
Modelling Multi-GPU Systems1

Daniele G. SPAMPINATOa , Anne C. ELSTERa and Thorvald NATVIGa
aNorwegian University of Science and Technology (NTNU), Trondheim, Norway

Abstract. Due to the power and frequency walls, the trend is now to use multiple
GPUs on a given system, much like you will find multiple cores on CPU-based
systems. However, increasing the hierarchy of resource widens the spectrum of
factors that may impact on the performance of the system. Thegoal of this paper
is to analyze such factors by investigating and benchmarking the NVIDIA Tesla
S1070. This system combines four T10 GPUs, making availableup to 4 TFLOPS
of computational power. As a case study, we develop a red-black, SOR PDE solver
for Laplace equations with Dirichlet boundaries, well known for requiring constant
communication in order to exchange neighboring data. To aidboth design and anal-
ysis, we propose a model for multi-GPU systems targeting communication between
the several GPUs.
The main variables exposed by our benchmark application are: domain size and
shape, kind of data partitioning, number of GPUs, width of the borders to exchange,
kernels to use, and kind of synchronization between the GPU contexts. We show
that the multi-GPU system greatly benefits from using all itsfour GPUs on very
large data volumes. Four GPUs were almost four times faster than a single GPU.
The results also allow us to refine our static communication model.

Keywords. GPU computing, multi-gpu, performance modelling, NVIDIA s1070

1. Introduction

GPU computing for high performance computing is generatinga lot of interest. In this
paper, we investigate multi-GPU systems’ performance factors, such as data volume
dimensions, data partitioning techniques, number of GPUs,inter-GPU communication
methods, and kernel design. In particular, we focus on NVIDIA’s S1070 multi-GPU solu-
tions, a system recently deployed at HPC centers world wide.These include Tokyo Tech-
nology University’s Tsubame supercomputer which was ranked 29th in the world when
installed, and the new multi-GPU-based system at GENCI in France. Our methodology
and general results should, however, be applicable to most modern multi-GPU systems.

The increasing hierarchy of resources issues new challenges to the developers,
widening the spectrum of factors which may impact the performance of a multi-GPU
system. The aim of this work is to investigate such factors and consider some important
models of parallel systems in order to identify some common properties that can help us
in our study. Communication is always a relevant aspect whendealing with distributed
resources. By designing a benchmark framework around the SOR PDE solver, an appli-
cation that constantly requires inter-GPU communication,we are able to develop better
a multi-GPU model.

1A big thank you to NVIDIA for sponsoring our HPC-Lab with cutting-edge GPUs.



2. Current NVIDIA Architecture and Programming Model

The compute unified device architecture (CUDA) environmentpresents a cutting-edge
programming model well-suited for modern GPU architectures [1]. NVIDIA developed
this programming environment to fit to the processing model of their Tesla architecture
and expose the parallel capabilities of GPUs to the developers.

CUDA maintains a separated view of the two main actors involved in the computa-
tion, namely the host (CPU system) and the device (GPU card/system). The host executes
the main program, while the device acts like a coprocessor.

Our test bench, theNVIDIA Tesla S1070 Computing System is a 1U rack-mount
system equipped with four Tesla T10 GPUs (Figure1).

Figure 1. NVIDIA Tesla S1070 Computing System Architecture.

The Tesla T10 has 240 processing cores working either at 1.296 GHz (-400 con-
figuration) or at 1.44 GHz (-500 configuration). The cores aregrouped in 30 Stream-
ing Multiprocessors (SMs), each with 8 single-precision cores and a single double-
precision core. Each single-precision core is able to issueup to 3 FLOP per cy-
cle, i.e. amultiply concurrently to amultiply-add, while the double-precision core is
able to issue up to 2 FLOP per cycle. This gives a peak theoretical performance of
4 GPUs· 1.44 GHz· 3 FLOP/cycle· 240 cores= 4.147 TFLOP/s in single precision and
4 GPUs· 1.44 GHz· 2 FLOP/cycle· 30 cores= 345 GFLOP/s in double precision.

From a memory point of view, every GPU is connected to 4 GB highspeed DRAM,
with a bandwidth of 102 GB/s. This gives to the system a total of 16 GB. The connec-
tion to the host passes through NVIDIA Switches and PCIe HostInterconnection Cards
(HIC). A single PCIe 2.0 16x (or 8x) slot on the host is connected to two GPUs using an
NVIDIA Switch and a PCIe HIC. This connection provides a transfer rate of up to 12.8
GB/s between the host node and the computing system.

3. Programming Multiple GPUs

The NVIDIA CUDA Runtime API gives the programmer the possibility to select which
device to execute the kernels on. By default device 0 is used,and the devices are enu-
merated progressively.



To use multiple CUDA contexts, we can associate them to different CPU threads,
one for each GPU. For optimal performance, the number of CPU cores should not be
less than the number of GPUs in the system. Managing the threads could be done by
implementing an ad-hoc communication layer through systemlibraries, such as NPTL.
Otherwise, existing libraries could be used, such as message-passing libraries adapted to
perform shared memory communication [2].

4. Parallel Models

As argued in [3], parallel models often lack of connection to the real world, becoming
powerless tools in terms of prediction capabilities. Nonetheless, they do not loose their
relevance when analyzing new architectures, because they help in focusing on the main
characteristics exposed by the systems at issue.

SMP clusters are one such example where the computing platform combines ele-
ments from both message-passing multicomputers and sharedmemory multiprocessors.

4.1. Similarities between SMP Clusters and Multi-GPU Systems

A multi-GPU computing architecture has several characteristics that make it similar to
the computing model of an SMP cluster. E.g. Eicker and Lippert [9] sheds some ligtht
on the JULI cluster architecture. As shown in Figure2, every GPU, which in turn is a
highly multithreaded system, is linked to every other through the host system. This kind
of interconnection, requires communication to setup cooperation in solving a common
problem. Because of the difference between a general processor and a graphics processor,
some of the concepts need a proper contextualization, posing sometimes new problems
to solve.

Figure 2. Multi-GPU system as a network of GPUs.

4.2. Synchronization and Consistency

Synchronization is suggested exclusively at thread level.Threadblocks’ independence is
an important requirements for granting scalability and speed. Also within a threadblock,
however, the use of synchronization routines must be carefully controlled and not mis-



used. Mutual exclusions within a threadblock, can be implemented on recent hardware2

using a combination of barriers and atomic operations, but this goes against the require-
ment of massive data parallelism required by GPUs to be efficients. Not accidentally,
CUDA does not provide any native solution to this kind of approach.

4.3. Memory Performance

Global memory is not cached, and accessing it is an expensiveoperation, so it is impor-
tant to design an appropriate access pattern. The datatype must be 4, 8 or 16 bytes large,
and must be aligned to a multiple of its size.

There is a separate read-only constant memory, and access tothis is cached. Optimal
performance is achieved when all the threads of a half-warp read from the same address.
Texture memory, which uses the 2D texture unit of the graphics hardware, provide 2D
space locality for cache.

4.4. Inter-GPU Communication

We propose a model for a multi-GPU system that extends the Hockney model [5]. Taking
into account the description in Section4, a multi-GPU system is the combination of an
interconnection node and a set of GPUs,

Tmult i−G PU = Tnode + max
g∈G

(

T g
kernel + T g

G PU−G PU

)

, (1)

whereTnode models the specific node (e.g. a node of a multicomputer), andthe max
operator is motivated by the fact that several GPU contexts are executed in parallel.
TG PU−G PU expresses the communication between two GPUs, and, supposing identical
connections to the host for both the devices, we can define it as

TG PU−G PU = TG PU−host + Thost−host + Thost−G PU

= 2 · TG PU−host + Thost−host .

(2)

The host-to-host communication timeThost−host, summarizes the time required by all
the data movements and synchronization mechanisms part of the communication flow
between two GPUs.

The transfer bandwidth between host and device must be carefully considered. Com-
pacting many small transfers into a large one is often much more efficient. A way to
increase the bandwidth is to use page-locked memory. This would prevent paging mech-
anisms from being used on those memory spaces where data havebeen allocated. Page-
locked memory, however, must be used with care. Reducing memory resources may pro-
duce system slowdown side effects. Pinned memory introduces a higher startup time
relevant for small transfers [4].

Also theThost−host term should be minimized. This can be done exploiting the real
parallelism exposed by modern multicore processors. As reported in [2], the use of MPI
to communicate between processes on the same node can resultin improvable communi-
cation overhead. The paper mentions that 2/3 of the communication is spent in buffered

2Atomic operations are just implemented on devices of compute capability 1.1 or higher.



MPI_Sendrecv. MPI libraries usually are based on inter-process communication. Using
threads that share the same address space could turn out morebeneficial. Thus, as an al-
ternative to the message-passing approach, multithreading with an appropriate synchro-
nization can be used to implement on-node communication among threads associated to
different GPU contexts.

5. Benchmarks

The effect of using more than one GPU is shown in Figure5 just for the texture based
case. The graph underline that involving the most of the GPUsavailable is always an
appropriate decision since from small dimensions of the domain (N × N > 3000×

3000≈ 36 MB). The curve shows that using four GPUs can be up to 3.4X faster than
using only one. We have also found that it is 1.8X faster than using two [6].

After N = 16000 however, the curves start exhibiting a drastic reduction in perfor-
mance. We think that this effect can be produced by resource contentions. As described
in Section2, GPUs on the S1070 share pairwise the two PCIe channels. It ispossible
that, with a relevant traffic (> 2G B), the PCIe contention lowers the performance of
two parallel transfers almost down to the performance of a single one. As a result, the
execution time required byN GPUs gets closer to the time required by a subset ofN .

Figure 3. Speedups with respect to one GPU varying number of GPUs.

5.1. Border Size

Elster and Holtet [7,8] have shown that increasing the border size (BS) and doing re-
dundant computation is an effective technique to overcome the latency factor on SMP
clusters when solving PDEs numerically. We ran the solver onsome representative do-
mains exchanging different borders with width in the range [1-100]. It is reported that, for
supercomputers with Infiniband interconnection, some minimal performance improve-



ments were found using values of BS close to one. Since PCIe links are closer in latency
to Infiniband interconnections than to Ethernet, we decidedto have more test points in
the neighborhood ofBS = 1.

In Figure4 we report results from the benchmark tests run using strip-partitioned,
squared domains and texture-based kernels. Analyzing the graphs, we can deduce that
the technique does not boost enough performance. The whole set of results can hardly
approach a 10% of improvement (1.1X) with respect to the version based on unitary
border width.

(a) Domain 1024x1024, strip partitioning, texture-based kernels, Median of 3 runs.

(b) Domain 52000x52000, strip partitioning, texture-based kernels, Median of 3 runs.

Figure 4. Border size influence on performance using four GPUs.

Thus, the empirical results bring us to a similar conclusionas in the supercomput-
ers’ case reported in [8], confirming our assumption that PCIe interconnections arefast
enough to make the effect of the discussed method vanish.

5.2. Threads Synchronization

During the design phase, we decided to base our communication on POSIX threads syn-
chronization, in order to assess its impact on communication and compare it with the
alternative option of message-passing libraries. The latter option was seen to be respon-
sible of around 70% of the communication overhead [2].

Figure5 shows the impact of both synchronization and data transferring on commu-
nication per iteration.

Contrarily to what expected, the impact of synchronizationis quite relevant, prac-
tically dominating the overall communication. Even thoughthis impact is almost negli-
gible on large scale (the core computation is kernel bound),such an effect must be ana-



lyzed and controlled as it may become more relevant in the perspective of more powerful
hardware and shorter distances between host and devices.

Figure 5. Sinchronization and transfer time over communication timeduring one iteration.

Profiling, it seems that the delay is due to lock contentions on neighbor domain
areas. We plan a deeper investigation in our future work.

6. Conclusions and Future Work

The NVIDIA S1070 multi-GPU system was analyzed based on its specific hardware fea-
tures and on possible analogies to fundamental parallel models, such as shared memory
multiprocessors and multicomputers. The Poisson problem with Dirichlet boundary con-
ditions was picked as our model problem since it does boarderexchanges of information
common to a large class of application problems. Based on these analyzes, we defined a
test space for the benchmark PDE solver tool we developed.

Varying the domains’ dimensions up to 11 GB, we found the application I/O bound.
Transferring the domain from host to device memory took always the largest percentage
of time, requiring up to three times the kernel time. Excluding the first and the last nec-
essary data transfers, the core computation was instead kernel bound. Exchanging only
the essential data during the computation, i.e. the subdomains’ borders, required no more
than 10% of the total elapsed time.

Since our test system only consisted of four GPUs, vertical strips were more effec-
tive than blocked subdomains. However, simple communication models, normally used
in parallel computing, were not found suitable for performance prediction on multi-GPU
systems. Statistical approaches were found to be more stable and adaptable to slight tech-
nological alterations. We found a linear relation between the size of contiguous data ex-
pressed in gigabytes and the time required to transfer such data between the host and the
device.



Using all four GPUs on the S1070, was always beneficial, performing up to 3.5X
and 1.8X speedup on one and two GPUs, respectively. However,performance decreased
working with large data volumes possibly due to resource contention.

Synchronizing GPUs through Pthreads condition variables took a relatively large
percentage of the communication during the core computation. This is similar to what
was previously documented for shared-memory based, message-passing libraries [2].

The framework we developed for our tests can be considered a premature stage of
what could become a framework devoted to platform-independent, multi-GPU bench-
marking. More attention must be paid to decouple the kernel logic from the synchroniza-
tion logic, so to allow an easier and more independent designand analysis of both. As
described in [4], the use of different precision standards, can also have a certain impact
on performance. In a PDE solver context, introducing exit conditions based on proper ap-
proximations of the sought solutions can be a possible way toinvestigate eventual delays
introduced by graphics hardware’s precision. Our framework could be extended to the
third dimension. For example, the requirement of exchanging not only borders but also
surfaces introduces asymmetries in communication that would be important to examine.

The next goal should be to analysis GPU clusters composed by several multi-GPU
nodes. In such systems, different GPUs may be interconnected through a multi-level
communication network. Finally, with the introduction of the Green500 list3, vendors
are challenged to optimize the ratio performance/Watt instead of the only speed factor.
This will no doubt lead to new interesting models.

References

[1] NVIDIA CUDA 2.1 Programming Guide. NVIDIA Corporation.
http://www.nvidia.com/object/cuda_develop.html.

[2] P. Micikevicius. 3D Finite Difference Computation on GPUs Using CUDA, inProceedings of the 2nd
Workshop on General Purpose Processing on Graphics Processing Units, 383, pages 79-84, March
2009.

[3] T. Natvig and A. C. Elster. Using Context-Sensitive Transmission Statistics to Predict Communication
Time, inPARA 2008, LNCS 2010, A. C. Elsteret al. editors, Springer, to be published.

[4] D. G. Spampinato and A. C. Elster. Linear Optimization onModern GPUs, inProceedings of the 23rd
IEEE International Parallel and Distributed Processing Symposium, Rome, Italy, May 2009, (CDROM)
ISSN: 1530-2075, ISBN: 978-1-4244-3750-4.

[5] R. W. Hockney. The Communication Challange for MPP: Intel Paragon and Meiko CS-2, inParallel
Computing, volume 20, issue 3, pages 389-398, March 1994.

[6] D. G. Spampinato.Modeling Communication on Multi-GPU Systems. Master thesis, Norwegian Uni-
versity of Science and Technology, July 2009.
http://www.idi.ntnu.no/ elster/master-studs/spampinato/spampinato-master-ntnu.pdf

[7] Anne C. Elster and R. Holtet.Benchmarking Clusters vs. SMP Systems by Analyzing the Trade-off Be-
tween Extra Calculations vs. Computations SC’02 Poster

[8] R. Holtet. Communications-reducing Stencil-based Algorithms and Methods NTNU MS thesis, July
2003. http://www.idi.ntnu.no/ elster/hpc-group/ms-theses/holtet-msthesis.pdf

[9] N. Eicker and T. Lippert. "‘Low-level Benchmarking of a New Cluster Architecture"’ in emphParallel
Computing: Architectures, Algorithms and Applications, Vol. 38, PARCO 2007 Proceedings, Eds. C.
Bischof et al., pp 381-388, IOS Press.

3http://www.green500.org


