siamese neural networks
:ID: 5b53c2d1-aac2-408f-b817-eb215319e5ed
1. Summary ATTACH
its a method to learn models based on two or more datapoints where one learns an embedding function \(G(\vect{y}) = \hat{\vect{y}}\) so that
\begin{equation} \label{org9207932} \mathbb{D}(\vect{x},\vect{y}) = \norm{G(\vect{x}) - G(\vect{y}))} \end{equation}
or more generally
\begin{equation} \label{org6e430a2} \mathbb{S}(\vect{x},\vect{y}) = C(G(\vect{x}),G(\vect{y})) , \end{equation}where \(C\) is any static binary metric function.
See Mathisen2019