
Parallel Hybrid Computing
Stéphane Bihan, CAPS

Introduction

  Main stream applications will rely on new
multicore / manycore architectures
•  It is about performance not parallelism

  Various heterogeneous hardware
•  General purpose cores
•  Application specific cores – GPUs (HWAs)

  HPC and embedded applications are increasingly
sharing characteristics

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

An Overview of
Hybrid Parallel Computing

Manycore Architectures

  General purpose cores
•  Share a main memory
•  Core ISA provides fast SIMD

instructions

  Streaming engines / DSP / FPGA
•  Application specific architectures

(“narrow band”)
•  Vector/SIMD
•  Can be extremely fast

  Hundreds of GigaOps
•  But not easy to take advantage of
•  One platform type cannot satisfy

everyone

  Operation/Watt is the efficiency scale

Main
Memory

Application
data

General
Purpose
Processor
Cores

HWA

Application
data

Stream cores

Upload
remote
data

Download
remote data

Remote
Procedure call

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Multicore/Manycore Workload

  Multiple applications sharing the hardware
•  Multimedia, game, encryption, security, health, …

  Unfriendly environment with many competitions
•  Global resource allocation, no warranty on availability

•  Must be taken into account when programming/compiling

  Applications cannot always be recompiled
•  Most applications are distributed as binaries

  A binary will have to run on many platforms
•  Forward scalability or “write once, run faster on new hardware”

•  Loosing performance is not an option

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Multiple Parallelism Levels

  Amdahl’s law is forever, all levels of parallelism
need to be exploited

  Programming various hardware components of a
node cannot be done separately

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Ne
tw
or
k

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

PCIe  
gen2

PCIe  
gen2

GPU

GPU

GPU

GPU

PC
Ie

  
ge

n2

PC
Ie

  
ge

n2

GPU

GPU

GPU

GPU

OpenMP

HM
PP

MPI

CUDA

The Past of Parallel Computing,
the Future of Manycores?

  The Past
•  Scientific computing focused
•  Microprocessor or vector based, homogeneous

architectures
•  Trained programmers willing to pay effort for

performance
•  Fixed execution environments

  The Future
•  New applications (multimedia, medical, …)
•  Thousands of heterogeneous systems configurations
•  Unfriendly execution environments

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Programming Multicores/
Manycores

  Physical architecture oriented
•  Shared memory architectures

  OpenMP, CILK, TBB, automatic parallelization, vectorization…

•  Distributed memory architectures
  Message passing, PGAS (Partition Global Address Space), …

•  Hardware accelerators, GPU
  CUDA, OpenCL, Brook+, HMPP, …

  Different styles
•  Libraries

  MPI, pthread, TBB, SSE intrinsic functions, …

•  Directives
  OpenMP, HMPP, …

•  Language constructs
  UPC, Cilk, Co-array Fortran, UPC, Fortress, Titanium, …

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Multi (languages) programming

  Happens when programmers need to deal with
multiple programming languages
•  E.g. Fortran and CUDA, Java and OpenCL, …

  Multiprogramming impacts on
•  Programmer’s expertise
•  Program maintenance and correctness
•  Long term technology availability

  Performance programming versus domain
specific programming
•  Libraries, parallel components to be provided to divide

the issues

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Manycore =
Multiple µ-Architectures

  Each μ-architecture requires different code generation/
optimization strategies
•  Not one compiler in many cases

  High performance variance between implementations
•  ILP, GPCore/TLP, HWA

  Dramatic effect of tuning
•  Bad decisions have a strong effect on performance
•  Efficiency is very input parameter dependent
•  Data transfers for HWA add a lot of overheads

How to organize the compilation flow?

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

CAPS Compiler Flow
for Heterogeneous Targets

  Dealing with
various ISAs

  Not all code
generation can be
performed in the
same framework

HMPP annotated
application

HMPP
preprocessor

Generic host
compiler

template
generator

target
generator

Hardware vendor
compiler

main function

HMPP
codelet

Binary host
application

HMPP runtime

HMPP annotated
native codelet

Dynamic library
HMPP codelet

HMPP runtime
interface

Target codelet

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Can the Hardware be Hidden?

  Programming style is usually hardware
independent but
•  Programmers need to take into account available

hardware resources

  Quantitative decisions as important as parallel
programming
•  Performance is about quantity
•  Tuning is specific to a configuration

  Runtime adaptation is a key feature
•  Algorithm, implementation choice
•  Programming/computing decision

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Varying Available Resources

  Available hardware resources are changing over
the execution time
•  Not all resources are time-shared, e.g. a HWA may

not be available
•  Data affinity must be respected

How to ensure that conflicts in resource usage will
not lead to global performance degradation?

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Difficult Decisions Making with
Alternative Codes (Multiversioning)

  Various implementations of routines are
available or can be generated for a given target
•  CUBLAS, MKL, ATLAS, …
•  SIMD instructions, GPcore, HWA, Hybrid

  No strict performance order
•  Each implementation has a different performance

profile
•  Best choice depends on platform and runtime

parameters

  Decision is a complex issue
•  How to produce the decision?

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Research Directions

  New Languages
•  X10, Fortress, Chapel, PGAS languages, OpenCL, MS Axum, …

  Libraries
•  Atlas, MKL, Global Array, Spiral, Telescoping languages, TBB, …

  Compilers
•  Classical compiler flow needs to be revisited
•  Acknowledge lack of static performance model
•  Adaptative code generation

  OS
•  Virtualization/hypervisors

  Architectures
•  Integration on the chip of the accelerators

  AMD Fusion, …
•  Alleviate data transfers costs

  PCI Gen 3x, …

Key for the
short/mid

term

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

HMPP Approach

HMPP Objectives

  Efficiently orchestrate CPU/GPU computations in legacy
code
•  With OpenMP-like directives

  Automatically produce tunable manycore applications
•  C and Fortran to CUDA data parallel code generator
•  Make use of available compilers to produce binary

  Ease application deployment

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

HMPP…
 a high level abstraction for manycore programming

HMPP1.5 Simple Example
#pragma hmpp sgemmlabel codelet, target=CUDA, args[vout].io=inout
extern void sgemm(int m, int n, int k, float alpha,
 const float vin1[n][n], const float vin2[n][n],
 float beta, float vout[n][n]);

int main(int argc, char **argv) {
…
 for(j = 0 ; j < 2 ; j++) {
#pragma hmpp sgemmlabel callsite
 sgemm(size, size, size, alpha, vin1, vin2, beta, vout);
 }

#pragma hmpp label codelet, target=CUDA:BROOK, args[v1].io=out
#pragma hmpp label2 codelet, target=SSE, args[v1].io=out, cond=“n<800“
void MyCodelet(int n, float v1[n], float v2[n], float v3[n])
{ int i;
 for (i = 0 ; i < n ; i++) {
 v1[i] = v2[i] + v3[i];
 }
}

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Group of Codelets (HMPP 2.0)

  Declare group of codelets to optimize data
transfers

  Codelets can share variables
•  Keep data in GPUs between two codelets
•  Avoid useless data transfers
•  Map arguments of different functions in same GPU

memory location (equivalence Fortran declaration)

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Flexibility and Performance

Optimizing Communications

  Exploit two properties
•  Communication / computation overlap
•  Temporal locality of parameters

  Various techniques
•  Advancedload and Delegatedstore
•  Constant parameter
•  Resident data
•  Actual argument mapping

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Hiding Data Transfers

  Pipeline GPU kernel execution with data
transfers
•  Split single function call in two codelets (C1, C2)
•  Overlap with data transfers

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Vout

Min

Vin Vin

1 2 3 4 5

C1
C2
C1
C2
C1

Min Vout Vin Vin 1 2 3

C1 C2

4

C1

5

C2 C1

time
 time

Advancedload Directive

  Avoid reloading constant data

t2 is not reloaded each loop iteration

int main(int argc, char **argv) {
…
#pragma hmpp simple advancedload, args[v2], const
 for (j=0; j<n; j++){
#pragma hmpp simple callsite, args[v2].advancedload=true
 simplefunc1(n,t1[j], t2, t3[j], alpha);
 }
#pragma hmpp label release
…
}

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

#pragma hmpp <mygp> group, target=CUDA
#pragma hmpp <mygp> map, args[f1::inm; f2::inm]

#pragma hmpp <mygp> f1 codelet, args[outv].io=inout
static void matvec1(int sn, int sm,

 float inv[sn], float inm[sn][sm], float outv[sm])
{
 ...
}
#pragma hmpp <mygp> f2 codelet, args[v2].io=inout
static void otherfunc2(int sn, int sm,

 float v2[sn], float inm[sn][sm])
{
 ...
}

Actual Argument Mapping

  Allocate arguments of various codelets to the same
memory space
  Allow to exploit reuses of argument to reduce

communications
  Close to equivalence in Fortran

23
Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Arguments share
the same space
on the HWA

HMPP Tuning
!$HMPP sgemm3 codelet, target=CUDA, args[vout].io=inout

SUBROUTINE sgemm(m,n,k2,alpha,vin1,vin2,beta,vout)

INTEGER, INTENT(IN) :: m,n,k2

REAL, INTENT(IN) :: alpha,beta

REAL, INTENT(IN) :: vin1(n,n), vin2(n,n)

REAL, INTENT(INOUT) :: vout(n,n)

REAL :: prod

INTEGER :: i,j,k

!$HMPPCG unroll(X), jam(2), noremainder

!$HMPPCG parallel

DO j=1,n

 !$HMPPCG unroll(X), splitted, noremainder

 !$HMPPCG parallel

 DO i=1,n

 prod = 0.0

 DO k=1,n

 prod = prod + vin1(i,k) * vin2(k,j)

 ENDDO

 vout(i,j) = alpha * prod + beta * vout(i,j) ;

 END DO

END DO

END SUBROUTINE sgemm

X>8 GPU compiler fails

X=8 200 Gigaflops

X=4 100 Gigaflops

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Conclusion

  Multicore ubiquity is going to have a large impact on
software industry
•  New applications but many new issues

  Will one parallel model fit all?
•  Surely not but multi languages programming should be avoided
•  Directive based programming is a safe approach
•  Ideally OpenMP will be extended to HWA

  Toward Adaptative Parallel Programming
•  Compiler alone cannot solve it
•  Compiler must interact with the runtime environment
•  Programming must help expressing global strategies / patterns
•  Compiler as provider of basic implementations
•  Offline-Online compilation has to be revisited

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

