\( \newcommand{\norm}[1]{\left\lVert#1\right\rVert} \newcommand{\vect}[1]{\boldsymbol{#1}} \)

extended siamese neural networks (ESNN)

:ID: fd5a3d43-54bb-4409-abdf-fade4c4a8a7e

1. Summary   ATTACH

its a method to learn models based on two or more datapoints where one learns both an embedding function \(G(\vect{y}) = \hat{\vect{y}}\) and the contrastive function \(C(\vect{y},\vect{y})\)

\begin{equation} \label{orgd0c5efc} \mathbb{S}(\vect{x},\vect{y}) = C(G(\vect{x}),G(\vect{y})) , \end{equation}

_20230502_100304screenshot.png

This in contrast with siamese neural networks which only learns the unary embedding function \(G(\vect{y}) = \hat{\vect{y}}\).

See Mathisen2019

2. See also

3. refs

Author: Bjørn Magnus Mathisen

Created: 2023-05-02 Tue 10:08