NTNU
Norwegian Univers
Science and Techne

Comparing Different Implementations of MPI
on Multi-core Architecture

Andreas Bach

February 1, 2008

Abstract

Multi-core processors are different from the classical supercomputing paradigm
of many standalone processors. It has been growing as an industry trend the last
few years. More than 20% of the processors of the Top 500 supercomputer list
belongs to this family. With this in mind we examine how current implementa-
tions of MPI is performing in a multi-core environment. In this project, we test
the MPI implementations MPICH, MVAPICH and Open MPI with regards to
local resources. The benchmarks range from average times on individual MPI
calls, to High-Performance Linpack to benchmark something closer to a “real-
life” problem. Our experiments indicate that Open MPI performs best results
for benchmarks on the bandwidth term, while MVAPICH has the lowest latency
on small and medium data sets. MVAPICH also performs best on average for
the smallest data sets of the reduce operation in one of our experiments. Which
implementation one should choose would depend on application parameters.
Note that Open MPI and MVAPICH is respectively up to 45% and 35% faster
than MPICH for the 160kilobytes data set.

Preface

This is the report for the work done in TDT4590 Complex Computer Systems,
Specialization Project at NTNU by Andreas Bach. The work was started the
autumn 2007, assigned by Associate Professor Dr. Anne C. Elster.

I would like to thank Dr. Elster for the support, inspiration and help
throughout the project, and especially for enabling resources and flexibility to
finish this report.

I would also like to thank UiTg and the staff at the Computer Center for
providing free computing hours on Stallo on newly installed hardware.

Trondheim, 1. February 2008

Andreas Bach

ii

Contents

1 Introduction

1.1

Outline

2 Background

2.1 Multi-core processorso
2.1.1 Powerd
2.1.2 Xeono e
2.1.3 Opteron

2.2 MPI . ..
2.2.1 Collective operations and hardware development

2.3 MPICH

2.4 Improving the Performance of Collective Operations in MPICH .
241 MPI Allgather
242 MPI Broadcast
243 MPI Reduce

2.5 MVICH e

2.6 MVAPICH e
2.6.1 Improvements for Intra-node MPI communication

2.7 Understanding the impact of Multi-Core Architecture in Cluster
Computing: A Case Study with Intel Dual-Core System

28 LAM/MPI.
2.8.1 Collective operations

29 Open MPI.

3 Model

3.1 Benchmarking. oo oo
3.1.1 Methodology
3.1.2 HPL
3.1.3 SimpleBench 000 0L
314 Averages.o
3.1.5 Accuracy ...

4 Usability

iii

—_

CO CO 00 OO O Wk WWwWwWwwNoN

Results

51 Stallo
5.2 HPL
5.3 SimpleBench 0 000
5.4 Own benchmarking L.

Conclusions
Future Work

SimpleBench

A1 Code e

A2 Results.
A21 MPICH
A22 MVAPICH
A23 Open MPI.

All-to-all
B.1 Code
B2 Results.

Reduce
C.1 Code

iv

List of Figures

2.1 Recursive doubling oo
2.2 Binarytree L
2.3 Mechanism for sending/receiving large messages.

5.1 All-to-all, MPICH, MVAPICH, Open MPT
5.2 All-to-all, medium size messages, MPICH, MVAPICH, Open MPI
5.3 All-to-all, small messages, MVAPICH, Open MPI
5.4 All-to-all, medium sized messages, MVAPICH, Open MPT
5.5 All-to-all, large messages, MVAPICH, Open MPT
5.6 Reduce operation with 1 double eachrun
5.7 Reduce operation with 1000 doubles each run
5.8 Reduce operation with 1 double each run(MPICH excluded) . . .
5.9 Reduce operation with 1000 doubles each (MPICH excluded)

5.10 Reduce operation with 8000 doubles each run(MPICH excluded)

19
20
21
22
23
24
25
26
27

List of Tables

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8

B.1
B.2
B.3

HPL parameters 15
High-Performance Linpack Results 16
Minimum results from SimpleBench 16
Maximum results from SimpleBench 16
Average results SimpleBencho 0L 17
All-to-all, small sized messages(400x50 doubles) 17
All-to-all, medium sized messages(1000x1000 doubles) 18
All-to-all, large sized messages(8000x8000 doubles) 18
All-to-all, small sized messages(400x50 doubles) 46
All-to-all, medium sized messages(1000x1000 doubles) 47
All-to-all, large sized messages(8000x8000 doubles) 48

vi

Chapter 1

Introduction

Our goal in this project is to compare different implementations of MPI on
clustered SMPs. This will be explored with regards to improvements that might
exploit technology such as chip multiprocessor(CMP) in a better way than the
implementation currently used on our system do.

Using an improved MPI implementation for a given system can make a sig-
nificant performance impact on a number of applications. Recent studies|7, 8]
show that intra-node communication is more common than intuition might sug-
gest. Improving MPI algorithms for multi-core architectures have been shown
to improve benchmark execution time by up to 70%. Scalability of this types
of improvements to both number of cores and number of total nodes will be
explored. Conclusively, there will be some suggestions to what our system will
gain the most from.

With the introduction of multi-core processors in supercomputing, a whole
new field of optimizations for collective operations is available. While multi-
processor systems has been on the market for many years, sharing of resources
closer to the core of the processor is becoming dominant. With this type sharing
the possibility to transfer data in a faster manner than the standard MPICH[10]
implementation is doing.

As stated by Thakur and Gropp in [32] there are many open issues in MPI,
in spite of the second version being over a decade old. The range is broad, and
covers everything from basic operations, scalability to collective operations.

1.1 Outline

In section 2 we will explore different types of MPI implementations and their
advantages and disadvantages. Section 3 will be devoted to techniques used for
discovering the differences. Section 4 contains some usability considerations.
The results is presented in section 5, while we will come to some conclusions
and recommendations for the system in section 6.

Chapter 2

Background

2.1 Multi-core processors

In the late 1990s, microprocessor performance improved at an overall rate of 50
to 60% per year. A study from 2000, [1] found that this development would not
continue by only expanding pipelines, clock rate scaling and capacity scaling.
While this conclusion does not take into consideration the possibility of novel
and revolutionizing technology, they point to the fact that communication de-
lays on-chip would become significant for global signals. Also, the superscalar
paradigm was getting diminishing returns, in particular with regards to that
the clock scaling soon would slow down. The projected technology size in this
paper was a bit more pessimistic than the actual development has been, expect-
ing the 35nm technology to be available by 2014. Today, Intel plans to reach
16nm technology by 2013, according to [16] with two-year-cycles of reducing

technology size'.

Later, Huh et al.[14] concluded that higher throughput of future processors
may be achieved with scaling the number of cores pr chip. Off-chip bandwidth
does limit the number of cores, and if the relationship pins pr core continue to
decrease, it will severely limit the throughput.

Hennessy and Patterson addresses the trend of moving towards multipro-
cessing in [12], listing new and reinforcing factors such as a growing interest
in servers and server performance, growth in data-intensive applications, that
increasing performance on desktops is less important and that replication rather
than unique designs provides leverage.

With those predictions of the future of CMP in mind, we look at the history
of releases of mainstream multi-core processors.

I Measured by the size of a single transistor gate length

2.1.1 Power4

The first processor to go multi-core in the market was IBM’s Power4[5]. Two
64-bit PowerPC cores running at 1.3GHz with an unified 8-way set associa-
tive L2-cache divided under three separate L2-controllers. Also, an L3 off-chip
cache. The Power4-processor was based on a superscalar architecture with spec-
ulative out-of-order execution, each core with eight execution units(two integer,
two floating point, two load/store, branch unit, and execution unit to perform
logical operations on the condition register). The processor was able to issue
instructions to each execution unit every cycle, but instruction retirements was
limited to five per cycle. Each core had an 64Kbyte L1 instruction cache, and
a 32Kbyte L1 data cache with dual ports. Up to eight concurrent data misses
and three instruction misses was possible.

2.1.2 Xeon

The Xeon brand from Intel was originally a single-core processor, first released
in 1998. In 2005 Intel released their first dual-core server processor. Codenamed
Paxville, it had two Xeon cores and a shared L2-cache[18]. The last processor
in the Xeon-series to have L3-cache was the 7100 series, codenamed Tulsa[19].
It was also to have on-chip shared L3-cache, and in this way distinguishing it
from the Power4. Intel’s implementation of SMT (namely HT) enabled the chip
to run up to four threads on the two cores. Intel have later released a quad-core
processors[17] in the same class, Kentsfield, Clovertown, Tigerton, and latest
Penryn. The Kentsfield and Clovertown systems was both a combination of two
chips with two cores each, in one packaging(in a 2x2 fashion). This way two
cores shared L2-cache, with no L3-cache. All but Penryn is made on a 65nm
process, with Penryn at 45nm. The front-side bus(FSB) of the Penryn series is
clocked to 1600MHz.

2.1.3 Opteron

The first multi-core processor from AMD was the second generation Opteron,
which had two 64-bit Opteron cores, with dedicated .1 and L2-cache. In place
of an on-chip L3-cache it had memory-controller. This organization would pre-
sumably have less to gain from resource sharing, not sharing any on-chip caches.
Any core-to-core communication would have to go via main memory. Each pro-
cessor chip has its own main memory bank. In multiprocessor settings, adding
a CPU increases main memory bandwidth.

2.2 MPI

The Message Passing Interface (MPI)[24] is the de facto industry standard for
parallel scientific applications running on High Performance Clusters(HPC). Be-
gun in 1992, over 40 organizations participated in discussion and definition of li-
brary interface standards for message passing. Version 1.0 of MPI was proposed

with the final report of the Message Passing Interface Forum May 5th 1994.
Version 1.1 was released June of 1995. Later, some corrections was proposed
in MPI 1.2, while completely new functionality was discussed in the definition
of MPI 2.0. MPI 2.0 was proposed in 1997 (with dynamic processes, one-sided
communication and parallel I/O) and MPI 2.1 under discussion as this report
is written.

2.2.1 Collective operations and hardware development

Numerous studies has researched possibilities for exploiting unharvested im-
provements in both algorithms and hardware. I.LE. Multi-threading to exploit
thread level parallelism and new all-to-all-algorithms to exploit specific topolo-
gies and network layout. Multi-core processors was suggested as early as 2000
by Barroso et al. with their Piranha-processor[21]. The same year, IBM in-
troduced the first multi-core processor in their Power4[5] for the server market.
Dual-core processors for desktop environments has been introduced by both Intel
and AMDJ19, 2]|. Later AMD, Intel and IBM has introduced new mainstream
multi-core processors in [3], [17] and [15] respectively. There has also been
studies as to use the Cell-chip[20] from Sony/IBM for scientific purposes|35],
with later elaborate studies to optimize collective operations for heterogeneous
multi-core processors[34] by Srinivasan et al.

2.3 MPICH

MPICH]11, 10] is an implementation of MPI developed in collaboration with
the MPI standards process to provide the MPI forum|24] feedback on imple-
mentation and usability issues. Since MPICH was designed to enable ports to
other systems, it is often used as basis for implementations by parallel computer
vendors and research groups.

2.4 Improving the Performance of Collective Op-
erations in MPICH

Thakur and Gropp studied[31] improving one specific implementation of MPI,
using multiple algorithms depending on message size. Their work was con-
cluded with inclusion in the openly available MPICH implementation version
1.2.6 (current version is 1.2.7). This section will elaborate on some of the mod-
ifications they did.

2.4.1 MPI Allgather

Thaikur and Gropp modified MPI _ALLGATHER from the original ring method
to a recursive doubling method(as shown in figure 2.1). In this way they reduced

pl

p2

p7

p8

Figure 2.1: Recursive doubling

the time taken from
-1
Tring = (p - 1)04 + anﬁ

where the bandwidth cannot be reduced further, instead reducing latency to lg
p

p—1

Trecidbl = lgp + nﬁ

In experiments they found that recursive doubling was better for short mes-
sages, but that the original ring-algorithm was faster for long(> 512K B) mes-
sages. The nearest-neighbor communication pattern outperformed recursive
doubling which has longer communication paths for this case. Implemented in
MPICH is Tre. anfor short- and medium-length (< 512K B) and T}y 4for long
messages. N

2.4.2 MPI Broadcast

For broadcast the old algorithm in MPICH is the binary tree algorithm(as shown
in figure 2.2 except moving from the bottom up). Their improvement for broad-
cast was implementing an algorithm proposed by Van de Geijn et al. that has a
lower bandwidth term[4]. Here one divides and scatter the message among the
processes, similar to that of an MPI _Scatter-call. The scattered data is then
collected back to all processes similar to an MPI _ Allgather. The time taken by
the complete broadcast is

-1
Tvandegeijn = (1gp +p— 1)0[+ 21)7715

compared to the binary tree algorithm

Ttree = Dgp] (a + nlg)

The larger number of processes, the greater expected improvement in perfor-
mance for the Van de Geijn-algorithm over binary tree. In the new MPICH-
implementation, the binary tree is used for short messages(< 12K B) and the
Van de Geijn algorithm for long messages (> 12K B).

2.4.3 MPI Reduce
Here, the original algorithm used a binary tree(as shown in figure 2.2) that took
Tiree = |—1gp—| (Oé + Tlﬂ + n7)

which is good for short messages because of the lg p steps. For long messages
there exists a better algorithm proposed by Rolf Rabenseifner[28], that reduces
the bandwidth term from nlgpl to 2n3 and works in the same manner as Van

pl p2 p3 p4 p5 p6 p7 p8
pl p2 p3 p4 p5 p6 p7 p8
pl p2 p3 p4 p5 p6 p7 p8
pl p2 p3 p4 p5 p6 p7 p8

Figure 2.2: Binary tree

de Geijn’s algorithm for MPI_Broadcast. The total time for Rabenseifner’s
algorithm is
p—1

p—1
Trabenseifner =2 1gPOé + 27”6 + ny
This algorithm is used for message sizes over 2KB and the binary tree for short
messages.

2.5 MVICH

MVICH]26] is a Virtual Interface Architecture(VIA) implementation of MPI,
based on MPICH. VIA is an industry standard interface for System Area Net-
works(that of clusters for example) that provides protected, zero-copy user-space
inter-process communication. It is no longer in development, as the funding plan
concluded October 2001. Their work was later implemented in MVAPICH by
D. K. Panda’s group at Ohio State University.

2.6 MVAPICH

MVAPICH|25] is an implementation of MPI based on MPICH and MVICH. It
has multiple underlying interfaces, such as OpenFabrics/Gen2 that supports fea-
tures as SRQ, Shared Memory Collectives, RDMA-based collectives, TCP/IP,
multi-rail with advanced scheduling schemes, on-demand connection manage-
ment, and scalable MPD-based startup. It also has support for shared-memory
only without using any network, for multi-core servers, desktops, laptops and
clusters with serial nodes. New features in the 1.0 beta is OpenFabrics/Gen2-
UD that is targeting clusters with multi-thousand cores using InfiniBand.

MVAPICH is especially optimized for intra-node communication by using
shared-memory communications, on everything from multi-core systems, bus-
based SMB systems, NUMA-based SMP systems and taking advantage of pro-
cessor affinity. It also includes error detection on mem-to-mem data transfer, us-
ing 32bit CRC on the I/O bus. Added latest is the network level error-detection
mechanism over InfiniBand.

In the original design of MVAPICH intra-node communication utilized shared
memory. Each pair of processes on the same node allocated two shared memory
buffers between them for exchanging messages to each other exclusively. The
memory that needed to be allocated for this was P (P — 1) * Buf Size where P
is the number of processes and BufSize is the size of each shared buffer. Message
ordering is ensured using the memory consistency model, and memory barrier
if the underlying memory model is not consistent.

2.6.1 Improvements for Intra-node MPI communication

Chai et al.[8] designed and implemented a high performance and scalable MPI
intra-node communication scheme, as an improvement of MVAPICH. Although

their work concentrated on clusters, the main focus was on CMP, making it
(near) ideal for this report. At the time of writing, they found that few studies
had been done to study interaction between multi-core systems and MPI im-
plementation. They designed a user space memory copy based architecture to
improve intra-node communication. The goals included reducing latency, ex-
panding bandwidth, and reduce memory usage for scalability. ((The work was
later included in the official MVAPICH releases))

To avoid the use of locks, they separated buffers for small and large messages,
and used a shared buffer pool for each process to send large messages. In their
design each process had P — 1 small Receive Buffers, one Send Buffer Pool and
a collection of P — 1 Send Queues. The sizes of the two latter can be tuned,
Panda et al. used receive buffer size 32KB, one buffer cell to 8KB, and total
number of cells to 128 for each send buffer pool. Small messages are simply
written directly to the receiving process’s receive buffer, which the receiving
process then moves to its final spot.

Send Buffer Pool0 H Send Buffer Pooll
1 '

N EEE NN . HENEEEE

2 - H
(' _____ g F-» NULL SQO1{ NULL [«-..]

SendQueuel0

SQ21| NULL |d&--"

5031 nuLL (&7

SendQueue20
* NULL | SendQueue30

PROCESS 0 !

PROCESS 1

Figure 2.3: Mechanism for sending/receiving large messages

Transferring large messages are slightly more complicated(illustrated in fig-
ure 2.3), where the sending process puts the message in a free cell(1 & 2) of
the send buffer pool, and then transmits a control message containing the ad-
dress(3). The receiver reads(4) and accesses the address specified by the control
message(5) and retrieves the message(6). The next time the send buffer pool is
used again, the sender marks the send buffer pool-cell used free, a scheme called
mark-and-sweep by Panda et al. When the message is bigger than one cell, it

simply splits the message and transfers the cells individually.

Results On their Non-Uniform Memory Access(NUMA) cluster, composed of
four nodes of AMD Opteron dual-core processors with 1IMB L2 cache per core,
they ran Linux 2.6.16. They achieved improved latency by up to 35% for large
messages, small and medium up to 15%. Bandwidth was improved for most
large messages about 50%. They also found that L2 cache miss rate on all
benchmarks was improved drastically with their algorithm.

2.7 Understanding the impact of Multi-Core Ar-
chitecture in Cluster Computing: A Case Study
with Intel Dual-Core System

Chai et al.[7] designed a set of experiments to study the impact of multi-core ar-
chitecture on cluster computing. Their study included a cluster of 4 Intel Bens-
ley systems connected by InfiniBand, each node having two dual-core 2.6GHz
Woodcrest processors. They found that on average 50% of messages are trans-
ferred through intra-node communication. With data tiling, their benchmarking
showed execution time improvements by up to 70%. However, their experiments
showed that it became less efficient with more processes pr chip, and in exper-
iments that spanned more processor-chips. With their setup, medium sized
messages in the range 4KB to 64KB, they found that 10% of the messages
was transferred intra-CMP, 30% was transferred through inter-CMP, and 60%
was transferred through inter-node in the NAMD benchmark. According to
their paper, the statistics show that if each core was supposed to communicate
evenly with each other core, these numbers should have been 6.7%, 13.7% and
80% respectively. This indicates that the importance of optimizing intra-node
communication is quite to the level of that of inter-node communication for this
type of benchmark.

2.8 LAM/MPI

LAM/MPI[30, 6] is a software parallel software environment based on the Message-
Passing Interface. LAM stands for Local Area Multicomputer and existed before
the MPI-standard was established. LAM/MPT primarily targeted cluster envi-
ronments, implementing various topologies to allow hetero-type environments.

2.8.1 Collective operations

LAM/MPI has modules for implementing MPI collective routines on differ-
ent environments, shared memory or SMP. Except MPI ALLTOALLW and
MPI_EXSCAN the main collective operations is either optimized for SMP-
environments or already optimized in the standard implementation of LAM /MPI[22].
The SMP module determines the locality of processes to set up a dynamic struc-
ture to perform the collective operation. The communication is still layered on

10

MPI point-to-point communication, but the algorithms attempt to maximize the
use of on-node communication before communicating with off-node processes.

LAM/MPIT also has a module for shared memory. It is only available when
the communicator spans one single node, and the communicator can successfully
attach the shared memory region to their address space. It uses two disjoint re-
gions, one for synchronization and one for message passing, the last one divided
into segments based on parameters, default value 8.

However, LAM/MPI is now only maintenance code, and as their web page
states, the main work is now being done on Open MPI.

2.9 Open MPI

Open MPI is according to [9] influenced by LAM/MPI, LA-MPI and FT-MPI.
It is an MPI-2 implementation that from the start supported shared memory
architectures, Myrinet, Quadrics, Infiniband and TCP/IP. It supports multi-
ple network interfaces on each node, and the usage of fail-overs transparent
to the application. They have centered their design process around the MPI
Component Architecture(MCA), with MCA backbone, component framework
to manage modules, and modules with different parts of the implementation.
These modules are loaded, used and unloaded by the framework, on demand.
Examples of component frameworks in Open MPI is Point-to-point Transport
Layer(PTL), Collective Communication (COLL), Reduction Operations and
Parallel 1/0. Modules is loaded during MPI INIT, where the corresponding
framework lists all available modules and loads the required ones. The highest
priority module is used for the task, even though there might be multiple mod-
ules capable of doing the same work. At the destruction of the communicator,
the module is unloaded and resources freed.

11

Chapter 3

Model

3.1 Benchmarking

To benchmark these different implementations, we have based our work on that
of [23] by Larsgard. His work include benchmarking the (then) newly acquired
IBM eServer p575+, compared to the previous supercomputers operated at
NTNU. Following his methodology suggested benchmarking suites include HPL,
Pallas and SimpleBench[23]. As Pallas has since been acquired by Intel, this
benchmark was not easily obtained, and we have concentrated our work around
HPL and SimpleBench.

3.1.1 Methodology

To benchmark the performance of the different implementations we are using
the simplest benchmarks possible, with the same settings. We are looking at
intra-node performance, and have therefore chosen not to benchmark the full
system. Qur experiments is only done on one node with 8 processes, one for each
core. In this respect, the results is not directly comparable to other benchmarks
done with the same tool.

3.1.2 HPL

High Performance Linpack(HPL)[27] benchmark is the basis of the top 500-list,
and is a measure of a system'’s floating point computing power. It solves a dense
n by n system of linear equations. It is portable and has several parameters to
tune the benchmark for any system. To obtain the optimized parameters for
Stallo, we have used the methods from Larsgard’s report[23]. The optimal
parameters are given in table5.1.

12

3.1.3 SimpleBench

SimpleBench is a simple benchmark for parallel computers, written by Thorvald
Natvig[33] in connection with the acquisition of Njord, NTNU’s IBM eServer
system, in 2006. The purpose of SimpleBench is to reveal potential “spikes” in
the system, where response time is high or performance worse than the average.
It consists of a series of single runs of basic MPI-calls, with timing on each
MPI-process.

The source code for SimpleBench is attached in appendix A.1.

3.1.4 Averages

To test the full potential of intra-node performance, one needs to eliminate any
external factors that may offset the benchmark. SimpleBench does several runs
of each collective operation, but only once with the same size payload. To be
sure that the benchmark is independent one needs to test many iterations of
each collective operation with the same parameters. Also, we need to make sure
that no data can be reused directly from cache, nor any other benefits gained
from looping over the same operation. This is achieved by scrolling through
random unrelated data before sends.

Loops of 1000, 5000 and 10000 iterations of the collective operation all-to-
all and loops of 1000 reduce is chosen, as these are frequently used. Timing
of all-to-all operations showed little or no deviance in test results for more
iterations, and did not exhibit the need for these lengthy test for the reduce
operation as well. For all-to-all the tests includes sending and receiving of
400x50 doubles, 1000x1000 doubles, and 8000x8000 doubles. For reduce, 1,
1000x1000 and 8000x8000. 8000x8000 is used to get some results that will show
utilization of memory bandwidth.

The source code for these benchmarks is attached in appendix B.1 and C.1.

3.1.5 Accuracy

The different implementations had all different results from MPI_Wtick, which
returns the resolution of MPI _Wtime, used for timing in much of this report.
MPICH, MVAPICH and Open MPI reported resolutions of, 9.536743 = 10~ 7,
1 %10 %and 1 % 107° respectively on our system.

13

Chapter 4

Usability

All but one implementations installed cleanly, namely LAM/MPI. With Open
MPI based on among others LAM/MPI, and since it was no longer in devel-
opment, time would decide that this implementation was left out of this re-
port, as far as results goes. MPICH was compiled with the ch shmem device,
MVAPICH with the ch _smp device, and Open MPI automatically chose its
MCA-module “linuz” for processor affinity.

14

Chapter 5

Results

5.1 Stallo

The system[13] used for our benchmarks consists of 704 dual-processor Xeon
2 nodes, clocked at 2.6GHz. Each node has a total of eight cores, 16GBytes
memory and 120GBytes disk. A little over half the nodes is interconnected
by InfiniBand(55%), and the rest has Gigabit Ethernet interconnect. Theoret-
ical peak performance for the complete system is calculated to 60TFlops. The
operating system used is Rock Linux[29].

5.2 HPL

The High-Performance Linpack benchmark results(table 5.2) shows that the
different implementations performs almost on level. Open MPI performs only
0,38% better than MVAPICH and approximately 1,38% faster than MPICH. All
the implementations had their best performance from the same set of parameters
as given in table 5.1. Individually for MVAPICH and Open MPI, the different
panel factorization solutions was giving results with little or no deviance from
the average(<50MFlops difference), with the exception of the first test in each
set. MPICH showed up to 5GFlops difference between best and worst panel
factorization method.

Table 5.1: HPL parameters

| [NB] N [PxQ]
MPICH 256 | 44700 | 4x2
MVAPICH | 256 | 44700 | 4x2
Open MPI | 256 | 44700 | 4x2

15

Table 5.2: High-Performance Linpack Results
| Implementation | HPL Riax |

MPICH 4.136e+01
MVAPICH | 4.177e 101
Open MPI 4.193e101

Table 5.3: Minimum results from SimpleBench

| Min
Operation | Size MPICH MVAPICH Open MPI
PingPong 0 22.888184 2.000000 21.219254
PingPong | 100 31.948090 3.000000 10.967255
PingPong | 1024 41.961670 22.000000 38.146973
PingPong | 1M | 22424.936295 | 16668.000000 | 14268.159866

5.3 SimpleBench

The MVAPICH results is clearly of lower resolution (MVAPICH returns resolu-
tion of 1.0 % 107> on this system (as opposed to 1.0 * 10~%for Open MPI)) than
the rest of the implementations. From table 5.3 one can observe that MVAPICH
has up to ten times shorter minimum send-times for small and medium sizes.
At 1IMB Open MPI is 15% faster than MVAPICH. MPICH is consistently the
slowest implementation for minimum-times. The maximum-results from table
5.4 shows MVAPICH again faster for 0, 100 and 1024 bytes. Table 5.5 shows
that MVAPICH generally outperforms both MPICH and Open MPI for 0, 100
and 1024 bytes, but falls short for Open MPI on 1MB. The average sending
time for 0 bytes is over six times faster than for Open MPI.

5.4 Own benchmarking
The results from the iteration-intensive benchmarks shows further difference
between the implementations. From table 5.6 and figure 5.1 we can clearly see

that MPICH is performing far worse than the other implementations, especially
with regards to minimum and maximum values. For small messages MPICH is

Table 5.4: Maximum results from SimpleBench

| Maximum |
Operation | Size MPICH MVAPICH Open MPI
PingPong 0 46.014786 16.000000 208.854675
PingPong | 100 40.054321 9.000000 15.974045
PingPong | 1024 64.849854 29.000000 93.936920
PingPong | 1M | 27837.991714 | 21351.0000000 | 19603.967667

16

Table 5.5: Average results SimpleBench

| Average
Operation | Size MPICH MVAPICH Open MPI
PingPong 0 28.878450 8.2500000 53.226948
PingPong | 100 35.643578 4.875000 11.742115
PingPong | 1024 44.971704 23.500000 48.011541
PingPong | 1M | 21393.865347 | 16204.125000 | 15465.885401

Table 5.6: All-to-all, small sized messages(400x50 doubles)

| Impl | Tter | Tot | Avg | Max | Min |

MPICH 1000 | 8.176477E-01 | 8.176477E-04 | 1.471901E-02 | 6.039143E-04

MPICH 5000 | 4.013466E+00 | 8.026933E-04 | 4.582882E-03 | 4.930496E-04

MPICH 10000 | 8.080390E+00 | 8.080390E-04 | 1.489401E-02 | 3.039837E-04
MVAPICH | 1000 | 5.766840E-01 | 5.766840E-04 | 1.302000E-03 | 3.720000E-04
MVAPICH | 5000 | 2.846303E+00 | 5.692606E-04 | 1.235900E-02 | 3.580000E-04
MVAPICH | 10000 | 5.784503E+400 | 5.784503E-04 | 2.397600E-02 | 3.630000E-04
Open MPI | 1000 | 5.006273E-01 | 5.006273E-04 | 8.707047E-03 | 4.441738E-04
Open MPI | 5000 | 2.457770E+00 | 4.915540E-04 | 4.745388E-02 | 4.379749E-04
Open MPI | 10000 | 4.768914E+00 | 4.768914E-04 | 6.028891E-03 | 4.169941E-04

up to 35% slower than MVAPICH and up to 45% slower than Open MPI. Both
with regards to minimum and maximum values for small messages, MVAPICH
has the shortest times. But with average and total times, we can see that Open
MPI is actually outperforming MVAPICH by almost 20% for the test-run of
10000 iterations. For medium sized messages, as seen in figure 5.1 and figure
5.4(without MPICH), the pattern repeats itself. The distance in time up to
MPICH is growing fast, but the performance of MVAPICH and Open MPI is
evening out. Open MPI still has the upper hand on averages and MVAPICH
on the best minimum and maximum times. For large messages(figure 5.5 and
table 5.8), Open MPI is best by all measures, by as much as over two tenth of
a second per iteration from best to worst average result.

For the reduce-operation benchmark, we observe almost the same behavior,
except that here MVAPICH is outperforming Open MPI on the average results
for the smallest data set. The medium data set is showing best minimum time
to MVAPICH, but Open MPI average is much better.

17

Table 5.7: All-to-all, medium sized messages(1000x1000 doubles)

| Impl | Tter | Tot | Avg | Max | Min |

MPICH 1000 | 8.543125e+02 | 8.543125e-01 | 2.437500e+00 | 1.445312e-01

MPICH 5000 | 5.161012e+03 | 1.032202e+00 | 2.808594e+00 | 1.679688e-01

MPICH 10000 | 8.793560e+03 | 8.793560e-01 | 1.679313e+01 | 4.113698e-02
MVAPICH | 1000 | 4.820071e+01 | 4.820071e-02 | 7.076800e-02 | 3.094600e-02
MVAPICH | 5000 | 2.461737e+02 | 4.923474e-02 | 7.342500e-02 | 3.061900e-02
MVAPICH | 10000 | 4.914969e+02 | 4.914969e-02 | 7.468300e-02 | 3.080700e-02
Open MPI | 1000 | 4.704773e+01 | 4.704773e-02 | 6.683207e-02 | 4.432511e-02
Open MPI | 5000 | 2.317214e+02 | 4.634429¢-02 | 7.062197e-02 | 3.633189¢-02
Open MPI | 10000 | 4.616412e+02 | 4.616412e-02 | 6.941700e-02 | 3.950596e-02

Table 5.8: All-to-all, large sized messages(8000x8000 doubles)

| Impl [Iter | Tot Avg Max Min |
MVAPICH | 1000 | 3.181639¢e+03 | 3.181638e+00 | 4.227398e+00 | 3.070103e+00
MVAPICH | 5000 | 1.600605e+04 | 3.201210e+400 | 5.382317e+00 | 3.050804e+00
Open MPI | 1000 | 3.039166e+03 | 3.039166e+00 | 3.960890e+00 | 2.772568e+00
Open MPI | 5000 | 1.352857e+04 | 2.705714e+00 | 3.590074e+00 | 2.606230e+00
All-to-all (Sends and receives 400 x 50 doubles each iteration)
5.00E-02 T T T
MPICH +———
MVAPICH ---x---
4.50E-02 Open MPI :--%---1
4.00E-02 - 4
3.50E-02 —
3.00E-02 |- —
g 2.50E-02 | .
]
2.00E-02 |- —
1.50E-02 4
1.00E-02 | b .
5.00E03 | 1 -
0.00E+00 L X s x %
1000 5000 10000
iterations
Figure 5.1: All-to-all, MPICH, MVAPICH, Open MPI

18

2.50E+01

2.00E+01

1.50E+01

seconds

1.00E+01

5.00E+00

0.00E+00

Figure 5.2:

All-to-all (Sends and receives 1000 x 1000 doubles each iteration)

' ' MPICH ———
MVAPICH &--x--4
Open MPI :--3---:
k1 * X 1 * N 1
1000 5000 10000
iterations
All-to-all, medium size messages, MPICH, MVAPICH, Open MPI

19

seconds

5.00E-02

4.50E-02

4.00E-02

3.50E-02

3.00E-02

2.50E-02

2.00E-02

1.50E-02

1.00E-02

5.00E-03

0.00E+00

All-to-all (Sends and receives 400 x 50 doubles each iteration)

K1

MVAPICH
Open MP| +--x-—

A

1000

5000
iterations

10000

Figure 5.3: All-to-all, small messages, MVAPICH, Open MPI

20

seconds

7.50E-02

7.00E-02

6.50E-02

6.00E-02

5.50E-02

5.00E-02

4.50E-02

4.00E-02

3.50E-02

3.00E-02

All-to-all (Sends and receives 1000 x 1000 doubles each iteration)

MVAPICH ——
Open MPI 4--x---

1000

5000

iterations

10000

Figure 5.4: All-to-all, medium sized messages, MVAPICH, Open MPI

21

seconds

5.50E+00

5.00E+00

4.50E+00

4.00E+00

3.50E+00

3.00E+00

2.50E+00

All-to-all (Sends and receives 8000 x 8000 doubles each iteration)

|

MVAPICH
Open MP| +--x-—

1000

5000
iterations

10000

Figure 5.5: All-to-all, large messages, MVAPICH, Open MPI

22

seconds

2.00E-02

1.80E-02

1.60E-02

1.40E-02

1.20E-02

1.00E-02

8.00E-03

6.00E-03

4.00E-03

2.00E-03

0.00E+00

Reduce (Sends 1 double(8 bytes) each iteration)

i T
- &

MPICH +———
MVAPICH +--x---
Open MPI :-----

1000
iterations

Figure 5.6: Reduce operation with 1 double

23

each run

seconds

3.50E+01

3.00E+01

2.50E+01

2.00E+01

1.50E+01

1.00E+01

5.00E+00

0.00E+00

Reduce (Sends 1000 doubles(8000 bytes) each iteration)

Sk

MPICH +———
MVAPICH +---x---
Open MPI :-----

1000
iterations

Figure 5.7: Reduce operation with 1000 doubles each run

24

seconds

Reduce (Sends 1 double (8 bytes) each iteration)

1.20E-02 T
MVAPICH ——+—
- Open MPI =--x---

1.00E-02 | 4
8.00E-03 4
6.00E-03 4
4.00E-03 - 4
2.00E-03 4

«

0.00E+00 L
1000

iterations

Figure 5.8: Reduce operation with 1 double each run(MPICH excluded)

25

seconds

Reduce (Sends 1000 doubles (8000 bytes) each iteration)
7.00E-02 T

b MVAPICH +——+—
Open MPI =--x---

6.50E-02 |-

6.00E-02 |-

5.50E-02 |-

5.00E-02 |-

4.50E-02

4.00E-02

3.50E-02 L
1000

iterations

Figure 5.9: Reduce operation with 1000 doubles each (MPICH excluded)

26

Reduce (Sends 8000 doubles (64000 bytes) each iteration)
5.50E+00 T

MVAPICH +——+—
Open MPI =--x---

5.00E+00 |

4.50E+00 |

4.00E+00 |

seconds

3.50E+00 |

3.00E+00

N 2|

2.50E+00 |

2.00E+00 L
1000

iterations

Figure 5.10: Reduce operation with 8000 doubles each run(MPICH excluded)

27

Chapter 6

Conclusions

MVAPICH outperformed Open MPI for small and medium sized messages in
the all-to-all-department, on minimum time spent on sending and receiving.
However, the average time, which stays quite level for Open MPI and MVAPICH
when iteration is scaled, was better for Open MPI. The first iteration of each run
was mainly the slowest one, and this offsets the total. But when we examined
the results with the first and last five iterations excluded, MVAPICH was still
behind on the average results. Since MVAPICH was both faster on the minimum
and slower on the maximum, one can only presume that it might have something
to do with the accuracy of the implementation. Although, even if that was the
case, we did not approaching tick-time for neither MVAPICH nor Open MPI.

The results from the HPL benchmark showed us that Open MPI is the
fastest implementation for solving a “real life-problem” that one might expect
the supercomputer to evaluate. The results differed by less than 2%, so it is not
easy to be very conclusive on the basis of this test.

Overall, we have seen Open MPI outperform both MPICH and MVAPICH
on average results and the HPL benchmark. MVAPICH did the fastest iterations
for small data sets, but came up short when bandwidth became an issue.

28

Chapter 7

Future Work

This report has shown that MVAPICH is better for small data sets. To reveal the
limits of the upper hand of MVAPICH, a more detailed benchmark is required,
both in terms of sizes of data sets, and in terms of different calls and algorithms.
A natural next step is to scale up and try different data- and processor-layout
schemes, to benchmark performance across interconnects.

29

Bibliography

1

2]

13]

4]

[5]

[6]

7]

18]

19]

Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, and Dough Burger.
Clock rate versus IPC: the end of the road for conventional microarchitec-
tures. In ISCA, pages 248—259, 2000.

AMD Athlon Dual-Core Product Brief. Available at:
http://www.amd.com/us-en /Processors/ProductInformation/
0,30 118 9485 1304113078,00.html.

AMD Opteron Quad-Core Product Brief. Available at:
http://www.amd.com/us-en /Processors/ProductInformation/
0,30 118 8796 15223,00.html.

Michael Barnett, Satya Gupta, David Payne, Lance Shuler, Robert van de
Geijn, and Jerrell Watts. Interprocessor Collective Communications Li-
brary (Intercom). In Proceedings of the Scalable High Performance Comn-
puting Conference, pages 357 364. IEEE Computer Society Press, 1994.

Douglas C. Bossen, Joel M. Tendler, and Kevin Reick. Power4 system
design for high reliability. IEEE Micro, 22(2):16 24, 2002.

Greg Burns, Raja Daoud, and James Vaigl. LAM: An Open Cluster En-
vironment for MPL. In Proceedings of Supercomputing Symposium, pages
379 386, 1994.

Lei Chai, Qi Gao, and Dhabaleswar K. Panda. Understanding the Impact
of Multi-Core Architecture in Cluster Computing: A Case Study with Intel
Dual-Core System. In CCGRID, pages 471-478. IEEE Computer Society,
2007.

Lei Chai, Albert Hartono, and Dhabaleswar K. Panda. Designing High Per-
formance and Scalable MPI Intra-node Communication Support for Clus-
ters. In CLUSTER. TEEE, 2006.

Richard L. Graham, Timothy S. Woodall, and Jeffrey M. Squyres. Open
MPI: A flexible high performance MPI. In Proceedings, 6th Annual In-
ternational Conference on Parallel Processing and Applied Mathematics,
Poznan, Poland, September 2005.

30

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance,
portable implementation of the MPI message passing interface standard.
Parallel Computing, 22(6):789 828, September 1996.

William D. Gropp and Ewing Lusk. User’s Guide for mpich, a Portable
Implementation of MPI. Mathematics and Computer Science Division,
Argonne National Laboratory, 1996. ANL-96/6.

John L. Hennessy and David A. Patterson. Computer Architecture, Fourth
Edition: A Quantitative Approach. Morgan Kaufmann, September 2006.

The High Perfomance Computing at the University of Tromsg. Webpage:
http://docs.notur.no/uit /.

J. Huh, D. Burger, and S. Keckler. Exploring the design space of future
CMPs, 2001.

IBM System p5 Quad-Core Module Based on POWERS5+ Tech-
nology: Techincal Overview and Introduction. Available at:
http://www.redbooks.ibm.com /redpapers/pdfs/redp4150.pdf.

Intel Architecture and Silicone Cadence, The Catalyst for Industry Inno-
vation. Available at: http://download.intel.com/technology/eep/cadence-
paper.pdf.

Quad-Core Intel® Xeon®) Processor 5300 Se-
ries Product Brief (Clowertown). Available at:
http://download.intel.com /products/processor /xeon/dc53kprodbrief.pdf.

Dual-Core Intel Xeon Processor Paxville. Available at:
ftp://download.intel.com/design /Xeon /datashts/30915801.pdf (Retrieved:
30.01.2008).

Dual-Core Intel Xeon Processor 7100 Se-
ries Product Brief (Tulsa). Available at:
http://download.intel.com/products/processor/xeon/7100 prodbrief.pdf.

J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shippy. Introduction to the cell multiprocessor. IBM J. Res. Dev.,
49(4/5):589-604, 2005.

L.A.Barroso, K.Gharachoroloo, R.McNamara, Andreas Nowatzyk,
S.Qadeer, B.Sano, S.Smith, R.Stets, and B.Verghese. Piranha: A Scalable
Architecture Based on Single-Chip Multiprocessing. In 27th International
Symposium on Computer Architecture (ISCA), June 2000.

LAM/MPI User’s Guide. Available at: http://www.lam-
mpi.org/download /files/7.1.4-user.pdf.

Nils Magnus Larsgard. Benchmarking of Modern Supercomputers. Decem-
ber 2006.

31

[24]
[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]
[34]

[35]

Message-Passing Interface Forum. http://www.mpi-forum.org.

MVAPICH - MPI over InfiniBand. Webpage: http://mvapich.cse.ohio-
state.edu/.

MVICH - MPI for Virtual Interface Architecture. Webpage:
http://crd.lbl.gov/FTG/MVICH /mvich.shtml.

A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. High-
Performance Linpack Benchmark for Distributed-Memory Computers.
Website: http://www.netlib.org/benchmark/hpl/index.html.

Rolf Rabenseifner. A new optimized MPI reduce algorithm. November
1997.

Rock Linux. Official webpage: http://www.rocklinux.org.

Jeffrey M. Squyres and Andrew Lumsdaine. A Component Architecture
for LAM/MPI. In Proceedings, 10th European PVM/MPI Users’ Group
Meeting, number 2840 in Lecture Notes in Computer Science, pages 379—
387, Venice, Italy, September / October 2003. Springer-Verlag.

R. Thakur and W. Gropp. Improving the Performance of Collective Oper-
ations in MPICH, October 2003.

Rajeev Thakur and William Gropp. Open Issues in MPI Implementation.
In Lynn Choi, Yunheung Paek, and Sangyeun Cho, editors, Asia-Pacific
Computer Systems Architecture Conference, volume 4697 of Lecture Notes
in Computer Science, pages 327-338. Springer, 2007.

Personal communication with Thorvald Natvig, PhD Candidate NTNU.

M.K. Velamati, A. Kumar, N. Jayam, G. Senthilkumar, P.K. Baruah,
S. Kapoor, R. Sharma, and A. Srinivasan. Optimization of Collective Com-
munication in Intra-Cell MPI. In 14th IEEE International Conference on
High Performance Computing (HiPC), pages 488 499, 2007.

Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry Hus-
bands, and Katherine Yelick. The Potential of the Cell Processor for Sci-
entific Computing. In CF ’06: Proceedings of the 3rd conference on Com-
puting frontiers, pages 9-20, New York, NY, USA, 2006. ACM.

32

Appendix A

SimpleBench

A.1 Code

SimpleBench by Thorvald Natvig[33]

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include "mpi.h"
#include <math.h>
typedef double timetype;

// Support routines

static void timing_start(timetype *t);

static void timing_stop(timetype *t);

static double elapsed_us(timetype *start, timetype *stop);

static void minmaxelapse(timetype *start, timetype *stop, double *min,
double *max);

static void expand_benchm_lists(int #%bl);

// Benchmark routines
void pingpong(int size);
void alltoall(int size);
void collective(int size);
void cartesian(int size);

// Benchmark configuration

#define SB_EOL -1

#define SB_NODES -2

int pingpong_sizes[] = { 0, 100, 1024, 8192, 1000000, SB_EOL };

int alltoall_sizes[] = { SB_NODES, 8192, 100000, SB_EOL };

int collective_sizes[] = { O, SB_NODES, 8192, 1000000, SB_EOL };

int cartesian_sizes[] = { SB_NODES, 10000, 20000, 40000, SB_EOL };

/* removed 80 000 and 160 000 */

int *benchm_lists[] = { pingpong_sizes, alltoall_sizes, collective_sizes,
cartesian_sizes, NULL };

int rank;

int nodes;

int

main(int argc, char x*argv) {

int *sz;

MPI_Init(&argc, &argv);

33

MPI_Comm_size (MPI_COMM_WORLD, &nodes);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
expand_benchm_lists(benchm_lists);

if (rank == 0)
printf ("Running on %d nodes\n", nodes);
// Dryrun once

pingpong(0) ;

for (sz = pingpong_sizes; *sz != SB_EOL; sz++)
pingpong(*sz);

for (sz = alltoall_sizes; *sz != SB_EOL; sz++)
alltoall(*sz);

for (sz = collective_sizes; *sz != SB_EQL; sz++)

collective(*sz);

for (sz = cartesian_sizes; *sz != SB_EQOL; sz++)
cartesian(*sz);

MPI_Finalize();
return 0;

}
// Support routines

static void

timing_start(timetype *t) {
*t = MPI_Wtime();

}

static void

timing_stop(timetype *t) {
*t = MPI_Wtime();

}

static double

elapsed_us(timetype *start, timetype *stop) {
return (*stop - *start) * 1000000;

}

static void

minmaxelapse(timetype *start, timetype *stop, double *min, double *max) {
double elapsed = elapsed_us(start, stop);
MPI_Allreduce(&elapsed, min, 1, MPI_DOUBLE, MPI_MIN, MPI_COMM_WORLD);
MPI_Allreduce(&elapsed, max, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD);

}

static void
expand_benchm_lists(int **bl) {
int *sz;
for (; *bl; bl++)
for (sz = *bl; *sz != SB_EQL; sz++)
if (xsz == SB_NODES)
*sz = nodes;

// Simple pingpong tests to test minimum and maximum
// latency and bandwidth.

void
pingpong(int size) {
MPI_Status stat;
timetype start, stop;
double min, max, elapsed, total;
double *buf;
int i;

34

min = 1000000000.0;
max = 0.0;
total = 0.0;

buf = (double *) malloc(size * sizeof (double));
MPI_Barrier (MPI_COMM_WORLD) ;

if (rank == 0) {
for(i=0;i<size;i++)
buf [i]=(ix7);
for(i=1;i<nodes;i++) {
timing_start(&start);
MPI_Send(buf, size, MPI_DOUBLE, i, 0, MPI_COMM_WORLD);
MPI_Recv(buf, size, MPI_DOUBLE, i, O, MPI_COMM_WORLD, &stat);
timing_stop(&stop);
elapsed = elapsed_us(&start, &stop);
if (elapsed < min)
min = elapsed;
if (elapsed > max)
max = elapsed;
total += elapsed;
}
printf ("Pingpong (%d doubles, %u bytes): %f -> %f [%f]l\n",size,
size * sizeof(double),min,max,total / (double)nodes);

} else {
MPI_Recv(buf, size, MPI_DOUBLE, 0, O, MPI_COMM_WORLD, &stat);
MPI_Send(buf, size, MPI_DOUBLE, 0, O, MPI_COMM_WORLD);

}

free(buf);
}

// Tests of alltoall

void

alltoall(int size) {
timetype start, stop;
double min, max;
double *sendbuf, *recvbuf;
int i;
int localsize;
MPI_Comm halfcomm;

localsize = size / nodes;
sendbuf = (double *) malloc(sizeof (double) * size * 2);
recvbuf = (double *) malloc(sizeof (double) * size * 2);
if (sendbuf==NULL || recvbuf==NULL)

perror("alltoall");

for(i=0;i<localsize*nodes;i++)
sendbuf [i]=i*rank;

MPI_Barrier (MPI_COMM_WORLD) ;

timing_start(&start);

MPI_Alltoall(sendbuf, localsize, MPI_DOUBLE, recvbuf, localsize,
MPI_DOUBLE, MPI_COMM_WORLD);

timing_stop(&stop) ;

minmaxelapse(&start, &stop, &min, &max);
if (rank == 0) {

printf("Alltoall (%d doubles/%u bytes), %f -> %f\n", localsize * nodes,
localsize * nodes * sizeof (double), min, max);

35

MPI_Comm_split (MPI_COMM_WORLD, (rank*2 >= nodes) 7 1 : 0, rank, &halfcomm);

MPI_Barrier (MPI_COMM_WORLD) ;

timing_start(&start);

MPI_Alltoall(sendbuf, localsize * 2, MPI_DOUBLE, recvbuf, localsize * 2,
MPI_DOUBLE, halfcomm);

timing_stop(&stop) ;

MPI_Comm_free(&halfcomm) ;

minmaxelapse(&start, &stop, &min, &max);

if (rank == 0) {
printf("Alltoall (%d doubles/%u bytes), %f -> %f [Split Halves]\n",
localsize * nodes, localsize * nodes * sizeof(double), min, max);

}

free(sendbuf) ;
free(recvbuf);

// Collective operations

void

collective(int size) {
timetype start, stop;
double min, max;
double *sendbuf, *recvbuf;
int i;
int localsize;
MPI_Comm halfcomm;

MPI_Barrier (MPI_COMM_WORLD) ;
MPI_Comm_split (MPI_COMM_WORLD, (rank*2 >= nodes) 7 1 : 0, rank, &halfcomm);

if (size == 0) {
timing_start(&start);
MPI_Barrier (MPI_COMM_WORLD) ;
timing_stop(&stop) ;

minmaxelapse(&start, &stop, &min, &max);
if (rank == 0)
printf ("Barrier in %f -> %f\n", min, max);

timing_start(&start);
MPI_Barrier(halfcomm);
timing_stop(&stop) ;

minmaxelapse(&start, &stop, &min, &max);
if (rank == 0)
printf("Barrier in %f -> %f [Halfcomm]\n", min, max);

}

localsize = size / nodes;
sendbuf = (double *) malloc(sizeof(double) * localsize);
recvbuf = (double *) malloc(sizeof (double) * localsize);

for(i=0;i<localsize;i++)
sendbuf[i] = rank * i;

MPI_Barrier (MPI_COMM_WORLD) ;

timing_start(&start);

MPI_Reduce (sendbuf, recvbuf, localsize, MPI_DOUBLE, MPI_MIN, O,
MPI_COMM_WORLD) ;

timing_stop(&stop) ;

minmaxelapse(&start, &stop, &min, &max);

36

if (rank == 0)
printf ("Reduce (min) (%d doubles, %u bytes) %f -> %f\n",
localsize * nodes, localsize * nodes * sizeof(double), min, max);

MPI_Barrier (MPI_COMM_WORLD) ;

timing_start(&start);

MPI_Allreduce(sendbuf, recvbuf, localsize, MPI_DOUBLE, MPI_MIN,
MPI_COMM_WORLD) ;

timing_stop(&stop) ;

minmaxelapse(&start, &stop, &min, &max);
if (rank == 0)
printf("AllReduce (min) (%d doubles, %u bytes) %f -> %f\n",
localsize * nodes, localsize * nodes * sizeof(double), min, max);

MPI_Barrier (MPI_COMM_WORLD) ;

timing_start(&start);

MPI_Allreduce(sendbuf, recvbuf, localsize, MPI_DOUBLE, MPI_MIN, halfcomm);
timing_stop(&stop) ;

minmaxelapse(&start, &stop, &min, &max);
if (rank == 0)
printf("AllReduce (min) (%d doubles, %u bytes) %f -> %f [HalfComm]\n",
localsize * nodes, localsize * nodes * sizeof(double), min, max);

MPI_Barrier (MPI_COMM_WORLD) ;

timing_start(&start);

MPI_Allreduce(sendbuf, recvbuf, localsize, MPI_DOUBLE, MPI_SUM, halfcomm);
timing_stop(&stop) ;

minmaxelapse(&start, &stop, &min, &max);
if (rank == 0)
printf("AllReduce (add) (%d doubles, %u bytes) %f -> %f [HalfComm]\n",
localsize * nodes, localsize * nodes * sizeof(double), min, max);

free(sendbuf) ;
free(recvbuf);
MPI_Comm_free(&halfcomm) ;

// 2D Cartesian border exchange with datatypes

void

cartesian(int size) {
int width, height;
int left, right, above, below;
int dims[2];
int periods[2];
MPI_Comm cartcomm;
timetype start, stop;
double min, max;
int i;
double *subarea;
double *areastart;
double *upperleft;
double *upperright;
double *lowerleft;
double *rowabove;
double *rowbelow;
double *columnleft;
double *columnright;
MPI_Datatype column;
MPI_Status stat;
double elapsed[4];
double emin[4], emax[4];
MPI_Request req[8];
MPI_Status rstat[8];

37

periods[0] = periods[1] = 0;
dims[0] = dims[1] = O;

MPI_Barrier (MPI_COMM_WORLD) ;

timing_start(&start);

MPI_Dims_create(nodes, 2, dims);

MPI_Cart_create (MPI_COMM_WORLD, 2, dims, periods, 1, &cartcomm);
timing_stop(&stop) ;

width = size / dims[0];

height = size / dims[1];
minmaxelapse(&start, &stop, &min, &max);
if (rank == 0)

printf("\nCartesian creation [%d] %f -> %f [/d x %d]\n", size, min, max,

width, height);

MPI_Cart_shift(cartcomm, O, 1, &left, &right);
MPI_Cart_shift(cartcomm, 1, 1, &above, &below);

subarea = malloc((width + 2) * (height + 2) * sizeof(double));
if (subarea == NULL) perror("malloc returned null");

areastart = subarea + width + 3;

upperleft = areastart;

upperright = areastart + width - 1;

lowerleft = areastart + (width + 2) * (height - 1);

rowabove = subarea + 1;

rowbelow = subarea + (width + 2) % (height + 1) + 1;
columnleft = subarea + width + 2;

columnright = subarea + width - 1;

MPI_Barrier (MPI_COMM_WORLD) ;

timing_start(&start);

MPI_Type_vector(height, 1, width + 2, MPI_DOUBLE, &column);
MPI_Type_commit (&column) ;

timing_stop(&stop) ;

minmaxelapse(&start, &stop, &min, &max);
if (rank == 0)
printf ("Cartesian datatype %f -> %f\n", min, max);

MPI_Barrier (MPI_COMM_WORLD) ;
for(i=0;i<4;i++) {
timing_start(&start);
MPI_Sendrecv(upperleft, 1, column, left, O, columnright, 1, column,
right, 0, cartcomm, &stat);
MPI_Sendrecv(upperright, 1, column, right, O, columnleft, 1, column,
left, O, cartcomm, &stat);

MPI_Sendrecv(upperleft, width, MPI_DOUBLE, above, 0, rowbelow, width,
MPI_DOUBLE, below, O, cartcomm, &stat);
MPI_Sendrecv(lowerleft, width, MPI_DOUBLE, below, 0, rowabove, width,
MPI_DOUBLE, above, O, cartcomm, &stat);
timing_stop(&stop) ;
elapsed[i] = elapsed_us(&start, &stop);
}

MPI_Reduce(elapsed, emin, 4, MPI_DOUBLE, MPI_MIN, O, MPI_COMM_WORLD) ;
MPI_Reduce(elapsed, emax, 4, MPI_DOUBLE, MPI_MAX, O, MPI_COMM_WORLD);

if (rank == 0)
for(i=0;i<4;i++)
printf("Cartesian sendrecv iteration %d: %f -> %f\n", i, emin[il,

emax[il);

MPI_Barrier (MPI_COMM_WORLD) ;

38

for(i=0;i<4;i++) {
timing_start(&start);
MPI_Irecv(columnright, 1, column, right, O, cartcomm, &req[0]);
MPI_Irecv(columnleft, 1, column, left, O, cartcomm, &req[1]);
MPI_Irecv(rowbelow, width, MPI_DOUBLE, below, O, cartcomm, &req[2]);
MPI_Irecv(rowabove, width, MPI_DOUBLE, above, 0, cartcomm, &req[3]);

MPI_Isend(upperleft, 1, column, left, O, cartcomm, &req[4]);
MPI_Isend(upperright, 1, column, right, O, cartcomm, &req[5]);
MPI_Isend(upperleft, width, MPI_DOUBLE, above, 0, cartcomm, &req[6]);
MPI_Isend(lowerleft, width, MPI_DOUBLE, below, O, cartcomm, &reql7]);
MPI_Waitall(8, req, rstat);
timing_stop(&stop) ;
elapsed[i]=elapsed_us(&start, &stop);
}
MPI_Reduce(elapsed, emin, 4, MPI_DOUBLE, MPI_MIN, O, MPI_COMM_WORLD);
MPI_Reduce(elapsed, emax, 4, MPI_DOUBLE, MPI_MAX, O, MPI_COMM_WORLD);

if (rank == 0)
for(i=0;i<4;i++)
printf("Cartesian isend/irecv iteration %d: %f -> %f\n", i,
emin[i], emax[i]);
MPI_Barrier (MPI_COMM_WORLD) ;

free (subarea) ;
MPI_Comm_free(&cartcomm) ;

A.2 Results

A.2.1 MPICH

Running on 8 nodes

Pingpong (0 doubles, O bytes): 0.000000 -> 0.000000 [0.000000]

Pingpong (0 doubles, O bytes): 0.000000 -> 3906.250000 [488.281250]

Pingpong (100 doubles, 800 bytes): 0.000000 -> 0.000000 [0.000000]

Pingpong (1024 doubles, 8192 bytes): 0.000000 -> 3906.250000 [488.281250]

Pingpong (8192 doubles, 65536 bytes): 0.000000 -> 3906.250000 [1953.125000]
Pingpong (1000000 doubles, 8000000 bytes): 183593.750000 -> 191406.250000 [164550.781250]
Alltoall (8 doubles/64 bytes), 0.000000 -> 7812.500000

Alltoall (8 doubles/64 bytes), 0.000000 -> 3906.250000 [Split Halves]

Alltoall (8192 doubles/65536 bytes), 0.000000 -> 3906.250000

Alltoall (8192 doubles/65536 bytes), 0.000000 -> 3906.250000 [Split Halves]
Alltoall (100000 doubles/800000 bytes), 15625.000000 -> 23437.500000

Alltoall (100000 doubles/800000 bytes), 7812.500000 -> 11718.750000 [Split Halves]
Barrier in 0.000000 -> 0.000000

Barrier in 0.000000 -> 3906.250000 [Halfcomm]

Reduce (min) (O doubles, O bytes) 0.000000 -> 0.000000

AllReduce (min) (0O doubles, O bytes) 0.000000 -> 0.000000

AllReduce (min) (O doubles, O bytes) 0.000000 -> 0.000000 [HalfComm]

AllReduce (add) (0 doubles, O bytes) 0.000000 -> 0.000000 [HalfComm]

Reduce (min) (8 doubles, 64 bytes) 0.000000 -> 0.000000

AllReduce (min) (8 doubles, 64 bytes) 0.000000 -> 0.000000

AllReduce (min) (8 doubles, 64 bytes) 0.000000 -> 0.000000 [HalfComm]

AllReduce (add) (8 doubles, 64 bytes) 0.000000 -> 0.000000 [HalfComm]

Reduce (min) (8192 doubles, 65536 bytes) 0.000000 -> 0.000000

AllReduce (min) (8192 doubles, 65536 bytes) 0.000000 -> 3906.250000

AllReduce (min) (8192 doubles, 65536 bytes) 0.000000 -> 0.000000 [HalfComm]
AllReduce (add) (8192 doubles, 65536 bytes) 0.000000 -> 3906.250000 [HalfComm]
Reduce (min) (1000000 doubles, 8000000 bytes) 19531.250000 -> 35156.250000
AllReduce (min) (1000000 doubles, 8000000 bytes) 23437.500000 -> 39062.500000
AllReduce (min) (1000000 doubles, 8000000 bytes) 15625.000000 -> 39062.500000 [HalfComm]
AllReduce (add) (1000000 doubles, 8000000 bytes) 19531.250000 -> 35156.250000 [HalfComm]
Cartesian creation [8] 0.000000 -> 3906.250000 [2 x 4]

39

Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian

datatype 0.000000 -> 0.000000

sendrecv iteration 0: 0.000000 -> 0.000000

sendrecv iteration 1: 0.000000 -> 0.000000

sendrecv iteration 2: 0.000000 -> 0.000000

sendrecv iteration 3: 0.000000 -> 3906.250000
isend/irecv iteration 0: 0.000000 -> 0.000000
isend/irecv iteration 1: 0.000000 -> 0.000000
isend/irecv iteration 2: 0.000000 -> 0.000000
isend/irecv iteration 3: 0.000000 -> 0.000000
creation [10000] 0.000000 -> 0.000000 [2500 x 5000]
datatype 0.000000 -> 0.000000

sendrecv iteration 0: 46875.000000 -> 82031.250000
sendrecv iteration 1: 0.000000 -> 19531.250000
sendrecv iteration 2: 0.000000 -> 19531.250000
sendrecv iteration 3: 0.000000 -> 19531.250000
isend/irecv iteration 0: 0.000000 -> 3906.250000
isend/irecv iteration 1: 0.000000 -> 3906.250000
isend/irecv iteration 2: 0.000000 -> 3906.250000
isend/irecv iteration 3: 0.000000 -> 3906.250000
creation [20000] 0.000000 -> 0.000000 [5000 x 10000]
datatype 0.000000 -> 0.000000

sendrecv iteration 0: 54687.500000 -> 128906.250000
sendrecv iteration 1: 3906.250000 -> 46875.000000
sendrecv iteration 2: 3906.250000 -> 7812.500000
sendrecv iteration 3: 3906.250000 -> 15625.000000
isend/irecv iteration 0: 3906.250000 -> 11718.750000
isend/irecv iteration 1: 3906.250000 -> 11718.750000
isend/irecv iteration 2: 3906.250000 -> 15625.000000
isend/irecv iteration 3: 0.000000 -> 19531.250000

2 MVAPICH

Running on 8 nodes

Pingpong
Pingpong
Pingpong
Pingpong
Pingpong
Pingpong
Alltoall
Alltoall
Alltoall
Alltoall
Alltoall
Alltoall

(0 doubles, O bytes): 2.000000 -> 16.000000 [8.250000]

(0 doubles, O bytes): 2.000000 -> 4.000000 [2.625000]

(100 doubles, 800 bytes): 3.000000 -> 9.000000 [4.875000]

(1024 doubles, 8192 bytes): 22.000000 -> 29.000000 [23.500000]

(8192 doubles, 65536 bytes): 165.000000 -> 239.000000 [183.875000]
(1000000 doubles, 8000000 bytes): 16668.000000 -> 21351.000000 [16204.125000]
(8 doubles/64 bytes), 1469.000000 -> 1677.000000

(8 doubles/64 bytes), 7.000000 -> 17.000000 [Split Halves]

(8192 doubles/65536 bytes), 520.000000 -> 553.000000

(8192 doubles/65536 bytes), 264.000000 -> 279.000000 [Split Halves]
(100000 doubles/800000 bytes), 3663.000000 -> 4222.000000

(100000 doubles/800000 bytes), 2643.000000 -> 2972.000000 [Split Halves]

Barrier in 2.000000 -> 296.000000
Barrier in 4.000000 -> 56.000000 [Halfcomm]

Reduce

Al1Reduce
Al1Reduce
AllReduce
Reduce

AllReduce
Al1Reduce
Al1Reduce
Reduce

AllReduce
AllReduce
Al1Reduce
Reduce

AllReduce
AllReduce
Al1Reduce

Cartesian
Cartesian
Cartesian

(min) (O doubles, 0 bytes) 2.000000 -> 3.000000

(min) (0 doubles, 0 bytes) 2.000000 -> 3.000000

(min) (0 doubles, O bytes) 2.000000 -> 3.000000 [HalfComm]

(add) (0 doubles, 0 bytes) 2.000000 -> 3.000000 [HalfComm]

(min) (8 doubles, 64 bytes) 2.000000 -> 5.000000

(min) (8 doubles, 64 bytes) 6.000000 -> 8.000000

(min) (8 doubles, 64 bytes) 5.000000 -> 6.000000 [HalfComm]

(add) (8 doubles, 64 bytes) 4.000000 -> 8.000000 [HalfComm]

(min) (8192 doubles, 65536 bytes) 425.000000 -> 440.000000

(min) (8192 doubles, 65536 bytes) 86.000000 -> 114.000000

(min) (8192 doubles, 65536 bytes) 70.000000 -> 84.000000 [HalfComm]

(add) (8192 doubles, 65536 bytes) 69.000000 -> 79.000000 [HalfComm]

(min) (1000000 doubles, 8000000 bytes) 7940.000000 -> 8249.000000

(min) (1000000 doubles, 8000000 bytes) 9931.000000 -> 10404.000000

(min) (1000000 doubles, 8000000 bytes) 8739.000000 -> 9397.000000 [HalfComm]
(add) (1000000 doubles, 8000000 bytes) 8889.000000 -> 9150.000000 [HalfComm]

creation [8] 1234.000000 -> 1238.000000 [2 x 4]

datatype 2.000000 -> 3.000000
sendrecv iteration 0: 9.000000 -> 13.000000

40

Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian

Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian

Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian

Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian

sendrecv iteration 1:
sendrecv iteration 2:

sendrecv iteration 3:

isend/irecv
isend/irecv
isend/irecv
isend/irecv

creation [10000] 51.000000

iteration
iteration
iteration
iteration

.000000 ->
.000000 ->
.000000 ->
6.000000
.000000
.000000
.000000

W N O oo ™

INENNR)

datatype 2.000000 -> 3.000000
sendrecv iteration O:
sendrecv iteration 1:
sendrecv iteration 2:
sendrecv iteration 3:

isend/irecv
isend/irecv
isend/irecv
isend/irecv

iteration
iteration
iteration
iteration

19.000000
13.000000
9.000000
-> 7.000000
-> 11.000000
-> 9.000000
-> 9.000000

-> 55.000000 [2500 x 5000]

36596.000000 -> 57419.000000

907.000000
715.000000
596.000000

-> 19941.000000
-> 19406.000000
-> 825.000000

0: 511.000000 -> 757.000000
1: 416.000000 -> 607.000000
2: 346.000000 -> 517.000000
3: 289.000000 -> 587.000000

creation [20000] 100.000000 -> 103.000000 [5000 x 10000]
datatype 2.000000 -> 3.000000
sendrecv iteration O:
sendrecv iteration 1:
sendrecv iteration 2:
sendrecv iteration 3:

isend/irecv
isend/irecv
isend/irecv
isend/irecv

creation [40000] 79.000000 ->

iteration
iteration
iteration
iteration

108685.000000 -> 113114.000000

4045.000000
3095.000000
2903.000000

-> 6949.000000
-> 3651.000000
-> 3382.000000

0: 2883.000000 -> 4329.000000
1: 2584.000000 -> 4076.000000
2: 2052.000000 -> 4207.000000
3: 1760.000000 -> 4099.000000

datatype 2.000000 -> 3.000000
sendrecv iteration O:
sendrecv iteration 1:
sendrecv iteration 2:

sendrecv iteration 3:

isend/irecv
isend/irecv
isend/irecv
isend/irecv

iteration
iteration
iteration
iteration

3 Open MPI

Running on 8 nodes
(0 doubles, O bytes): 21.219254 -> 208.854675 [53.226948]

(0 doubles, O bytes): 1.907349 -> 77.009201 [11.861324]

(100 doubles, 800 bytes): 10.967255 -> 15.974045 [11.742115]

(1024 doubles, 8192 bytes): 38.146973 -> 93.936920 [48.011541]

(8192 doubles, 65536 bytes): 147.104263 -> 221.014023 [164.270401]

(1000000 doubles, 8000000 bytes): 14268.159866 -> 19603.967667 [15465.885401]
(8 doubles/64 bytes), 6383.895874 -> 7472.991943

(8 doubles/64 bytes), 7.152557 -> 11.205673 [Split Halves]

(8192 doubles/65536 bytes), 364.065170 -> 389.099121

(8192 doubles/65536 bytes), 160.932541 -> 217.199326 [Split Halves]

(100000 doubles/800000 bytes), 3596.067429 -> 3659.963608

(100000 doubles/800000 bytes), 2568.960190 -> 2754.211426 [Split Halves]
Barrier in 13.113022
Barrier in 3.099442 -> 10.013580 [Halfcomm]
(min) (0 doubles, O bytes) 6.914139 -> 16.212463

(min) (0 doubles, O bytes) 0.000000 -> 2.145767

(min) (O doubles, O bytes) 0.953674 -> 2.145767 [HalfComm]
(add) (0 doubles, O bytes) 0.953674 -> 2.145767 [HalfComm]
(min) (8 doubles, 64 bytes) 4275.798798 -> 4333.972931
(min) (8 doubles, 64 bytes) 5.960464 -> 9.059906

(min) (8 doubles, 64 bytes) 3.814697 -> 7.152557 [HalfComm]
(add) (8 doubles, 64 bytes) 3.099442 -> 7.152557 [HalfComm]
(min) (8192 doubles, 65536 bytes) 31.948090 -> 99.897385

Pingpong
Pingpong
Pingpong
Pingpong
Pingpong
Pingpong
Alltoall
Alltoall
Alltoall
Alltoall
Alltoall
Alltoall

Reduce
Al1Reduce
AllReduce
AllReduce
Reduce
Al1Reduce
Al1Reduce
AllReduce
Reduce

83081.000000 [10000 x 200001

149916.000000 -> 399917.000000

7132.000000

-> 257592.000000

14364.000000 -> 192824.000000

7386.000000

-> 185273.000000

0: 13065.000000 -> 111588.000000
1: 8051.000000 -> 177480.000000
2: 5427.000000 -> 166412.000000
3: 5807.000000 -> 165422.000000

-> 16896.009445

41

Al1Reduce
Al1Reduce
AllReduce
Reduce

Al1Reduce
Al1Reduce
AllReduce

Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian

Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian

Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian

Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian
Cartesian

(min)
(min)
(add)
(min)
(min)
(min)
(add)

creation

(8192 doubles, 65536 bytes) 134.944916 -> 144.958496
-> 82.015991 [HalfComm]
-> 87.022781 [HalfComm]

(8192 doubles, 65536 bytes) 72.002411
(8192 doubles, 65536 bytes) 82.969666

(1000000 doubles, 8000000 bytes) 4830.
.078613 ->

(1000000 doubles, 8000000 bytes) 9468

(1000000 doubles, 8000000 bytes) 7586.
.035538 ->

(1000000 doubles, 8000000 bytes) 7786

datatype 1608.133316 -> 2157.926559
sendrecv iteration 0: 372.886658 -> 384.092331
sendrecv iteration 1: 5.960464 -> 19.073486
sendrecv iteration 2: 4.053116 -> 11.920929
sendrecv iteration 3: 6.198883 -> 11.920929
isend/irecv iteration 0: 293.970108 -> 368.118286
isend/irecv iteration 1: 5.960464 -> 70.810318
isend/irecv iteration 2: 5.960464 -> 14.066696
isend/irecv iteration 3: 5.006790 -> 10.967255

creation

datatype 1.907349 -> 4.053116

sendrecv iteration 0: 39411.067963 -> 56400.

121994 >

956024 ->

[8] 69802.999496 -> 69808.959961 [2 x 4]

[10000] 40.054321 -> 42.915344 [2500 x 5000]

060654

sendrecv iteration 1: 1141.071320 -> 18459.081650
sendrecv iteration 2: 575.065613 -> 823.974609

sendrecv iteration 3: 639.915466 -> 681.877136

isend/irecv iteration 0: 429.153442 -> 555.992126
isend/irecv iteration 1: 416.994095 -> 546.932220
isend/irecv iteration 2: 349.998474 -> 550.985336
isend/irecv iteration 3: 411.987305 -> 634.908676

creation

datatype 9.059906 -> 13.113022
sendrecv iteration 0: 81027.030945 -> 115333.080292
sendrecv iteration 1: 4553.079605 -> 38539.171219
sendrecv iteration 2: 2707.958221 -> 2817.869186
sendrecv iteration 3: 2341.985703 -> 2452.135086
isend/irecv iteration 0: 2022.027969 -> 2608.060837
isend/irecv iteration 1: 1780.986786 -> 2400.159836
isend/irecv iteration 2: 1901.865005 -> 2679.824829
isend/irecv iteration 3: 1763.820648 -> 2293.109894

[20000] 72.956085 -> 91.075897 [5000 x 10000]

5487.918854
9511.947632
7669.210434 [HalfComm]
7843.017578 [HalfComm]

creation [40000] 72.002411 -> 97.036362 [10000 x 20000]
datatype 10.013580 -> 13.113022
sendrecv iteration 0: 156381.130219 -> 232652.902603

sendrecv iteration 1: 13305.902481 -> 89359.
sendrecv iteration 2: 14761.924744 -> 15942.
sendrecv iteration 3: 14080.047607 -> 15033.
isend/irecv iteration 0: 10293.960571 -> 14144.897461
isend/irecv iteration 1: 11479.139328 -> 15923.023224
isend/irecv iteration 2: 10748.863220 -> 14539.957047
isend/irecv iteration 3: 10757.923126 -> 14139.175415

42

045029
096710
960342

Appendix B

All-to-all

B.1 Code

#include <stdlib.h>

#include <stdio.h>

#include "mpi.h"

#define NRM 500

#define NRN 500

#define REPEATS 1000

double **createDoubleMatrix(int nl, int n2);

int main (int argc , char *argv[]) {
int mpi_err;
int np, rank;
int a_rows, a_cols;
int i, j;
double **m;
double *rray, *sray;
int ssize, rsize;

MPI_Init(&argc, &argv);

MPI_Comm_size (MPI_COMM_WORLD, &np);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Status status;

double *t;

if (rank==0) t = (double *)malloc(sizeof (double)*REPEATS*2);
a_rows = NRM / np;

a_cols = NRN / np;

m = createDoubleMatrix (NRM, a_cols);

srand(rank) ;

int elements = 0;

for(i = 0; i < NRM; i++) {
for(j = 0; j < a_cols; j++) {
m[i][j] = i;

elements++;

ssize = rsize = 0;

for(i = 0; i < np; i++) {
ssize = ssize + a_cols*a_rows;
rsize = rsize + a_cols*a_rows;

43

sray =
rray

if (sray
int k =

int 1 =
for(k =

}

if (rank

}

(double*)malloc(sizeof (double) *ssize);
(double*)malloc(sizeof (double) *rsize);

== NULL || rray == NULL) perror('"send and receive arrays");
0;

0;

0; k < np; k++) {

int offset = (k * a_rows);

for(i = 0; i < a_rows; i++) {
for(j = 0; j < a_cols; j++) {
sray[1] = m[i+toffset][j];
1++;

0; i < REPEATS; i++) {
if (rank==0) t[k++] = MPI_Wtime();
MPI_Alltoall(sray, a_cols*a_rows, MPI_DOUBLE,
rray, a_cols*a_rows, MPI_DOUBLE, MPI_COMM_WORLD) ;
if (rank==0) t[k++] = MPI_Wtime();
MPI_Barrier (MPI_COMM_WORLD) ;

==0) {
double total = 0.
double tmp = 0.0;
double min = 1
double max = 0.0;
int minrun, maxrun;
k = 0;

for(i = 0; i < REPEATS; i++) {

tmp = t[k+1] - t[kl;

k += 2;

if (tmp >= max) {
max = tmp;
maxrun = ij;

}else if(tmp <= min) {
min = tmp;
minrun = i;

}

total += tmp;
}

printf("total [%i runs]: %e avg: %e (max: %el[%il/min: %e[%il)\n", i, total, (double)total/i, max, m

0; k < np; k++) {
int offset = (k * a_rows);
for(j = 0; j < a_cols; j++) {
for(i = 0; i < a_rows; i++) {
m[itoffset][j] = rray[1l];
1++;

MPI_Finalize();

return 0;

44

double **createDoubleMatrix(int nl, int n2) {

double **a;
int i, j;
a = (double **)malloc(nl * sizeof(double *));
a[0] = (double *)malloc(nl*n2*sizeof (double));
for(i = 1; i < n1; i++) {

al[i] = a[i-1] + n2;
}
for(i = 0; i < nl; i++) {

for(j = 0; j < n2; j++) {

a[il[j] = 0.0f;

}

}

return a;

B.2 Results

45

Table B.1: All-to-all, small sized messages(400x50 doubles)

| Impl

| Tter

Tot

Avg

Max

Min

MPICH

1000

8.176477E-01

8.176477E-04

1.471901E-02

6.039143E-04

MPICH

1000

8.063095E-01

8.063095E-04

1.307487E-02

3.631115E-04

MPICH

1000

8.171675E-01

8.171675E-04

1.401806E-02

6.020069E-04

MPICH

1000

7.991631E-01

7.991631E-04

1.793861E-03

3.600121E-04

MPICH

5000

4.013466E-+00

8.026933E-04

4.582882E-03

4.930496E-04

MPICH

5000

4.291058E-+00

8.582116E-04

1.628184E-02

5.290508E-04

MPICH

5000

4.222188E-+00

8.444376E-04

1.553488E-02

2.648830E-04

MPICH

5000

4.101371E+00

8.202743E-04

2.758789E-02

5.049706E-04

MPICH

10000

8.080390E-+00

8.080390E-04

1.489401E-02

3.039837E-04

MPICH

10000

7.984199E+00

7.984199E-04

1.318216E-02

4.351139E-04

MPICH

10000

8.611192E-+00

8.611192E-04

4.044199E-02

4.229546E-04

MPICH

10000

8.231399E-+00

8.231399E-04

1.286483E-02

2.000332E-04

MVAPICH

1000

5.766840E-01

5.766840E-04

1.302000E-03

3.720000E-04

MVAPICH

1000

5.752150E-01

5.752150E-04

1.151000E-03

3.800000E-04

MVAPICH

1000

5.648260E-01

5.648260E-04

1.131000E-03

3.850000E-04

MVAPICH

1000

5.779820E-01

5.779820E-04

1.089000E-03

3.740000E-04

MVAPICH

5000

2.846303E+00

5.692606E-04

1.235900E-02

3.580000E-04

MVAPICH

5000

2.872527E+00

5.745054E-04

1.385400E-02

3.600000E-04

MVAPICH

5000

2.856492E+00

5.712984E-04

1.378400E-02

3.650000E-04

MVAPICH

5000

2.853415E+00

5.706830E-04

1.160700E-02

3.610000E-04

MVAPICH

10000

5.784503E+00

5.784503E-04

2.397600E-02

3.630000E-04

MVAPICH

10000

5.732647E+00

5.732647E-04

1.374400E-02

3.610000E-04

MVAPICH

10000

5.722037E+00

5.722037E-04

1.383900E-02

3.670000E-04

MVAPICH

10000

5.622556E+00

5.622556E-04

2.344000E-02

3.620000E-04

Open MPI

1000

5.006273E-01

5.006273E-04

8.707047E-03

4.441738E-04

Open MPI

1000

4.915588E-01

4.915588E-04

1.427197E-02

4.260540E-04

Open MPI

1000

5.260437E-01

5.260437E-04

3.931093E-02

4.370213E-04

Open MPI

1000

4.763649E-01

4.763649E-04

3.191948E-03

4.179478E-04

Open MPI

5000

2.457770E+00

4.915540E-04

4.745388E-02

4.379749E-04

Open MPI

5000

2.382580E+00

4.765161E-04

1.162696E-02

4.270077E-04

Open MPI

5000

2.654265E+00

5.308530E-04

2.072661E-02

4.370213E-04

Open MPI

5000

2.374375E+00

4.748749E-04

1.832199E-02

4.239082E-04

Open MPI

10000

4.768914E-+00

4.768914E-04

6.028891E-03

4.169941E-04

Open MPI

10000

4.798383E-+00

4.798383E-04

2.115512E-02

4.220009E-04

Open MPI

10000

4.762806E-+00

4.762806E-04

4.543686E-02

4.241467E-04

Open MPI

10000

4.699058E-+00

4.699058E-04

2.197981E-03

4.210472E-04

46

Table B.2: All-to-all, medium sized messages(1000x1000 doubles)

Impl | Tter | Tot | Avg | Max | Min
MPICH 1000 | 8.543125e+02 | 8.543125e-01 | 2.437500e+00 | 1.445312e-01
MPICH 1000 | 9.640234e+02 | 9.640234e-01 | 2.355469e+00 | 3.476562¢-01
MPICH 1000 | 9.796133e+02 | 9.796133e-01 | 2.925781e+00 | 2.968750e-01
MPICH 1000 | 9.704492e+02 | 9.704492e-01 | 2.550781e+00 | 1.484375e-01
MPICH 5000 | 5.161012e+03 | 1.032202e+00 | 2.808594e+00 | 1.679688e-01
MPICH 5000 | 5.153426e+03 | 1.030685e+-00 | 2.847656e+00 | 1.601562¢-01
MPICH 5000 | 5.131906e+03 | 1.026381e+00 | 3.035156e+00 | 2.929688e-01
MPICH 5000 | 5.149297e+03 | 1.029859¢+00 | 3.089844e+00 | 1.796875e-01
MPICH 10000 | 8.793560e+03 | 8.793560e-01 | 1.679313e+01 | 4.113698e-02
MPICH 10000 | 7.292942e-+03 | 7.292942¢-01 | 1.887195e+01 | 3.765798e-02
MPICH 10000 | 8.637271e+03 | 8.637271e-01 | 1.276544e+01 | 4.608297e-02
MPICH 10000 | 8.008461e+03 | 8.008461e-01 | 1.327548e+01 | 4.590607e-02

MVAPICH | 1000 | 4.820071e+01 | 4.820071e-02 | 7.076800e-02 | 3.094600e-02
MVAPICH | 1000 | 4.894080e+01 | 4.894080e-02 | 6.652600e-02 | 3.794900e-02
MVAPICH | 1000 | 4.880722e+01 | 4.880722e-02 | 7.225700e-02 | 3.604300e-02
MVAPICH | 1000 | 4.907290e+01 | 4.907290e-02 | 6.702600e-02 | 3.079800e-02
MVAPICH | 5000 | 2.461737e+02 | 4.923474e-02 | 7.342500e-02 | 3.061900e-02
MVAPICH | 5000 | 2.439453e+02 | 4.878905e-02 | 7.436500e-02 | 3.049300e-02
MVAPICH | 5000 | 2.442553e+02 | 4.885106e-02 | 7.311600e-02 | 3.048000e-02
MVAPICH | 5000 | 2.458720e+02 | 4.917441e-02 | 7.400000e-02 | 3.108600e-02
MVAPICH | 10000 | 4.914969e+02 | 4.914969¢-02 | 7.468300e-02 | 3.080700e-02
MVAPICH | 10000 | 4.911269e+02 | 4.911269e-02 | 7.392000e-02 | 3.057100e-02
MVAPICH | 10000 | 4.904774e+02 | 4.904774e-02 | 7.433300e-02 | 3.054600e-02
MVAPICH | 10000 | 4.898499e+02 | 4.898499¢-02 | 7.359700e-02 | 3.058200e-02
Open MPI | 1000 | 4.704773e+01 | 4.704773e-02 | 6.683207e-02 | 4.432511e-02
Open MPI | 1000 | 4.557816e+01 | 4.557816e-02 | 5.524898e-02 | 4.368615e-02
Open MPI | 1000 | 4.713416e+01 | 4.713416e-02 | 1.480470e-01 | 3.830099¢-02
Open MPI | 1000 | 4.714683e+01 | 4.714683e-02 | 1.295910e-01 | 4.472303e-02
Open MPI | 5000 | 2.317214e+02 | 4.634429¢-02 | 7.062197e-02 | 3.633189¢-02
Open MPI | 5000 | 2.144124e+02 | 4.288247e-02 | 6.678009e-02 | 3.964806e-02
Open MPI | 5000 | 2.126782e+02 | 4.253565e-02 | 6.506300e-02 | 4.104400e-02
Open MPI | 5000 | 2.119173e+02 | 4.238347e-02 | 6.303906e-02 | 4.039907e-02
Open MPI | 10000 | 4.616412e+02 | 4.616412¢-02 | 6.941700e-02 | 3.950596e-02
Open MPI | 10000 | 4.678542e+02 | 4.678542e-02 | 2.297812e-01 | 3.713012e-02
Open MPI | 10000 | 4.700857e+02 | 4.700857e¢-02 | 6.936812e-02 | 3.987813e-02
Open MPI | 10000 | 4.635596e+02 | 4.635596e-02 | 7.590199e-02 | 4.142213e-02

47

Table B.3: All-to-all, large sized messages(8000x8000 doubles)

Impl

| Tter |

Tot

Avg

Max

Min

MVAPICH

1000

3.181639¢e+03

3.181638e+00

4.227398e+-00

3.070103e+-00

MVAPICH

1000

3.181654e+03

3.181654e+00

6.010840e+00

3.105738e+-00

MVAPICH

1000

3.189418e+03

3.189418e+00

6.887669e+-00

3.082856e+-00

MVAPICH

1000

3.187557e+03

3.187557e+00

5.065821e+4-00

3.103707e+-00

MVAPICH

5000

1.600605e+04

3.201210e+00

5.382317e+-00

3.050804e+-00

MVAPICH

5000

1.590302e-+04

3.180604e+00

6.897454e+-00

2.940583e+-00

MVAPICH

5000

1.579295e+04

3.158591e+00

5.359114e+-00

2.946226e+-00

MVAPICH

5000

1.590908e-+04

3.181815e+00

6.863655e+-00

3.036344e+00

Open MPI

1000

3.039166e+03

3.039166e+00

3.960890e+-00

2.772568e+-00

Open MPI

1000

2.962924e+03

2.962924e+00

5.607667e+00

2.874455e+00

Open MPI

1000

3.017786e+03

3.017786e+00

3.146511e+00

2.965070e+-00

Open MPI

1000

2.962210e+03

2.962210e+00

3.327820e+-00

2.812816e+-00

Open MPI

5000

1.352857e+04

2.705714e+00

3.590074e+-00

2.606230e+-00

Open MPI

5000

1.342850e+04

2.685701e+00

4.272410e+-00

2.603990e+-00

Open MPI

5000

1.502338e-+04

3.004676e+00

8.440918e+00

2.944116e+-00

Open MPI

5000

1.408224e-+04

2.816447e+00

3.058857e+-00

2.582932¢+-00

48

Appendix C

Reduce

C.1 Code

#include <stdlib.h>

#include <stdio.h>

#include "/home/abach/openmpi-impl/include/mpi.h"
#define NRM 1000

#define NRN 8000

#define REPEATS 1000

double **createDoubleMatrix(int nl, int n2);

int main (int argc , char *argv[]) {
int mpi_err;
int np, rank;
int a_rows, a_cols;
int i, j;
double **m;
double *rray, *sray, *fillray;
int ssize, rsize;
MPI_Init(&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &np);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Status status;
double *t;

if (rank==0) {

t = (double *)malloc(sizeof (double)*REPEATS*2);
if(t == NULL) perror("t");

a_rows = NRM / np;

a_cols = NRN / np;

m = createDoubleMatrix(NRM, a_cols);

srand(rank) ;

int elements = 0;

for(i = 0; i < NRM; i++) {

for(j = 0; j < a_cols; j++) {

m[il[j] = i;
elements++;

}

ssize = rsize = 0;

49

for(i = 0; i < np; i++) {
ssize = ssize + a_cols*a_rows;
rsize = rsize + a_cols*a_rowus;

}

fillray = (double*)malloc(sizeof(double)*ssize);
if(fillray == NULL) perror("fillray");

rray = (double*)malloc(sizeof (double)*rsize);
int k = 0;

int 1 = 0;

int ii = 0;

int jj = 0;

double result = 0.0f;

for(ii = 0; ii < REPEATS; ii++) {
free(rray);
sray = (double*)malloc(sizeof(double)*ssize);
rray = (doublex*)malloc(sizeof (double)*rsize);

if (sray == NULL || rray == NULL) perror("send and receive arrays");
for(jj = 0; jj < mp; jj++) {
int offset = (jj * a_rows);

for(i = 0; i < a_rows; i++) {
for(j = 0; j < a_cols; j++) {
sray[1] = m[itoffset][j] * rand();
1++;

}

1=20;
for(jj = 0; jj < mp; ji++) {
int offset = (jj * a_rows);
for(i = 0; i < a_rows; i++) {
for(j = 0; j < a_cols; j++) {
fillray[1] = m[i+toffset][j];
1++;

}

if (rank==0) t[k++] = MPI_Wtime();

MPI_Reduce(sray, &result, a_cols*a_rows, MPI_DOUBLE,
MPI_SUM, 0, MPI_COMM_WORLD);

if (rank==0) t[k++] = MPI_Wtime();

MPI_Barrier (MPI_COMM_WORLD);

free(sray);
1=0;
}

if (rank == 0) {
double total
double tmp =

= 0.0;
0.0;
double min = 1000.0;
0.0;

double max =
double remove = 0.0;
int minrun, maxrun;
k = 0;
for(i = 0; i < REPEATS; i++) {
tmp = t[k+1] - t[kl;
k += 2;
if (tmp >= max) {
max = tmp;
maxrun = ij;
}else if(tmp <= min) {
min = tmp;
minrun = i;

50

total += tmp;
if(i <= 5 || i >= REPEATS-5) {
remove += tmp;
}
}

printf("total [%i runs]: %e avg: %e (max: %e[/il/min: %e[%il)\n", i, total, (double)total/i, max, maxrun, min, mir
printf("removed first and last 5: total: %e avg: %e\n", total-remove, (double)(total-remove)/(i-5));

[}

1=0;
for(k = 0; k < np; k++) {
int offset = (k * a_rows);
for(j = 0; j < a_cols; j++) {
for(i = 0; i < a_rows; i++) {
m[itoffset][j] = rray[1l];
1++;

}
}
MPI_Finalize();

return 0;

double **createDoubleMatrix(int nl, int n2) {

double **a;
int i, j;
a = (double **)malloc(nl * sizeof(double *));
a[0] = (double *)malloc(nl*n2*sizeof (double));
for(i = 1; i < n1; i++) {

a[i] = a[i-1] + n2;
}
for(i = 0; i < n1; i++) {

for(j = 0; j < n2; j++) {

a[i]l[j] = 0.0f;
}

return a;

o1

