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Introduction 

  Main stream applications will rely on new 
multicore / manycore architectures  
•  It is about performance not parallelism 

  Various heterogeneous hardware  
•  General purpose cores 
•  Application specific cores – GPUs (HWAs) 

  HPC and embedded applications are increasingly 
sharing characteristics 

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009 



Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009 

An Overview of  
Hybrid Parallel Computing




Manycore Architectures 

  General purpose cores 
•  Share a main memory 
•  Core ISA provides fast SIMD 

instructions 

  Streaming engines / DSP / FPGA 
•  Application specific architectures 

(“narrow band”) 
•  Vector/SIMD 
•  Can be extremely fast 

  Hundreds of GigaOps  
•  But not easy to take advantage of 
•  One platform type cannot satisfy 

everyone 

  Operation/Watt is the efficiency scale 
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Multicore/Manycore Workload 

  Multiple applications sharing the hardware 
•  Multimedia, game, encryption, security, health, … 

  Unfriendly environment with many competitions 
•  Global resource allocation, no warranty on availability 

•  Must be taken into account when programming/compiling 

  Applications cannot always be recompiled 
•  Most applications are distributed as binaries 

  A binary will have to run on many platforms 
•  Forward scalability or “write once, run faster on new hardware” 

•  Loosing performance is not an option 
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Multiple Parallelism Levels 

  Amdahl’s law is forever, all levels of parallelism 
need to be exploited 

  Programming various hardware components of a 
node cannot be done separately  
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The Past of Parallel Computing,  
the Future of Manycores? 

  The Past 
•  Scientific computing focused 
•  Microprocessor or vector based, homogeneous 

architectures 
•  Trained programmers willing to pay effort for 

performance 
•  Fixed execution environments 

  The Future 
•  New applications (multimedia, medical, …) 
•  Thousands of heterogeneous systems configurations 
•  Unfriendly execution environments 
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Programming Multicores/
Manycores 

  Physical architecture oriented 
•  Shared memory architectures 

  OpenMP, CILK, TBB, automatic parallelization, vectorization… 

•  Distributed memory architectures 
  Message passing, PGAS (Partition Global Address Space), … 

•  Hardware accelerators, GPU 
  CUDA, OpenCL, Brook+, HMPP, … 

  Different styles 
•  Libraries 

  MPI, pthread, TBB, SSE intrinsic functions, … 

•  Directives 
  OpenMP, HMPP, … 

•  Language constructs 
  UPC, Cilk, Co-array Fortran, UPC, Fortress, Titanium, … 
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Multi (languages) programming 

  Happens when programmers need to deal with 
multiple programming languages 
•  E.g. Fortran and CUDA, Java and OpenCL, … 

  Multiprogramming impacts on 
•  Programmer’s expertise 
•  Program maintenance and correctness 
•  Long term technology availability 

  Performance programming versus domain 
specific programming 
•  Libraries, parallel components to be provided to divide 

the issues 
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Manycore =  
Multiple µ-Architectures 

  Each μ-architecture requires different code generation/
optimization strategies 
•  Not one compiler in many cases 

  High performance variance between implementations 
•  ILP, GPCore/TLP, HWA 

  Dramatic effect of tuning 
•  Bad decisions have a strong effect on performance  
•  Efficiency is very input parameter dependent 
•  Data transfers for HWA add a lot of overheads 

How to organize the compilation flow? 
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CAPS Compiler Flow  
for Heterogeneous Targets 

  Dealing with 
various ISAs 

  Not all code 
generation can be 
performed in the 
same framework  
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Can the Hardware be Hidden? 

  Programming style is usually hardware 
independent but 
•  Programmers need to take into account available 

hardware resources 

  Quantitative decisions as important as parallel 
programming 
•  Performance is about quantity 
•  Tuning is specific to a configuration 

  Runtime adaptation is a key feature 
•  Algorithm, implementation choice 
•  Programming/computing decision 
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Varying Available Resources 

  Available hardware resources are changing over 
the execution time 
•  Not all resources are time-shared, e.g. a HWA may 

not be available 
•  Data affinity must be respected 

How to ensure that conflicts in resource usage will 
not lead to global performance degradation? 
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Difficult Decisions Making with 
Alternative Codes (Multiversioning) 

  Various implementations of routines are 
available or can be generated for a given target 
•  CUBLAS, MKL, ATLAS, … 
•  SIMD instructions, GPcore, HWA, Hybrid 

  No strict performance order  
•  Each implementation has a different performance 

profile 
•  Best choice depends on platform and runtime 

parameters 

  Decision is a complex issue 
•  How to produce the decision? 
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Research Directions 

  New Languages 
•  X10, Fortress, Chapel, PGAS languages, OpenCL, MS Axum, … 

  Libraries 
•  Atlas, MKL, Global Array, Spiral, Telescoping languages, TBB, … 

  Compilers 
•  Classical compiler flow needs to be revisited 
•  Acknowledge lack of static performance model 
•  Adaptative code generation 

  OS 
•  Virtualization/hypervisors 

  Architectures 
•  Integration on the chip of the accelerators 

  AMD Fusion, … 
•  Alleviate data transfers costs 

  PCI Gen 3x, … 

Key for the 
short/mid 

term 
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HMPP Objectives 

  Efficiently orchestrate CPU/GPU computations in legacy 
code 
•  With OpenMP-like directives 

  Automatically produce tunable manycore applications 
•  C and Fortran to CUDA data parallel code generator 
•  Make use of available compilers to produce binary 

  Ease application deployment 
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HMPP… 
 a high level abstraction for manycore programming 



HMPP1.5 Simple Example 
#pragma hmpp sgemmlabel codelet, target=CUDA, args[vout].io=inout 
extern void sgemm( int m, int n, int k, float alpha,  
                   const float vin1[n][n], const float vin2[n][n],  
                   float beta, float vout[n][n] ); 

int main(int argc, char **argv) { 
… 
 for( j = 0 ; j < 2 ; j++ ) {       
#pragma hmpp sgemmlabel callsite 
    sgemm( size, size, size, alpha, vin1, vin2, beta, vout );  
 } 

#pragma hmpp label codelet, target=CUDA:BROOK, args[v1].io=out 
#pragma hmpp label2 codelet, target=SSE, args[v1].io=out, cond=“n<800“ 
void MyCodelet(int n, float v1[n],  float v2[n], float v3[n])  
{ int i; 
  for (i = 0 ; i < n ; i++) { 
    v1[i] = v2[i] + v3[i]; 
  } 
} 
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Group of Codelets (HMPP 2.0) 

  Declare group of codelets to optimize data 
transfers 

  Codelets can share variables 
•  Keep data in GPUs between two codelets  
•  Avoid useless data transfers 
•  Map arguments of different functions in same GPU 

memory location (equivalence Fortran declaration) 
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Optimizing Communications 

  Exploit two properties 
•  Communication / computation overlap 
•  Temporal locality of parameters 

  Various techniques 
•  Advancedload and Delegatedstore 
•  Constant parameter 
•  Resident data 
•  Actual argument mapping 
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Hiding Data Transfers 

  Pipeline GPU kernel execution with data 
transfers 
•  Split single function call in two codelets (C1, C2) 
•  Overlap with data transfers 
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Advancedload Directive 

  Avoid reloading constant data 

t2 is not reloaded each loop iteration


int main(int argc, char **argv) { 
… 
#pragma hmpp simple advancedload, args[v2], const 
  for (j=0; j<n; j++){ 
#pragma hmpp simple callsite, args[v2].advancedload=true 
    simplefunc1(n,t1[j], t2, t3[j],  alpha); 
   } 
#pragma hmpp label release 
… 
} 
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#pragma hmpp <mygp> group, target=CUDA 
#pragma hmpp <mygp> map,   args[f1::inm; f2::inm] 

#pragma hmpp <mygp> f1 codelet, args[outv].io=inout 
static void matvec1(int sn, int sm, 

   float inv[sn], float inm[sn][sm], float outv[sm]) 
{ 
  ... 
} 
#pragma hmpp <mygp> f2 codelet, args[v2].io=inout 
static void otherfunc2(int sn, int sm, 

   float v2[sn], float inm[sn][sm]) 
{ 
  ... 
} 

Actual Argument Mapping 

  Allocate arguments of various codelets to the same 
memory space 
  Allow to exploit reuses of argument to reduce 

communications 
  Close to equivalence in Fortran 

23
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HMPP Tuning 
!$HMPP sgemm3 codelet, target=CUDA, args[vout].io=inout

SUBROUTINE sgemm(m,n,k2,alpha,vin1,vin2,beta,vout)  

INTEGER, INTENT(IN)    :: m,n,k2  

REAL,   INTENT(IN)    :: alpha,beta  

REAL,    INTENT(IN)    :: vin1(n,n), vin2(n,n)  

REAL,    INTENT(INOUT) :: vout(n,n)  

REAL     :: prod  

INTEGER  :: i,j,k

!$HMPPCG unroll(X), jam(2), noremainder  

!$HMPPCG parallel  

DO j=1,n

    !$HMPPCG unroll(X), splitted, noremainder     

    !$HMPPCG parallel     

    DO i=1,n       

        prod = 0.0        

        DO k=1,n           

          prod = prod + vin1(i,k) * vin2(k,j)        

        ENDDO        

        vout(i,j) = alpha * prod + beta * vout(i,j) ;     

     END DO  

END DO

END SUBROUTINE sgemm


X>8  GPU compiler fails


X=8 200 Gigaflops


X=4 100 Gigaflops
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Conclusion 

  Multicore ubiquity is going to have a large impact on 
software industry 
•  New applications but many new issues 

  Will one parallel model fit all? 
•  Surely not but multi languages programming should be avoided 
•  Directive based programming is a safe approach 
•  Ideally OpenMP will be extended to HWA 

  Toward Adaptative Parallel Programming 
•  Compiler alone cannot solve it 
•  Compiler must interact with the runtime environment 
•  Programming must help expressing global strategies / patterns 
•  Compiler as provider of basic implementations 
•  Offline-Online compilation has to be revisited 
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