment consisted of 3rd to 5th year stu-

dents with limited professional work experience. We cannot be sure that the

results would be similar if we had used, say, a random sample of senior pro-

fessionals as subjects. However, as discussed in the introduction of this paper,

we still believe that the scope of the study is relevant, because it is common

practice to assign inexperienced developers to software maintenance tasks.

6 Conclusions

The main purpose of the quasi-experiment described in this paper was to in-

vestigate whether the order in which change tasks are sequenced can affect the

maintainability of a system. Our results show clearly that inexperienced pro-

grammers with no or little prior knowledge of the system they are maintaining
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benefit from an Easy First task order. Our results suggest that Correctness

was affected significantly by task order, while Duration was not. However, even

if our quasi-experiment did not show any direct saving of effort as a result of

implementing the easy-first task order, it is likely to save effort in the long-

term. This is because it is more likely that the changes will be implemented

correctly and so the system will require less maintenance. We believe this re-

sult is useful input for project managers planning software maintenance where

new staff is involved or when the maintenance is being out-sourced. Our results

correspond to results found in research on program comprehension, where a

bottom-up (Easy First) opposed to top-down (Hard First) learning process is

more appropriate when the programmer is unfamiliar with the system. Fur-

ther, the results of our experiment show that for our subjects, a centralized

design style is easier to maintain than a delegated design style. As the cen-

tralized design style will require a more bottom-up approach for maintenance,

in contrast to the top-down approach that is required by the delegated design

style, this result agrees with the results produced by task order variation.

Results from a previous experiment [3] show that experienced programmers

(senior consultants) can maintain systems more efficiently when using the DC

approach than they can when using the CC approach. This could indicate that

experienced programmers also could benefit from a hard-first over an easy-first

task order. However, we have no empirical results that can support this claim.

More work is needed to investigate both how experienced and inexperienced

programmers perform when the change task order is varied, and how prior

knowledge of the system affects variation in the task order.
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