
Performance Analysis of Parallel Job Scheduling in Distributed
Systems

Helen D. Karatza
Department of Informatics

Aristotle University of Thessaloniki
54124 Thessaloniki, Greece

karatza@csd.auth.gr

Ralph C. Hilzer
Computer Science Department

California State University, Chico
Chico, California 95929-0410 USA

hilzer@ecst.csuchico.edu

Abstract

 This paper studies parallel job scheduling in a
distributed system. A simulation model is used to address
performance issues associated with scheduling. Five
policies are used to schedule parallel jobs over a variety
of workloads. Fairness is required among competing jobs.
We examine a case where the distribution of the number
of parallel tasks per job and also the distribution of task
service demand vary with time. Simulated results indicate
that although all scheduling methods have merit, one
method significantly improves the overall performance
and also guarantees fairness in terms of individual job
execution.

1. Introduction

 The scheduling of parallel jobs on the processors of a
distributed system has always been an important and
challenging area of research. However, in spite of
extensive research it is still not always known how to
efficiently schedule parallel jobs. To determine this, it is
critical to partition the program into tasks properly, assign
the tasks to processors and then schedule execution on a
distributed processor. Good scheduling policies are
needed to improve system performance while preserving
individual application performance so that some jobs do
not suffer unbounded delays.
 The primary focus of most existing research is to find
ways to distribute tasks among the processors in order to
achieve performance goals such as minimizing job
execution time, minimizing communication and other
overhead, and/or maximizing resource utilization. How-
ever, there are cases where task sequencing should be pre-
served as much as possible to achieve fairness in indivi-
dual job execution. A task that is given a low priority ac-
cording to the scheduling method’s criteria should not be
overtaken by an arbitrary number of higher priority tasks.

 Parallel job scheduling has been extensively studied in
the literature of parallel and distributed systems.
Dandamudi in [2] conducted a thorough study of task
scheduling in multiprocessor systems. Results from that
study indicate that scheduling policies have substantial
impact on performance when non-adaptive routing stra-
tegies are used. Dandamudi in [3] also examined the
impact of node scheduling policies on the performance of
sender-initiated and receiver-initiated dynamic load
sharing policies. He considered two-node scheduling
polices – first-come/first-served (FCFS) and round robin
(RR) and he studied two types of heterogeneous systems.
 Scheduling policies in distributed systems have also
been studied in [5] and [6]. Both works consider jobs that
consist of independent parallel tasks.
 A different type of parallel job scheduling is
considered in [4], [9], [10], and [11] where parallel tasks
are required to start at essentially the same time, co-
ordinate their execution, and compute at the same pace.
 In this paper, job tasks are independent so they can
execute at any time, in any order, and at any processor.
Scheduling is performed in two steps. The first step,
spatial scheduling or routing, consists of assigning tasks
to processors. The second step, temporal scheduling,
consists of defining the sequence with which tasks at a
processor queue will be executed. Five task scheduling
policies are examined which combine the probabilistic or
the join the shortest queue routing mechanism with four
temporal scheduling methods (first come first served, and
three others that take into account job characteristics or
job status).
 Previous research in the area of parallel job scheduling
assume that the number of tasks per job is defined by a
specific distribution (for example uniform or normal) and
also that task service demand is defined by a specific
distribution (for example exponential). However, in real
systems, the variability of job parallelism and also the
variability of task service demand can vary depending on
the applications that run on different time intervals. For

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

this reason this paper proposes an exponentially varying
with time distribution for the parallelism of jobs which
represents real parallel system workloads. We also con-
sider an exponentially varying with time distribution for
the task service demand. The performance of the different
scheduling policies is compared over various degrees of
multiprogramming (numbers of jobs in the system).
 A closed queuing network model of a distributed
system is considered which incorporates I/O equipment.
The goal is to achieve high system performance while
also providing fairness of job execution. To our
knowledge, such an analysis of parallel job scheduling
does not appear in research literature for this kind of a
distributed system operating with this type of workload.
 The structure of the paper is as follows. Section 2.1
specifies system and workload models, section 2.2 des-
cribes scheduling policies, and section 2.3 presents the
metrics employed in assessing the performance of the
scheduling policies that are studied. Model implemen-
tation and input parameters are described in section 3
while the results of the simulation experiments are
presented and analyzed in section 4. Finally section 5
summarizes findings and offers suggestions for further
research.

2. Model and methodology

2.1 System and workload models

 The technique used to evaluate the performance of the
scheduling disciplines is experimentation using a
synthetic workload simulation.
 A closed queuing network model of a distributed
system is considered. There are P homogeneous and
independent processors each serving its own queue and
interconnected by a high-speed network with negligible
communication delays. We examine the system for P =
16 processors. This is a reasonable size for current
existing medium-scale departmental networks of
workstations.
 Since we are interested in a system with a balanced
program flow, we have included an I/O subsystem which
has the same service capacity as the processors. The I/O
subsystem may consist of an array of disks (multi-server
disk center) but it is modeled as a single I/O node with a
given mean service time. Each I/O request forks in sub-
requests that can be served by the parallel disk servers.
 The effects of the memory requirements and the com-
munication latencies are not represented explicitly in the
system model. Instead, they appear implicitly in the shape
of the job execution time functions. By covering several
different types of job execution behaviors, we expect that
various architectural characteristics will be captured.
 In the simulation experiment, we assume that a fixed
number of jobs N are repeatedly executed in the closed

circle of parallel processors and an I/O unit shown in
Figure 1. N is called the degree of multiprogramming of a
simulation experiment. Since both processors and I/O unit
are involved, we need to examine the performance of both
processors and the I/O in our parallel job scheduling.
Rosti et al. ([8]) study parallel computer systems and
suggest that the overlapping of the I/O demands of some
jobs with the computational demands of other jobs offers
a potential improvement in performance. In Figure 1, x
and z represent the mean processor and the mean I/O
service time respectively.

Figure 1. The queuing network model

 An important part of a distributed system design is the
workload shared among the processors. This involves
partitioning the jobs into tasks that can be executed in
parallel, assigning the tasks to processors, and scheduling
the task execution on each processor.
 Jobs are partitioned into independent tasks that can
run in parallel. The number of tasks that a job consists of
is this job’s degree of parallelism. On completing
execution, a task waits at the join point for sibling tasks of
the same job to complete execution. Therefore,
synchronization among tasks is required. The price paid
for increased parallelism is a synchronization delay that
occurs when tasks wait for siblings to finish execution.
The workload considered here is characterized by four
parameters:

. The distribution of the number of tasks per job.
. The distribution of task service demand.
. The distribution of I/O service time.
. The degree of multiprogramming.

 We consider that job parallelism and task service
demand are not defined by a specific distribution but that
the distribution changes with time. So, a time interval
during which the variability in jobs parallelism is high is

x

x

x

...
z

1

2

P

. . .

N jobs

task
split

x

x

x

...
z

1

2

P

. . .

N jobs

task
split

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

followed by a time interval during which the majority of
jobs exhibit moderate parallelism. Also, during some time
period, task service demands are highly variable while
during other time periods, task service time is
exponentially distributed.
 Each task is assigned to one of the queues accordingly
to the routing policy that is applied. Tasks in processor
queues are executed according to the temporal scheduling
method that is currently employed. No migration or pre-
emption is permitted.

2.1.1. Distribution of the number of tasks per job. We
assume that the distribution of the number of tasks per job
changes in exponentially distributed time intervals d1, d2,
d3, … , dn from uniform to normal and vice versa (Figure
2). The mean time interval for distribution change is d. In
the uniform distribution case, the number of job tasks is
uniformly distributed in the range of [1..P]. The mean
number of tasks per job is = (1+P)/2. In the normal
distribution case we assume a “bounded” normal
distribution for the number of tasks per job in the range of
[1..P] with mean = (1+P)/2 and standard deviation =
 /4.

 Those jobs that arrive at the processors within the
same time interval di have the same distribution for the
number of tasks that they consist of. However, during the
same time interval some jobs exist at the processors that
arrived during a past time interval and which may have a
different distribution for the number of their tasks. These
jobs may wait at the processor queues or to be served.
 It is obvious that jobs in the uniform distribution case
present larger variability in their degree of parallelism
than jobs whose number of tasks are normally distributed.
In the second case, most of the jobs have a moderate
degree of parallelism (close to the mean). Since the
distribution of job parallelism changes with the time, for
some time intervals, arriving applications have highly
variable degree of parallelism, while during other time
intervals, the majority of the arriving applications have a
moderate parallelism as compared to the number of
processors.

2.1.2. Distribution of task service demand. We also
consider that the distribution of task service demand
changes in exponentially distributed time intervals e1, e2,
e3, …, em from exponential to Branching Erlang ([1]) and
vice versa (Figure 2). The mean time interval for distri-
bution change is e. In both exponential and Branching
Erlang cases, the mean task service demand is x.
 Those jobs that arrive at the processors within the
same time interval have the same distribution for their
task service demand. However, during the same time
interval, some jobs may have arrived during a past time
interval and have a different distribution for their task
service demand.

 Tasks of the Branching Erlang distribution case have
larger variability in their service demand than exponential
tasks. A high variability in task service demand implies
that there are proportionately a high number of service
demands that are very small as compared with the mean
service demand, and that there are a comparatively low
number of service demands that are very large. When a
task with a large service demand starts execution, it
occupies its assigned processor for a long time interval
and, depending on the scheduling policy, it may introduce
inordinate queuing delays for other tasks that are waiting
for service.
 The parameter which represents the variability in task
execution time is the coefficient of variation of execution
time (C). In the exponential distribution case C=1 while
in the Branching Erlang distribution case C >1.

Figure 2. Exponentially varying with time
distribution for job parallelism and for task
service demand

2.1.3. Distribution of I/O service time. After a job
leaves the processors, it requests service on the I/O unit.
The I/O service times are exponentially distributed with
mean z.
 Each time a job returns from I/O service for
scheduling on distributed processors, it is partitioned into
a different number of tasks even if it arrives during the
same time interval di in which case it executed last. All
notations used in this paper are described in Table 1.

2.2 Scheduling strategies

. Probabilistic routing – First-Come-First-Served
(PrFCFS). With this policy, a task is dispatched
randomly to processors with equal probability. The task
dispatcher chooses one of the P processors based on the
outcome of an independent trial in which the ith outcome
has probability pi = 1 / P. Thereafter, the FCFS temporal
scheduling policy is applied. This policy is the simplest to
implement.

Uniform
distribution

Normal
distribution

Uniform
distribution

t
Normal

distribution

.. ..

d1 d3d2 dn….

d1, d2, d3, …., dn : exponentially distributed time intervals over
time t

e1, e2, e3, …., em : exponentially distributed time intervals over
time t

Exponential
distribution

Branching
Erlang

distribution

Exponential
distribution

t
Branching

Erlang
distribution

..

e1 e3e2 em
….

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

. Shortest Queue routing – FCFS (SQFCFS). This
policy assigns each ready task to the currently shortest
processor queue. The FCFS method is applied to the
respective queue.

. Probabilistic routing – Shortest – Task - First
(PrSTF). This policy assumes a-priori knowledge about a
task in form of service demand. When such knowledge is
available, tasks in the processor queues are arranged in a
decreasing order of service demand. However, it should
be noted that a-priori information is often not available
and only an approximation of task execution time is avai-
lable. Estimated processor service times are assumed to
be uniformly distributed within E% of the exact value.

. Probabilistic routing – Task of the job with the
Smallest Number of Uncompleted Tasks First
(PrSNUTF). This policy gives higher priority to tasks
belonging to the job that has the smallest number of
uncompleted tasks. This number is an indication of how
close the job is to completion. This method does not use
information about task execution time but it is obvious
that it incurs an additional overhead, as the scheduler has
to know which task in a queue belongs to the job that is
closest to completion.
 The PrSTF and PrSNUTF task scheduling strategies
are vulnerable in the extreme cases where the service
demand of a task or the number of uncompleted tasks of a
job are too big. Since processor queues are rearranged
each time a new task is entered in them, it is possible that
some jobs are never scheduled. This problem is elimi-
nated by the following policy, which is a version of STF.

. Probabilistic routing – Limited STF (PrLSTF).
With this policy, the STF method is applied l = 10 times
and then the oldest task in the queue is scheduled.
Therefore, the number of times that a task can be rejected
from the first queue position when higher priority tasks
have been inserted is limited.

 When using priorities and a tie occurs, the FCFS
method is used.

. I/O scheduling. For the I/O subsystem, the FCFS
policy is employed.

2.3 Performance metrics

 Response time of a random job is the time interval
from the dispatching of a job’s tasks to processor queues,
to service completion of the last task of the job.
Parameters used in later simulation computations are
presented in Table 1.

Table 1. Notations

RTmax Maximum response time

R System throughput

U Mean processor utilization

N Degree of multiprogramming

C Coefficient of variation

x Mean task service demand

z Mean I/O service time

d Mean time interval for the varying with time
distribution of the number of job tasks

e Mean time interval for the varying with time
distribution of task service demand

E Estimation error in service time

 R represents system performance while RTmax
represents fairness of the policy employed. When each
policy is compared to the PrFCFS, the relative (%)
increase in R is represented as DR. We also study the ratio
of RTmax in each one of the SQFCFS, PrSTF, PrSNUTF,
and PrLSTF cases over the corresponding value of the
PrFCFS case.

3. Experimental methodology

 The queuing network model is simulated with discrete
event simulation modeling ([7]) using the independent
replication method. For every mean value, a 95%
confidence interval is evaluated. All confidence intervals
are less than 5% of the mean values. The system
considered is balanced (refer to Table 1 for notations):

x = 1.0, z = 0.531

 The reason z = 0.531 is chosen for balanced program
flow is that there are on average 8.5 tasks per job at the
processors. So, when all processors are busy, an average
of 1.882 jobs are served each unit of time. This implies
that I/O mean service time must be equal to 1/1.882 =
0.531 if the I/O unit is to have the same service capacity.
 When the distribution for the task service demand
changes from exponential (C = 1) to Branching Erlang (C
>1), in one set of experiments Branching Erlang
distribution is considered with C = 2, while in the other
set C = 4.
 The degree of multiprogramming N is 16, 24, 32, 40,
48. The reason various numbers of programs N are
examined is because it is a critical parameter that reflects
the system load. In cases where estimation of service time
is required, we have also examined estimation errors of

10%, 20%, and 30%.

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

 The mean time interval for distribution change is
considered as d = e = 10, 20, 30. These are reasonable
choices considering that the mean service time of tasks is
equal to 1.

4. Performance analysis

 A large number of simulation experiments were
conducted, but to conserve space, only a representative
sampling of the experimental results is presented in this
paper.
. In Table 2, the range of mean processor utilization is

presented for all cases examined.
. DR versus N, for d = e = 10, 20, and 30 respectively in

Figures 3, 4, and 5 for C = 2, and in Figures 6, 7, and
8 for C = 4.

. Figures 9, 10, 11 show the RTmax ratio for d = e = 10,
20, and 30 at C = 2. Figures 12, 13, and 14 show the
RTmax ratio at C = 4.

 The following conclusions are drawn from the results:

4.1 Overall system performance

 With regard to processor load, in all cases examined
the lower (higher) mean processor utilization is presented
in the PrFCFS (SQFCFS) case respectively. PrSNUTF
and PrLSTF yield almost the same utilization. At low N,
the utilization in the PrSTF case is close to the utilization
of the PrSNUTF and PrLSTF cases while at high N it is
larger (Table 2).

Table 2. Mean processor utilization range

Scheduling
policy

d = e = 10 d = e = 20 d = e = 30

 U range (C = 2)

PrFCFS 0.64 – 0.84 0.64 – 0.83 0.65 – 0.83

SQFCFS 0.88 – 0.98 0.89 – 0.99 0.89 – 0.98

PrSTF 0.71 – 0.91 0.71 – 0.92 0.72 – 0.91

PrSNUTF 0.69 – 0.90 0.69 – 0.90 0.70 – 0.90

PrLSTF 0.70 – 0.88 0.69 – 0.90 0.70 – 0.89
 U range (C = 4)

PrFCFS 0.48 – 0.69 0.48 – 0.70 0.49 – 0.70

SQFCFS 0.82 – 0.96 0.82 – 0.96 0.82 – 0.96

PrSTF 0.51 – 0.80 0.52 – 0.81 0.55 – 0.81

PrSNUTF 0.50 – 0.76 0.52 – 0.76 0.53 – 0.78

PrLSTF 0.51 – 0.74 0.51 – 0.74 0.53 – 0.76

 In all cases, the SQFCFS method performs better than
all the other methods, while the worst performance is
encountered in the PrFCFS policy. The PrSTF method
performs better that the PrSNUTF and PrLSTF policies.

However, the difference in performance between
SQFCFS and PrSTF is much higher than the difference
between PrSTF and each one of PrSNUTF and PrLSTF.
In some cases, PrSNUTF performs better than PrLSTF
while in other cases the two methods exhibit similar
performance.
 The superiority of SQFCFS over the rest of the
methods decreases with an increasing degree of
multiprogramming. This is due to the fact that when the
probabilistic routing policy is employed, it is more
probable for the processors to be idle due to unbalanced
processor queues at small N than at large N. Therefore, at
low N, the abilities of the SQFCFS policy are better
exploited. The change in performance for the rest
methods due to increasing N does not follow a specific
pattern and also is less significant than the change in
performance of SQFCFS.
 Also, the superiority of the SQFCFS strategy over the
other methods is more significant at C = 4 than at C = 2.
This is due to the fact that tasks present larger variability
in their service demand when C = 4 than when C = 2.
When a task with a large service demand starts execution,
it may introduce inordinate queuing delays to other tasks.
This may cause long synchronization delays in their
sibling tasks. Furthermore, during this time the I/O
subsystem may starve only to later become deluged with
jobs that must spend large amounts of time waiting in the
I/O queue. The SQFCFS method alleviates this problem
as it does not send tasks to a queue that is already long.
 However, the variability in task service demand
impacts the performance of the other methods to a lesser
degree than the performance of SQFCFS. Furthermore, in
some cases these methods perform slightly better in the C
= 2 case than at C = 4, while in other cases they perform
better for C = 4 than for C = 2.
 Additional simulation experiments were conducted to
assess the impact of service time estimation error on the
performance of scheduling methods that require a-priori
knowledge of task service demands (PrSTF and PrLSTF
strategies). The estimation error in these experiments is
set at 10%, 20%, and 30%. Simulation results reveal
that the estimation error in processor service time
marginally affects performance. Therefore, no profit is
gained from the a priori knowledge of exact service times.

4.2 Fairness of job service

 In all cases, the smallest RTmax ratio is presented in the
SQFCFS case and it is less than or equal to 1. Therefore,
the SQFCFS method is the fairest of all other methods
that we examined. The PrLSTF method gives larger RTmax
than the PrFCFS method, but RTmax is much smaller in the
PrLSTF case than in the PrSTF and PrSNUTF cases.
 In most cases the most unfair method is the PrSTF in
that it results in long queuing delays for large tasks in

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

processors queues. In few cases, PrSNUTF gives larger
RTmax than PrSTF. This is because scheduling the job that
has the smallest number of uncompleted tasks first may
result in giving priority to some tasks that are large. In
these cases, the strategy results in larger queuing delays
than the PrSTF method.
 PrSTF and PrSNUTF strategies present significantly
larger RTmax ratios in the C = 2 case than at C = 4. This is
because when C > 1, when a large task is served by a
processor and there are other tasks waiting in this
processor queue, the response time mainly depends on the
large task execution time. This is because queued tasks
most probably have a very small service demand as
compared with the large task. Therefore, the sequence
they are served does not significantly affect the response
time. Since the variability in task service demand is
higher at C = 4 than at C = 2, RTmax ratios are larger at C
= 2 than at C = 4.

4.3 General remarks

 All five of the above scheduling schemes have merit:
 PrFCFS is the simplest to implement since it involves
only a negligible amount of overhead when generating
random numbers. It is apparent that PrFCFS results in
sub-optimal system performance. However, it never
activates the scheduler, as it does not make decisions that
depend on system-state or job characteristics.
 The SQFCFS method requires global knowledge of
queue length on job arrival and also sorts queues into
decreasing queue length order. So the scheduler is called
upon to make decisions every time a job arrives.
However, this policy yields the best overall system
performance and also it is the fairest of all the methods
examined.
 The PrSTF and PrLSTF methods need a-priori
information about service demand of local tasks when
they make decisions. However, advance information
comprised of even an approximation of task service
demand is available only in some cases. On the other
hand, the PrSNUTF method needs information about the
status of siblings of all local tasks and it needs to process
this information in order to determine which task has the
smallest number of uncompleted sibling tasks. Among
these three methods, PrSTF performs better but its
superiority is not significant as compared with the
performance of the SQFCFS method. Furthermore, in
most cases PrSTF is the most unfair method. The fairest
method among these three policies is PrLSTF. However,
in most cases it performs worse than the other two
methods. The extent of its superiority over the PrFCFS
policy does not justify its complexity.

16 24 32 40 48

N

0

5

10

15

20

25

30

35

40

SQFCFS/PrFCFS PrSTF/PrFCFS

PrSNUTF/PrFCFS PrLSTF/PrFCFS

DR

Figure 3. DR versus N, d = e = 10, C=2

16 24 32 40 48

N

0

5

10

15

20

25

30

35

40

SQFCFS/PrFCFS PrSTF/PrFCFS

PrSNUTF/PrFCFS PrLSTF/PrFCFS

DR

Figure 4. DR versus N, d = e = 20, C=2

16 24 32 40 48

N

0

5

10

15

20

25

30

35

40

SQFCFS/PrFCFS PrSTF/PrFCFS

PrSNUTF/PrFCFS PrLSTF/PrFCFS

DR

Figure 5. DR versus N, d = e = 30, C=2

16 24 32 40 48

N

0

10

20

30

40

50

60

70

80

SQFCFS/PrFCFS PrSTF/PrFCFS

PrSNUTF/PrFCFS PrLSTF/PrFCFS

DR

Figure 6. DR versus N, d = e = 10, C=4

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

16 24 32 40 48

N

0

10

20

30

40

50

60

70

80

SQFCFS/PrFCFS PrSTF/PrFCFS

PrSNUTF/PrFCFS PrLSTF/PrFCFS

DR

Figure 7. DR versus N, d = e = 20, C=4

16 24 32 40 48

N

0

10

20

30

40

50

60

70

80

SQFCFS/PrFCFS PrSTF/PrFCFS

PrSNUTF/PrFCFS PrLSTF/PrFCFS

DR

Figure 8. DR versus N, d = e = 30, C=4

16 24 32 40 48

N

0

3

6

9

12

15

18

SQFCFS/PrFCFS PrSTF/PrFCFS

PrSNUTF/PrFCFS PrLSTF/PrFCFS

RTmax ratio

Figure 9. RTmax ratio versus N, d = e = 10, C=2

16 24 32 40 48

N

0

3

6

9

12

15

18

SQFCFS/PrFCFS PrSTF/PrFCFS

PrSNUTF/PrFCFS PrLSTF/PrFCFS

RTmax ratio

Figure 10. RTmax ratio versus N, d = e = 20, C=2

16 24 32 40 48

N

0

3

6

9

12

15

18

SQFCFS/PrFCFS PrSTF/PrFCFS

PrSNUTF/PrFCFS PrLSTF/PrFCFS

RTmax ratio

Figure 11. RTmax ratio versus N, d = e = 30, C=2

16 24 32 40 48

N

0

1

2

3

4

5

6

7

8

SQFCFS/PrFCFS PrSTF/PrFCFS

PrSNUTF/PrFCFS PrLSTF/PrFCFS

RTmax ratio

Figure 12. RTmax ratio versus N, d = e = 10, C=4

16 24 32 40 48

N

0

1

2

3

4

5

6

7

8

SQFCFS/PrFCFS PrSTF/PrFCFS

PrSNUTF/PrFCFS PrLSTF/PrFCFS

RTmax ratio

Figure 13. RTmax ratio versus N, d = e = 20, C=4

16 24 32 40 48

N

0

1

2

3

4

5

6

7

8

SQFCFS/PrFCFS PrSTF/PrFCFS

PrSNUTF/PrFCFS PrLSTF/PrFCFS

RTmax ratio

Figure 14. RTmax ratio versus N, d = e = 30, C=4

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

5. Conclusions and further research

 This paper studies parallel job scheduling in a
distributed system. It presents a comprehensive evaluation
of different task scheduling alternatives using synthetic
workloads. Distributions are proposed that vary with time
for the number of parallel tasks per job and for task
service demand. We use these workloads because they are
more realistic than other distributions that have been
referred in other research papers. The impact of different
workload parameters on performance metrics is
examined. The objective is to identify conditions that
produce good overall system performance while
maintaining fairness of individual job execution times.
We use simulation as the means of generating results with
different configurations.
 Five parallel scheduling policies are analyzed and
compared. Simulation results reveal that the SQFCFS
policy which combines the Shortest Queue routing criteria
and the FCFS temporal task scheduling method performs
much better than the other methods examined and also is
the fairest policy. Its superiority is higher at lower degrees
of multiprogramming and also is higher when the varying
with time distribution of task service demand involves
time intervals with large differences in the service
demand variability.
 The worst system performance is produced by
PrFCFS, which uses probabilistic routing and FCFS task
scheduling. The remaining methods use probabilistic
routing and need information about jobs to make
decisions. They perform better than the PrFCFS method
but they are not as fair as PrFCFS, and involve overhead
in their implementation.
 Overhead associated with the SQFCFS method is not
accounted for in this current work. However, since this is
not a large distributed system and overhead was not
considered with the other methods either, we expect this
policy would still outperform methods if overhead were
considered. A logical extension to this research is to
examine large distributed systems and to include the
impact on them of overhead required to collect and
process global system information.

References

[1] Bolch, G., S. Greiner, H. De Meer, and K.S. Trivedi, Que-
ueing Networks and Markov Chains, J. Wiley & Sons Inc., New
York, 1998.

[2] S. Dandamudi, “Performance Implications of Task Routing
and Task Scheduling Strategies for Multiprocessor Systems”, In
Proceedings of the IEEE-Euromicro Conference on Massively
Parallel Computing Systems, IEEE Computer Society, Ischia,
Italy, May 2-6, 1994, pp. 348-353.

[3] S. Dandamudi, “The effect of Scheduling Discipline on
Dynamic Load Sharing in Heterogeneous Distributed Systems”,
In Proceedings of the 5th International Workshop on Modelling,
Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS ’97), IEEE Computer Society, Haifa,
Israel, January 12-15, 1997, pp. 17-24.

[4] H.D. Karatza, “A Simulation-based Performance Analysis of
Gang Scheduling in a Distributed System”, In Proceedings of
32nd Annual Simulation Symposium, IEEE Computer Society,
San Diego, CA, April 11-15, 1999, pp. 26-33.

[5] H.D. Karatza, “Scheduling Strategies for Multitasking in a
Distributed System”, In Proceedings of the 33rd Annual
Simulation Symposium, IEEE Computer Society, Washington
D.C., April 16-20, 2000, pp. 83-90.

[6] H.D. Karatza, “A Comparative Analysis of Scheduling
Policies in a Distributed System using Simulation”,
International Journal of SIMULATION Systems, Science &
Technology, UK Simulation Society, Nottingham, UK, Vol. 1(1-
2), Dec. 2000, pp. 12-20.

[7] Law, A., and D. Kelton, Simulation Modelling and Analysis,
McGraw-Hill, New York, 1991.

[8] E. Rosti, G. Serazzi, E. Smirni, and M. Squillante, “The
Impact of I/O on Program Behavior and Parallel Scheduling”,
Performance Evaluation Review, ACM, New York, USA, Vol.
26 (1), 1998, pp. 56-65.

[9] D. Talby, and D.G. Feitelson, “Supporting Priorities and
Improved Utilization of the IBM SP2 Scheduler using Slack-
based Backfilling”, In Proceedings of the 13th International
Parallel Processing Symposium and 10th Symposium on
Parallel and Distributed Processing, IEEE Computer Society,
San Juan, Puerto Rico, April 12-16, 1999, pp. 513-517.

[10] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam,
“The Impact of Migration on Parallel Job Scheduling for
Distributed Systems”, In Proceedings of Europar, Europar,
Munich, Germany, 29 August to 2 September 2000, pp. 242-
251.

[11] Y. Zhang, and A. Sivasubramaniam, “Scheduling Best-
effort and Real-time Pipelined Applications on Time-shared
Clusters”, In Proceedings of the 13th Annual ACM Symposium
on Parallel Algorithms and Architectures, ACM, Crete Island,
Greece, July 4 – 6, 2001, pp. 209-219.

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

