Modelling Multi-GPU Systems

Daniele G. SPAMPINATG, Anne C. ELSTER! and Thorvald NATVIG?
aNorwegian University of Science and Technology (NTNU), Trondheim, Norway

Abstract. Due to the power and frequency walls, the trend is now to udépieu
GPUs on a given system, much like you will find multiple cores@PU-based
systems. However, increasing the hierarchy of resourcengidhe spectrum of
factors that may impact on the performance of the system.gblagkof this paper
is to analyze such factors by investigating and benchmaritie NVIDIA Tesla
S1070. This system combines four T10 GPUs, making availapl® 4 TFLOPS
of computational power. As a case study, we develop a rezkp&OR PDE solver
for Laplace equations with Dirichlet boundaries, well kmofer requiring constant
communication in order to exchange neighboring data. Tbatl design and anal-
ysis, we propose a model for multi-GPU systems targetingnaonication between
the several GPUs.

The main variables exposed by our benchmark applicationdar@ain size and
shape, kind of data partitioning, number of GPUs, width eftibrders to exchange,
kernels to use, and kind of synchronization between the Géttegts. We show
that the multi-GPU system greatly benefits from using alfdétsr GPUs on very
large data volumes. Four GPUs were almost four times faster & single GPU.
The results also allow us to refine our static communicatiodeh

Keywords. GPU computing, multi-gpu, performance modelling, NVIDI20¥0

1. Introduction

GPU computing for high performance computing is generadithgf of interest. In this
paper, we investigate multi-GPU systems’ performanceofactsuch as data volume
dimensions, data partitioning techniques, number of GRide;-GPU communication
methods, and kernel design. In particular, we focus on N¥X¥$1070 multi-GPU solu-
tions, a system recently deployed at HPC centers world Widese include Tokyo Tech-
nology University’s Tsubame supercomputer which was rdr#@&" in the world when
installed, and the new multi-GPU-based system at GENCIl amé&e. Our methodology
and general results should, however, be applicable to modem multi-GPU systems.

The increasing hierarchy of resources issues new chabetmé¢he developers,
widening the spectrum of factors which may impact the pengorce of a multi-GPU
system. The aim of this work is to investigate such factos@msider some important
models of parallel systems in order to identify some comnroperties that can help us
in our study. Communication is always a relevant aspect vaeating with distributed
resources. By designing a benchmark framework around the BRQE solver, an appli-
cation that constantly requires inter-GPU communicatio® are able to develop better
a multi-GPU model.

1A big thank you to NVIDIA for sponsoring our HPC-Lab with cinig-edge GPUSs.



2. Current NVIDIA Architectureand Programming M odel

The compute unified device architecture (CUDA) environnmm@esents a cutting-edge
programming model well-suited for modern GPU architectyi¢ NVIDIA developed
this programming environment to fit to the processing modléheir Tesla architecture
and expose the parallel capabilities of GPUs to the devetope

CUDA maintains a separated view of the two main actors irewiwn the computa-
tion, namely the host (CPU system) and the device (GPU getefs). The host executes
the main program, while the device acts like a coprocessor.

Our test bench, thBVIDIA Tesla S1070 Computing System is a 1U rack-mount
system equipped with four Tesla T10 GPUs (Figlye

NVIDIA Tesla S1070

Figure 1. NVIDIA Tesla S1070 Computing System Architecture

PCle 2.0
Connection

PCle 2.0
Connection

The Tesla T10 has 240 processing cores working either a61&G4%z (-400 con-
figuration) or at 1.44 GHz (-500 configuration). The coresgm@uped in 30 Stream-
ing Multiprocessors (SMs), each with 8 single-precisiomesoand a single double-
precision core. Each single-precision core is able to isgueo 3 FLOP per cy-
cle, i.e. amultiply concurrently to amultiply-add, while the double-precision core is
able to issue up to 2 FLOP per cycle. This gives a peak theatgtierformance of
4 GPUs 1.44 GHz 3 FLOP/cycle 240 cores= 4.147 TFLOP/s in single precision and
4 GPUs 1.44 GHz 2 FLOP/cycle 30 cores= 345 GFLOP/s in double precision.

From a memory point of view, every GPU is connected to 4 GB kjgded DRAM,
with a bandwidth of 102 GB/s. This gives to the system a toftdl6oGB. The connec-
tion to the host passes through NVIDIA Switches and PCle Hustconnection Cards
(HIC). A single PCle 2.0 16x (or 8x) slot on the host is coneddb two GPUs using an
NVIDIA Switch and a PCle HIC. This connection provides a sfm rate of up to 12.8
GB/s between the host node and the computing system.

3. Programming Multiple GPUs
The NVIDIA CUDA Runtime API gives the programmer the poskibito select which

device to execute the kernels on. By default device 0 is umed the devices are enu-
merated progressively.



To use multiple CUDA contexts, we can associate them toraiffeCPU threads,
one for each GPU. For optimal performance, the number of Cétgscshould not be
less than the number of GPUs in the system. Managing thedtireauld be done by
implementing an ad-hoc communication layer through sydieraries, such as NPTL.
Otherwise, existing libraries could be used, such as mesgagsing libraries adapted to
perform shared memory communicatici. [

4. Parallel Models

As argued in §], parallel models often lack of connection to the real wphddcoming
powerless tools in terms of prediction capabilities. Nbeédss, they do not loose their
relevance when analyzing new architectures, because #ipyrhfocusing on the main
characteristics exposed by the systems at issue.

SMP clusters are one such example where the computing pratombines ele-
ments from both message-passing multicomputers and sheeebry multiprocessors.

4.1. Smilarities between SMP Clusters and Multi-GPU Systems

A multi-GPU computing architecture has several charasties that make it similar to
the computing model of an SMP cluster. E.g. Eicker and Lipf#rsheds some ligtht
on the JULI cluster architecture. As shown in Fig@reevery GPU, which in turn is a
highly multithreaded system, is linked to every other tlglothe host system. This kind
of interconnection, requires communication to setup coa in solving a common
problem. Because of the difference between a general pocasd a graphics processor,

some of the concepts need a proper contextualization, gesimetimes new problems
to solve.

Device 0 Device n-1

Figure 2. Multi-GPU system as a network of GPUs.

4.2. Synchronization and Consistency

Synchronization is suggested exclusively at thread I&feleadblocks’ independence is
an important requirements for granting scalability andespé\lso within a threadblock,
however, the use of synchronization routines must be ciyefontrolled and not mis-



used. Mutual exclusions within a threadblock, can be impletad on recent hardware
using a combination of barriers and atomic operations,tiatgoes against the require-
ment of massive data parallelism required by GPUs to be effiisi Not accidentally,
CUDA does not provide any native solution to this kind of aygarh.

4.3. Memory Performance

Global memory is not cached, and accessing it is an expeap&mtion, so it is impor-
tant to design an appropriate access pattern. The datatygtehe 4, 8 or 16 bytes large,
and must be aligned to a multiple of its size.

There is a separate read-only constant memory, and acabssigocached. Optimal
performance is achieved when all the threads of a half-weag from the same address.
Texture memory, which uses the 2D texture unit of the graphardware, provide 2D
space locality for cache.

4.4. Inter-GPU Communication

We propose a model for a multi-GPU system that extends th&méyanodel f]. Taking
into account the description in Sectidna multi-GPU system is the combination of an
interconnection node and a set of GPUs,

Trulti—-GPU = Thode + ?E%X(Tl?ernel + TgPU_G pU) ) 1)

where Thoge models the specific node (e.g. a node of a multicomputer) tla@dnax
operator is motivated by the fact that several GPU conterdseaecuted in parallel.
Tepu—_cpu expresses the communication between two GPUs, and, suggdsntical
connections to the host for both the devices, we can defirge it a

Tepu-GPU = TePU—host + Thost—host + Thost—GPU @

= 2- TgPU—host + Thost—host -

The host-to-host communication tini@est —host, SUMMarizes the time required by all
the data movements and synchronization mechanisms pdre afammunication flow
between two GPUs.

The transfer bandwidth between host and device must beutigrednsidered. Com-
pacting many small transfers into a large one is often mucherafficient. A way to
increase the bandwidth is to use page-locked memory. Thisdywevent paging mech-
anisms from being used on those memory spaces where dathdawveallocated. Page-
locked memory, however, must be used with care. Reducinganerasources may pro-
duce system slowdown side effects. Pinned memory intradackigher startup time
relevant for small transfers].

Also the Thost—host term should be minimized. This can be done exploiting thé rea
parallelism exposed by modern multicore processors. Aarteg in [], the use of MPI
to communicate between processes on the same node canné@sgltovable communi-
cation overhead. The paper mentions that 2/3 of the comratiaitis spent in buffered

2Atomic operations are just implemented on devices of compapability 1.1 or higher.



MPI_Sendrecv. MPI libraries usually are based on intec@ss communication. Using
threads that share the same address space could turn oubemafécial. Thus, as an al-
ternative to the message-passing approach, multithreadth an appropriate synchro-
nization can be used to implement on-node communicatiomgrtfteads associated to
different GPU contexts.

5. Benchmarks

The effect of using more than one GPU is shown in Figujest for the texture based
case. The graph underline that involving the most of the G&iddlable is always an
appropriate decision since from small dimensions of thealonN x N > 3000 x
3000~ 36 MB). The curve shows that using four GPUs can be up to 3.4¥fdhan
using only one. We have also found that it is 1.8X faster th&ngitwo [5].

After N = 16000 however, the curves start exhibiting a drastic rednéh perfor-
mance. We think that this effect can be produced by resounceentions. As described
in Section2, GPUs on the S1070 share pairwise the two PCle channelspdtsisible
that, with a relevant trafficx{ 2GB), the PCle contention lowers the performance of
two parallel transfers almost down to the performance ohgleione. As a result, the
execution time required bl GPUs gets closer to the time required by a subsét.of

Speedup [wrt 1 GPU]
Domain NxN - Tex based - BS=1
4.0

®2GPUs
94GPUs sp
vV 4GPUs bp

MET_1GPU/MET_xGPUs

0.0
0 5000 10000 15000 20000 25000 30000

N

Figure 3. Speedups with respect to one GPU varying number of GPUs.

5.1. Border Sze

Elster and Holtet ],8] have shown that increasing the border size (BS) and doing re
dundant computation is an effective technique to overcdradatency factor on SMP
clusters when solving PDEs numerically. We ran the solvesame representative do-
mains exchanging different borders with width in the rarig&(Q0]. It is reported that, for
supercomputers with Infiniband interconnection, some méiperformance improve-



ments were found using values of BS close to one. Since Pakg dire closer in latency
to Infiniband interconnections than to Ethernet, we deciddiave more test points in
the neighborhood oBS = 1.

In Figure4 we report results from the benchmark tests run using stipitipned,
squared domains and texture-based kernels. Analyzingrthg, we can deduce that
the technique does not boost enough performance. The whbtd sesults can hardly
approach a 10% of improvement (1.1X) with respect to theiorrbased on unitary
border width.

0.50 0.07

045 0.06
0.40

0.3 0.05
0.30 0.04

0.25
0.20

MET [s]
MAD [s]

0.15 0.02
0.10
0.05
0.00 0.00
0 20 40 60 80 100 120 0 20 40 60 80 100 120

BS BS

(a) Domain 1024x1024, strip partitioning, texture-basethkls, Median of 3 runs.

166,00 450

164.00 4.00

162,00 3350

160.00 3.00

158,00 2350

156.00 200

MET [s]
MAD [s]

154.00 150

152.00 1.00

150,00 080

148.00 0.00

0 20 40 60 80 100 120
BS

80 100 120

=
o
S
a
S
@
3

(b) Domain 52000x52000, strip partitioning, texture-whkernels, Median of 3 runs.

Figure 4. Border size influence on performance using four GPUs.

Thus, the empirical results bring us to a similar conclugenn the supercomput-
ers’ case reported ir8], confirming our assumption that PCle interconnectionsase
enough to make the effect of the discussed method vanish.

5.2. Threads Synchronization

During the design phase, we decided to base our commumaati®OSIX threads syn-
chronization, in order to assess its impact on communicatitd compare it with the
alternative option of message-passing libraries. Therafption was seen to be respon-
sible of around 70% of the communication overhedd [

Figure5 shows the impact of both synchronization and data trarisfeon commu-
nication per iteration.

Contrarily to what expected, the impact of synchronizat®quite relevant, prac-
tically dominating the overall communication. Even thoubis impact is almost negli-
gible on large scale (the core computation is kernel bousubh an effect must be ana-



lyzed and controlled as it may become more relevant in thepgetive of more powerful
hardware and shorter distances between host and devices.

Communication Components per Single Iteration

Domain NxN - 4 GPUs - strip partitioning - Tex based - BS=1

afa
B0Ra
TP
B8P

& ST/MCT

e S MTTMCT
4006
ke
2%
10Ra
P

[+] 10000 20000 30000 40000 5000 B0000

N

Figure 5. Sinchronization and transfer time over communication titagng one iteration.

Profiling, it seems that the delay is due to lock contentiomsieighbor domain
areas. We plan a deeper investigation in our future work.

6. Conclusions and Future Work

The NVIDIA S1070 multi-GPU system was analyzed based orpisidic hardware fea-
tures and on possible analogies to fundamental paralleetapsuich as shared memory
multiprocessors and multicomputers. The Poisson problgimDirichlet boundary con-
ditions was picked as our model problem since it does bo&xsdranges of information
common to a large class of application problems. Based sethpralyzes, we defined a
test space for the benchmark PDE solver tool we developed.

Varying the domains’ dimensions up to 11 GB, we found theigappibn I/O bound.
Transferring the domain from host to device memory took githe largest percentage
of time, requiring up to three times the kernel time. Exchgihe first and the last nec-
essary data transfers, the core computation was insteadlksyund. Exchanging only
the essential data during the computation, i.e. the subhehzorders, required no more
than 10% of the total elapsed time.

Since our test system only consisted of four GPUs, vertitgdsswere more effec-
tive than blocked subdomains. However, simple commurinatiodels, normally used
in parallel computing, were not found suitable for perfonoaprediction on multi-GPU
systems. Statistical approaches were found to be moreesiallladaptable to slight tech-
nological alterations. We found a linear relation betwédendize of contiguous data ex-
pressed in gigabytes and the time required to transfer satehbeétween the host and the
device.



Using all four GPUs on the S1070, was always beneficial, jperifty up to 3.5X
and 1.8X speedup on one and two GPUs, respectively. Hows»dormance decreased
working with large data volumes possibly due to resourcéeertion.

Synchronizing GPUs through Pthreads condition varialek & relatively large
percentage of the communication during the core computalibis is similar to what
was previously documented for shared-memory based, megssging libraries].

The framework we developed for our tests can be consideredragture stage of
what could become a framework devoted to platform-indepatdnulti-GPU bench-
marking. More attention must be paid to decouple the keoggtlfrom the synchroniza-
tion logic, so to allow an easier and more independent desmiginanalysis of both. As
described in{], the use of different precision standards, can also hawetain impact
on performance. In a PDE solver context, introducing exiiditions based on proper ap-
proximations of the sought solutions can be a possible waywtstigate eventual delays
introduced by graphics hardware’s precision. Our framé&venmuld be extended to the
third dimension. For example, the requirement of exchamngit only borders but also
surfaces introduces asymmetries in communication thatdamelimportant to examine.

The next goal should be to analysis GPU clusters composeédvgya multi-GPU
nodes. In such systems, different GPUs may be interconhécteugh a multi-level
communication network. Finally, with the introduction dfet Green500 li${ vendors
are challenged to optimize the ratio performance/Watestof the only speed factor.
This will no doubt lead to new interesting models.

References

[1] NVIDIA CUDA 2.1 Programming Guide. NVIDIA Corporation.
http://www.nvidia.com/object/cuda_develop.html.

[2] P. Micikevicius. 3D Finite Difference Computation on G® Using CUDA, inProceedings of the 2nd
Workshop on General Purpose Processing on Graphics Processing Units, 383, pages 79-84, March
2009.

[3] T. Natvig and A. C. Elster. Using Context-Sensitive Tsamission Statistics to Predict Communication
Time, in PARA 2008, LNCS 2010, A. C. Elsteret al. editors, Springer, to be published.

[4] D. G. Spampinato and A. C. Elster. Linear OptimizationMadern GPUs, irProceedings of the 23rd
|EEE International Parallel and Distributed Processing Symposium, Rome, Italy, May 2009, (CDROM)
ISSN: 1530-2075, ISBN: 978-1-4244-3750-4.

[5] R. W. Hockney. The Communication Challange for MPP: lifRaragon and Meiko CS-2, iRarallel
Computing, volume 20, issue 3, pages 389-398, March 1994.

[6] D. G. SpampinatoModeling Communication on Multi-GPU Systems. Master thesis, Norwegian Uni-
versity of Science and Technology, July 2009.
http://www.idi.ntnu.no/ elster/master-studs/spamafspampinato-master-ntnu.pdf

[7] Anne C. Elster and R. HolteBenchmarking Clusters vs. SMP Systems by Analyzing the Trade-off Be-
tween Extra Calculations vs. Computations SC’'02 Poster

[8] R. Holtet. Communications-reducing Stencil-based Algorithms and Methods NTNU MS thesis, July
2003. http://www.idi.ntnu.no/ elster/hpc-group/msgg/holtet-msthesis.pdf

[9] N. Eicker and T. Lippert. "Low-level Benchmarking of aeM Cluster Architecture™ in emphParallel
Computing: Architectures, Algorithms and Applicationgl\V38, PARCO 2007 Proceedings, Eds. C.
Bischof et al., pp 381-388, 10S Press.

3http://www.greenSOO.org



