Specializa

TDT4590 Com

Ahmed Adnan Aqgrawi

Three Dimensional
Convolution of Large Data
Sets on Modern GPUs

Supervisor: Dr. Anne C. Elster, IDI
Co-supervisor: Victor Aarre, Schlumberger Stavanger

Trondheim, December, 2009

NTNU

Norwegian University of Science and Technology

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science

@ NTNU

Norwegian University of
Science and Technology

i

Problem Description

In Petrel, Schlumberger’s seismic software, one often comes across large seismic
cubes that need to be filtered in order to generate clearer images. The seismic
cubes are viewed from three dimensions, implying that one must filter in all three
dimensions as well. However, this filtering is very computationally demanding and
thus uses a lot of computational resources. This project’s goal is to implement a
Gaussian filter on a large three dimensional data set on the GPU using NVIDIA
CUDA to off-load the CPU. A CPU version will also be developed for comparison
and analysis. Since the size of the data to be transferred to the GPU memory is
quite large, the calculations need to be performed on sub cubes. This implies that
one must account for border data between cubes to avoid an edge effect. The imple-
mentations developed will be benchmarked and compared to evaluate performance
gains.

1l

v

Abstract

In the petroleum and gas industry, one of the main foci is using seismic processing
to find new oil and gas reservoirs. Recordings of seismic waves can be used to create
images representing the surface of the earth. To do so one has to filter the data
collected. Onme of the methods for filtering this data is convolution in the spatial
domain. Which is done in three dimensions (3D) because of the 3D nature of the
data collected. The data collected can be of surfaces over several kilometers in length
and are therefore very large is size.

This project focuses on implementing a 3D convolution algorithm on modern CPUs
and GPUs with non-separable filters for large data sets, in the spatial domain. Our
results demonstrate that the filtering mask should be placed in constant memory
rather than shared memory because there is an overhead assosiated with the use
of shared memory per kernel launch. The data in constant memory must be read
coalecsed for it to be efficient. Shared memory should not to be used for the filtered
data either due to the lack of communication between the threads in the convolution
kernel. Again, the overhead of reading into shared memory only slows down the
process. To compare our results, implementations on the CPU were performed in
C. The platforms tested on are both a uni-core CPU and a quad-core CPU, as
well as a single GPU and a system with up to 4 GPUs. The CPU used is a AMD
phenom x4, whereas the GPUs used are the NVIDIA Tesla ¢1060 and NVIDIA Tesla
s1070. Our work includes figuring out how to process large amounts of data most
efficiently on both the CPU and GPU with the use of different blocking methods
when accessing the disk.

Our results also show that the I/O time, which one would expect to be a bottleneck,
is only 1-2% of the total execution time on a single CPU. This means that convolu-
tion is a computationally demanding task, but fortunatly a very parallelizable one.
Our results indicate that compared to a single core a speedup of 3.57 is achieved on
the Phenom x4 , a speedup of 17 is achieved on the Tesla ¢1060 (single GPU) and a
speedup of 62 is achieved on the Tesla s1070 (4 GPUs). This led to the computation
percentage being reduced by 5%, 25% and 90%, respectively for the three platforms.
Further work regarding optimizations should hence focus on 1/0O.

vi

Acknowledgement

This report, together with the prototype, is the result of a project assigned by the
course TDT4590 at the Norwegian University of Science and Technology.

I would like to thank my supervisors Dr. Anne Cathrine Elster for invaluable sup-
port and feedback throughout the entire project. She has been an inspiration with
her great understanding and dedication to the field. Given her generosity and en-
couragement all the resource needed for this project where made available. I would
like to thank Victor Aarre of Schlumberger for his support in providing me with
new ideas, example source code and a set of seismic data. I would especially like
to thank NVIDIA for sponsoring of our group and our HPC-lab, and for making
high-end graphics cards such as Tesla ¢1060 and Tesla s1070 available. I would also
like to give thanks to the entire HPC group for their support, encouragement and
enthusiasm for this project. And a special thanks to Jan Christian Meyer, Thorvald
Natvig, and Holger Ludvigsen for all their help.

Trondheim, Dec 2009

Ahmed Adnan Aqrawi

vil

Contents

viil

List of Tables

1X

List of Figures

x1

®@ NTNU

Norwegian University of
Science and Technology

xii

CHAPTER 1

Introduction

In the oil and gas industry, there is always an interest in investigating potential oil
and gas reservoirs. There are several ways in which to test for this, and one of these
is seismic data collection. Seismic data is gathered by recording seismic waves (waves
of force that travel through the earth). This data is used in the field of petroleum
to discover the geological structures of the earth and find natural resources such
as oil and gas. To help in this search seismic data is processed by many filters
and filtering methods to get a clearer subsurface image and to view more relevant
information such as faults and reservoirs, see Flgure 7?7 for an example of seismic
data. These filters are like other image filtering processes very adaptable to the

graphical processing unit (GPU), but are per today run on the central processing
unit (CPU).

FERNT

Figure 1.1: Figure illustrating seismic data from [?], with permission from Schlum-
berger

In recent years, it has been shown that the performance capabilities of the GPU, in
some cases, has exceeded that of the CPU. Which in turn motivated the develop-
ment of the general purpose graphical processing unit (GPGPU). This has lead to
the use of the GPU not only in graphic applications, but also in scientific calcula-
tions. These trends have created a boom in the graphical processing architectures

CHAPTER 1. INTRODUCTION

and manufacturers have started introducing new product lines specific for scientific
calculations. In Figure 7?7 one can see the trend of computational power measured in
floating point operations pr. second (FLOPS) for the past 5 years. Another aspect
worth noting is that the use of the GPU gives room to use the CPU for other tasks
in parallel, functioning as an accelerator.

Given these advancements one is now often interested to see if it is possible to utilize
the GPU for calculations and gain some increased performance for certain tasks.
Such tasks as image processing, seismic processing and other physical modeling as
well as linear programming applications have proven to be well parallelizable on the
GPU. This gives the foundation of this projects existence in that we are to perform
an image enhancement task on seismic data on the GPU.

GT200
1000
NVIDIA GPU
—a—Intel CPU Ggso G92
450 Ultra
s G80
o
e 500
o
x G71
[
a
G170
250 3.2 GHz
Nvas NV40 3.0 GHz Harpertown
NV30 Core2 Duo
5 H_.____.__.———._"/.
Jan Jun Apr Jun Mar Nov May Jun
2003 2004 2005 2006 2007 2008
GT200 = GeForce GTX 280 G71 = GeForce 7900 GTX NV35 = GeForce FX 5950 Ultra
G92 = GeForce 9800 GTX G70 = GeForce 7800 GTX NV30 = GeForce FX 5800
G80 = GeForce 8800 GTX NV40 = GeForce 6800 Ultra

Figure 1.2: Figure illustrating CPU and GPU performance trends from [?], with
permission from NVIDIA

1.1 Project Goals

The aim of this project is to implement convolution for non separable filters in the
spatial domain in CUDA, for large three dimensional data sets. A large data set
is defined as a data set that does not fit into modern system buffers, currently at
sizes between 8-12 GB. The Gaussian filter is a filter used in seismic processing
and implementing it on the GPU would introduce new possibilities in the field of
pre-processing seismic data. The challenges here are how to handle large datasets.
Meaning that one must compute the data set in intervals of sub-sets and must
account for border information to compute the filters correctly. For comparisson
implementations will be developed for both a single and quad -core CPUs. The goal
is to benchmark the convolution implementations on modern CPU and GPU with
different filter sizes and compare the two to see which is most efficient when it comes
to large data sets. Possibilities to run on several GPUs to accelerate performance
will also be explored, and speedup will be assessed.

1.2. PROJECT CONTRIBUTIONS

1.2 Project Contributions

There are three main contributions in this project. The first is to perform con-
volution in three dimensions with non separable filters. It is a rare thing to find
convolution performed in three dimensions not to mention on the GPU. This should
be useful for anyone aiming at using the GPU for any similar tasks.

The second is to look at handling large data sets. This introduces many problems
from disk access to transfer of data to memory. In this project the focus is on
the retrieval of data to the GPU by blocking across different dimensions. The
combination of using large data sets on the GPU is also a rare occurrence. Since
usually the data used is exactly large enough to fit in the systems main buffer.

The third significant contribution here, is the use of the GPU and CUDA in seis-
mic processing and how it can accelerate that process by experimenting with the
different memories in the CUDA hierarchy (for example constant, shared and global
-memory). There have been some studies regarding the topic accelerating seismic
processing, but in our project the focus is on using convolution as a filtering method
and the use of CUDA to program on the GPU. In our project there are also consid-
erations regarding the use of multiple GPUs to accelerate the process, which is both
rare and interesting to see how the algorithm scales on several hundered cores.

1.3 Outline

The rest of this report will structured as follows:

Chapter 2: Relevant researched background material and related work is empha-
sized and explained such that the reader has all the presumed knowledge to under-
stand the rest of the work. It is also a way to show how this project builds upon
existing work in the same field.

Chapter 3: A short introduction to which hardware and software is used in the
project. A description of how the implementations in this project were performed,
and why certain implementation choices were made are explained. Here one will
also find the thoughts put behind each optimization and what the expectations are
as to how they will perform and test.

Chapter 4: Results regarding I/O tests are presented and discussed. The main
focus is the blocking techniques used to achieve good disk access times and explaining
why they are so efficient. Results regarding convolution tests on various platforms
are presented and discussed as well. The main focus here is on comparing the
implementations and presenting speedup and computation percentage. An in depth
analysis of the comparisons and traits are also shown.

Chapter 5: Here one will find the conclusion of the work performed and suggested
futher work in the field.

CHAPTER 1. INTRODUCTION

Appendix: Tables of results gathered during the benchmarking process are in-
cluded in the appendix. some of these results are summarized in graphs in Chapter
4.

CHAPTER 2

Background and Related Work

In this chapter, the focus is on introducing some of the main sources the reader
might need to understand our work. The following sections summerize the main
references read. Section 2.1 inroduces related work done in similar fields. Section
2.2 concerns spatial filtering. Section 2.3 Explains the concept of a filtering mask
and the gaussian filter. Section 2.4 is a practical example of how the gaussian filter
is used in seismic processing. Section 2.5 is about general parallel programming.
Section 2.6 introduces OpenMP and the concepts of multithreading. Section 2.7
Explains the main apects of the CPU and GPU architectures. Finally, Section 2.8
Gives a short introduction to the CUDA programming model.

2.1 Related Work

This section will focus on introducing papers and theses chosen to be discussed
with the intention to emphasize work done in a similar field before and how this
project will build upon them. The main fields focused on here are image processing,
convolution, GPU accelleration, three dimensional data and multiple GPU systems.
All these topics are relevant to this project, and have been researched to lay a
foundation for the implementations performed.

Image Convolution with CUDA, 2007 [?]

This is a paper written by NVIDIA to show how CUDA can be used to perform
convolution in image processing. This is related to this project in that it also
concerns convolution in the spatial domain and it is also implemented in CUDA. In
contrast to this paper, the image processing performed in this project is on three
dimensional data, and the data to be filtered does not fit in memory and so one
must perform several communications in the memory hierarchy:.

CHAPTER 2. BACKGROUND AND RELATED WORK

Accelerating 3D Convolution using Graphics Hardware, 1999 [7]

This is a paper published by IEEE Visualization in 1999 that approaches the subject
of 3D convolution performed on a GPU. The main idea here is to use the graphical
hardware to accelerate the convolution process. This is work done in this area
pre CUDA and this is where it differs from this project. Since before the CUDA
architecture the use of shared memory was not available and this can be a good
enhancement /optimization. Other than the use of CUDA this project differs in that
it also considers the use of multiple GPU to accelerate the process and is concerned
with larger data sets.

Modeling Communication on Multi-GPU Systems, 2009 [?]

This is a master thesis concerning the use of communication and calculations on
several GPUs simultaneously. Another important subject taken into account here
is partitioning of data such that calculations can be done on several GPUs. This is
relevant to this project because of the large amount of data to be filtered and the
advantage of using multi-GPU. It is also interesting to see how one can partition data
such that communication between GPUs is optimal. In contrast to this thesis the
problem solved here is of image processing and not a solution to partial differential
equations. Another difference is again the consideration of large data sets.

Paulius Micikevicius, 3D Finite Difference Computation on GPUs using
CUDA, Nvidia, 2008. [?]

This is a paper by Nvidia that shows how one can process three dimensional data.
The implementation is specific for a Tesla 10 series GPU, which is the same used
in this project. The most interesting aspects here are that this is an ideal example
of using CUDA on a three dimensional dataset and that its specificly developed by
Nvidia for their 10 series GPU. All of these three elements are present in this project
as well. There is also a discussion here on the use on multiple GPUs, which is also
covered by this project.

Eirik Aksnes, Simulation of Fluid Flow through porous rocks on modern
GPU, 2009. [?]

This is a masters thesis, which focuses on a physics simulation in three dimensions.
This was used in relation to programming large three dimensional objects on the
GPU. This a good source since here as well as in this project the GPU in use is the
Nvidia Tesla ¢1060, and here too the focus was on three dimentional data. This is
not a heavy cited reference, but nevertheless it is a useful source since it discusses
similar aspects.

2.2. SPATIAL FILTERING

2.2 Spatial Filtering

There are two somewhat similar concepts that must be understood clearly when
performing linear spatial filtering. One is correlation and the other convolution.
Correlation, speaking from an image processing point of view, is when one moves a
filtering mask across an image and computes the sum of products at each location.
Convolution is similar, but the filtering mask is first rotated 180 degrees. This is
best shown with a trivial example of 1-D filter on a 1-D image. See Figure 77.

Original data: [0]0[0]1]0[0]0[0]
Original filter: [1]2[3][2]8]

Step 1: Rotate Filter Step 3: Convolution Step 4: Remove padding

from result
o/o[o[o[o[1[o[o[0]0 0/0
81213121 0]o[o]1]0]0][0] |
8[2[3[2[1] 0/0/0[1]2][3][2[8]0]0/0/0

Step 2: Padding of data |0 0/0[0J0[1[0[0[0[0/0/0 o[12[312[8[0[0]
8[2[3]2]1]

0 0/0[ojo[1][ojo]o[o 00 0/o/o[o[o]1][o]o[o][o/0/0
8[2[3]2]1]

0/00[0[o[1]o[0[o]o 00
8[2[3]2[1]

0/0/0[ofo[1]ofo[o[0/0'0
8[2[3[2]1]

0/0/0[0[o[1]ofo[ojo 00
8[2[3]2]1]

0/0/0[o[o[1]0[0[ojo 00
8[2[3]2]1]

0/o/o[ojo[1[olo[ofoo/0
[8[2[3[2[1]

Figure 2.1: Image illustrating Convolution in 1D. Inspired by an example in [?]

The first thing one notices is that if one is to overlap the filter on all the value in
the image, i.e. move each value of the filter on every pixel in the image, then we
would have to pad the image with zeros such that it is possible. This means that if
the filter is of size m, then we need a padding of size m-1 to the left and right of the
image. In this case a padding of size four is added on each side of the image since
the filter contains five values. Another aspect worth noticing here is that correlation
and convolution are functions of displacement. Where one starts at a displacement
of zero and increases by one as one filters the image.

CHAPTER 2. BACKGROUND AND RELATED WORK

Convolution

From a mathematical point of view, convolution is an operation involving two func-
tions that produces a new function. This new function reflects to which extent the
original functions match if their graphs were aligned with each other. Convolution
is mathematically defined as Equation 77 [?].

[e.9]

(f*9)0) = [fla)g(t - a)da (2.1

—0o0

w(z,y, z)* f(x,y, 2) Z Z Z (s,t,r)f(r —s,y—t,z—r) (2.2)

s=—at=—br=—c

The continuous mathematical definition is not that useful in our case since we would
like to deal with discrete cases in programming. To convert the preceding in to a
discrete function we would have to add discrete convoluted values from each function.
If we have that w(z,y) is the filter of size m x n that will be convoluted with
an image f(z,y) , denoted as w(z,y) x f(x,y). This gives the Equation ?7 [?],
which is a discrete sumation equivalent to the continous mathematical definition of
convolution.

2.3 Spatial Filter Masks and The Gaussian Filter

While discussing filtering in the spatial domain we mentioned a filtering mask, which
is used to convolute with the image. These masks are generated depending on their
purpose, such as smoothing, edge detection, edge enhancement, etc. The filters are
decided by a given size m x n and with the use of a mathematical function one can
calculate the values of the filter discretely. We will later see that the nature of the
function used will result in how well the filter will perform.

Gaussian Smoothing

Using a Gaussian filter, also known as Gaussian smoothing, is an operator that is
used to blur images and remove detail and noise. This is similar to the way a mean
filter works, but the Gaussian filter uses a different kernel. This kernel is represented
with a Gaussian bell shaped bump. This kernel has some special properties regarding
separability that we will look at in detail.

1 o2

G(z) = 5 e 22 (2.3)
o
1 _22+y2

Cloy) = 5 ge 2.4)

2.3. SPATIAL FILTER MASKS AND THE GAUSSIAN FILTER

The Gaussian distribution in the 1D and 2D cases are shown in Equations ?? and 77?7
(from [?]), where o is the standard deviation of the distribution. The functions are
illustrated in Figure ??7. These can be used to give a better idea of what a Gaussian
distribution is. The idea of Gaussian smoothing is to use these distributions as a
point spread function to create a filtering mask and by using convolution one is able
to blur an image. Since images are usually stored as discrete pixel values one would
have to use a discrete approximation of the Gaussian function on the filtering mask
before performing the convolution. See Figure 7?7 to see an example of a discrete
approximation of a gausian filter in two dimensions.

Figure 2.2: 2D Gaussian distribution graph drawn in online 3D grapher !

Gaussian Filter Mask in Practice

In theory the Gaussian distribution is non-zero, which would imply an infinitely large
convolution kernel. But, in practice it proves to be ’almost zero’ more than three
standard deviations from the mean. This implies that the kernel can be truncated
after three standard deviations. Once a suitable kernel has been calculated then
the Gaussian smoothing can be performed using a discrete convolution method as
explained earlier. The Gaussian filter is separable if circularly symmetric meaning
that one can use a one dimensional filter to filter images. For example if the image
is three dimensional then one can convolute three times using a one dimensional
filtering mask, once in each dimension. If the Gaussian function is elliptical than it
is not separable and this would result in using a three dimensional filter once in all
three dimensions.

Thttp: //www.livephysics.com /ptools/online-3d-function-grapher.php, — accessed 2009-12-09.
Available to all since it is public domain

CHAPTER 2. BACKGROUND AND RELATED WORK

7|1 26|41 26| 7

Figure 2.3: Example of two dimensional Gaussian Filter Mask with discrete values

2.4 Gaussian Smoothing in Seismic Processing

Figure 77?7 illustrates and example of the practical use of gaussian smoothing in
seismic processing. This is data made accessible by Schlumberger and is released
into public domain. Here one can see how the gaussian filter is used to blur the
image such that noise can be eliminated. This is best seen in the lower left corner
of the image. The type of filtering done in this project will be used with the same
purpose in seismic processing.

Figure 2.4: Figure illustrating seismic data before and after gaussian smoothing
from [?], with permission from Schlumberger

2.5 Parallel Computing

Parallel computing is a form of computation where many calculations are performed
simultaneously. This is depending on that large problems can be divided into smaller
ones such that one can calculate them concurrently. There are several different forms
of parallel computing bit-level, instruction level, data and task parallelism. Parallel
computing has been around for quite a while now, but has lately been given more
attention since the limitations of power consumption and physical limitations of

10

2.5. PARALLEL COMPUTING

frequency levels on computational hardware have started to stagnate. This gave
birth to the multi-core CPUs and created a paradigm in computer architecture.

Amdahl’s Law

20.00:

18.00 /-J..‘

/ Parallel Portion
16,00 74 — B0%
— 75%
14.00 — 90%

— 95%
12.00

I~

10.00.

Speedup

8.00

6.00 al

4.00

N\

2,00

0.00

o =r o s
—~ M oo —~ o
] =]

2048
4095
819
1638
32768
6553

—

Number of Processors

Figure 2.5: Image illustrating Amdahl’s law 2

Amdhal’s Law

When generally speaking of how effective a parallel algorithm is one usually men-
tions the speedup factor (how much faster a parallel algorithm runs compared to
a sequential one). The potential speedup of an algorithm on a parallel platform
can be measured with the help of Amdahl’s law. This law states that all parallel
computations are limited with a sequential part of their code and thus their speed
up is limited by this part as well. Amdahl’s law is stated as in Equation ?? [?] and
illustrated in Figure ?7. S is the speedup, and P is the portion of the code that is
parallelizable and is a value lesser than 1 and greater than zero.

S=-— (2.5)

Gustafson’s Law

Another law closely related to Amdahl’s law in computer science is Gustafson’s law
?? [?]. Here S is the speedup, P is the number of processors and « is the non-
parallelizable part of the program. Amdahl has made the assumptions that the
sequential part of the program is independent from amount of processors one has
while Gustafson believes that this is not the case.

2http:/ /en.wikipedia.org/wiki/File:AmdahlsLaw.svg, accessed 2009-09-08. Available to all un-
der the license of creative commons

11

CHAPTER 2. BACKGROUND AND RELATED WORK

S(P) =P —a(P—1) (2.6)

Speed Up Limitations

Ideally one should be able to gain linear speedup meaning that one would increase
the speedup with the amount of processing units available. For example if one has
two processors then it should take half the time to execute a program since two are
working on the problem. But, this is rarely the case since there are some factors
that limit speedup that one should look out for when programming in parallel.
One is that not all problems can be parallelized at all time, they might have some
sequential parts, which means that while one processor is executing the sequential
part the other is idle. This results in sub-linear speedup. Another fact is that not
all algorithms can be executed in parallel without extra computational cost. Some
implementations might have this extra cost in the parallel version and this will also
result in sub linear speedup.

Other speedup limitations are I/O and communication time between processors. In
some systems not all processors are capable of reading and writing to I/O units
which means that the other processors will have to wait, resulting in lesser speedup.
Often processes have to communicate with each other like in the case of border
exchanging. This will result in time spent communicating which is not present in
the sequential algorithm. This will also result in sub linear speedup. These effects
become more evident when dealing with large datasets since one can use a lot of
time reading and writing data, and more data will have to be communicated between
processes.

Data Dependencies

Data dependencies are a common issue in parallel programming and should be un-
derstood to perform good parallel implementations of algorithms. The fact that
no program can run faster than its longest chain of dependencies will prevent a lot
of speedup, this is known as the critical path. This is because some calculations
normally depend on other calculations and if they are not completed then one can-
not proceed to the next step i.e creating a delay. However, most algorithms do not
consist of a long chain of dependent calculations and can therefore run concurrently.

LNO; =0 (2.7)
0,N0; =0 (2.9)

12

2.5. PARALLEL COMPUTING

A good description of dependencies are the Bernstein conditions [?]. These describe
when two program fragments, denoted P; and P;, are independent and can be exe-
cuted in parallel. For P; let I; be the input and O; be the output for the program.
For P; the input will be I; and output O;. Now we can say that F; and P; are
independent if they satisfy the following conditions 7?7, 7?7 and ?? (from [?]).

Types of Parallelism

Instruction-Level Parallelism

Computer programs are in essence a collection of instructions. Some instructions
have dependencies, such as an instruction should be performed before another can
use its results and so on. The instructions of a program can be collected into groups
and executed in parallel without effecting the results of the program. This is often
seen in pipelining architectures. In addition to instruction level parallelism from
pipelining, some processors can execute more than one instruction at a time. These
are known as super scalar processors. Instructions can be grouped only if there are
no data dependencies between them.

Data Parallelism

In data parallelism one is focusing on distributing work on several computing nodes,
and this is often inherent in program loops. In loops one is often performing similar
functions or calculations on a large data set and if these are independent of previous
states one is able to calculate these concurrently. Many scientific and engineering
applications have data parallelism, it is also present in GPU applications.

Classes of Parallel Computers

There are many classes of parallel computers and they are usually not mutually ex-
clusive. The classes are as follows: multi-core computing, symmetric multiprocess-
ing, distributed computing, cluster computing, massive parallel processing. There
are also specialized parallel computers such as FPGA (field programmable gate ar-
rays), GPGPU, application specific integrated circuits and vector processors. I will
be focusing on Multi-core CPUs and GPGPU because these are within the scope of
this project.

Multi-core CPU

A multi-core processor is a processor with several execution units, also known as
cores. This is different from a super-scalar processor in the fact that super-scalar
processors issue multiple instructions per cycle from multiple instruction streams.
Each core in a multi core processor can be super scalar. An interesting attribute with
these multi-core processors is that they can perform simultaneous multi-threading.

13

CHAPTER 2. BACKGROUND AND RELATED WORK

This means that while one execution unit is performing calculations on multiple
threads and a thread is idle, another execution unit can do calculations on the idle
threat.

GPGPU

General purpose computing on the GPU is a relatively new trend in computer en-
gineering research. The GPU is an accelerator and co-processor that has been
optimized to handle graphical tasks. Computer graphics processing is generally in-
fluenced by large data parallelism operations and in particular linear algebra matrix
operations. Previously the GPGPU was normally programmed using the graphics
API, such as the use of textures to perform calculations. Recently several new pro-
gramming languages and platforms have been developed for the purpose of general
purpose computing on the GPU. NVIDIA and AMD have introduced the CUDA and
CTM programming environments respectively. Other GPU programming languages
are BrookGPU, PeakStream and RapidMind. There is also the Introduction of a the
Framework OpenCL for writing programs on heterogeneous platforms consisting of
CPUs, GPUs and other processors. The scope of this project extends to the use of
CUDA, the programing platform developed by NVIDIA.

2.6 OpenMP and Multithreading

OpenMP is an implementation of multi-threading. Multi-threading is when one
parallelizes code with the use of threads. Here a master thread running the program
creates slave threads, by forking threads, and the task is divided between them.
The threads run concurrently with the runtime environment allocating threads to
different processors. The sections of code that are to run in parallel are marked with
a pre-processor directive which will cause the forming of threads before the section
is executed. Each thread will be given an ID, where the master thread has an ID
of 70”. After the execution of the parallel code the threads are then joined to the
master thread that continues onward with the program. This is shown in Figure 77

Parallel Task | Parallel Task Il Parallel Task I

mme mw

Master Thread

Parallel Task | Parallel Task Il Parallel Task Ill
Master Threag -, -

Figure 2.6: Image illustrating the Fork and Join of threads with OpenMP 3

3http://en.wikipedia.org/wiki/File:Fork_ join.svg, accessed 2009-09-11. Available to all under
the license of creative commons

14

2.6. OPENMP AND MULTITHREADING

By default, each thread executes independently from the other hence giving good
parallelism results. There are possibilities for work sharing constructs to divide the
tasks between the threads such that each thread executes its allocated part of the
work. Both task parallelism and data parallelism can be done using OpenMP in
this way.

Main Features

The main OpenMP elements include thread construction, work sharing constructs,
data environment management, synchronization of threads, user level runtime rou-
tines and environment variables. Thread creation happens when a thread is forked
from a master thread, this is done by using the compiler directive ”# pragma omp
parallel”. For a broad overview of OpenMP language extentions see Figure ?77.

OpenMP language
extensions

I I I

runtime
synchronization functions, env.
variables

parallel control B data
work sharing
structures environment

governs flow of distributes wark scopes coordinates thread | | runtime environment
control in the among threads variables execution
program
omp_set_num_threads()
do/parallel do shared and critical and omp_ge t_thread_num()
parallel directive and private atomic directives OMP_NUM_THREADS
section directives clauses barrier directive OMP_SCHEDULE

Figure 2.7: Image illustrating language extentions of OpenMP 4

The work sharing constructs is used to specify how one can assign independent work
to one or all threads given the code that will be run. Here one has the option to
specify with commands whether one wants a single (master) thread to perform a
code block. One can perform calculations on specific sections of independent code
blocks to different threads or use loop constructs to split up loop iterations among
the threads. This can be done by adding to the command like this ”# pragma omp
parallel single”.

It is also possible to specify if the data is to be shared among the threads or if
some of the variables are private by using data sharing attribute clauses. These are
also specified in the command such as in this example ”# pragma omp parallel for
private(i,j,k)”. The variables i ,j and k are not shared among the threads but rather
each thread has a separate (private) copy.

With the use of OpenMP one is also in control of the scheduling one is to use by using
the scheduling clauses. There are three types of scheduling to choose from static,
dynamic and guided (which is a variation of dynamic). The static scheduler is used
when one before execution decides which threads have which allocated iterations.
Dynamic scheduling is when a thread is able to retrieve other iterations if its done
earlier than others.

4http:/ /en.wikipedia.org/wiki/File:OpenMP_ language_ extensions.svg, accessed 2009-09-11.
Available to all since the author has released it into public domain

15

CHAPTER 2. BACKGROUND AND RELATED WORK

When multi-threading one might come across a situation where one thread is done
earlier than others and one might have problems with synchronizing between the
threads before approaching another task. That is why in OpenMP one will find
synchronization clauses. Here one can use commands to create barriers such all
threads synchronize to that point before moving on. One is also able to specify that
a region is critical such that one can avoid deadlocks. In critical sections only one
thread is allowed to perform instructions at a time.

Thread creation and work sharing constructs

By specifying "parallel” in the pragma one will fork into multiple threads that
perform the instructions enclosed in the construct in parallel. By default OpenMP
will set the amount of threads to that which matches the amount of cores available
on the machine. Given that one is running on a Quad-core then 4 threads will be
created. The original process will then be denoted as master thread and gets thread
id 0. Once the threads are done they will be joined and the master process will
continue running on a single core.

After indicating that code is to be run in parallel one can also specify how the threads
should share the work load. An example would be the use of the ”for” construct to
specify that a loop is to be parallelized, and will result in that the loop iteration will
be split among all the threads. There are also constructs that enable one thread to
run while others are waiting or just signaling that a section of independent code can
be run in parallel.

Pros and cons

One of the greatest strengths of OpenMP is that it is easy and simple to use, and that
one does not have to deal with message passing. OpenMP directives automatically
handle data layout and decomposition. The use of incremental parallelism results
in no dramatic changes to ones code. Since one does not have to modify ones serial
code much when using OpenMP makes it less likely to cause errors. OpenMP code
can also be compiled for both serial and parallel code where in the serial compiler
recognizes OpenMP syntax as comments. This results in that it will compile in both
cases.

OpenMP is a great tool, but it also has its limitations. Such that it does not
have reliable error handling. The scalability of an OpenMP program is bound by
the memory architecture on which it runs. Currently it only runs efficiently on
shared memory multiprocessor platforms. It also requires a compiler that supports
OpenMP.

Performance expectations

One could expect that running code on n cores would result in n times the speedup
in OpenMP, but this is not the case because OpenMP is also affected by the com-

16

2.7. GPU AND CPU ARCHITECTURAL FEATURES

mon problems that apply to parallel computing generally. Parts of the code in
an OpenMP program run on only the master process resulting that the speedup
theoretical upper limit is limited by Amdahl’s law, in that parts of the code are
sequential. Another aspect is that the memory bandwidth also limits speedup since
in shared memory often the same path is used for all threads to get data, and so
they must be interleaved. Other aspects resulting in overhead are synchronization
and load balancing between all the threads.

2.7 GPU and CPU Architectural Features

The graphical processing unit is a processor dedicated to rendering graphics and
functions as an accelerator such that it offloads the CPU when processing graphical
data. The graphical processors architecture has mainly focused on SIMD instruc-
tions. Such that it can run several similar instructions simultaneously on several
threads. Recently these graphical accelerators have become of interest in the field of
high performance computing (HPC). Driven by the gaming industry and their never
ending demands for more realistic computer graphics, the GPU has evolved from a
primitive processor only able to preform restricted graphics rendering operations to
being a programmable processor with huge performance capabilities. The theoreti-

cal floating-point processing power of the graphical processor has greatly exceeded
that of a CPU.

Control ALU ALU

ALU ALU

Figure 2.8: Tmage illustrating CPU and GPU transistor usage and layout from [?],
with permission from NVIDIA

Main aspects of CPU architecture

The GPU is mainly thought of as an accelerator, and it is therefore important to
mention that it is intended to be used in cooperation with a CPU. It is merely
an addition and not a substitute. The CPU has different capabilities and as such
is a more flexible processing unit. It is designed to maximize the performance of a
single thread of sequential instructions. The CPU is able to perform instruction level
parallelism, and as such it can optimize its performance by executing several different

17

@ NTNU
CHAPTER 2. BACKGROUND AND RELATED WORK Sonctna Teehmlosy

instructions simultaneously (SPMD). It also supports flow control that allows it
to take advantage of the instruction level parallelism (See Figure ?7). Another
interesting aspect of the CPU is the use of many transistors to avoid memory latency
with the use of caches, see Figure ??. This is important in the combination of flow
control and instruction level parallelism such that one does not have to access main
memory every time one changes the instruction performed. And as such it is very
important to optimize caching and memory access when programming on the CPU
to obtain maximum performance.

Al NN
|

L

SIMD SPMD

Figure 2.9: Image illustrating SIMD and SPMD from [?], with permission from
NVIDIA

Recently even CPUs have been adopting parallelism and run with several cores. In
this project a Quad-core processor is used, meaning that there are 4 cores in the
CPU that can perform calculations. The special feature here is the way in which
the caches are used. Each core has a L1 and L2 cache, and they share a .3 cache.
Again one sees that the focus is on memory latency and caching of data, but it is
important to know that there are three levels of caching here rather than two when
programming. This also introduces more advancd scheduling and flow control units,
given that the different cores must co-operate and share data. See Figure 77 for a
closer look at the architecture of the AMD Phenom used in this project.

System Request Interface

Crossbar Switch

| B it e

Figure 2.10: AMD Phenom Quad-Core Architecture. With data from [7]

18

2.8. CUDA PROGRAMMING MODEL

Main aspects of GPU architecture

The GPU is different in that it focuses the use of the majority of its transistors for
data processing and less on cache and flow control. This comes from the nature of
the tasks one can perform on the GPU. Since it is mainly used for image processing
one tends to perform similar operation on all pixels to be displayed. Pixels are inde-
pendent from one another and so they can be processed separately, which explains
the use of SIMD architecture. The main differences in the GPU and CPU is the
use of memory and the access patterns used to access them. On the GPU memory
is accessed coherently in the sense that when one pixel reads or writes a value to
memory the next/neighboring pixel will do so as well in a few cycles. This means
that by arranging the memory correctly one can hide the time of memory access
with computations. Because if this simple access pattern the need of a complex flow
control disappears resulting in that more transistors can be used for data processing.
This is of course both an advantage for tasks that are parallelizable, but it is also
limiting for tasks that demand instruction level parallelism or a lot of non coherent
Memory access.

The modern GPU is a mixture of programmable and mixed-functions units, and all
programmable units in the graphics pipeline now share a single programmable hard-
ware unit. Graphical processors differentiate themselves from the computational
processors in that they focus on high throughput and of many parallel process with
low latency execution of a single processor. Quite often in scientific and multimedia
application one is to preform similar operations on many data. The GPU supports
a tremendous amount of threads that execute similar operations in parallel. The
combination of low cost, high performance and programmability of the recent GPUs
make them an attractive approach in an HPC context. These progressions and
developments lead to the GPGPU general purpose graphical processing unit.

Since the GPU is at first and foremost a graphics rendering hardware it is natural
that the first attempts to program on it used the graphics API, such as CG, which
introduced challenges since the programmer had to familiarize onesself with the
API and the API also introduces overhead in communication with the GPU. The
interest in being able to program on the GPU in a non graphical context have lead to
the development of several programming platforms that overcome the delays of the
graphics API and give the programmer more control. Examples of recent platforms
are OpenCL, CUDA, Brook for GPU, etc. In this project I will be focusing on the
use of the Compute Unified Device Architecture (CUDA), a programming model for
GPGPU developed by NVIDIA.

2.8 CUDA Programming Model

CUDA is a parallel programming architecture and model, which includes a C com-
plier plus support for OpenCL and DirectCompute, see Figure ?7. It is designed
such that it naively supports multiple computational interfaces such as standard
languages and APIs. The main intention of this programming model is to simplify

19

@ NTNU
CHAPTER 2. BACKGROUND AND RELATED WORK Sonctna Teehmlosy

programming on the GPU. When using CUDA to program one will avoid the over-
head of programming using a graphical API such as CG. Another feature worth
mentioning here is how CUDA enables the programmer to directly program to the
GPUs components such as direct memory access, using the shared memory and
specifically manipulating threads.

CUDA Architecture

Figure 2.11: Image illustrating CUDA architecture from [?], with permission from
NVIDIA

One has the option of running CUDA as a C extension, such that those familiar with
C programming can easily use it to accelerate their code. As mentioned earlier the
GPU functions as an accelerator and is therefore used with the CPU where one can
run non parallelizable code in a program on the CPU and the highly parallelizable
code on the GPU to accelerate execution and distribute the workload. The NVIDIA
CUDA programming model consists of a "host” that is a traditional CPU, and one
or more compute devices that are massively data-parallel co-processors (GPUs).
Each device is equipped with a large number of arithmetic execution units that has
its own DRAM, and runs many threads in parallel.

Grid

Block (0, 0) Block (1, 0)

Figure 2.12: lustration of the CUDA memory hierarchy from [?], with permission
NVIDIA

20

2.8. CUDA PROGRAMMING MODEL

To invoke calculations on the GPU one has to perform a kernel launch, which is
basically a function written with the intent of what each thread on the GPU is to
perform. The GPU has a specific architecture of threads where they are divided
into blocks and where blocks are divided into a grid, see Figure ??. The grid has
two dimensions and can contain up to 65536 blocks in each dimension. While each
block contains threads in three dimensions, and can contain up to 512 threads in
two dimensions and 64 in the third. When executing a kernel one specifies the
dimensions of the grid and blocks to specify how many threads will be executing the
kernel.

A mention has already been made about the GPU having its own DRAM and that
this is used in communicating with the host system. To accelerate calculations within
the GPU itself there are several other layers of memory such as constant, shared and
texture. Table 7?7 shows the relation between these. Here the ocus is on showing the
different memory options available, and to map their attributes. For more details
regarding CUDA and how to program on it read the NVIDIA programming guide

7]

Table 2.1: Table showing CUDA Memory Hierarchy, with data from [?]

Memory | Location | Cached Access Scope in Architecture
Register On-chip No Read/Write Single thread
Local Off-chip No Read/Write Single thread
Shared On-chip No Read/Write Threads in a Block
Global On-chip No Read/Write All
Constant | On-chip Yes Read All
Texture On-chip Yes Read All

21

CHAPTER 2. BACKGROUND AND RELATED WORK

22

CHAPTER 3

3D Filter Implementations

This chapter will focus on our implementations of convolution on modern CPU and
GPUs, and the framework on which they run. The details performed throughout
the project and the main ideas behind the way the implementations perform will
be discussed. There will also be explanations of how code has been optimized to
run on the different platforms given their structure and architecture. The platforms
experimented on in this project are running a single core CPU, a Quad-Core CPU, a
single GPU and multi-GPU. All the 4 implementations of convolution on the differ-
ent platforms will be presented in details in this chapter. One can also find details
on how these implementations have been tested within a certain framework, which
produces the convoluted images both before and after they have been processed.
This framework has been supplied by Schlumberger and later modified to meet the
needs of this project.

Schlumberger being the sponsor and co-supervisor of this project have set some rules
to make the project more challenging and explorative. As convolution is a common
technique to filter images, there have been several implementations and projects
that address optimizing it. Even NVIDIA has an example of how to convolute on
the GPU in their CUDA SDK [?]. But, most implementations are concerned with
images which are two dimensional, and they usually optimize by separating the filter
to make memory optimization easier. To set some boundaries in this project only
three dimensional filtering is considered, and the filtering mask used is to be non-
separable. This introduces challenges in memory since there are many jumps that
occur when reading and writing three dimensional data. Something that can be
avoided when using a separable filter and running the filter once in each dimension.

Another aspect to address in this project is the use of large data-sets, something
that is uncommon for the GPU, The impact of several disk accesses on the execution
time, and how one can block data to optimize disk access. The main condition is
that the data to be filtered does not fit into memory and therefore it must be
blocked for several disk access. This concerns both reading and writing to disk. A
small problem is Introduced in edge cases where one must include more data from
a neighboring block such that a border effect will be avoided and the filtered data
will be more correct.

There are 4 main steps in the pipeline of filtering an image. When blocking, this

23

CHAPTER 3. 3D FILTER IMPLEMENTATIONS

will be repeated for the amount of blocks. The steps are: create filter, read data
block w/boarder values, convolute and update result table, write result table to file.
These steps will be discussed in detail later on in this chapter, and so will ways
to parallelize these steps to gain speedup including using several CPU cores, the
graphical processor or several graphical processors.

Some other interesting aspects when optimizing code is of course the programming
language used and how it is compiled to machine code. The framework introduced
by Schlumberger is written in C# and during the project the use of C# has been
considered and tested against the use of C. C is a more common language in the case
of low level optimization. The implementations in these programming languages are
mostly similar, but differ in the way they are compiled and run. C# code might even
run on a virtual machine. Both implementations have been performed and run in
Visual Studio, and if the preference is to use C# in the future one can even use the
functions written in C as functions in a dynamic library and access them in a C#
program. Meaning that it is not a problem to use C in the implementations, but it
should be interesting to see how these languages differ in execution time. Therefore
this will be tested and documented. The read and write algorithms are written in
both C# and C. While all other implementations that proceed this are only written
in C, as it is clearly more optimal and runs both faster and more stable, which will
be shown in the next chapter with the results.

The Sections in this chapter are organized as follows. Section 3.1 shows which
hardware is used to implement on. Section 3.2 explains the programming frame-
work developed. Section 3.3 Explains how the 3D gaussian filter is implemented.
Section 3.4 explains the methods used to read and write to disk. Section 3.5-3.8
explains convolution on the folowing platforms in teh following order uni-core CPU,
quad-core CPU, single GPU, and multi-GPUs. Section 3.9 explains how tests are
implemented.

3.1 Hardware and Software Used

While benchmarking it is worth noting that not only the algorithm has been modified
to run more efficiently, but also the platforms it runs on have changed. The systems
used for testing have in common are the use of a 64 bit system, which enables the
addressing of more than 4 GB of memory. All implementations except the one where
4 GPUs are used have been on the same system. The reason for this is the fact that
the Tesla s1070 is a rack solution that has been put together on a machine that can
only be accessed remotely.

Table 3.1: Table showing the system components used
CPU Phenom X4 2.81GHz
RAM 8 GB DDR2 memory
Disk | Samsung 500 GB 7200 rpm Disk
GPU1 NVIDIA Geforce 9800 GTX
GPU2 NVIDIA Tesla ¢1060

24

3.1. HARDWARE AND SOFTWARE USED

The main system where the majority of the tests are run on the Windows 7 64-bit
operating system. The CPU in this system is a AMD Phenom X4, with 4 cores,
three levels of cache where the level 3 cache is 2 MB large and is shared by all the
cores. The level 2 cache is 512 KB large and is private for each core. This is one of
the high end processors from AMD on the market (until Phenom2 will be released)
and it supports the newest SSE instructions SSE4a. The system also has 8 GB of
DDR2 memory. The GPU used in this project is a Tesla ¢1060, which is created
for scientific calculations and has no video output. That is why it is combined with
a GeForce 9800 GTX. The GeForce card is used for video output only, while the
calculations are done on the Tesla card. The Tesla c1060 has 4 GB of global memory
and is of the 1.3 generation of NVIDIA cards. The Tesla s1070 system that is used to
run on multiple GPUs is basically a combination of 4 Tesla ¢1060 on a rack solution.
Below one can find all relevant tech information on the hardware used.

Table 3.2: Table showing AMD Phenom X4 details [?]
Addressing Supports 64 bit
L3 cache size 2MB(shared between all cores)

L2 cache size 512KB

L1 cache size 128KB
Memory bandwidth 33.8 GB/sec peak

CPU frequency 2.8 GHz

The machine where the Tesla s1070 is running is operated by a Linux operating
system. The machine is an Intel i7 extreme system with 12 GB of DDR3 memory.
This is obviously a better system than the AMD, but since there is an interest
in developing in C# from Schlumberger it was not considered compatible in the
begining because of the operating system. After the realization of using C# would
only be limiting, a change was made to use C instead, but optimization were already
made for running on the AMD processor. The change of platform would require a
re-implementation of the CPU code and therefore the AMD, even though being
inferior, was used to benchmark the CPU code. The AMD machine is also more
available since one does not have to use it remotely and can reboot and tweak with
ease. A future development in this project should consider using the i7 extreme and
compare it to the GPU results.

Table 3.3: Table showing NVIDIA GPUs details [?]

GPU model NVIDIA Tesla ¢1060 | NVIDIA Tesla s1070
Num. cores 240 960 (4 x 240)
Core speed 1.3 GHz 1.3 GHz
Global memory 4 GB GDDR3 16 GB GDDR3
Memory bandwidth | 102 GB/sec peak 102 GB/sec peak
System I/0 PClexpress PClexpress

Using the AMD processor also has some positive features such as a profiler that
can be integrated into Visual Studio 2008 Proffesional Edition, making it easy to

25

CHAPTER 3. 3D FILTER IMPLEMENTATIONS

optimize for cache and test the developments of cache misses. The results of the
AMD profiler [?] will be included in the sections regarding results of the convolution
implementations.

The use of different operating systems gave some varying results in I/O time. Since
it is common that operating systems buffer their disk access and after running a
test several times this could result in that the operating system becomes better at
retrieving the specific data resulting change in I/O time. If this feature were stable
then one could continue to use it, but it is not. That is why it has been turned off
such that a stable I/O time can be registered. In the final system it is recommended
that it be turned on because it is averagely faster.

3.2 Programming Framework

At the start of the project a simple framework to read and produce bitmap (BMP)
images from disk was made available by Schlumberger. The framework produced
sliced two dimensional images of a three dimensional seismic cube from 3 different
views. It produces all images of (x,y) dimensions along the z axis, all images of (x,z)
dimensions along the y axis, and all images of (y,z) dimensions along the x axis (See
Figure 77 for an illustration.)

Figure 3.1: Image illustrating slices of x,z dimensions along the y axis

The major drawback with this framework is that it is too time consuming to produce
all the images to black box test if the results are successful. Instead modifications
where made to the methods such that they produce requested BMP images that
are specified as a parameter in the functions. To produce all the images is just a
waste of time because usually one only needs one image in each dimension to see if
the convolution is working successfully. The original algorithm has low performance
because it accesses the disk to read one byte at a time and when producing images
of large dimensional scale this would mean several million disk accesses. Since the
production of images is considered to be outside the scope of this project, because it

26

3.3. 3D GAUSSIAN FILTER IMPLEMENTATION

is not involved in the convolution process, the only modification made is the selection
of single images and no optimization was done to these algorithms.

The framework is also modified to produce three dimensional cubes such that one
can test for several sizes of data, which is crucial in this project given the large
data set requirement. The data produced is similar to a three dimensional chess
board pattern, but follows the format produced by Schlumberger. This is good for
testing because of two aspects: One, it is easy to imagine what is expected of the
results unlike seismic data which is more scattered data, and second it is better to
see the results of a Gaussian filter on sharp edges and transitions (from a dark to a
brighter color). The chess board pattern has sharp transitions in all three dimensions
making it easy to check for correct behavior of the convolution algorithm. Since the
datastructure is similar to that of 3D seismic one can easily interchange later.

To summarize, the framework is mainly used to produce images from bin files located
on the disk and to produce bin files with three dimensional data such that it can be
used in the convolution and filtering algorithm. Both these functionalities have not
been optimized because they are not considered as the main scope of this project,
and are rather tools created to help in the testing and development process. This
means that they are not accounted for in the execution time and benchmark.

3.3 3D Gaussian Filter Implementation

Part of the convolution process is to use a filter mask that will convolute with the
original data. Which mathematical distribution one chooses in the filter generation
does not effect the execution time much since the result is a set of discrete values in
a three dimensional cube, which is only calculated once for the whole execution. In
this project, with the agreement of Schlumberger, a Gaussian filter is chosen for the
implementation. A Gaussian filter is used to blur images and therefore the results
expected on the images to be produced should be a blurry chessboard pattern where
all the sharp edges are now gradients between the light and darker color.

1 _12+y2+z2
G(x,y,2) = me 207 (3.1)

To produce a Gaussian filter one can use a three dimensional Gaussian distribu-
tion and calculate discreet values for each element in the a