
H.KARATZA: SCHEDULING GANGS IN A DISTRIBUTED SYSTEM

I.J. of SIMULATION, Vol. 7, No. 1 ISSN: 1473-804x online, 1473-8031 print

15

 SCHEDULING GANGS IN A DISTRIBUTED SYSTEM

HELEN D. KARATZA

Department of Informatics
Aristotle University of Thessaloniki

54124 Thessaloniki, GREECE
Email: karatza@csd.auth.gr

Abstract: In this paper we study the performance of parallel job scheduling in a distributed system. A special
type of scheduling called gang scheduling is considered. In gang scheduling jobs consist of a number of interact-
ing tasks, which are scheduled to run simultaneously on distinct processors. Two gang scheduling policies are
used to schedule parallel jobs for two different types of job parallelism. Also, we present the average perform-
ance of all jobs as well as the relative performance of small and large gangs. We examine various workloads
using simulation techniques. The results show that the policy, which gives priority to large gangs performs better
than the one that does not take job characteristics into account while making the ordering decision.

Keywords: Simulation, Performance, Distributed Systems and Gang Scheduling.

1 INTRODUCTION

Distributed systems have drawn considerable atten-
tion over many years. They consist of several,
loosely interconnected processors, where jobs to be
processed are in some way apportioned among the
processors and various techniques are used to coor-
dinate processing. However, it is not clear to how
efficiently schedule parallel jobs. To determine this,
it is critical to properly assign the tasks to processors
and then schedule execution on distributed proces-
sors. Good scheduling policies can maximize system
and individual application performance and avoid
unnecessary delays.

In this study jobs consist of parallel tasks that are
scheduled to execute concurrently on a set of proces-
sors. The parallel tasks need to start essentially at the
same time, co-ordinate their executions and compute
at the same pace. This type of resource management
is called “gang scheduling” or “co-scheduling”. It
allows tasks to interact efficiently by using busy
waiting, without the risk of waiting for a task that is
not currently running.

Because gang scheduling demands that no task exe-
cute unless all other gang member tasks execute,
some processors may remain idle even when there
are tasks waiting to be run. With gang scheduling, at
any time there is a one-to-one mapping between
tasks and processors. Although the total number of
tasks in the system may be larger than the number of
processors, no gang contains more tasks than it does
processors. We assume that all the tasks within the
same gang execute for the same amount of time, i.e.
the computational load is balanced between them.

Gang scheduling in distributed systems and multi-
programmed parallel systems has been studied by
many authors, such as [Aida, 2000], [Feitelson and
Rudolph, 1996], [Feitelson and Jette, 1997],
[Frachtenberg et al, 2005], [Karatza, 1999a],
[Karatza, 1999b], [Karatza, 2001a], [Karatza,
2001b], [Karatza, 2002], [Karatza, 2003], [Karatza
and Hilzer, 2004], [Sobalvarro and Weihl, 1995],
[Squillante et al, 1996], [Wang et al, 1997], [Wise-
man and Feitelson, 2003], [Zhang et al, 2003a] and
[Zhang et al, 2003b].

Only distributed systems are considered in this pa-
per. Simulation models are used to answer perform-
ance questions about the performance of scheduling
policies in cases of different job parallelism. The
design choices considered include different ways to
schedule gangs. We compare the performance of two
known gang-scheduling policies for different work-
load models each of which has certain characteristics
related to the number of processors requested by a
job and to the system load.

Mechanisms how job size characteristics affect job
scheduling performance also are investigated in
[Aida, 2000 and Karatza 2001b]. However, in these
papers a parallel system with a single waiting queue
is studied, while in our study we consider a distrib-
uted system where each processor is equipped with
its own queue. Furthermore, we address issues re-
lated to the performance of different job classes
(small and large gangs) and we consider fairness of
job classes. To our knowledge, the analysis of gang
scheduling in queueing network models of distrib-
uted systems operated under our workload models
does not appear elsewhere in the research literature.

H.KARATZA: SCHEDULING GANGS IN A DISTRIBUTED SYSTEM

 16

The structure of this paper is as follows. Section 2.1
introduces system and workload models, section 2.2
describes the scheduling policies and section 2.3
presents the metrics used to assess the performance
of the scheduling policies. The model implementa-
tion and its input parameters are described in section
3.1, while the simulation results are both presented
and analysed in section 3.2. Finally, section 4 sum-
marizes the paper and provides recommendations for
further research.

2 MODEL AND METHODOLOGY
2.1 System and Workload Models

In our model we consider an open queuing network
model consisting of P = 32 distributed homogeneous
and independent processors each served by its own
queue (Figure 1). They are interconnected by a high-
speed network with negligible communication de-
lays. Processors Px1, Px2, .. Pxy are allocated to a par-
allel job x, which has y parallel tasks.

λ

AFCFS
LGFS

P
1

Pn1

Pnm

........
P
1

Pn1

Pnm

........

P
1

P11

P1k

........
P
1

P11

P1k

........

....
....

Figure 1. The queuing network model, where λ is the
mean job inter-arrival time.

Jobs are gangs i.e. they consist of tasks, which exe-
cute concurrently on processor partitions, where
each task starts at the same time and computes at the
same pace. At any time, there is a one-to-one map-
ping between tasks and processors. We assume that
all tasks within the same gang execute for the same
amount of time. Each job begins execution only
when a sufficient number of idle processors are
available to meet its needs.

We consider that every job x consists of t(x) tasks
where 1 ≤ t(x) ≤ P/j. Two cases for j are considered,
j = 1, 2. Therefore, in one case we bound the number
of tasks per job by 32, while in the other case the
number of tasks per job is bounded by 16.

The number of tasks in a job is the job’s degree of
parallelism. If p(x) represents the number of proces-
sors required by job x, then the following relation-
ship holds:

 1 ≤ t(x) = p(x) ≤ P/j

The number of tasks in job (gang) x is called the
“size” of job x. We call a job “small” (“large”) if it
requires a small (large) number of processors. In our
model, jobs that consist of y tasks where 1 ≤ y ≤ 4
are characterized as small, while they are character-
ized as large when 5 ≤ y ≤ P/j, for j = 1, 2.

Routing policy of gang tasks. Processor queues are
sorted into decreasing queue length order and then a
variation of the “join the shortest queue” policy is
applied. That is, the t(x) tasks that belong to a gang x
are assigned to the shortest t(x) of the P queues,
every task to a different processor queue.

Tasks in processor queues are examined in the order
according to the scheduling policy. A job x starts to
execute only if all p(x) processors assigned to it are
available. Otherwise, all job x tasks wait in their as-
signed queues. When a job finishes execution, all
processors assigned to it are released. The number of
jobs that can be processed in parallel depends on the
following: (i) Job size and (ii) Scheduling policy that
is employed.

The technique used to evaluate the performance of
the scheduling disciplines is experimentation using a
synthetic workload simulation.

The workload considered here is characterized by
three parameters: (i) The distribution of job inter-
arrival time, (ii) The distribution of gang sizes and
(iii) The distribution of task service demand.

We assume that there is no correlation between the
different parameters. For example, a gang with a
small number of tasks may have a long execution
time.

2.1.1 Distribution of job inter-arrival times

We consider that job inter-arrival times are exponen-
tial random variables with a mean of 1/λ.

2.1.2 Distribution of gang size

We assume that the number of tasks of jobs is uni-
formly distributed in the range of [1..P/j], where j =
1, 2. Therefore, the mean number of tasks per job is
equal to the η = (1+P/j)/2.

2.1.3 Service time distribution

Service demands of gang tasks are exponentially
distributed with a mean of 1/µ.

2.2 Scheduling Strategies

H.KARATZA: SCHEDULING GANGS IN A DISTRIBUTED SYSTEM

 17

We assume that the scheduler has perfect informa-
tion when making decisions, i.e. it knows the exact
number of processors required by each job. We now
describe the scheduling strategies employed. We
assume that the scheduling overhead is negligible.

Adapted First-Come-First-Served (AFCFS). This
method attempts to schedule a job whenever proces-
sors assigned to its tasks are available. When there
are not enough processors available for a large job
whose tasks are waiting in the front of the queues,
AFCFS policy schedules smaller jobs whose tasks
are behind the tasks of the large job. One major prob-
lem with this scheduling policy is that it tends to
favor those jobs requesting a smaller number of
processors at the expense of larger jobs. Thus the
response time of large gangs increases.

Largest-Gang-First-Served (LGFS). With this pol-
icy tasks are placed in increasing job size order in
processor queues (tasks that belong to larger gangs
are placed at the head of queues). All tasks in the
queues are searched in relative order and the first
jobs whose assigned processors are available only
then begin execution. This method tends to improve
the performance of large, highly parallel gangs at the
expense of smaller gangs, but in many computing
environments this discrimination is acceptable, if not
desirable. For example, supercomputer centers often
run large, highly parallel jobs that cannot run else-
where.

2.3 Performance Metrics

Response time of a random job (gang) is the interval
of time from the dispatching of this job tasks to
processor queues to service completion of this job
(time spent in processor queues plus time spent in
service). Parameters used in later simulation compu-
tations are presented in Table 1.

Table 1. Notations

P number of distributed processors

λ mean job arrival rate

µ mean processor service rate

U mean processor utilization

RT mean response time of all gangs

RTs mean response time of small gangs

RTl mean response time of large gangs

MRTs maximum RTs

MRTl maximum RTl

Overall job performance is determined by RT. Small
and large gang performance is determined by RTs
and RTl respectively. Maximum RTs and maximum

RTl are used as an indication of fairness in small and
large gangs service respectively. Internal efficiency
is primarily represented by mean processor utiliza-
tion because it indicates the level of contention for
the most critical system resources.

3 SIMULATION RESULTS AND
DISCUSSION
3.1 Model Implementation and Input Parameters

The queuing network model is simulated with dis-
crete event simulation modeling [Law and Kelton,
1991] using the independent replication method. For
each set of workload parameters we run 30 replica-
tions of the simulation with different seeds of ran-
dom numbers and for 32,000 served jobs in each
replication. For every mean value, a 95% confidence
interval is evaluated. All confidence intervals are
less than 5% of the mean values.

In the simulation experiments we defined mean
processor service time: 1/µ = 1.

With regard to mean inter-arrival time of jobs we
considered the following two cases:

(a) Gang size varies in the range of 1..32. We chose:

1/λ = 0.73, 0.74, 0.75, 0.76.

The value 1/λ = 0.73 is chosen as starting point for
the experiments because the processors average 16.5
tasks per job. When all processors are busy, an aver-
age of 1.94 jobs can be served in each unit of time.
This implies that the arrival rate has to be less than
1.94. So, we had to choose a λ such that it hold the
conditions 1/λ > 1 / 1.94 = 0.516, i.e. the processors
queues will not be saturated. However, due to gang
scheduling there are often idle processors although
there are tasks in the respective queues. Therefore
the queues get very easily saturated when mean in-
ter-arrival time is close to 0.516. After experimental
runs with various values of 1/λ we chose 0.73 as a
the smallest mean inter-arrival time for the experi-
ments.

(b) Gang size varies in the range of 1..16. In this
case processors average 8.5 tasks per job. We chose:

1/λ = 0.376, 0.381, 0.386, 0.392.

The reason for choosing these values for mean-inter-
arrival time in the case b) is because in a system
where arriving jobs consist of parallel tasks with
mean number of tasks per job η, the expected mean
processor utilization is:

µ

ηλ

⋅

⋅
=

P
U .

H.KARATZA: SCHEDULING GANGS IN A DISTRIBUTED SYSTEM

 18

Now, based on this formula, in order to compare the
performance of the two scheduling policies under
similar system load in the two different cases of
gang size distribution, we must consider:

λa * 16.5 = λb * 8.5,

where λa and λb are mean arrival rates in cases a) and
b) respectively. However in this paper parallel jobs
are gangs. Due to different fitting of gangs to avail-
able processors in the 1..32 and 1..16 gang size cases
we expect that the mean processor utilization will
not be exactly the same in the corresponding λa and
λb cases. However, it can still be considered as com-
parable.

It should be noted that in this study gangs consisting
of 1-4 tasks are characterized small. Therefore, small
gangs are a smaller part of the total number of jobs z
in the 1..32 case (z/8) than in the case of 1..16 (z/4).

3.2 Performance Analysis

Tables 2 and 3 show mean processor utilization in
the 1..32 and 1..16 gang size distribution cases re-
spectively.

Table 2. U versus 1/λ
(1..32 gang size distribution case)

1/λ AFCFS LGFS

0.76 0.675 0.677
0.75 0.683 0.685
0.74 0.690 0.695
0.73 0.696 0.704

Table 3. U versus 1/λ

(1..16 gang size distribution case)

1/λ AFCFS LGFS
0.392 0.662 0.670
0.386 0.668 0.679
0.381 0.673 0.687
0.376 0.681 0.694

The relative difference in performance of AFCFS
and LGFS policies is depicted in Figures 2 and 7
(with regard to overall gangs performance) and also
in Figures 3-6 and 8-11 (with regard to relative per-
formance of small and large gangs).

Figures 2-6 correspond to the 1..32 case and Figures
7-11 correspond to the 1..16 case. Figures 2 and 7
show the ratio of RT versus 1/λ when LGFS is com-
pared to AFCFS. Figures 3 and 8 show the ratio RTl
/ RTs in the AFCFS and LGFS cases. Figures 4 and 9
present the ratio MRTl / MRTs in the AFCFS and
LGFS cases. Figures 5 and 10 depict the ratio of RTs

and the ratio of RTl versus 1/λ when LGFS is com-
pared to AFCFS. Figures 6 and 11 present the ratio
of MRTs and the ratio of MRTl versus 1/λ when
LGFS is compared to AFCFS.

The results demonstrate that in both 1..32 and 1..16
cases, utilization is slightly larger when using LGFS
(Tables 2-3) because LGFS schedules jobs on the
available processors more efficiently than AFCFS
method does.

0,76 0,75 0,74 0,73
1/λ

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

LGFS/AFCFS

RT Ratio

Figure 2. RT Ratio versus 1/λ
(1..32 gang size distribution case)

0,76 0,75 0,74 0,73
1/λ

0

2

4

6

8

10

12

14

AFCFS LGFS

RTl / RTs

Figure 3. RTl / RTs Ratios versus 1/λ
(1..32 gang size distribution case)

0,76 0,75 0,74 0,73
1/λ

0

2

4

6

8

10

12

AFCFS LGFS

MRTl / MRTs

Figure 4. MRTl / MRTs Ratios versus 1/λ
(1..32 gang size distribution case)

H.KARATZA: SCHEDULING GANGS IN A DISTRIBUTED SYSTEM

 19

0,76 0,75 0,74 0,73
1/λ

0

0,2

0,4

0,6

0,8

1

LGFSJ/AFCFS(s) LGFS/AFCFS(l)

RTs, and RTl Ratios

Figure 5. RTs and RTl Ratios versus 1/λ
(1..32 gang size distribution case)

0,76 0,75 0,74 0,73
1/λ

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6

LGFS/AFCFS(s) LGFSJ/AFCFS(l)

MRTs, and MRTi Ratios

Figure 6. MRTs and MRTl Ratios versus 1/λ
(1..32 gang size distribution case)

0,392 0,386 0,381 0,376
1/λ

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

LGFS/AFCFS

RT Ratio

Figure 7. RT Ratio versus 1/λ
(1..16 gang size distribution case)

0,392 0,386 0,381 0,376
1/λ

0

5

10

15

20

25

30

AFCFS LGFS

RTl / RTs

Figure 8. RTl / RTs Ratios versus 1/λ
(1..16 gang size distribution case)

0,392 0,386 0,381 0,376
1/λ

0

10

20

30

40

50

60

AFCFS LGFS

MRTl / MRTs

Figure 9. MRTl / MRTs Ratios versus 1/λ
(1..16 gang size distribution case)

0,392 0,386 0,381 0,376
1/λ

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6

LGFSJ/AFCFS(s) LGFS/AFCFS(l)

RTs, and RTl Ratios

Figure 10. RTs and RTl Ratios versus 1/λ
(1..16 gang size distribution case)

0,392 0,386 0,381 0,376
1/λ

0

0,5

1

1,5

2

LGFS/AFCFS(s) LGFSJ/AFCFS(l)

MRTs, and MRTi Ratios

Figure 11. MRTs and MRTl Ratios versus 1/λ
(1..16 gang size distribution case)

Regarding the mean response time of all jobs, in all
cases the LGFS method performs better than
AFCFS. This is shown in Figures 2 and 7, where RT
is lower with the LGFS scheduling strategy than
with the AFCFS. Therefore, from the two methods
that we examine, LGFS is the best method as far as
it concerns overall performance. This is in accor-
dance to previous research conclusions [Karatza,
1999a]) where the method that gives priority to lar-
ger gangs performs better than the AFCFS method.
However, in [Karatza, 1999a] a closed queueing
network model is studied with a fixed number of
jobs, whereas in this paper the queuing network
model is open.

In Figure 2 we observe that in the 1..32 case the RT
ratio slightly decreases with increasing load. There-
fore the superiority of the LGFS over AFCFS in-
creases with increasing load. This is because it is

H.KARATZA: SCHEDULING GANGS IN A DISTRIBUTED SYSTEM

 20

more probable at high loads than at low loads large
gangs to be blocked when the AFCS policy is em-
ployed. Therefore the advantages of the LGFS
method in the 1..32 case are better exploited at high
loads.

In Figure 7 it is evident that in the 1..16 case the
response times in the two gang scheduling policies
cases differ to smaller degree than in the 1-32 case.
This is because the variability in gangs size is
smaller in this case than in the case of 1..32. The
large gangs in the 1..16 case have a maximum size
of 16 tasks. Therefore, when the AFCFS method is
used, large gangs in this gang size distribution case
can be scheduled on idle processors easier than the
large gangs of the 1..32 case. This is the reason that
the superiority of the LGFS method over AFCFS is
less significant in the 1..16 case than in the case of
1..32.

In Figure 7 it is also evident that in the 1..16 case RT
ratio slightly increases with increasing load. There-
fore the two scheduling methods tend to perform
slightly closer with increasing load. Further to the
comments of the previous paragraph, this is because,
larger the load, larger is the possibility for the
AFCFS method to find a larger number of suitable
jobs to fit on the available processors.

In Figures 3 and 8 it is shown that in all cases large
gangs have larger mean response time than small
gangs. This is because small gangs can easier find
enough available processors to serve them than large
gangs can. Comparing the RTl / RTs ratio in the two
scheduling policies cases we observe that the small-
est difference in performance between large and
small gangs is in the LGFS case. This is because
with the LGFS method large gangs are given priority
over small gangs. Therefore the difference in the
mean response time of large and small gangs is
smaller in the LGFS case than in the case of AFCFS.

Also, in Figures 3 and 8 it is shown that in all cases
the difference in performance between the two job
classes increases with increasing load. This is due to
the fact that there are fewer small gangs to overcome
large gangs at light loads than at heavy loads. There-
fore, the LGFS scheduling policy provides an advan-
tage for fairer service to large gangs as compared to
the situations where AFCFS is used. Thus, LGFS
can be exploited better for high loads than for low
ones. The RTl / RTs ratios are smaller in the 1..32
case than in the case of 1..16.

The results shown in Figures 4 and 9 demonstrate
that observations similar to those that hold for the
RTl / RTs ratios also hold for the ratios MRTl / MRTs.
That is, the maximum response time of large gangs
is larger than the maximum response time of small
gangs. Furthermore, the difference in the two gang

classes maximum response times is smaller in the
LGFS case. The RTl / RTs ratios increase with in-
creasing load and they are larger in the 1..16 case
than in the case of 1..32.

As it was expected, the results in Figures 5 and 10
show that the mean response time of large gangs in
the LGFS case is lower than in the AFCFS case.
Furthermore, in the 1..16 case the small gangs per-
form worst in the LGFS case than in the AFCFS
case. However, in the 1..32 case the short gangs per-
form better in the LGFS case than in the case of
AFCFS.

There is the following explanation why small gangs
although they are given lower priority than large
gangs with the LGFS method, in the 1..32 case they
have shorter mean response time with this method
than with the AFCFS: The variability in gang size is
larger in the 1..32 case than in the case of 1..16. In
the former case, when a very large gang fits in the
available processors, then the remaining processors
can fit easier to small gangs than to medium sized
gangs. However, in the 1..16 case, the large gangs
have a maximum length of 16. Therefore, when the
LGFS method is used, it is possible for medium
sized gangs to fit in the available processors and
consequently small gangs have to delay in their
queues.

It should be noted though that in both cases of gang
size distribution the extent of large gang perform-
ance improvement with the LGFS policy is much
more significant than the performance improvement
(1..32 case) or the performance deterioration (1..16
case) of small gangs. For this reason there is an
overall performance improvement with the LGFS
policy.

In Figures 6 and 11 it is shown that small gangs have
higher MRT in the LGFS case than in the case of
AFCFS. In the 1..16 case MRT of large gangs is
smaller in the LGFS case than in the case of AFCFS.
However, in the 1..32 case the MRT of large gangs
does not differ significantly in the two scheduling
policies cases. This is due to the fact that in this
gang size distribution case, large gangs have a
maximum size of 32, which is equal to the number
of processors. Therefore, when a gang of a very
large size arrives to the system when the processors
are serving at least two other gangs, it is possible for
this gang to experience long delay in the queues with
either scheduling method.

4 CONCLUSIONS AND FURTHER
RESEARCH

This paper examines the performance of two gang
scheduling policies in a distributed system. The av-

H.KARATZA: SCHEDULING GANGS IN A DISTRIBUTED SYSTEM

 21

erage performance of all gangs as well as the relative
performance of small and large gangs are studied.
Two different cases of job parallelism are examined.
Various workload conditions are considered using
simulation techniques.

The objective in this paper is to identify conditions
that produce good overall performance in terms of
mean response time of all jobs while preserving
fairness of small and large gangs service.

The simulation results reveal that from the two
scheduling methods that we examine the LGFS
method provides the best overall performance. Fur-
thermore, LGFS provides fairer service to individual
job classes. This is achieved by preventing small
gangs to arbitrarily overtake large gangs. Thus, the
difference in performance of the two gang classes is
smaller in the LGFS case than in the case of AFCFS.
Also the results show that the overall performance
and the relative performance of the two gang classes
depend on the workload.

As a future research we plan to examine cases where
along with gangs there are also parallel jobs, which
consist of independent tasks, which can execute on
any processor and in any order. Also, we plan to
examine gang task service demands with large vari-
ability.

REFERENCES

Aida K. 2000, “Effect of Job Size Characteristics on
Job Scheduling Performance”. In Job Scheduling
Strategies for Parallel Processing, Lecture Notes in
Computer Science, Springer-Verlang, Berlin, Ger-
many. Vol. 1911. Pp1-10.

Feitelson D.G. and Rudolph L. 1996, “Evaluation of
Design Choices for Gang Scheduling Using Distrib-
uted Hierarchical Control”. Journal of Parallel and
Distributed Computing, Academic Press, New York,
USA. Vol. 35. Pp18-34.

Feitelson D.G. and Jette M.A. 1997, “Improved
Utilisation and Responsiveness with Gang Schedul-
ing”. In Job Scheduling Strategies for Parallel
Processing, Lecture Notes in Computer Science,
Springer-Verlang, Berlin, Germany. Vol. 1291.
Pp238-261.

Frachtenberg E., Feitelson D.G., Petrini F. and Fer-
nandez J. 2005, “Adaptive Parallel Job Scheduling
with Flexible Coscheduling”. IEEE Transactions on
Parallel and Distributed Systems, IEEE Computer
Society, Los Alamitos, CA, USA. Vol. 16(11).
Pp1066-1077.

Karatza H.D. 1999a, “A Simulation-Based Perform-
ance Analysis of Gang Scheduling in a Distributed
System”. In Proc. of the 32nd Annual Simulation
Symp. (San Diego, CA, USA, April) IEEE Computer
Society, Los Alamitos, CA, USA. Pp26-33.

Karatza, H.D. 1999b, “Gang Scheduling in a Dis-
tributed System with Processor Failures”. In Proc. of
the UK Performance Engineering Workshop (Bris-
tol, UK, July) University of Bristol, Bristol, UK.
Pp199-208.

Karatza H.D. 2001a, “Performance Analysis of
Gang Scheduling in a Distributed System Under
Processor Failures”. International Journal of Simu-
lation: Systems, Science & Technology, UK Simula-
tion Society, Nottingham, UK. Vol. 2(1). Pp14-23.

Karatza H.D. 2001b, “Gang Scheduling Perform-
ance under Different Distributions of Gang Size”.
Parallel and Distributed Computing Practices, Nova
Science Publishers, Hauppauge, NY, USA. Vol.
4(4). Pp433-449.

Karatza H.D. 2002, “Gang Scheduling Performance
on a Cluster of Non-Dedicated Workstations”. In
Proc. of the 35th Annual Simulation Symposium
(San Diego, California, April) IEEE Computer Soci-
ety, Los Alamitos, CA, USA. Pp115-121.

Karatza H.D. 2003, “Gang Scheduling in a Distrib-
uted System under Processor Failures and Time-
varying Gang Size”. In Proc. of the 9th IEEE Work-
shop on Future Trends of Distributed Computing
Systems (San Juan, Puerto Rico, May) IEEE Com-
puter Society, Los Alamitos, CA, USA. Pp330-336.

Karatza H.D. and Hilzer R.C. 2004, “Scheduling
Sequential Jobs and Gangs in a Distributed Server
System”. In Proc. of the 5th EUROSIM Congress on
Modelling and Simulation (Special Session on Mod-
elling and Simulation of Distributed Systems and
Networks), (SCité Descartes, Marne la Vallée,
France, September) EUROSIM–FRANCOSIM–
ARGESIM, Paris, France. Pp17-22 (CD).

Law A. and Kelton D. 1991, Simulation Modeling
and Analysis. 2nd Ed., McGraw-Hill, Inc, New
York, USA.

Sobalvarro P.G. and Weihl W.E. 1995, “Demand-
based Coscheduling of Parallel Jobs on Multipro-
grammed Multiprocessors”. In Job Scheduling
Strategies for Parallel Processing, Lecture Notes in
Computer Science, Springer-Verlang, Berlin, Ger-
many. Vol. 949. Pp106-126.

Squillante M.S., Wang F. and Papaefthymioy M.
1996, “Stochastic Analysis of Gang Scheduling in
Parallel and Distributed Systems”. Performance

H.KARATZA: SCHEDULING GANGS IN A DISTRIBUTED SYSTEM

 22

Evaluation, Elsevier, Amsterdam, Holland. Vol.
27&28 (4). Pp273-296.

Wang F., Papaefthymiou M. and Squillante M.S.
1997, “Performance Evaluation of Gang Scheduling
for Parallel and Distributed Systems”. In Job Sched-
uling Strategies for Parallel Processing, Lecture
Notes in Computer Science, Springer-Verlang, Ber-
lin, Germany. Vol. 1291. Pp184-195.

Wiseman Y. and Feitelson D.G. 2003, “Paired Gang
Scheduling”. IEEE Transactions on Parallel and
Distributed Systems, IEEE Computer Society, Los
Alamitos, CA, USA. Vol. 14(6). Pp581-592.

Zhang Y., Franke H., Moreira J. and Sivasubrama-
niam A. 2003a, “An Integrated Approach to Parallel
Scheduling Using Gang-Scheduling, Backfilling and
Migration”. IEEE Transactions on Parallel and Dis-
tributed Systems, IEEE Computer Society, Los
Alamitos, CA, USA. Vol. 14(3). Pp236-247.

Zhang Y., Yang A., Sivasubramaniam A. and
Moreira J. 2003b, “Gang Scheduling Extensions for
I/O Intensive Workloads”. In Job Scheduling Strate-
gies for Parallel Processing, Lecture Notes in Com-
puter Science, Springer-Verlang, Berlin, Heidel-
berg, Germany. Vol. 2862. Pp183-207.

BIOGRAPHY

HELEN D. KARATZA is an Associate Professor in
the Department of
Informatics at the
Aristotle University
of Thessaloniki,
Greece. Her research
interests mainly in-
clude Performance
Evaluation of Parallel
and Distributed Sys-
tems, Multiprocessor
Scheduling, Cluster
Computing and the
Grid, Mobile Agents, Mobile Computing and Simu-
lation. Dr. Karatza is a member of the Editorial
Board of the International Journal of Simulation:
Systems, Science & Technology (the UK Simulation
Society). She has served as a member of Program
Committees and Program Chair of several Simula-
tion related International Conferences/Symposia.
Her email and web address are
<karatza@csd.auth.gr> and
<agent.csd.auth.gr/~karatza>.

