ry
CAPS

INnNnovative fools for @ New paradigm

Parallel Hybrid Computing
Stephane Bihan, CAPS

ﬂAsvsmm g POPS =

Hn
INfroduction

= Main stream applications will rely on new
multicore / manycore architectures
o It is about performance not parallelism

= Various heterogeneous hardware
* General purpose cores
 Application specific cores — GPUs (HWAS)

= HPC and embedded applications are increasingly
sharing characteristics

ry 4
CA PS Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

An Overview of

Hybrid Parallel Computing

Monucore Architfectures

HWA

= General purpose cores
e Share a main memory
o Core ISA provides fast SIMD
instructions
= Streaming engines / DSP / FPGA
o Application specific architectures
(“narrow band")
e Vector/SIMD
* (Can be extremely fast

Upload
remote

2
data Application
data

Download
remote data

Remote Stream cores
Procedure call

= Hundreds of GigaOps
e But not easy to take advantage of

* One platform type cannot satisfy
everyone

= QOperation/Watt is the efficiency scale

r’

CAPS

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Multicore/Maoanucore Workloac

= Multiple applications sharing the hardware

e Multimedia, game, encryption, security, health, ...

Unfriendly environment with many competitions
» Global resource allocation, no warranty on availability

e Must be taken into account when programming/compiling

Applications cannot always be recompiled

* Most applications are distributed as binaries

= A binary will have to run on many platforms

(4

* Forward scalability or “write once, run faster on new hardware’

» Loosing performance is not an option

ry 4
CA PS Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

mn
Multiple Parallelism Levels

= Amdahl’s law is forever, all levels of parallelism
need to be exploited

= Programming various hardware components of a
node cannot be done separately

gen2

PCle
gen2

Network

ry 4
CA PS Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

The Poast of Parallel Computing,
rhe Future of MoanNnucores?

= The Past

 Scientific computing focused

e Microprocessor or vector based, homogeneous
architectures

e Trained programmers willing to pay effort for
performance

e Fixed execution environments

= The Future

 New applications (multimedia, medical, ...)
* Thousands of heterogeneous systems configurations
e Unfriendly execution environments

Yy 4
CA Ps Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Proaromming Mulficores./
Monucores

= Physical architecture oriented
e Shared memory architectures

= OpenMP, CILK, TBB, automatic parallelization, vectorization...

o Distributed memory architectures

= Message passing, PGAS (Partition Global Address Space), ...

e Hardware accelerators, GPU
= CUDA, OpenCL, Brook+, HMPP, ...

= Different styles
e Libraries
= MPI, pthread, TBB, SSE intrinsic functions, ...
e Directives
= OpenMP, HMPP, ...

e Language constructs

= UPC, Cilk, Co-array Fortran, UPC, Fortress, Titanium, ...
7

CA Ps Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

N
Multi (longQuoges) programming

= Happens when programmers need to deal with
multiple programming languages
e E.g. Fortran and CUDA, Java and OpenClL, ...

= Multiprogramming impacts on
 Programmer’s expertise

e Program maintenance and correctness
* Long term technology availability

= Performance programming versus domain
specific programming

 Libraries, parallel components to be provided to divide

the issues

ry 4
CA PS Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Monucore = =

Mulfiple p-Architectures

= Each p-architecture requires different code generation/
optimization strategies
* Not one compiler in many cases

= High performance variance between implementations
e ILP, GPCore/TLP, HWA

= Dramatic effect of tuning
» Bad decisions have a strong effect on performance
» Efficiency is very input parameter dependent
o Data transfers for HWA add a lot of overheads

How to organize the compilation flow?

ry 4
CA PS Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

CAPS Compiler Flow u =
for Heterogeneous Targets

HMPP annotated
= Dealing with Ej -

various ISAs

= Not all code s
generation can be @S |
performed in the L e
same framework iV

HMPP runtime
interface

Generic host
compiler
Target codelet

Hardware vendor
compiler

Binary host o
pplication Dynamic library

a
HMPP runtime HMPP codelet

r’

CA PS Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Con the Hoard

lware be Hidd

e
len

programming
e Performance i

s about quantity

e Tuning is specific to a configuration

= Programming style is usually hardware
independent but

» Programmers need to take into account available
hardware resources

= Quantitative decisions as important as parallel

= Runtime adaptation is a key feature
 Algorithm, implementation choice
e Programming/computing decision

ry’

CA Ps Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Voarying Available Resources

= Available hardware resources are changing over
the execution time

* Not all resources are time-shared, e.g. a HWA may
not be available

e Data affinity must be respected

How to ensure that conflicts in resource usage will
not lead to global performance degradation?

ry 4
CA PS Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

DiffFicult Decisions Making with =
Altrernative Codes (Multiversioning)

= Various implementations of routines are

available or can be generated for a given target
e CUBLAS, MKL, ATLAS, ...

e SIMD instructions, GPcore, HWA, Hybrid
= No strict performance order

« Each implementation has a different performance
profile

e Best choice depends on platform and runtime
parameters

= Decision is a complex issue
 How to produce the decision?

ry 4
CA Ps Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Research DirectionNns

New Languages

o X10, Fortress, Chapel, PGAS languages, OpenCL, MS Axum, ...
Libraries

o Atlas, MKL, Global Array, Spiral, Telescoping languages, TBB, ...
Compilers

« Classical compiler flow needs to be revisited Key for the

« Acknowledge lack of static performance model short/mid

« Adaptative code generation term
0OS

» Virtualization/hypervisors
Architectures

« Integration on the chip of the accelerators
= AMD Fusion, ...

e Alleviate data transfers costs
= PCI Gen 3, ...

r’

CA PS Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

HMPP Approach

HE
HMPPP OB jectives

= Efficiently orchestrate CPU/GPU computations in legacy

code
o With OpenMP-like directives

= Automatically produce tunable manycore applications
e C and Fortran to CUDA data parallel code generator
« Make use of available compilers to produce binary

= Ease application deployment

HMPP...

a high level abstraction for manycore programming

ry 4
CA Ps Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

mn
HMPPPLS Simple example

#ipragma hmpp sgemmlabel codelet, target=CUDA, args[vout].io=inout]|
extern void sgemm(int m, int n, int k, float alpha,
const float wvinl[n][n], const float vin2[n] [n],
float beta, float vout[n][n])

int main(int argc, char **argv) ({

for(3 =0 ; J< 2 ; j++) {
(i pragma hmpp sgemmlabel callsite]
sgemm(size, size, size, alpha, vinl, vin2, beta, vout);

}

>

ﬁpragma hmpp label codelet, target=CUDA:BROOK, args[vl].io=out
#fpragma hmpp label2 codelet, target=SSE, args[vl].io=out, cond=“"n<800"“ |

void MyCodelet(int n, float vl[n], float v2[n], float v3[n])
{ int 1;
for (1 =0 ; 1 < n ; i++) {
vli[i] = v2[i] + v3[i];

Group of Codelets (HMPPP 2.0)

= Declare group of codelets to optimize data
transfers

= Codelets can share variables

* Keep data in GPUs between two codelets
e Avoid useless data transfers

 Map arguments of different functions in same GPU
memory location (equivalence Fortran declaration)

Flexibility and Performance

ry 4
CA PS Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Optimicing Communications

= Exploit two properties
e Communication / computation overlap
 Temporal locality of parameters

= Various techniques

« Advancedload and Delegatedstore
e Constant parameter
e Resident data

e Actual argument mapping

Yy 4
CA PS Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

Hiding Doto Tronsfers

CAPS

= Pipeline GPU kernel execution with data

transfers
 Split single function call in two codelets (C1, C2)

e Overlap with data transfers

time < <

Vin Min Vin q 3!/ 4 5

c1lc2 C2

time ~
&

<

> G
C1C2C1C2CH

ry
Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

A

VA

(

load Directive

= Avoid reloading constant data

}

int main(int argc, char **argv) ({

#pragma hmpp simple advancedload, args[v2] ,

for (3j=0; j<n; j++){

#pragma hmpp simple callsite, args[v2].advancedload=true

simplefuncl(n,tl[j], t2, t3[3j], alpha);

}

#pragma hmpp label release

r’

CAPS

N\

t2

is not reloaded each loop iteration

Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

AcCctual Argument Mopping

= Allocate arguments of various codelets to the same
memory space

= Allow to exploit reuses of argument to reduce
communications

= Close to equivalence in Fortran

#pragma hmpp <mygp> groun. target=CIIDA
#pragma hmpp <mygp>| map, args[fl::inm; f2::inm£

#pragma hmpp <mygp> f1l codelet, args[outv].io=inout
static void matvecl (int sn, int sm,
float inv[sn][float inm[sn][smm, flo outv|[sm])

{

#pragma hmpp <mygp> £2 codelet, args[v2].io=inout on the HWA
static void otherfunc2 (int sn, int em_

float v2[sn]| float inm[sn][sm]]

e Arguments shar
} the same space

CZPS Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

e

HMPP Tuning

! SHMPP sgemm3 codelet, target=CUDA, args[vout].io=inout
SUBROUTINE sgemm(m,n,k2,alpha,vinl,vin2,beta,vout)

INTEGER, INTENT (IN) :: m,n, k2

REAL, INTENT (IN) :: alpha,beta

REAL, INTENT (IN) ¢: vinl(n,n), vin2(n,n)

REAL, INTENT (INOUT) :: vout(n,n)

REAL :: prod

INTEGER :: i,j,k X>8 GPU compiler fails

! SHMPPCG unroll(X), jam(2), noremainder
! SHMPPCG parallel

X=8 200 Gigaflops

DO j=1,n \x
! SHMPPCG unroll (X), splitted, noremainder
| SHMPPCG parallel X=4 100 Gigaﬂops
DO i=1,n
prod = 0.0
DO k=1,n
prod = prod + vinl(i,k) * vin2(k,j)
ENDDO
vout(i,j) = alpha * prod + beta * vout(i,j) ;
END DO
END DO

END SUBROUTINE sgemm

y
CA Ps Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

mN
Conclusion

= Multicore ubiquity is going to have a large impact on
software industry
* New applications but many new issues

= Will one parallel model fit all?
e Surely not but multi languages programming should be avoided

» Directive based programming is a safe approach
o Ideally OpenMP will be extended to HWA

= Toward Adaptative Parallel Programming
o Compiler alone cannot solve it
o Compiler must interact with the runtime environment
* Programming must help expressing global strategies / patterns
o Compiler as provider of basic implementations

» Offline-Online compilation has to be revisited

Yy 4
CA PS Parallel Hybrid Computing, Euro GPU 2009, Lyon, Sept. 1 2009

