\( \newcommand{\norm}[1]{\left\lVert#1\right\rVert} \newcommand{\vect}[1]{\boldsymbol{#1}} \)

siamese neural networks

:ID: 5b53c2d1-aac2-408f-b817-eb215319e5ed

1. Summary   ATTACH

its a method to learn models based on two or more datapoints where one learns an embedding function \(G(\vect{y}) = \hat{\vect{y}}\) so that

\begin{equation} \label{org9207932} \mathbb{D}(\vect{x},\vect{y}) = \norm{G(\vect{x}) - G(\vect{y}))} \end{equation}

_20230428_113123screenshot.png

or more generally

\begin{equation} \label{org6e430a2} \mathbb{S}(\vect{x},\vect{y}) = C(G(\vect{x}),G(\vect{y})) , \end{equation}

where \(C\) is any static binary metric function.

See Mathisen2019

2. See also

3. refs

Author: Bjørn Magnus Mathisen

Created: 2023-05-02 Tue 09:12