
June 2010
Anne Cathrine Elster, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Effects of Compression on
Data Intensive Algorithms

Ahmed Adnan Aqrawi

Problem Description
Seismic 3D data typically exceeds given caches and memory available on modern systems. GPUs
offer a lot of computational power, albeit also have their limits, especially regarding I/O.

In this master thesis project, we will investigate what advantages compression can offer as a
means to bridge the increasing gap between processor speeds and memory and disk speeds by
reducing communication in exchange for compression/decompression computations. In particular,
we will study at least two types of problems, one with overlapping borders, and one without and
see what compression can offer for given 2D and 3D domain sizes, multi-core CPU vs GPU (or a
combination of both), as well as I/O media (e.g. HDD vs SSD).

The goal is to provide a predictive I/O model for several classes of seismic algorithms. This model
will be derived from our empirical studies of both lossy and lossless compression algorithms used
in combination with selected filtering algorithms such as the Hough transform and convoultion.

Assignment given: 26. January 2010
Supervisor: Anne Cathrine Elster, IDI

Abstract

In recent years, the gap between bandwidth and computational throughput
has become a major challenge in high performance computing (HPC). Data
intensive algorithms are particularly affected. by the limitations of I/O band-
width and latency. In this thesis project, data compression is explored so that
fewer bytes need to be read from disk. The computational capabilities of the
GPU are then utilized for faster decompression. Seismic filtering algorithms,
which are known to be very data intensive, are used as tests cases.

In the thesis, both lossless and lossy compression algorithms are considered,.
We have developed, optimized and implemented several compression algo-
rithms for both the CPU and GPU using C, OpenMP and NVIDIA CUDA. A
scheme for utilizing both the CPU and GPU using asynchronous I/O to further
improve performance is also developed. Compression algorithms studied and
optimized include RLE, Huffman encoding, 1D-3D DCT, 1D-3D Fast DCT
AAN algorithm, and the fast LOT. 3D convolution and the Hough transform
filtering algorithms are also developed and optimized.

Lossy compression algorithms using transform encoding are also studied. Using
these transforms for compression include: 1) transformation, 2) quantization
and 3) encoding. Transformation and quantization are shown to be especially
suitable for the GPU because of their parallelizable nature. The encoding step
is shown to be best done on the CPU because of its sequential nature. GPU
and CPU are used in asynchronous co-operation to perform the compression
on seismic data sizes (up to 32GB). Transform coding is lossy, but the errors
we experience are minimally visible and are within acceptable loss given the
type of data (a max. of 0.46% ME and 81 rMSE for our seismic data sets).

HDD disk with 70MB/s transfer rate, and a speedup of 3.3 for a modern
SSD with a 140MB/s transfer rate. Several other results on both the recent
NVIDIA Tesla c1060 GPU and the new NVIDIA Tesla c2050 Fermi-based
GPU, as well as results for using CPU and GPU together using asynchronous
I/O is included. The major bottleneck now is the PCI express bus limitations,
and for files that do not compress well, the I/O bandwidth and latency is still
an issue.

i

ii

Acknowledgement

This thesis, together with the prototype, is the result of a Master thesis project
assigned by the Department of Computer and Information Science at the Nor-
wegian University of Science and Technology.

I would like to thank my supervisors Dr. Anne C. Elster for invaluable support
and feedback throughout the entire thesis. She has been an inspiration with
her great understanding and dedication to the field. Given her generosity and
encouragement all the resource needed for this project where made available. I
would like to thank Dr. Victor Aarre and Mr. Cristian Larsen of Schlumberger
for their support in providing me with new ideas, example source code and a
set of seismic data. I would especially like to thank NVIDIA for sponsoring
our group and HPC-lab, and for making high-end graphics cards such as Tesla
c1060 and Tesla s1070 available. I would also like to give thanks to the entire
HPC group for their support, encouragement and enthusiasm for this project.
A special thanks to Jan Christian Meyer, Thorvald Natvig, Dr. John Ryan
for their support, and a special thanks to my good friend and colleague Holger
Ludvigsen for his help and guidance.

Trondheim, June 2010

Ahmed Adnan Aqrawi

iii

iv

Contents

Abstract i

Acknowledgement iii

Contents v

List of Figures ix

List of Tables xii

1 Introduction 1
1.1 Goals . 3
1.2 Contributions . 3
1.3 Thesis Outline . 4

2 Parallel Computing 7
2.1 Parallel Computing Theory . 7

2.1.1 Amdahl’s Law . 8
2.1.2 Gustafson’s Law . 8
2.1.3 Speed Up Limitations 8
2.1.4 Data Dependencies . 9
2.1.5 Types of Parallelism . 10
2.1.6 Classes of Parallel Computers 10

2.2 OpenMP and Multithreading 11
2.2.1 Main Features . 12
2.2.2 Pros and Cons . 12
2.2.3 Performance expectations 13

2.3 GPU and CPU Architectural Features 13
2.3.1 Main aspects of CPU architecture 14
2.3.2 Main aspects of GPU architecture 15

2.4 CUDA Programming Model . 16

3 Data Compression, Filtering and Seismic Data 19

v

3.1 Previous Work on Compression 19
3.2 Lossless Compression Algorithms 21

3.2.1 Run Length Encoding (RLE) 22
3.2.2 Huffman Encoding . 23
3.2.3 Arithmetic Encoding . 25
3.2.4 Lossless Compression of Floating-Point Data 26

3.3 Lossy Compression Algorithms 27
3.3.1 Compression Using Transforms 28
3.3.2 DCT (Discrete Cosine Transform) 30
3.3.3 Fast DCT: The AAN Algorithm 31
3.3.4 Lapped Orthogonal Transform 31

3.4 Filtering Algorithms . 32
3.4.1 Convolution . 32
3.4.2 Hough Transform . 34

3.5 Seismic Data . 36

4 Compression and Filtering Algorithm Optimizations and Im-
plementations 39
4.1 The File Compression Format 40
4.2 Our Testing Frameworks . 41

4.2.1 Producing Images . 41
4.2.2 Producing Seismic Cubes 42
4.2.3 Synchronous and Asyncronous I/O 43
4.2.4 Benchmarking Framework 43

4.3 Optimizing Lossless Compression Algorithms 44
4.3.1 Optimizing RLE w/ Dictionary lookup 44
4.3.2 Optimizing Huffman Encoding 46

4.4 Optimizing Lossy Compression Algorithms 50
4.4.1 Optimizing the Naive DCT Algorithm 51
4.4.2 Optimizing Fast DCT: The AAN Algorithm 52
4.4.3 Optimizing Fast LOT . 54

4.5 Optimizing Image Processing Algorithms 56
4.5.1 Optimizing 3D Convolution 56
4.5.2 Optimizing Hough Transform 59

4.6 Our AESC Library . 61

5 Predictive Model for Seismic Processing I/O 63
5.1 Synchronous Model . 64
5.2 Asynchronous Model . 65
5.3 Compression Computation and I/O Tradeoffs 66

vi

6 Results, Discussion and Analysis of Benchmarkes 69
6.1 Hardware & Platforms Used for Testing 70
6.2 Data Sets for Tests . 71
6.3 Compression Algorithms Performance and Visual Results 72

6.3.1 Modified RLE Benchmarks 72
6.3.2 Huffman Encoding Benchmarks 75
6.3.3 Naive DCT Benchmarks 78
6.3.4 AAN Implementation Benchmarks 84
6.3.5 LOT Implementation Benchmarks 90

6.4 Image Processing Algorithms Performance and Visual Results . 93
6.4.1 3D Convlution Benchmarks 94
6.4.2 Hough Transform Benchmarks 100

6.5 Effects of Compression on the Seismic Filtering Process 103
6.5.1 I/O speedup . 103
6.5.2 Predicted Model . 107
6.5.3 Seismic Filtering Process Speedup 110

7 Conclusions and Future Work 115
7.1 Conclusions . 115
7.2 Future Work . 117
7.3 Closing Remark . 119

Bibliography and References 121

Appendices 125

A Orthogonal Transform Theory 125
A.1 DCT (Discrete Cosine Transform) 125
A.2 Fast DCT: The AAN Algorithm 127
A.3 Lapped Orthogonal Transform 129

B Annotated Bibliography 135

C Benchmarking Tables 141

D Source Code 153
D.1 RLE . 153
D.2 Huffman . 155
D.3 Naive DCT . 158
D.4 Fast DCT AAN . 161
D.5 Fast LOT . 165
D.6 Hough Transform . 170

vii

D.7 Convolution . 170

E AESC Library Overview 173

F Short Paper for PARA 2010 175

G Poster ISC 2010 181

viii

List of Figures

1.1 Graph from Hennessey and Patterson [21] portraying the in-
creasing gap between memory bandwidth and computational
throughput, with permission from David Patterson [34] 1

2.1 The Fork and Join of threads with OpenMP 1 11
2.2 Language extentions of OpenMP 2 12
2.3 CPU and GPU transistor usage and layout from [23], with per-

mission from NVIDIA . 13
2.4 SIMD and SPMD from [23], with permission from NVIDIA . . . 14
2.5 CUDA architecture from [23], with permission from NVIDIA . . 17
2.6 CUDA memory hierarchy and the GPU architecture from [23],

with permission NVIDIA . 18

3.1 Huffman compression flow graph 23
3.2 Huffman compression with illustrated steps 24
3.3 Arithmetic compression flow graph 26
3.4 The process of compressing floats 27
3.5 The transformcoding process, inspired by [27] 29
3.6 2D Gaussian distribution graph drawn in online 3D grapher 1 . 33
3.7 Example of two dimensional Gaussian Filter Mask with discrete

values . 34
3.8 Three point represented in the (x,y)- space and (r,θ)-space, ob-

tained from 2 . 35
3.9 Byte stream structure of the SEG-Y Format with N textual

headers and N traces and trace records. Image inspired from [41] 36
3.10 Seismic data example made available by Sclumberger from [1] . 37

4.1 Illustration of our compression format of the RLE algorithm . . 40
4.2 Image illustrating slices of x,z dimensions along the y axis . . . 42
4.3 Graphs of data distribution of seismic data given values of length

2-, 4-, 8-, and 16-bit . 47
4.4 CUDA profiler snapshot of the LOT execution 55
4.5 NVIDIA CUDA profiler results for 3D convolution 59

ix

4.6 CUDA profiler snapshot of the Hough transform execution . . . 61

5.1 Asynchronous I/O Pipeline . 65
5.2 Showing advantages in execution time for combinations of fast/s-

low compression, high and low compression rates and asyn-
chronous compression . 67

6.1 Seismic BMP images generated by our framework, based on the
Westcam raw data set [1] . 71

6.2 Execution time results for RLE algorithm 73
6.3 Execution time results for Huffman encoding algorithm 76
6.4 Before and after images of the transform encoding process using

the naive DCT algorithm, generated by our framework 79
6.5 Execution time results for naive DCT 1D algorithm 80
6.6 Execution time results for naive DCT 2D algorithm 81
6.7 Execution time results for AAN DCT 1D algorithm 85
6.8 Execution time results for AAN DCT 2D algorithm 86
6.9 Execution time results for AAN DCT 3D algorithm 86
6.10 CUDA profiler snapshot of the DCT AAN 1D execution 87
6.11 CUDA profiler snapshot of the DCT AAN 2D execution 87
6.12 CUDA profiler snapshot of the DCT AAN 3D execution 87
6.13 Before and after images of the transform encoding process using

the AAN DCT algorithm in several dimensions, generated by
our framework . 88

6.14 Execution time results for LOT algorithm 91
6.15 Seismic data after transform coding LOT and AAN in 1D, gen-

erated by our framework . 92
6.16 Execution time results for 3D convolution algorithm with filter

size 133 . 94
6.17 Blur using 3D convolution with filter size 133, generated by our

framework . 96
6.18 Execution time results for Hough transform algorithm 100
6.19 Visual results of the Hough transform, generated by our framework101
6.20 Execution time results for synchronous I/O 104
6.21 Execution time results for Asynchronous I/O 105
6.22 Predicted execution time for synchronous model 107
6.23 Predicted execution time for asynchronous model 108
6.24 Effects of compression formats on seismic process for the seimic

filtering algorithms 3D convolution and Hough transform 111
6.25 Speedups of the seismic process given a seismic filtering algo-

rithm for compression format 3 112

x

A.1 Flowgraph of the AAN algorithm based on Pennebaker [35] and
Arai et.al. [5] design, and obtained from [27], legends were
added to simplify understanding 128

A.2 Flowgraph of the LOT algorithm based on Malvar and Staelin
[30] design, and obtained with permission from [27], legends
were added to simplify understanding 131

A.3 Flowgraph showing the Z matrix based on Malvar and Staelin
[30] design, and obtained with permission from [27], see legends
from Figure A.2 to simplify understanding 132

A.4 Flowgraph showing the Y rotaion matrix based on Malvar and
Staelin [30] design, and obtained with permission from [27], see
legends from Figure A.2 to simplify understanding 132

A.5 Flowgraph showing the larger process of the transform based on
Malvar and Staelin [30] design, and obtained with permission
from [27], see legends from Figure A.2 to simplify understanding 133

xi

List of Tables

2.1 Architectural differnce between NVIDIA CUDA architectures
1.3 and 2.0 (Fermi) as seen on www.nvidia.com 16

2.2 CUDA Memory Hierarchy, with data from [23] 18

4.1 Intel Vtune results for RLE . 45
4.2 calculated compression rates from study of data of 2GB 46
4.3 Intel Vtune results for Huffman encoding 49
4.4 Intel Vtune results for Naive DCT transform encoding 52
4.5 Intel Vtune results for AAN DCT transform encoding 53
4.6 Intel Vtune results for 3D Convolution 58
4.7 Intel Vtune results for Hough Transform 60

6.1 Table showing the system components used in machine 1 70
6.2 Table showing the system components used in machine 2 70

xii

CHAPTER 1

Introduction

One of the major challanges on modern computer platforms is overcomming
the memory and I/O bandwidth and latency. In recent years, the gap between
bandwidth and computational throughput has grown even larger causing a
further challange. As stated by Hennessey and patterson [21] current trends
show that the gap will only wideb in the furutre as illustrated in Figure 1.1.
This is especially the case for data intensive algorithms.

Figure 1.1: Graph from Hennessey and Patterson [21] portraying the increasing
gap between memory bandwidth and computational throughput, with permission

from David Patterson [34]

There are both hardware and software alternatives for optimizing the I/O
bandwidth. One can try changing the hardware platform one in running on
such as using SSD (solid state disk) rather than a HDD (Hard disk drive), as
it performs at a much higher bandwidth. However, even this alternative has

1

its limitations. For this reason we are looking into compressing the data so
that less data needs to be transfered from disk, and by using the computa-
tional power of the systen to accelerate the I/O process. As we have already
discovered in our previous work, and as it has been shown in several other
cases, the computational power of the GPU is superior to the CPU in some
cases. We are attempting to use these computational capabilities of the GPU
for compression both as an accelerator and a supporter for the CPU during
computations.

The case of using compression to improve I/O time has some unique proper-
ties. In the usual compression scenario, one is aiming for high compression
rates and neglect the execution time cost to achieve this compression, which is
typical of effective lossless compression methods such as LZMW [40] or lossy
methods such as the GenLOT [12] with transform coding [35]. However, when
optimizing for I/O, we not only need efficient compression rates, but also fast
compression algorithms. Lossless compression is when one does not lose any
data during compressing, which is optimal in cases where one is concerned
about losing data. In lossy compression on the other hand, some data is lost
during compresion. In seismic filtering, it is acceptable to lose some data,
as long as one maintains two decimal accuracy. In this thesis, both lossless
and lossy compression algorithms are considered. Our focus will be on simpler
faster lossless algorithms and transform coding because of its proven usefulness
on seismic data [14].

The exploration process in the oil industry is heavily dependent upon Seis-
mic imaging, which is considered as very data intensive. Seismic imaging is
a method of exploring the layers of earth by using signal technology, which
like ultrasound imaging includes recording waves, reconstruction, filtering and
analysis. It is the common case that seismic data is recorded, reconstructed
and then stored for later filtering and analysis. In this thesis, we will focus on
the data after that it is reconstructed. This part of the seismic process that
we are focusing on is termed seismic filtering. The filtering process is built
upon two parts: 1) the transfer of data to a computation platform and 2) the
actual filtering. In our previous work [4], the use of the GPU was explored
on a typical filtering algorithm, namely 3D convolution. these results showed
that to being with the transfer time consumed 2% of the execution time. As
filtering was optimized by utilizing the computations capabilities of the GPU,
the transfer time was 90% of execution time, making it the biggest limiting
factor for further optimization. Another aspect worth noting is that this is not
only a limiting factor for our work, but for all data intensive algorithms such
as seismic processing.

2

CHAPTER 1. INTRODUCTION

1.1 Goals

Here are our Three main goals with this work:

1. To explore ways of using data compression to overcome memory and I/O
bandwidth limitations with the focus on large sets of seismic data

2. To model this communication pattern mathematically such that it is
possible to estimate execution time, and validate it by comparing results
with empirical data from our implementations.

3. To develope, optimize and implement filtering algorithms and note the
effects that compression has on the seismic process.

1.2 Contributions

The contributions of this thesis include:

• Optimized and modified implementations of several compression algo-
rithms on both modern CPU and GPU including RLE (rRun length en-
coding), Huffman encoding, Transform encoding using DCT, AAN and
LOT transforms.

• Optimized implementations of seismic algorithms, such as 3D convolu-
tion and Hough transform

• Introducing a method of compression where the GPU and CPU work as
co-processors in order to achieve even better performance than could be
achieved using either one on their own

• Methods to accelerate the I/O bandwidth for large seismic data using
both CPU and GPU in combination with lossy and lossless compression
algorithms

• A predictive model for the seismic process such that one can estimate
execution time for different architectures

• Aqrawi and Elster Seismic Compression Library (The AESC library), a
library of optimized compression algorithms for large seismic data sets

3

1.3. THESIS OUTLINE

1.3 Thesis Outline

This thesis will be structured as follows:

Chapter 2: Relevant background material is highlighted and explained al-
lowing the reader has to understand the work done in this thesis. Topics such
as Parallel Computing ang GPU programming shall be addressed.

Chapter 3: In this chapter, an introduction of previous work within Data
Compression is introduced and an explanation of the workings of the differ-
ent compression algorithms to be implemented, in this thesis, are presented.
We also have a closer look at seismc data and algorith,s that have also been
addressed in this thesis.

Chapter 4: Describes how the implementations in this thesis are performed,
and why certain implementation decisions were made. Here one will also find
the thoughts behind some optimizations and what the expectations are as to
how they will ultimately perform.

Chapter 5: Describes a predictive model for execution time of given seismic
algorithms with a focus on compression. The purpose of this chapter is to
intorduce the reader to the concept of faster application I/O given compression
of the data.

Chapter 6: Results regarding I/O tests are presented and discussed. The
main focus here is on comparing the implementations and presenting speedup
and computation results. An in depth analysis of the results and algorith-
mic traits are also presented, including a validation of the predictive model
presented in the previous chapter. There will also be a discussion regarding
error terms and visual effects given when different compression algorithms are
employed.

Chapter 7: Here the conclusion of the work performed are presented. There
will also be suggested future work within the field.

Appendix A: consists of a more indepth look at the definitions of the orthog-
onal transforms used in this thesis work. This has been moved to the appendix
to avoid unnecessary reading for those familiar with this work. For those not
familiar with orthogonal transforms such as the DCT (Discrete cosine trans-
form) and LOT (Lapped orthogonal transform), we recommend you read this
before our discussion and analysis chapter (Chapter 6).

Appendix B: To give more insight into some of the researched material, we
have included an Annotated Bibliography

4

CHAPTER 1. INTRODUCTION

Appendix C: Here we have included Benchmark tables of our algorithms,
the values here are then selectively presented in graphs in Chapter 6 when our
results are discussed.

Appendix D: Here is some example source code from our CUDA and C
implementations, since in Chaper 4 we speak mainly of optimizations and
show pseudo code. This appendix functions as a lookup for those interested in
the actual code.

Appendix E: Here we have an overview of the functions and compression
methods available in our AESC compression library that was implemented as
part of this thesis for further use in the field.

Appendix F: This an extended abstract/ short paper that lead to a talk at
the PARA 2010 conference. It functions as a good overview for part of the
reaserch done in this thesis.

Appendix G: Contains a poster created for HPC-LABs stand at ISC 2010
(International super computing) conference in Germany this year. It functions
also as a good overview of some of the reaserch done in this thesis.

5

1.3. THESIS OUTLINE

6

CHAPTER 2

Parallel Computing

This chapter focuses on introducing some of the main concepts in parallel
computing that the reader may need in order to understand our work. The
following sections summerize the main references read. Section 2.1-2.4 gives
a general overview of parallel programming, introducing main theories within
parallel programming that will be used in the discussion of the thesis. Here
one can also find introductions to OpenMP and the concepts of multithreading
and explainations of the main apects of modern CPU and GPU architectures,
and NVIDIA CUDA, are also included

2.1 Parallel Computing Theory

In parallel computing, many calculations are performed simultaneously. This
depends on dividing a larger problem into smaller ones such that each part
can be calculated concurrently. There are several different forms of parallel
computing: bit-level, instruction level, data parallelism, and task parallelism.
Parallel computing has been around for quite a while now, but has lately
been given more attention since it is no longer possible to continue to increase
the clock speed of the processors at the same rate as before due limiting the
power and frequency walls. That is, much higher clock speeds would both
consume too much power and become too hot to cool as the power needed
grows exponentially with regards to frequency. This ultimately gave re-birth
to the multi-core CPUs and created a paradigm shift in computer architecture.

7

2.1. PARALLEL COMPUTING THEORY

2.1.1 Amdahl’s Law

When generally speaking of how effective a parallel algorithm is, one usually
mentions the speedup factor (how much faster a parallel algorithm runs com-
pared to a sequential one). The potential speedup of an algorithm on a parallel
platform can be predicted with the help of Amdahl’s law [48]. This law states
that all parallel computations are limited with a sequential part of their code
and thus their speed up is limited by this part as well. Amdahl’s law is stated
as in Equation 2.1 [48]. S is the speedup, and P is the portion of the code that
is parallelizable and is a value lesser than 1 and greater or equal to zero.

S =
1

1− P (2.1)

2.1.2 Gustafson’s Law

Another law that is an extension of Amdahl’s law in computer science is
Gustafson’s law 2.2 [48]. Amdahl has made the assumptions that the se-
quential part of the program is independent from amount of processors one
has while Gustafson believes that this is not the case. Amdahl assumes that
there is a fixed problem size, while Gustafson looks at fixed time. Here S is the
speedup, P is the number of processors and α is the non-parallelizable part of
the program.

S(P) = P − α(P − 1) (2.2)

2.1.3 Speed Up Limitations

Ideally one should be able to gain linear speedup, i.e. one would increase the
speedup in direct proportion to the amount of processing units available. For
example if one has two processors then it should half the overall execution time
of a program since the workload is divided into two. However, this is rarely
the case since there are several factors that limit speedup when programming
in parallel. One issue is that not all problems can be parallelized, they might
have some sequential parts. Here one processor is executing the sequential
part while the other one would be idle. This results in sub-linear speedup.
Another fact is that not all algorithms can be executed in parallel without
extra computational cost. Some implementations might have this extra cost

8

CHAPTER 2. PARALLEL COMPUTING

in the parallel version (such as thread and process creation) and this may
result in sub linear speedup. However, one might get superlinear speedup due
to access to more cache and RAM.

Other common speedup limitations are I/O and communication time between
processors. In some systems not all processors are capable of reading and
writing to I/O units. Often processes also have to communicate with each
other like in the case of border exchanging. This will result in time spent
communicating which is not present in the sequential algorithm. These effects
become more evident when dealing with large datasets since a lot of time may
be spent reading and writing data to disk once communicating between data
processing units.

2.1.4 Data Dependencies

The issues described above are commonly reffered to as data dependencies,
and are a common issue in parallel programming and should be understood to
perform good parallel implementations of algorithms. A formal description of
dependencies in applications are given by the Bernstein conditions [48]. These
describe when two program fragments, denoted Pi and Pj, are independent
and can be executed in parallel. For Pi let Ii be the input and Oi be the
output for the program. For Pj the input will be Ij and output Oj. It can
be said that Pi and Pj are independent if they satisfy the following conditions
2.3, 2.4 and 2.5 (from [48]).

Ij ∩Oi = Ø (2.3)

Ii ∩Oj = Ø (2.4)

Oi ∩Oj = Ø (2.5)

The fact that no program can run faster than its longest chain of dependencies
will prevent a lot of speedup, this is termed the critical path. This is because
some calculations normally depend on other calculations and if they are not
completed then one cannot proceed to the next step i.e creating a delay. How-
ever, most algorithms do not consist of a long chain of dependent calculations
and can therefore run fairly concurrently.

9

2.1. PARALLEL COMPUTING THEORY

2.1.5 Types of Parallelism

As mentioned earlier there are several types of parallelism including instruction
level, data and task.

Instruction-Level Parallelism

Computer programs are in essence a sequence of instructions. Some instruc-
tions have dependencies, such as an instruction should be performed before
another can use its results and so on. The instructions of a program can
be collected into groups and executed in parallel without effecting the results
of the program. This is often seen in hardware pipelining architectures. In
addition to instruction level parallelism from pipelining, some processors can
execute more than one instruction at a time. These are known as super scalar
processors. Such instructions can only be grouped if there are no data depen-
dencies between them.

Data Parallelism

In data parallelism one is focusing on distributing work on several computing
nodes, and this is often inherent in program loops. In loops one is often
performing similar functions or calculations on a large data set and if these
are independent of previous states one is able to calculate these concurrently.
Many scientific and engineering applications have data parallelism, it is also
present in GPU applications.

Task Parallelism

In contrast to data parallelism, task parallelism is where one can perform
different computations on the same or different data. a limitation of task
parallelism is that it usually does not scale with the size of the problem.

2.1.6 Classes of Parallel Computers

There are many classes of parallel computers including: multi-core computing,
symmetric multiprocessing, distributed memory computing, cluster comput-
ing, massive parallel processing. There are also specialized accelerators such as

10

CHAPTER 2. PARALLEL COMPUTING

FPGA (field programmable gate arrays), GPGPU (general purpose graphical
processing unit), application specific integrated circuits and vector processors.
This work will be focusing on multi-core CPUs and GPGPU because these two
are representing the two most prevailent architecturesand are also set as the
scope of this thesis.

2.2 OpenMP and Multithreading

OpenMP [32] is a standard that hides the burden of multi-threading. Multi-
threading is when one parallelizes code with the use of threads. Here a master
thread running the program creates slave threads, by forking threads, and the
task is divided between them. The threads run concurrently with the runtime
environment allocating threads to different processors. The sections of code
that are to run in parallel are marked with a pre-processor directive which
will cause the forming of threads before the section is executed. Each thread
will be given an ID, where the master thread has an ID of ”0”. After the
execution of the parallel code the threads are then joined to the master thread
that continues onward with the program. This is shown in Figure 2.1

Figure 2.1: The Fork and Join of threads with OpenMP 1

By default, each thread executes independently from the other hence giving
good parallelism results. There are possibilities for work sharing constructs
to divide the tasks between the threads such that each thread executes its
allocated part of the work. Both task parallelism and data parallelism can be
done using OpenMP in this way.

1http://en.wikipedia.org/wiki/File:Fork join.svg, accessed 2009-09-11. Available to all
under the license of creative commons

11

2.2. OPENMP AND MULTITHREADING

2.2.1 Main Features

The main OpenMP elements include thread construction, work sharing con-
structs, data environment management, synchronization of threads, user level
runtime routines and environment variables. Thread creation happens when a
thread is forked from a master thread, this is done by using the compiler di-
rective ”# pragma omp parallel”. For a broad overview of OpenMP language
extentions see Figure 2.2 and [32].

Figure 2.2: Language extentions of OpenMP 2

2.2.2 Pros and Cons

One of the greatest strengths of OpenMP is that it is simple to use, and
that one does not have to deal with message passing. The shared memory
architecture automatically handles data layout and decomposition. The use of
incremental parallelism results in no dramatic changes to ones code. Since one
does not have to modify ones serial code much when using OpenMP makes
it less likely to cause errors. OpenMP code can also be compiled for both
serial and parallel binary executables where in the serial compiler recognizes
OpenMP syntax as comments. This results in that it will compile in both
cases.

OpenMP is a great tool, but it also has its limitations. Such that it does
not have reliable error handling. The scalability of an OpenMP program is
bound by the memory architecture on which the application runs. It only runs
on shared memory multiprocessor platforms. It also requires a compiler that
supports OpenMP.

2http://en.wikipedia.org/wiki/File:OpenMP language extensions.svg, accessed 2009-
09-11. Available to all since the author has released it into public domain

12

CHAPTER 2. PARALLEL COMPUTING

Figure 2.3: CPU and GPU transistor usage and layout from [23], with permission
from NVIDIA

2.2.3 Performance expectations

One could expect that running code on n cores would result in n times the
speedup in OpenMP, but this is not the case because OpenMP is also affected
by the common problems that apply to parallel computing generally. Parts of
the code in an OpenMP program run on only the master process resulting that
the speedup theoretical upper limit is limited by Amdahl’s law, in that parts
of the code are sequential. Another aspect is that the memory bandwidth
also limits speedup since in shared memory often the same path is used for all
threads to get data, and so they must be interleaved. Other aspects resulting
in overhead are synchronization and load balancing between all the threads.

2.3 GPU and CPU Architectural Features

The GPU is a processor dedicated to rendering graphics and functions as an
accelerator such that it offloads the CPU when processing graphical data. The
graphical processors architecture has mainly focused on SIMD instructions.
Such that it can run several similar instructions simultaneously on several
threads. Recently these graphical accelerators have become of interest in the
field of high performance computing (HPC) [44] [33]. Driven by the gaming
industry and their never ending demands for more realistic computer graphics,
the GPU has evolved from a primitive processor only able to preform restricted
graphics rendering operations to being a programmable processor with huge
performance capabilities. The theoretical floating-point processing power of
the graphical processor has greatly exceeded that of a CPU.

13

2.3. GPU AND CPU ARCHITECTURAL FEATURES

2.3.1 Main aspects of CPU architecture

A multi-core processor is a processor with several execution units, also known
as cores. This is different from a super-scalar processor in the fact that super-
scalar processors issue multiple instructions per cycle from multiple instruction
streams. Each core in a multi core processor can be super scalar. An interesting
attribute with these multi-core processors is that they can perform simultane-
ous multi-threading. This means that while one execution unit is performing
calculations on multiple threads and a thread is idle, another execution unit
can do calculations on the idle thread.

The modern GPU should be viewed as an accelerator, and it is therefore im-
portant to mention that it is intended to be used in cooperation with a CPU. It
is merely an addition and not a substitute. The CPU has different capabilities
and as such is a more flexible processing unit. It is designed to maximize the
performance of a single thread of sequential instructions. The CPU is able to
perform instruction level parallelism, and as such it can optimize its perfor-
mance by executing several different instructions simultaneously (SPMD). It
also supports sophisticated flow control that allows it to take advantage of the
instruction level parallelism (See Figure 2.4). Another interesting aspect of
the CPU is the use of many transistors to reduce memory latency with the use
of caches, see Figure 2.3. This is important in the combination of flow control
and instruction level parallelism such that one does not have to access main
memory every time one changes the instruction performed. Optimize caching
and memory access is very important when programming on the CPU in order
to obtain maximum performance.

Figure 2.4: SIMD and SPMD from [23], with permission from NVIDIA

14

CHAPTER 2. PARALLEL COMPUTING

Recently CPUs have been expanding with parallelism and are now available
with several cores. In this thesis, a Quad-core processor is used, meaning that
there are 4 cores in the CPU that can perform calculations. The special feature
here is the way in which the caches are used. Each core has a L1 and L2 cache,
and they share a L3 cache. Again one sees that the focus is on memory latency
and caching of data. This also introduces more advancd scheduling and flow
control units, given that the different cores must co-operate and share data.

2.3.2 Main aspects of GPU architecture

The GPU is different from CPUs in that it focuses the use of the majority of
its transistors for data processing and less on cache and flow control. Since
it is mainly targeted for use in image processing, one tends to perform simi-
lar operation on all pixels to be displayed. Pixels are independent from one
another and so they can be processed separately, which explains the use of
SIMD architecture. The main differences in the GPU and CPU is the use of
memory and the access patterns used to access them. On the GPU, memory
is accessed coherently in the sense that when one pixel reads or writes a value
to memory the next/neighboring pixel will do so as well in a few cycles. This
means that by arranging the memory correctly one can hide the time of mem-
ory access with computations. Because of this simple access pattern, the need
of a complex flow control disappears resulting in that more transistors can be
used for data processing. This is of course both an advantage for tasks that
are parallelizable, but it is also limiting for tasks that demand instruction level
parallelism or a lot of non coherent memory access (e.g. tasks that have a lot
of branching).

The modern GPU is a mixture of programmable and mixed-functions units,
and all programmable units in the graphics pipeline now share a single pro-
grammable hardware unit. GPUs differentiate themselves from the CPU in
that they focus on high throughput by using of many processors with low
frequency. This also makes the GPU very eficient with regards to energy
used (Perfomance per watt). Quite often in scientific and multimedia applica-
tion one is to preform similar operations on many data. The GPU supports a
tremendous amount of threads that execute similar operations in parallel. The
combination of low cost, high performance and programmability of the recent
GPUs make them an attractive approach in an HPC context.

Since the GPU is at first and foremost a graphics rendering hardware, it is
natural that the first attempts to program on it used the graphics API, such

15

2.4. CUDA PROGRAMMING MODEL

as Cg, which introduced challenges since the programmer had to familiarize
onesself with the API and the API also introduces overhead in communication
with the GPU. The interest in being able to program on the GPU in a non
graphical context have lead to the development of several programming plat-
forms that overcome the delays of the graphics API and give the programmer
more control. Examples of recent platforms are OpenCL, CUDA, Brook for
GPU, etc. In this thesis, we will be focusing on the use of the Compute Unified
Device Architecture (CUDA), a programming model for GPGPU developed by
NVIDIA [23].

The newest GPU architecture recently released by NVIDIA for scientific pro-
gramming is the Fermi architecture. The differences between this and the older
architectures is outlined in Table 2.1. This new architecture is even used in
the second fastest supercoputer in the world, where the Tesla c2050 model is
used (we also use this in our tests), as shown on www.top500.org the official
site for ranking.

Table 2.1: Architectural differnce between NVIDIA CUDA architectures 1.3 and
2.0 (Fermi) as seen on www.nvidia.com

Specification Tesla c1060 Tesla c2050 (Fermi)
CUDA Cores 240 512

DRAM 4GB DDR3 3GB DDR5
Memory Bandwidth 102 GB/s 144 GB/s

Data Cache NO YES
ECC NO YES

System Interface PCI Express x16 PCI Express x16

2.4 CUDA Programming Model

CUDA (Compute Unified Device Architecture) is a parallel programming ar-
chitecture and model, which includes a C complier plus support for OpenCL,
DirectCompute and others as shown in Figure 2.5. It is designed such that it
naively supports multiple computational interfaces such as standard languages
and APIs [23]. The main intention of this programming model is to simplify
programming on the GPU. When using CUDA to program one will avoid the
overhead of programming using a graphical API such as Cg. Another feature
worth mentioning here is how CUDA enables the programmer to directly pro-
gram to the GPUs components such as direct memory access, using the shared

16

CHAPTER 2. PARALLEL COMPUTING

memory and specifically manipulating threads.

Figure 2.5: CUDA architecture from [23], with permission from NVIDIA

CUDA may be used as a C extension, so that those familiar with C program-
ming can easily use it to accelerate their code using the power of the GPU. The
NVIDIA CUDA programming model consists of a ”host” that is a traditional
CPU, and one or more compute devices that are massively data-parallel co-
processors (GPUs). Each device is equipped with a large number of arithmetic
execution units that has its own local memory, and runs multiple threads in
parallel.

To invoke calculations on the GPU, one has to perform a kernel launch, which
is a function deciding what each thread on the GPU is to perform. The GPU
has a specific architecture of grids that are divided into blocks that contain
the threads, see Figure 2.6. The grid has two dimensions and can contain up
to 65536 blocks in each dimension. While each block contains threads in three
dimensions, and can contain up to 512 threads in two dimensions and 64 in
the third. When executing a kernel one specifies the dimensions of the grid
and blocks to specify how many threads will be executing the kernel, where
all blocks are the same size.

Which as mentioned, the GPU has its own DRAM and that this is used in
communicating with the host system. To accelerate calculations within the
GPU itself, there are several other layers of memory such as constant, shared
and texture. Table 2.2 shows the relationship between these. Here the focus is
on showing the different memory options available, and to map their attributes.
For more details regarding CUDA and how to program on it read the NVIDIA
programming guide [23]

17

2.4. CUDA PROGRAMMING MODEL

Figure 2.6: CUDA memory hierarchy and the GPU architecture from [23], with
permission NVIDIA

Table 2.2: CUDA Memory Hierarchy, with data from [23]

Memory Location Cached Access Scope in Architecture
Register On-chip No Read/Write Single thread

Local Off-chip No Read/Write Single thread
Shared On-chip No Read/Write Threads in a Block
Global On-chip No Read/Write All

Constant On-chip Yes Read All
Texture On-chip Yes Read All

18

CHAPTER 3

Data Compression, Filtering and Seismic Data

In this thesis, we look at accelerating communication between the disk and
computation units through the use of compression. Data compression algo-
rithms are usually categorized into two, one being lossless compression and
the other lossy compression. Lossless compression is the case where the com-
pressed file does not lose any of the information of the original data. This is
often used in compression standards such as zip, rar, gzip and others. Lossy
on the other hand is compression where a loss of data is acceptable. This is
often seen in image and sound compression where losing some data does not
really effect the final outcome that much. Image compression standards such
as JPEG and sound file formats such as MP3 use lossy compression.

In section 3.1 maps some important papers and findings in compression and
also the literature that have been used to understand the fundamentals of data
compression. Section 3.2, looks at several lossless algorithms. In Chapter 4, we
adapt and optimize these algorithms specifically to seismic data. Section 3.3
discusses several lossy compression algorithms. Section 3.4, is an introduction
to filtering algorithms used in the seismic process, mainly 3D convolution and
the Hough transform. In Section 3.5, we inroduce the structure of seismic data
and the SEG-Y format is introduced.

3.1 Previous Work on Compression

Data compression is a well explored field, and many have contributed to it.
Mainly there are two categories for data compression, lossless and lossy com-
pression [24]. Lossless compression focuses on expressing larger word lengths
with fewer bits. This can be done by simple methods that do not take into

19

3.1. PREVIOUS WORK ON COMPRESSION

account the type of data to be compressed, or more complex algorithms that
analyze the data first. Fowler and Yaglet [18] show how lossless compression
methods such as arithmetic encoding and Huffman encoding, that are part of
the category of entropy encoding, can be used for volume data.

Entropy encoding is when one looks at the nature of the data, like how noisy
the data is, before encoding, and try to find patterns that help in the process.
An interesting method that has drawn some attention recently, is direct com-
pression of scientific floating point data, as shown by Ratana-Worabhan et al.
[37]. Here one uses adaptive algorithms that predict the next values given the
nature of the previous values. These methods are good at giving good com-
pression ratios, but are usually time consuming. This method has been tried
on seismic data with good results by Xie and Qin [50]. They discovered that
they are able to gain better compression rates with this method than with
LZ compression methods, that are discussed by Salomon [40]. LZ adaptive
methods are known for their good lossless compression rates are are per today
used in general compression formats such as WinZip. The difference between
the two is in the prediction algorithm for th enext value and how they adapt.

Lossy methods gain greater compression rates by sacrificing some accuracy
in the data. This is usually best done using transform coding, where one
transforms the data to another domain such that it can be better compressed.
These methods are used in many media formats that depend on compression of
streams such as Mp3, JPEG and MPEG. Some of the first research done here
is by Ahmed et al. [2], where they discuss using a discrete cosine transform
(DCT) in signal processing. Watson [46], further shows that this transform
can be used in compression, and introduced a method to do so. This method
later on became really popular because of its efficiency and compact nature in
the frequency domain, that faster DCT algorithms were developed.

One of the most popular algorithms is the AAN algorithm produces by Arai
et al. [5]. This method is buildt upon the FFT and is therefore efficient. It is
used in the JPEG format, as shown by Pennebaker [35]. Despite the efficient
nature of the DCT, it has its limitations. The major known limitation is the
blocking effect for well compressed data. Malvar et al. [30] [29], discuss using
the lapped orthogonal transform (LOT) for compression to avoid the blocking
effects in images. The LOT proved to give fewer errors for greater compression,
but comes at a price of more computations when compared to the DCT. A
fast LOT scheme is also introduced by Malvar et al. [29].

The LOT has gained some popularity in signal data compression, and its fun-
damentals are used to further develop algorithms like the GenLOT, introduced

20

CHAPTER 3. DATA COMPRESSION, FILTERING AND SEISMIC DATA

by Queiroz et al. [12]. Here one uses the fundamentals of overlapping basis
functions to overlap them not only with neighboring blocks, but with the nth
neighboring blocks. This has proven to function well for compression, but
lacks a fast implementation to make the process efficient enough to be used,
and the algorithm requires a lot of computation when compared to the DCT
and LOT. Nevertheless, Duval et al. [14] show how this can be optimized
for seismic data. Generally all methods used to compress signal data are well
applicable for seismic because it is also signal data.

In this thesis, the above mentioned mentioned lossless and lossy compression
methods are explored for the purpose of accelerating I/O bandwidth and la-
tency. We realize that some of these methods are time consuming to perform
and expect them not to be suitable for I/O acceleration even if they result in
good compression rates. Our attempt at accelerating these algorithms involves
using the GPU and its computational capabilities, and exploring a scheme of
CPU and GPU cooperation for efficient computations and compression. We
are further developing these algorithms to specifically compress seismic data.

3.2 Lossless Compression Algorithms

Lossless compression is performed on a bit-wise level, where one is aiming at
finding patterns in the input data that can be expressed in fewer bits than
the original data. There are many categories and techniques to use for this
task. The most common are RLE (run length encoding), Huffman encoding,
dictionary lookup, LZ, and arithmetic encoding. Compression programs and
standards such as zip and gzip usually use a combination. These methods are
even present when using lossy compression.

In this section, we will give a description of common lossless compression
method that are used in this thesis. Section 3.2.1 will introduce run length
encoding and give some insight in its pros, cons, and implementation issues.
In section 3.2.2, a description of the Huffman encoding algorithm is explained
with emphais of the different steps one must take and how they are preformed.
Section 3.2.3 gives a brief introduction to arihmetic encoding. While section
3.2.4 focuses on floating point data compression.

21

3.2. LOSSLESS COMPRESSION ALGORITHMS

3.2.1 Run Length Encoding (RLE)

RLE is one of the simplest forms of compression, which works well on data
with little noise [24][40]. And is often used not only in lossless compression,
but also in lossy compression algorithms. Because of its simple nature it is very
time efficient, but its major weakness is that its compression ratio is highly
dependent on the input data.

RLE compresses data by iterating over all the elements and expressing the
data as a collection of tuples of counters and values that expresses how many
occurrences of the value are present in one sequence. For example, if we were to
compress the string ”AAABBAAACCCCBBB” we would get the compressed
string ”3A2B3A4C3B”. Here one can see that the string of 15 bytes can be
expressed as a string of 10 bytes. This shows that RLE is a comparison of n-1
elements in an array of size n, which explains its efficient execution time.

However, as mentioned earlier RLE has a weakness of its reliability on the
nature of the input data. In some cases, it can even give a larger compressed
string than the original. For example if the input string is ”ABDBAC”, the
compressed string would be ”1A1B1D1B1A1C”, which is twice as large as the
original. This is of course an extreme case, but it shows the unpredictable
nature of the algorithm, especially for noisy data. RLE is in the same way
very efficient in an opposite scenario. If the input data is very similar then the
compression rate is better than other algorithms. As an example if the input
string is ”AAAAAAAAAA”, the compressed string would be ”10A”, which is
one fifth the size of the original.

When it comes to implementing RLE, it is clear that it has a sequential nature.
But, it can be easily parallelized with a little overhead in edge cases. The
parallelization can be done such that each thread starts at a different position
in the input data and start comparing values. The overhead is to compare the
values where one threads ends and another begins to see if they are similar,
and to merge the result arras of each thread. If they are so, then they can be
merged and the rest of the data can be shifted. Or if one is willing to sacrifice
some compression in the edge cases to increase performance, one does not need
to merge the values because it will be decompressed to the original data.

To decompress RLE encoded data one simply reads the tuples one by one
and produces the value in the tuple the amount of times of the counter. For
example, a tuple of ”3A” is then decompressed into ”AAA” actual three A
characters.

Seismic data is generally regarded as noisy, and this might prove to be an

22

CHAPTER 3. DATA COMPRESSION, FILTERING AND SEISMIC DATA

issue for RLE. However, since seismic data is expressed as a collection of floats
and is noisy, but may look at fewer bits at a time, which would give more
possibilities for compression.

3.2.2 Huffman Encoding

Both Huffman and arithmetic encoding are subsets of entropy encoding [24][40],
which focuses on using fewer bits on frequent occuring values in the input data,
and more on infrequent values. This way it is able to compress the input data
by switching all the values with their new compressed values. The first part
of Huffman encoding is to study the input data and create frequency tables
to create a huffman tree. The Huffman tree is denoting which bit value is
given to a certain value given its frequency. This means that the second part
is to actually build the tree. The final part of the algorithm is to use the tree
to lookup and exchange values in the input data with corresponding values
from the tree. Already here one can see that huffman encoding can be com-
putationally more demanding than RLE, but since the input data is analyzed
before the compression it is always able to give a positive compression rate.
See Figure 3.1 for illustrated flowgraph of the compression process.

Figure 3.1: Huffman compression flow graph

As mentioned earlier, the first step in Huffman encoding is to collect the fre-
quencies of the given data set. The analysis can be performed on several data
types given the same data to see if there is any statistical advantage for certain
datatypes. This is similar to the scenario explained for RLE. The frequency
of the values in a data set is directly related to the type of data one is looking
at and the statistical variance of that data. This means that given similar
data the frequency table produced should be somewhat similar. Since we are
only looking at a specific type of data this step does not need to be performed
every time the algorithm is executed, but rather the huffman frequencies can
be pre-calculated. This is done by studying several seismic data sets and com-
paring their results, which will be done in this thesis. This way we will get the
compression efficiency of the huffman algorithm and save time per execution.

The next step in the algorithm is to create a Huffman tree from the frequency
data. This is such the most frequent value in the data set is the root node of

23

3.2. LOSSLESS COMPRESSION ALGORITHMS

Figure 3.2: Huffman compression with illustrated steps

the tree and the least frequent value is the leaf node of the tree. See Figure 3.2
for tree generation example. The tree expresses how many bits should be used
to express each value in the input data. This will result in variable bit lengths
per value, but by being able to express the most common value with the least
bits, one is able to compress the data. For example if one has an input string
of ”AACAAAAABBB”, in the huffman tree the char A will be replaced with
a one bit value of 0. the char B will be expressed as a two bit value of 10,
and the char C will be 110. Pragmatically this can be implemented such that
the values are stored in an array and one can use direct lookup to avoid time
spent on traversing the tree.

The final step of exchanging the values in the input stream with the values in
the Huffman tree will produce the compressed output. In our previous exam-
ple, the resulting output would be ”001100010000101010”, which corresponds
to 2 bytes, thereby attaining one fifth of the original size of the data. The
exchange can be tricky to implement efficiently because of the variable bit
lengths. The biggest challenge here is the fact that there is no data type for
bits. And therefore one has to use other data types and bit-wise operations
such as shift, and, and or operations to process the exchange. This also means
that there will be an edge case where some bits will spill over to the next value
making it even more difficult to put together. This is also a problem when
parallelizing because it requires that one shifts all the bits from one threads
output to mach the others when merging the them to one final output array.

24

CHAPTER 3. DATA COMPRESSION, FILTERING AND SEISMIC DATA

This makes it hard to parallelize, but not impossible. There are also tricks to
implement pre-calculated lookup tables to speedup the process, which we will
be looking at in this thesis.

Huffman encoding gives generally good results, but does have its limitations
and weaknesses. There is one major weakness in huffman encoding and that is
if the frequencies of the data are very similar, then the compressed data might
end up being larger than the original file. This is because the values with lower
frequencies are expressed with bits exceeding the datatype of the value. and
if it has a quite high frequency it will result in compressed file larger than the
original. This could be an issue for seismic data, but one can always change
the granularity and get a new statistic. A further analysis of seismic data for
huffman can be found in the implementation chapter.

To decompress Huffman encoded data one needs the Huffman tree. It is used
by looking up the originl values given compressed bit patterns. this will have
the same mapping as previously when the data was compresed. To do so one
iterates every bit and everytime a 0 bit is detected, then by counting how many
1 bits where behind it one can find the character to replace the bit pattern.
For example in the provious example if a 0 bit is detected and there where two
1 bits before it then the character to replace these is a C.

To summarize, Huffman compression is a good compression algorithm that
take into account the nature of it input data, and therefore is able to better
produce compressed data. It has some weaknesses in that it is computationally
demanding, because one has to iterate over the input several time. Once for
analysis and another for compression, not to mention the the time it takes to
create the Huffman tree and the time it takes to perform bit-wise operations.
Luckily there are ways to overcome these difficulties, which will be mentioned
in more detail in the implementation chapter later on in this thesis. Another
interesting aspect is the fact that Huffman is highly dependent on bit-wise
operations that does not make it a good candidate for GPU acceleration.

3.2.3 Arithmetic Encoding

Arithmetic encoding is another form of entropy encoding, but differs from
Huffman in that it accounts for more than one character at a time in the input
string. It also has its roots in number theory, and aims at not wasting any
bits in certain representations. Lets say one has three characters in a string in
normal entropy encoding one would use 2 bits to represent the three, but one
would waste a combination that will not be used. Since there are 4 possible

25

3.2. LOSSLESS COMPRESSION ALGORITHMS

combinations of 2 bits and we only need 3. A more efficient representation
would be to represent the sequence as a rational number between 0 and 1 in
the base of 3, where each digit represents a number. For example lets take
the sequence ”ABBCAB” its representation in the compressed form would be
”0.011201”. The next step would be to convert this to binary to have sufficient
precision to recover it, which would be ”0.0010110001”. Then when decoding,
knowing the length of the string is 6, by converting back to the base of 3 and
rounding up to the 6 decimals one can reverse the process. See Figure 3.3 for
flowgraph.

Figure 3.3: Arithmetic compression flow graph

3.2.4 Lossless Compression of Floating-Point Data

This is a method for compressing the data type of floating point by using the
nature of the data to be compressed, which makes it fall into the category of
entropy encoding. The algorithm is composed of three parts. First is the pre-
dictor, the second is bit-wise operations and last is compression. The predictor
algorithm is to predict the next value in the input data given the N past val-
ues. Then the predicted value will be bit-wise XOR-ed with the actual value
and compressed using any of the before mentioned algorithms to compress the
amount of zeros present in new value. Since if the prediction is very close most
of the values of the XOR-ed value will be zero. This means that the compres-
sion ratio is dependnt on having a good prediction algorithm, and on to have a
good prediction one must use several previous values, which increases compu-
tations necessary to attain the predicted value. This is the major drawback of
this method of compression. See Figure 3.4 for an illustration of the process.

The prediction algorithm works by taking looking at the differnce between
previous data and the present value. How many values one wishes to look
at will increase the complexity of the calculations but give better predictions
and therefore better compressions. The prediction algorithm works like a hash
function where its input is n previous original values and output a prediction
value. it is important that it works in the same way in revers that given a
predicted value and two actual values, the third actual value can be produced.
The prediction function is very application and implementation dependent. In

26

CHAPTER 3. DATA COMPRESSION, FILTERING AND SEISMIC DATA

Figure 3.4: The process of compressing floats

the article by Ratanaworabhan et al. [37] they use the difference between the
last 3 data points and preform shift and XOR bit wise operations on it to
predict the next value. While in the paper by Xie and Qin [50] the prediction
function is the third derivative of the last three values. Both had use arithmetic
encoding to compress the resulting data set.

This algorithm is parallelizable in the sense that each thread can compress a
set of the data and then they can all merge their results. But, border values of
size N depending on how many values are used to predict must be exchanged
between the threads. Here similar to Huffman since there are many bit-wise
operation, the algorithm is not suited for the GPU, but is still parallelizable
on the CPU.

3.3 Lossy Compression Algorithms

This section focuses on a lossy compression method that uses transform cod-
ing. Transform coding methods convert data into another representation that
is more compressible. This means that after the data is transfromed it is
combined with other compression methods such as RLE and Huffman, which
were discussed earlier. Transforms used in this thesis are the Discrete cosine
transform (DCT), lapped orthogonal transform (LOT) and the generalized
linear-phase lapped orthogonal transform (GenLOT). These algorithms are
particularly interesting for images sound and other signal processing applica-

27

3.3. LOSSY COMPRESSION ALGORITHMS

tions because they give greater compression ratios than the lossless methods.
However, this comes at a price of losing some data. The purpose of using
such transforms is that we aim at using their properties and lose unimportant
data, such as noise. In some cases losing a small amount of data can give
great compression ratios, and this fits signal data well since it tolerates losing
information without significant loss in quality. Seismic data is an example of
signal data.

As mentioned earlier, the GPU functions as an accelerator that offloads com-
putation from the CPU. To perform computations to convert to transform
representations is very parallelizable and very adaptable to the GPU. There
are three main reasons as to why the GPU is useful in this type of compression.

1. Signal data is often represented as floating point data and is not that
sensative to rounding errors. Modern GPUs have greater floating point
capabilities than CPUs, but have limited support for integer operations,
such as bit-wise shift. This makes the GPU a good candidate for trans-
form encoding and a poor one for other encoding methods tat are de-
pendent on integer operations.

2. Transform encoding for separable transforms can be performed with co-
alesced memory access and the memory access is then sequential, but
they require more computation. Since the GPU has more computation
power than the CPU for very parallelizable problems makes it a good
choice perform the computations. Other compression methods use aux-
iliary random access data structures. For example some compression
algorithms use hash tables, such as floating point compression. The
GPU has poor random access memory performance, and it is always
recommended that one use coalesced and sequential memory access.

3. Transform algorithms mentioned in the transform coding are very data
parallel where there are no dependencies between the blocks to be trans-
formed. Thus the data parallel architecture of the GPU is well suited for
this task.

3.3.1 Compression Using Transforms

There are 3 steps in the process of compression in transform coding. The steps
1) transforming data, 2) quantization of the data, and 3) encoding the data.
This process works in reverse as well when one decodes the data by running
the process in reverse. But, because of the quantization process, the data

28

CHAPTER 3. DATA COMPRESSION, FILTERING AND SEISMIC DATA

decoded results in lossy data. We will now explain the three steps in more
detail. Figure 3.5 shows an overview of the transform coding process.

Figure 3.5: The transformcoding process, inspired by [27]

Transformation

The first step in the process is to transform the data from the spatial domain to
the frequency domain. The purpose of this transformation is to represent the
data in a more compression friendly state. One of the most popular transforms
in image and signal processing is the Fourier transform, which transforms data
to the frequency domain. There are other alternatives to this transform, which
also use the same basis that is to transform to the frequency domain. The one
that is most popular in image processing now is the discrete cosine transform.
This is a transform that only looks at the real values of the Fourier transform
and is used today in many DSPs and other encoding/decoding software and
hardware such as the JPEG standard [35]. The advantage of the DCT is that it
is faster than Fourier to compute and give similar,but not as accurate, results.
This has resulted in the emergence of faster DCT algorithms such as the AAN
algorithm that we will be looking at in this thesis, and later discuss in detail
how it works. To accelerate the process it is common to filter parts of the
image at a time and not the whole image at once. The common block size is
8 values. We have used this block size when testing all the seismic data in all
three dimensions. It is also notable that the common block size is 8, when the
optimizations for fast DCT and LOT are optimized for that block size.

29

3.3. LOSSY COMPRESSION ALGORITHMS

Quantization

The next step in the process is to use the new domain to quantize the data such
that it is even more compressible without losing too much of the important
data. In image filtering it is not uncommon to use transforms to filter images
using low/high pass filtering where all high or low frequencies in the frequency
domain are removed. Low pass filtering is used in the JPEG standard and is
what we use in the quantization process in our work. This results in removing
noise/blurring the image and this results in larger compression with little loss
of important data, since one is removing noise from the image. This method
of filtering is common in all orthogonal transforms such as Fourier, LOT,
GenLOT and DCT. There are other ways of quantifying data, but the main
purpose is to increase compression with little loss of the data. One can even
try to even out the number by rounding them off to the nearest neighbor to
increase efficiency in encoding when using RLE.

Encoding

The final step is to use compression methods such as Huffman- and RL- en-
coding to compress the transformed data. This implies that the optimizations
done to such encoding algorithms must match that of the quantization process.
Such lossless compression methods are discussed in earlier in this chapter and
are used in the JPEG and other standards. In particular, one has arithmetic
encoding is used on floating point seismic data.

3.3.2 DCT (Discrete Cosine Transform)

The DCT was first introduced by Ahmed [2] in 1974, is a variant of the Fourier
transform, which is more well known. But, this transform is often used in
compression because of its attributes of being fast and performs well in the
frequency domain for filtering images and sound, and is used in standards such
as MP3 audio format, MPEG video format and the JPEG image format. There
are four basic variants of the DCT [27][16], namely DCT-I to DCT-IV. The
one most commonly used and refereed to as the DCT is DCT-II, and where
DCT-III is actually the inverse. DCT-I is a DCT that does not account for
all boundary conditions. While DCT-IV is actually an orthogonal, and thus
symmetric, representation and is therefore its own inverse, which is adopted in
the fast DCT algorithms. For more details regarding the DCT, see Appendix
A.

30

CHAPTER 3. DATA COMPRESSION, FILTERING AND SEISMIC DATA

3.3.3 Fast DCT: The AAN Algorithm

The direct approach to solving the DCT will be implementing the mathe-
matical definition discussed in the previous section. This gives an asymptotic
running time of Θ(N2) in the one dimensional version. This is because there
are N elements and each takes N time to compute. It is a known fact that
the FFT has an asymptotic running time of Θ(Nlog2(N)), which means that
there is luckily a faster approach to the DCT as well. As we already discussed
the DCT is similar to the DFT, but less complex since it accounts only for
cosine functions and there are no complex numbers. In this section we will
discuss an algorithm tailored to solve the DCT that is derived from the FFT,
which results in a faster DCT/IDCT algorithm. This algorithm is known as
the AAN algorithm, and is developed by Arai et. al [5], and is also described
by Pennebaker [35]. For more details regarding the AAN, see Appendix A.

3.3.4 Lapped Orthogonal Transform

When discussing the DCT we mentioned certain limitations that the DCT
has, where one of them is the blocking effect. This was a result of the non
overlapping basis functions. Malvar and Staelin [30], and in Malvar’s book [29],
discuss using a Lapped orthogonal Transform or LOT to solve for this effect.
The foundation of this work is built upon overlapping the basis function of a
orthogonal transform such as the DCT. Malvar [29] also produced an efficient
algorithm/scheme to solve for the LOT. In this thesis we will not attempt to
explain in detail the mathematics behind the LOT, which is done quite well
in [30], but rather we will explain the definition and the scheme presented in
[29] and how it is implemented. Appendix A includes the definition and flow
graphs for LOT implementations.

31

3.4. FILTERING ALGORITHMS

3.4 Filtering Algorithms

In this section, an introduction to two widely used seismic algorithms will also
be presented, convolution and the Hough transform. The algorithms are not
specifically developed for seismic processing, on the contrary they are quite
common in image processing, but we call them seismic algorithms because
they are used in seismic data pre-processing and we would like to put them
into contexts when we later analyze performance.

3.4.1 Convolution

From a mathematical point of view, convolution is an operation involving two
functions that produces a new function. This new function reflects to which
extent the original functions match if their graphs were aligned with each other.
Convolution is mathematically defined as Equation 3.1 [36].

(f ? g)(t) =
∫ ∞

−∞
f(a)g(t− a) da (3.1)

w(x, y) ? f(x, y) =
a∑

s=−a

b∑

t=−b
w(s, t)f(x− s, y − t) (3.2)

The continuous mathematical definition is not that useful in our case since
we would like to deal with discrete cases in programming. To convert the
preceding into a discrete function we would have to add discrete convoluted
values from each function. If we have that w(x, y) is the filter of size m × n
that will be convoluted with an image f(x, y) , denoted as w(x, y) ? f(x, y).
This gives the Equation 3.2 [36], which is a discrete sumation equivalent to
the continous mathematical definition of convolution in two dimensions.

When filtering using convolution we mentioned involving two functions. In
practice, this corresponds to using one function that expreses the filtering
mask to be used and the other being the original data to be filtered. The
filtering masks are generated depending on their purpose, such as smoothing,
edge detection, edge enhancement, etc. The filters are decided by a given size
m×n and with the use of a mathematical function one can calculate the values
of the filter discretely. We will later see that the nature of the function used
will result in how well the filter will perform. In this thesis, we will be using
a Gaussian filter, also known as Gaussian smoothing. Gaussian smoothing is

32

CHAPTER 3. DATA COMPRESSION, FILTERING AND SEISMIC DATA

an operator that is used to blur images and remove detail and noise. This is
similar to the way a mean filter works, but the Gaussian filter uses a different
kernel. This kernel is represented with a Gaussian bell shaped bump. This
kernel has some special properties regarding separability that we will look at
in detail.

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (3.3)

The Gaussian distribution in the 2D case is shown in Equation 3.3 (from
[36]), where σ is the standard deviation of the distribution. The function is
illustrated in Figure 3.6. this can be used to give a better idea of what a
Gaussian distribution is and looks like. The idea of Gaussian smoothing is to
use this distribution as a point spread function to create a filtering mask and by
using convolution one is able to blur an image. Since images are usually stored
as discrete pixel values one would have to use a discrete approximation of the
Gaussian function on the filtering mask before performing the convolution. See
Figure 3.7 to see an example of a discrete approximation of a gausian filter in
two dimensions.

Figure 3.6: 2D Gaussian distribution graph drawn in online 3D grapher 1

In theory the Gaussian distribution is non-zero, which would imply an infinitely
large convolution kernel. But, in practice it proves to be ’almost zero’ more
than three standard deviations from the mean. This implies that the kernel can
be truncated after three standard deviations. Once a suitable kernel has been
calculated then the Gaussian smoothing can be performed using a discrete

1http://www.livephysics.com/ptools/online-3d-function-grapher.php, accessed 2009-12-
09. Available to all since it is public domain

33

3.4. FILTERING ALGORITHMS

convolution method as explained earlier. The Gaussian filter is separable if
circularly symmetric meaning that one can use a one dimensional filter to filter
images. For example if the image is three dimensional then one can convolute
three times using a one dimensional filtering mask, once in each dimension.
If the Gaussian function is elliptical than it is not separable and this would
result in using a three dimensional filter once in all three dimensions.

Figure 3.7: Example of two dimensional Gaussian Filter Mask with discrete values

3.4.2 Hough Transform

The Hough transform is used in image processing to detect to which extent a
set of points in an image are on a line, and can be used to detect lines and
curves. This is seen in Duda and Harts paper [13], where they show the use of
the transform to detect lines. This is used in seismic when looking for faults,
where the points are selected by the user. The transform, transforms data
from the spatial domain to a domain expressed by angles and length of a point
from the origin, θ and r respectively.

r = xcos(θ) + ysin(θ) (3.4)

Now consider a straight line in the spatial domain. The line can be represented
as the equation y = mx+ b, where m is the gradient and b is the y-intercept.
For a given point on this line one can define several lines that this point lies
upon by varying m and b parameters in the equation. Due to the difficulties of
representing lines with an infinite slope, it is more suitable to represent them
as functions or r and θ as in Equation 3.4.

Here x and y are the coordinates in the spatial domain for the point that will
be evaluated. This way one would be varying r and θ rather than m and b.

34

CHAPTER 3. DATA COMPRESSION, FILTERING AND SEISMIC DATA

Figure 3.8: Three point represented in the (x,y)- space and (r,θ)-space, obtained
from 2

Thus a single point (in the Cartesian space) on a line would have a whole range
of r and θ values that map to a curve in the (r, θ) parameter space. As shown
in Figure 3.8.

Now lets discuss how one is able to use the (r,θ)-space of the Hough transform
to find lines in an image. First lets see what happens when we introduce
another point to the domain, as shown in Figure 3.8. As one can see that
the sinusoidal curves of the two points intersect each other. And at the point
where the curves intersect is when the value of r and θ is similar for both
points meaning that they are on the same line for these values. One can take
this further and introduce more points and one would get more intersections
representing several other lines between points.

By increasing the intensity in the image in (r,θ)-space one can see which lines
incorporate most of the lines because they would be the most visible and
one would have more lines present in the image that are represented in fewer
intensities. This is best shown with an example such as in Figure ??.

2http://en.wikipedia.org/wiki/File:Hough space plot example.png, accessed 2010-09-05.
Available to all under the license of wikimedia commons, a freely licensed media repository

35

3.5. SEISMIC DATA

3.5 Seismic Data

In this section, the focus will be on presenting seismic data and pointing out the
most important traits that effect computations and data processing. Seismic
data is usually presented and formated in the SEGY format.

SEG-Y, is a data exchange format for seismic that was developed in 1973,
was first published in 1975. It has achieved a wide spread within the field
of geophysics since then. The original structure of the format was developed
for digital tape media. As the hardware used for seismic data acquisition has
changed so has the format. The newest revision was released in May 2002 [41].

One of the main traits of the format is that it separates between traces of
seismic data as they are acquired. A seismic trace can be viewed as a one
dimensional vector into the ground. Looking at this in a three dimensional
Cartesian coordinate system, a trace is all values in the z (depth) dimension
given an x and y coordinate.

Figure 3.9: Byte stream structure of the SEG-Y Format with N textual headers
and N traces and trace records. Image inspired from [41]

The format can be expressed as seen in Figure 3.9. Here one sees that the
format consists of different header files and data traces, where each data trace
has a header. The header files for each trace include information on details
regarding the trace such as the length and position of the trace. While the trace
data is a collection of floating point data. The file header includes information
such as the cube dimensions, which company the seismic cube belongs, and
other geophysical information. The important thing here is that when reading
from disk the locality of the data is near and traces can be read sequentially
giving a good balance between control and performance. Control comes from
the header files and performance is reached by keeping the data locally close
on the disk.

In the case of data compression, the header infromation is not that important
since we are aiming at compressing the actual seismic traces. That is why

36

CHAPTER 3. DATA COMPRESSION, FILTERING AND SEISMIC DATA

Figure 3.10: Seismic data example made available by Sclumberger from [1]

they can be ignored if we know the dimensions of the seismic cube. This will
cause the reads from disk to be partitioned into traces, and one would have
to jump over the trace header to read the next trace. One might think this
would be an issue, but as mentioned before since the traces are so close to each
other on the disk no delays will be experienced. For large datasets this will
depend on the blocking method used to read from disk. This will be discussed
in further detail in the implementation chapters and epirical tests will be run
to determine the efficiency of different blocking. Previous work on blocking of
seismic data is done in [4], which shows that blocking along the y or z axes of a
cube (if each trace represents data in the x axis) are the most optimal because
it gives the most sequensial reads from disk. Figure 3.10 illustrates a 2D slice
of seismic data, which gives an example of how seismic data looks like.

37

3.5. SEISMIC DATA

38

CHAPTER 4

Compression and Filtering Algorithm

Optimizations and Implementations

In this chapter, describes how we implemented and optimized several of the
compression and filtering algoithms described in Chapter 3 and Appendix A.
Our aim is to not only see how compression effects I/O, but also the entire
process including filtering and processing the seismic cubes. A discussion of
our implementations here analyzed and optimized using profilers directly ef-
fect the implementations. The profilers used in this thesis are the NVIDIA
CUDA profiler for the GPU implementations that are developed on NVIDIA
hardware, and Intel Vtune profiler for the CPU implementations that have
been developed on Intel hardware. Other than these algorithms a framework
has been developed in this thesis to produce seismic images and to expand on
given data to make it larger because of the need for larger datasets than those
made available. The framework has been used in both debugging and verifying
results qualitatively.

In the first section, Section 4.1, we will be explains the file compression for-
mat developed. Section 4.2 will be discussing the frameworks that we use to
produce images and to test our work. In Section 4.3, the implementation and
optimization of the lossless algorithms are discussed. While Section 4.4 dis-
cusses the lossy compression algorithms and how they have been implemented.
In Section 4.5, we will be discussing implementations of the image processing
algorithms, which in our case are 3D convolution and the Hough transform.
finally, Section 4.6, briefly discusses the AESC library developed.

39

4.1. THE FILE COMPRESSION FORMAT

4.1 The File Compression Format

SEGY is a standard format for seismic data, but it is a hard format to compress
and is slow in the sense that there are many headers that need to be read and
a lot of jumps are performed on disk thus making file access slow. Our imple-
mentation considers normal I/O as just reading data in a a sequence without
these jumps. That is why we extract the seismic traces and created a file con-
taining only the seismic data. We then developed a custom file compression
format.

The compressed file format is shown in Figure 4.1. It starts with an unsigned
integer that shows the size of the dictionary of the optimized RLE is. After
the dictionary we will have a unsigned integer to show how large the next
block of data is knowing that the decompressed data that was compressed is
compressed 2GB at a time. This integer shows how large the compressed block
is, and this is needed because the compressed length is unpredictable. This is
the same format that we used for compressed lossy algorithms since they are
combined with RLE.

Figure 4.1: Illustration of our compression format of the RLE algorithm

The size of the pre-compressed block can be varied. To being with, we used a
size of 2GB for the compressed block. But, when we have a filtering algorithm
with overlapping sub-problems that will use this compressed data, it would
have to decompress all the neighboring blocks to get the data. This is an issue
because one does not have enough memory for all neighboring data, and one is
decompressing large amounts of data that is not used. This issue can clearly
be solved by using smaller blocks, and with asynchronous reads this is also an
advantage. The disadvantage though is that too many small blocks will give
lesser compression. Since data strings of zeroes that can be compressed to 2
bytes are cut in two then they will be expressed with 4 bytes, and so on. This
means that one can miss-use the size of the compression block to the detriment
of the compression rate.

Another compression format implemented is one that includes neighboring
data. This of course gives an overhead for filtering algorithms that do not
have overlapping sub-problems in that one decompresses much more data than

40

CHAPTER 4. COMPRESSION AND FILTERING ALGORITHM
OPTIMIZATIONS AND IMPLEMENTATIONS

needed. But, this gives overall less overhead than having to decompress many
neighboring data blocks. We will test all these options and discuss them in
detail in Chapter 6.

4.2 Our Testing Frameworks

There are two Frameworks developed as part of this thesis. The first is a
framework that is mainly used for black box test, and has the main task of
producing images by reading from the a result file from the last run applica-
tion. This framework is also used to produce seismic cubes of varying sizes for
testing. The other framework mentioned, is one that is used mainly to test the
code and algorithms written and to benchmark them. In this section we aim
at giving some insight at what these frameworks do and how they are used.

4.2.1 Producing Images

At the start of the thesis a simple framework to read and produce bitmap
(BMP) images from disk was made available by Schlumberger. The framework
produced sliced two dimensional images of a three dimensional seismic cube
from 3 different views. It produces all images of (x,y) dimensions along the
z axis, all images of (x,z) dimensions along the y axis, and all images of (y,z)
dimensions along the x axis (See Figure 4.2 for an illustration.)

The major drawback with this framework is that it is too time consuming to
produce all the images to black-box test if the results are correct. Instead
modifications where made to the methods such that they produce requested
BMP images that are specified as a parameter in the functions. To produce all
the images is not a neccesity because usually one only needs one image in each
dimension to see if the algorithms are performed successfully, and th eresults
are correct. The original image producing algorithm has poor performance
because it accesses the disk to read one byte at a time and when producing
images of large dimensional scale this would mean several million disk accesses.
Since the production of images is considered to be outside the scope of this
thesis, the only modification made is the selection of single images and no
optimization was done to the image production algorithms.

41

4.2. OUR TESTING FRAMEWORKS

Figure 4.2: Image illustrating slices of x,z dimensions along the y axis

4.2.2 Producing Seismic Cubes

However, the framework is not only used to produce images, but also produce
different sizes of seismic cubes for testing. The data received for testing in this
thesis was of sizes between 256MB to about 1GB, but this is not enough to
test for large data sets. Our definition of a large data set, is a set of data that
does not fit into memory, and results in forcing the computation to access the
disk several times. This is important such that the effect of I/O is present in
the benchmarked results. The largest set we are testing with is a 32GB seismic
cube that we created by combining and rotating the cubes we obtained. We
also tested with smaller sets ranging from 256MB to 32GB to see if there is a
pattern, and this would help when testing our prediction model.

The main aspects worth noting when speaking about the data sets is that it is
important that they be actual seismic data. This is because when compressing
data one is looking at patterns that can be expressed in a more efficient way.
This gave us a chance to look at seismic as a certain type of data, which can
be categorized as noisy signal data, and revile some its patterns and work on
compressing them. When constructing the data sets we first took the original
data and started rotating and combing it to obtain larger data. What is
important to note is that we in this way are able to sustain the variance of
this type of data and in this way obtain legitimate results. Another point
worth mentioning is that this data is then first compressed and converted to
our compression format before testing. To see the source code for the cube
producing algorithms see Appendix D

42

CHAPTER 4. COMPRESSION AND FILTERING ALGORITHM
OPTIMIZATIONS AND IMPLEMENTATIONS

4.2.3 Synchronous and Asyncronous I/O

Other than the framework for producing images and seismic cubes, we devel-
oped a separate framework such that we can test our code. This framework has
two parts one being the synchronous main method that uses the algorithms
from our compression library and test them, and the other is the same but
now performed asynchronously with two threads.

The synchronous method is a single threaded main method that performs task
in a sequential nature in that it runs first the I/O process of actually reading
the compressed data and then decoding it, which then is used to filter, only to
be encoded and written back to disk. When testing we time this process and
compare it to doing the same with the non compressed data in the sense that
it is read, filtered and written back to disk.

The asynchronous method is where we use two threads that run in parallel,
where one thread reads while the other decodes at the same time. And to
insure that there is no conflict we have a barrier between each step such that
one does not start to decode until the data of the next block is read and vice
versa. We also do the same when it comes to encoding and writing the data
back to disk.

4.2.4 Benchmarking Framework

When benchmarking results it is always important to note, which method is
used to time ones process and the accuracy of that method. Since our process
take a long time to perform, they do note require millisecond accuracy, rather
a time taking method that is able to be accurate for longer tests. When one
tests code that lasts for hours a millisecond or two is not an issue. This is
why we have used wall time clock because this shows how long time one has
actually used and not calculated from how many cycles one has performed on
the CPU or other methods like that. This will of course give some variance,
but nevertheless the most accurate time as to when it comes to how much time
one has spent if one is looking at ones wall clock.

We have also made a point of measuring time for separate processes separately
rather than just noting the total, we do note the total time as well. The
records of all tested material is found in Appendix C. We have also included
the most interesting results in the chapters to come where we actually discuss
these results and their influence on the seismic process.

43

4.3. OPTIMIZING LOSSLESS COMPRESSION ALGORITHMS

4.3 Optimizing Lossless Compression Algorithms

In this section, we will discuss optimizations of the two lossless algorithms
implemented in this thesis. First we will have a look at run length encoding
and the second is Huffman encoding. We have discussed arithmetic encoding
as a method , but chose not to implement it because this is already done lately
by Xie and Qin [50], and because of the limited time for this thesis we will
use their results to compare in the results chapter rather than presenting our
own. Another reason is that after comparing their results to our own we see
no reason to redo that work.

4.3.1 Optimizing RLE w/ Dictionary lookup

The seismic data read is a stream of floats, and floats can express a larger
range of numbers than integers, short and char data-types. The interesting
fact is that a float also uses 32 bits just like integers. And when using RLE
encoding it is smart to limit the number of values one has to count. Because
as we explained before RLE relies on counting the occurrences of a number
in a row. Knowing that seismic data is noisy data, one can assume that the
values of the floats changes rapidly and little recurring values are there. This
is why we choose to read the data into unsigned char data type to limit the
values to 256 values. After studying the data, which we show later on when
discussing the Huffman encoding, it shows that when looking at the data on
a byte wise level there are a lot of recurring zeros. That is why after testing
the compression rate, we discovered and decided to compress on a byte level.
Where we used one byte to count the recurrence and the other to represent
the value. A pseudo code version of the algorithm implemented is as follows,
for detailed implementation see Appendix D.

1 Input data X
2 Result t a b l e R
3
4 for each bytes in X
5 i f c u r r e n t v a l u e == next va lue
6 counter++
7 else
8 add counter to R
9 add value to R

10 counter = 1
11 c u r r e n t v a l u e = next va lue

Pseudo code for naive RLE algorithm

44

CHAPTER 4. COMPRESSION AND FILTERING ALGORITHM
OPTIMIZATIONS AND IMPLEMENTATIONS

The best results for compression for the basic RLE algorithm is a compressed
file larger than the original. This mean that it did not succeed to compress.
This comes from the fact that there seismic data is too noisy and there are
a lot of changes. But we made an optimization by using a dictionary lookup
technique and combined this with RLE. To avoid using a byte for the value
and a byte for the counter when we had many values that occurred once and
therefore we are exchanging a byte of data with two for those values. We
solved this by targeting all the zero values because they are the values that
are recurring. This way we have a dictionary that is 1/8 of the file and here
we traverse this on a bit-wise level. If the value is true or ”1”, then the value
in the corresponding byte-wise stream is a counter for the mount of zeros. If
the value is false or ”0”, then the value in the corresponding byte-wise stream
is just another value than zero. This way we were able to compress the data
to 80% of its original size including the library being part of the file. This is a
big change given that the data is noisy.

As a first step we expanded our implementation to a multi threaded imple-
mentation that uses OpenMP such to utilize the quad-core CPU computation
power. It is here we realized the sequential nature of compression. The point
here is if we are to divide the original data into several threads and compress
them individually we would have to shift all the data in the compressed data
to combine it with the rest of the compressed data. This means that if we use
many threads on a platform such as the GPU, then we would have to have
threads that wait for their turn to combine the sub problems. This might
not be a big problem for platforms that do well wot bit-wise operations like
the CPU. But, platforms like the GPU, that are not that efficient on bit-wise
operations will suffer and are limited by the sequential part that demands a
shift of all the data that comes after the first block.

Table 4.1: Intel Vtune results for RLE

L2 cache Miss L1 cache Miss Branch Mispred. Prefetch Miss
0.3% 0.1% 2.6% 3.4%

For the Quad-core implementation we split up the data into four sub problems,
and compress each for its self. Then at the end a single thread is responsible
to combine the compressed sub-problems. When testing for optimizations for
things like memory efficiency, caching and cache misses. We observed that the
algorithms have no problem with this when using Vtunes to test for this. A
table showing these results is shown in, Table 4.1.

45

4.3. OPTIMIZING LOSSLESS COMPRESSION ALGORITHMS

4.3.2 Optimizing Huffman Encoding

When implementing Huffman encoding one usually needs to read the whole
data file twice. Once, to analyze the input and create a Huffman tree for
the substitutions, and another to actually perform the substitutions. In our
case since we are only considering seismic data, we can pre-process the tree
and use the same one for each calculations hence saving computation time and
reducing I/O time by two. To perform this approach we would need to analyze
the recurrence of the data in our seismic examples.

When analyzing the data we looked at several aspects. One of which is the
length of the word we are looking at. As we have mentioned earlier about
the Huffman encoding, we would like to minimize the variable lengths to be
able to compress well. In other words if we only look a word length of 2 bits
then we only have 4 combination to account for, and thereby is one of the 4
options is more dominant than the others we would gain greater compression.
When studying the data we analyzed word lengths of 16-, 8-, 4-, and 2-bits.
The graphs below in Figure 4.3 show the distribution between the values that
occur in the seismic data.

The data analyzed is an average from all the different sets given by Schlum-
berger and Statoil, which adds up to 4 sets. We noticed that there was little
variation between them and an average of the data would be representative for
seismic as a whole. Knowing these numbers one can pre-calculate the compres-
sion possibilities for each combination and figure out which is most effective.
This is done by replacing the most frequently occurring value with 1 bit and
the second with two and so on. Then by summing this and comparing it to
the original size of the data we get a compression ration that represents a
good estimate of what to expect when using one combination or another. The
results show that the most efficient is a 2-bit word length. Which is able to
compress up to 72% of the original size. These results are represented in Table
4.2.

Table 4.2: calculated compression rates from study of data of 2GB

Bit length of analysis Compressed size in GB Compressed zise %
16-Bit 3.74 183
8-Bit 1.65 81
4-Bit 1.73 85
2-Bit 1.46 72

46

CHAPTER 4. COMPRESSION AND FILTERING ALGORITHM
OPTIMIZATIONS AND IMPLEMENTATIONS

Figure 4.3: Graphs of data distribution of seismic data given values of length 2-,
4-, 8-, and 16-bit

47

4.3. OPTIMIZING LOSSLESS COMPRESSION ALGORITHMS

Now that one nows the distribution and since the tree is going to be so small
one can use a direct look-up table (array) instead of generating a tree. This
is good because it will give a great speedup in the computations not having
to traverse the tree for every look-up when substituting the values. To avoid
having to traverse the input data 2-bits at a time, one can pre calculate for
permutations of the 2-bit substitution for larger words such as 8-bit or 16-bit.
This will not change the compression results, but rather sacrifice a little pre-
calculation time to accelerate the total traversal time of the input data. Test
results show that performing the traversal for each 8-bits with the overhead
of pre-calculating the Huffman table is the most efficient for smaller cubes.
While for larger cubes it is a 16-bit traversal of data-type short is the most
effective for larger cubes.

1 Input data X
2 Result t a b l e R
3 Lookup t a b l e for va lue s T
4 Lookup t a b l e for l eng th s TL
5
6 for each INT in R
7 value = data from X
8 Get repalcement value from T
9 Get l ength from TL

10 S h i f t b i t s to match l ength us ing TL
11 OR with value from R
12 Counter for amount o f b i t s += value from TL
13 i f (Counter > 32)
14 Get r e s t code
15 Get r e s t l ength
16 Add r e s u l t INT to R
17 s h i f t r e s t code
18 Or r e s t code with r e s u l t INT
19 update Counter with r e s t l ength

Pseudo code for naive RLE algorithm

Pseudo code for the implementation is shown above. Here we aim at showing
how we create the tree and look-up table for the substitutions, and how he
table is actually used. Here as well as in the RLE implementation we have
a sequential dependance. This dependence is the fact that we do not know
how large a block will be when encoded and therefore when putting together
parallelized encodings we need to do so sequentially. When one uses a limited
amount of threads such as on the CPU it is easy to control that all do the
sequential bit and one thread will not be waiting too long, but for the GPU
implementation it might be more consuming since there are more checks and
more pieces to put together. One of the reasons why the GPU implementation

48

CHAPTER 4. COMPRESSION AND FILTERING ALGORITHM
OPTIMIZATIONS AND IMPLEMENTATIONS

was outperformed by the Quad-core implementation. Again another reason as
to why this algorithm might not be as efficient on the GPU is because of the
use of bit-wise operations.

Our OpenMP implementation of the Huffman encoding follows in the same
fashion as in the RLE implementation. The input stream into 4 and start
compressing the 4 arrays separately to then use one thread to put these to-
gether. The problem with this implementation is the sequential nature of
having to shift all the bits when putting the array together to one compressed
data set. The main issue is that the length if the compressed sub arrays is
unpredictable, and thereby one cannot estimate where to start writing the
next array in the sequence. Therefore one just has to put these together after
having compressed since then one can find the length and share it with the
other threads. One can argue for using a tree structure such than puts to-
gether several parts of the original array together at a time, but the amount
of bit operations or shift operations performed will be the same. Since even if
one has put together another part, there are still the same amount of elements
that need to be shifted corresponding to the length of the first block that they
are supposed to be put together with. That is why it does not matter if one
uses a tree structure or not. On these basis we did not use a tree structure and
rather had one thread perform a sequential combination of the sub domains,
which we discussed is just as efficient.

When optimizing one has to look at memory access efficiency and memory
bandwidth use. This is assure that the implementation is optimal and that the
comparison further on with GPU would be representative. Our implementation
showed to be memory optimized, and by testing it with the Intel Vtune profiler
we obtained the results shown in Table 4.3. As one can see there are close to
zero cache misses and there are close to no prediction misses.

Table 4.3: Intel Vtune results for Huffman encoding

L2 cache Miss L1 cache Miss Branch Mispred. Prefetch Miss
0.5% 0.3% 2.7% 3.2%

We adapted the implementation of Haugen [20]for the GPU Huffman imple-
mentation, and is why we achieved similar results. We did not find any major
weaknesses in that implementation such as wrong use of memory banks in the
GPU architecture. The only advantage we had over Haugen is the hardware
used. Since we are able to test on the new Fermi architecture, we have more
cores to use for computations. However, this does not scale well for Huffman

49

4.4. OPTIMIZING LOSSY COMPRESSION ALGORITHMS

due to the sequential dependency between the threads.

4.4 Optimizing Lossy Compression Algorithms

When implementing lossy compression we have focused on transform encoding,
which is typically used for signal processing and image processing. Seismic data
is categorized as signal data in the same way ultra sound is. There has been
work done with similar methods with the aim at maximizing compression of
seismic data, such as the work of Duval et al. [14]. Here they showed how well
transform coding with lapped transforms is for compressing seismic data. Our
case differs in the sense that we aim at not only compressing more, but we
need to do so quick enough to beat I/O time, which sets different conditions
for our thesis. Whats interesting is all lapped orthogonal transforms build
upon the DCT, which is an orthogonal transform with no overlap. That is
why we had to have a DCT implementation. We further on implemented a
faster DCT algorithm which is based on the FFT algorithm. Finally we tried
to expand to the LOT algorithm, our implementation was fast, but did not
give the desired effect on seismic data and was not better than the DCT, which
is why we stopped expanding on it. Because for our purpose the fast DCT
AAN algorithm was the most optimal.

All the implementations referred to above are performed on both CPU and
GPU for comparison and speedup analysis. Since the transforms are typical
tasks to perform on the GPU and are often parallelizable, we believe expanding
these to the GPU will give great speedup. When perform transform encoding
we need to use one of the lossless compression algorithms to compress the
transformed data. As we discovered in the previous sections, a pure GPU
implementation of the RL or Huffman encoding are not as efficient as on the
CPU. That is why we have set up a division of the tasks where the GPU and
CPU co-operate. The GPU is then responsible of transforming the data and
the CPU is responsible of compressing them using RLE. We chose to use RLE
because the results show that it is the most effective both in compression rate
and execution time on transformed data. The same does not apply on non-
transformed data. In other words our scheme implements transform encoding
by using both the GPU and CPU and have them cooperate. When this is
performed on smaller blocks of data it is run asynchronously.

In the next sections we will show in more detail the three transform imple-
mentations we have performed to perform the encoding, but will only refer to

50

CHAPTER 4. COMPRESSION AND FILTERING ALGORITHM
OPTIMIZATIONS AND IMPLEMENTATIONS

pseudo code to illustrate our point. For the actual source code see Appendix
D.

4.4.1 Optimizing the Naive DCT Algorithm

The naive implementation of the DCT is basically implementing the formulas
presented in Appendix A. This implementation was not too challenging be-
cause if requires only a double for loop. What is nice with the naive DCT
is that one can decide the block size of each DCT block. In contrast to fast
implementation which have been optimized or given block sizes , like the AAN
algorithm is optimized for a block size of 8. When testing we set the block size
to 8 here as well for a legitimate comparison. A pseudo code implementation
is shown below to give an idea of how this is performed.

Another aspect that is important to mention is that the DCT is separable and
therefore one can filter one dimension at a time. We implemented the naive
DCT up to three dimensions. An interesting finding is that because of the
amount of computations that have to be performed the three dimensional im-
plementation could not beat I/O time even though it gave good compression
rates. Which is part of the motivation for implementing a faster DCT algo-
rithm. This is because the compression ratio is directly linked to maximum
I/O speedup achievable.

What is really nice about the DCT algorithm is that it is very parallelizable
since each 8 pixels are transformed from one domain to another independently
from the others. This made parallelizing the DCT algorithm on the CPU and
GPU easier. The way it was done is that each DCT block, a collection of 8
pixels, is transformed by a thread at a time. And this was done one dimension
at a time. The naive implementation has little variables and therefore uses few
registers. We checked for memory optimization and prefetching optimizations
for the algorithm to avoid the memory bandwidth bottleneck. When testing
our naive algorithm with the Intel Vtune profiler, we discovered that there
was no need to optimize for this because it was already optimal the way it
was performed earlier. This comes from the memory access pattern of the
algorithm. In that it analyzes 8 floats at a given time, and this makes the pre-
fetcher be able to do the job well. Another thing is that the algorithm preform
in one dimension at a time which gives room for less jumping in memory,
but when running across the crossline or depth dimension there are jumps in
memory. These jumps are luckily of constant size and the prefetcher is able
to fetch the data with little misses. The results of the profiler for the two

51

4.4. OPTIMIZING LOSSY COMPRESSION ALGORITHMS

dimensional quad-core implementation are displayed in Table 4.4.

1 Input data X
2 Result t a b l e R
3
4 for each 8 f l o a t s in X
5 for each o f the 8 f l o a t s
6 Temp value = 0
7 for each trans form value o f the block o f s i z e 8
8 mult ip ly cor respond ing value form X with cos () va lue
9 Temp value += c a l c u l a t e d value

10 i f (f i r s t b lock)
11 s c a l e by square root o f 0 .25
12 else
13 s c a l e by square root o f 0 .25 d iv ided by square root o f 2
14 }

Pseudo code for naive 1D DCT algorithm

Table 4.4: Intel Vtune results for Naive DCT transform encoding

L2 cache Miss L1 cache Miss Branch Mispred. Prefetch Miss
0.1% 0.7% 1.3% 2.4%

The GPU implementation as with the CPU, each thread runs a block of size
8 and transforms it. The memory mapping between the input data and the
resulting transformed data is one to one unlike when compressing. This means
that there are no collisions in memory access neither when reading or writing.
This way each thread is very parallelizable and independent from the others.
The most important part of the GPU implementation is the amounts of thread
and blocks used. These decide one has good occupancy on the card or not,
and if one is running optimized code. We are using a thread count of 128
threads per block and block count that is based on the y and z dimensions
of the cube. But, given our thread count and register use we achieve 100%
occupancy on the graphic cards pre-Fermi. On the Fermi architecture cards
we run 256 threads to achieve 100% occupancy because there are twice as
many cores. These numbers where calculated using the NVIDIA occupancy
calculator [9], and later confirmed using the NVIDIA CUDA profiler.

4.4.2 Optimizing Fast DCT: The AAN Algorithm

After realizing that the three dimensional DCT implementation gave such good
compression, about 17% of the original file, we had to find a way to accelerate

52

CHAPTER 4. COMPRESSION AND FILTERING ALGORITHM
OPTIMIZATIONS AND IMPLEMENTATIONS

it such that it can be used to accelerate the I/O process. One of the most
known fast DCT algorithm is the AAN algorithm that we discussed earlier.

The algorithms is best explained by a flow graph (see Appendix A), and to
follow the graph for a 8 float block size one needs 16 variables. Eight for
the current values that are to be calculated and eight for the previous values
used in the calculations. By setting these to variables they are then used
in the registry, which makes access both writing and reading take one clock
cycle. This is the case for both the CPU and GPU implementation. The
AAN algorithm needs only one read and write to system memory per float
calculated. All the other calculations performed on that float are done in
the registry. This is part of what makes this algorithm efficient. We again
performed tests on the algorithm both for the GPU and the CPU with the
corresponding profilers. The results for the Vtune profiler showed that the
algorithm is memory optimal, and there are close to zero percent pre-fetcher
and cache misses on all levels (L1 and L2). The results are shown in Table 4.5.

Table 4.5: Intel Vtune results for AAN DCT transform encoding

L2 cache Miss L1 cache Miss Branch Mispred. Prefetch Miss
0.3% 0.2% 0.7% 1.4%

When this algorithm is adapter to execute on the GPU, we realized that since
it is very parallelizable more time was used on copying the data to the GPU
than actually performing the calculations. More accurately 60% of the time is
used on copying memory while 40% on computations. This was the case for the
one dimensional DCT. We then started to add more calculations by expanding
the dimensions one is to calculate on. By expanding to three dimensions the
distribution between communication and computation on the GPU is 20% to
80% respectively. Other issues regarding the GPU implementation are threads-
and blocks- division and the work performed per thread. To avoid conflicts
in memory and communication between threads, which create dependencies
and slow computation time, we aimed at that each threads solves for a DCT
block. Then to optimize for occupancy on the graphic card we used similar
values as for the the naive DCT, which we explained earlier. And of course
the partitioning of threads and blocks differs for the Fermi architecture since
it has twice as many cores.

When it comes to implementing the algorithm for different dimensions, the
same one dimensional algorithm is used but the in a different dimension. This
means that we read the 8 consecutive in the height dimension or the depth.

53

4.4. OPTIMIZING LOSSY COMPRESSION ALGORITHMS

This however changes the memory access pattern and makes it non coalesced.
Since now we have to jump in memory. But since there is only one read and
write to the global memory there is no way we can improve on it, which also
means that it is optimal given the situation.

4.4.3 Optimizing Fast LOT

The LOT is built upon the DCT. As we showed before in Section 3.3.4 and
Appendix A, the fast DCT requires that the data is transformed to the fre-
quency domain using the DCT. That is why in our implementation we first use
the AAN algorithm to transform the data, and then run our LOT algorithm
to transform the data. But, there are some changes that need to be made to
successfully implement the transform. One is that padding needs to be added
to the DCT transformed data. The padding is added such that each line in
each dimension has two empty blocks of size 8 are added , one at the begin-
ning and the other at the end. This way for the one dimensional case we will
see that the x dimension will be bigger by 16 elements. This can be an issue
because this means that before compressing the data we are increasing its size
to transform the data. And as one increases the dimensions for the transform
the bigger the transformed cube will be. Another interesting aspect is that
one could perform the transform with out the padding, which is often done for
images [30], but in our case it effects the accuracy of our transform and this
is something we want to decrease with the use of the LOT. That is why it is
neccesary to decrease the compression rate (increase in blocksize) to increase
accuracy. One can also view the increase in accuracy as removing the blocking
effect.

The LOT implementation was tested as we did with all other implementations,
and the tests for the first implemented one dimensional case showed that the
accuracy did increase. But, the accuracy did not increase significantly enough
and the compression rate was lower. Meaning that the compressed data was
larger than with the DCT and that the error was not significantly lower to
give more room for further compression. This means that for the common
case of compression and image enhancement (removing the blocking effect)
the LOT is useful, but in our case where we would like to beat I/O time
the extra time spent on computation gave little compression advantage, which
resulted in lower I/O speedup. That is main reason we did not implement any
further LOT algorithms such as GenLOT or GULLOT. The fact that they
work well for compression in general [14] does not mean that they work well
for compression when trying to beat I/O time. And this was even the case

54

CHAPTER 4. COMPRESSION AND FILTERING ALGORITHM
OPTIMIZATIONS AND IMPLEMENTATIONS

Figure 4.4: CUDA profiler snapshot of the LOT execution

with the computation advantage of the GPU. Even though the LOT did not
give more speedup it could be an option for the case where one wants more
accuracy.

When it comes to memory optimizations and memory access patterns the fast
LOT algorithm is quite similar to the AAN algorithm. They both depend on
16 variable for the current and the previous state. Where the current state
of the transform is calculated based upon the previous one. They both have
one read and write to system memory to calculate a block of data. And even
when parallelized for the CPU and GPU the same optimization strategies are
used. Such as running that each thread calculates a block of data of size 8
elements. And the profilers show the similar results as they did for the AAN
algorithm in that the pre-fetcher had little misses, and that there are limited
cache misses. Another aspect that is similar here is that in both algorithms,
since they are separable, one can run the transform in one dimension at a time.
This does however inflict some minor faults in memory access in that it is no
longer coalesced. This is because reading in any dimension other than the
width of the cube will result in jumps in memory. However these jumps are
done in a structured and recognizable pattern for the pre-fetcher and hence
do not effect the ability to attain the data before it needs to be calculates.
Another issue is that since it is only read and written once, one cannot try
to reorganize the data because that will also require a read and write making
that optimization useless and more time consuming. In Figure 4.4, we show
our profiler reslts for the LOT algorithm.

The GPU implementation is performed in a manner such that we have only
one transfer of the data to the GPU and back, while the data is on the GPU we
run two kernels. The first is the AAN kernel and the other is the LOT kernel.

55

4.5. OPTIMIZING IMAGE PROCESSING ALGORITHMS

In the case of several dimensions, we will perform these two kernel in the same
manner but once for each dimension. This is a good thing for performance
in that the communication time (memory trasfer) becomes less evident in the
execution time, which is a penalty of using the GPU. The computation time
will however rise, and this is positive because then the computation advantage
will be more evident compared to the CPU. And the penalty will then be
insignificant.

4.5 Optimizing Image Processing Algorithms

As part of this thesis, we not only look at how we are able to accelerate
the I/O process with compression, but we are to look at how this effects the
whole seismic process including filtering. In our previous work we have looked
how the GPU can be used to accelerate the filtering process with the use of
convolution, Aqrawi and Elster [4]. In this section, we will be explaining how
we implemented two filtering algorithms that have significant characteristics
for the compression in the process. The Hough transform is an algorithm
that has no dependencies between the sub-problems and no overlap, which
makes it ideal if one uses compression. In contrast, the convolution algorithm
has overlapping sub-problems that create dependencies and makes the use of
compression more complicated. We will address these issues and in the sections
to come and how we solve them. The filtering algorithms are both implemented
on both the CPU and GPU.

4.5.1 Optimizing 3D Convolution

The implementation of convolution is of a non separable and three dimen-
sional convolution algorithms. This is part of our work from [4]. The major
difference here is that we have compressed dat being read in to memory before
running the filter on it. Since convolution has an overlapping sub-problem,
being that boarders between sub problems have to exchanged, crates a depen-
dency between the data read. Now since the compressed data is a 2 GB data
set that s compressed. It is hard to read the neighboring boarder values of a
compressed block and decompress them. This leaves three options, one being
that we have to decompress three 2 GB blocks read the neighboring values and
then move on to filtering. The second option, is that we have smaller blocks
of data compressed at a time such that we do not read too much (up to 6GB

56

CHAPTER 4. COMPRESSION AND FILTERING ALGORITHM
OPTIMIZATIONS AND IMPLEMENTATIONS

like the previous option) at a time. The third option is that we incorporate
the neighboring values of the sub cube in the data compressed to being with.

The first option has no chance of giving speedup since one has to essentially
read in 6GB to filter 2GB of data. This does not sound like a viable option.
The second is limited by two factors, one the fact that the compression rate will
become less as we limit the ability to see patterns over the a bigger perspective,
and the other is that again one would have to read more than necessary because
when expanding to several dimension we would probably have to read in data
that we do not need. The third option does not come without its drawbacks,
but is the most controlled and least wasteful of the three. Her one should get
all the data one needs and gets to perform the filter on the data one needs.
There are two major drawbacks here, one being that we will be duplicating
data because the borders of one block are the data of another, and the other
will be that we will increase the size of the compressed file. It is also wastefull
for filtering algorithms that do not have overlapping sub-problems. But, this is
the major drawback of working with compressed data is that one can no longer
do selective reads and writes without reading whole blocks. For convolution
the third option would be the most efficient, but in general the second option
is the most practical. In our case we have implemented both, and in we will
discuss their effects in the results and discussion chapter to come in Chapter
6.

Now lets discuss the implementations of the actual algorithm. Since it is
a three dimensional non separable algorithm it will create issues in memory
access and prefetching if not performed correctly. This is because it will have
to jump a lot in memory when convoluting in all three dimensions. Another
aspect here is that the complexity of the convolution process is not only lead
by the amount of data in the to be filtered, but also by the size of the filter as
one can see form the formula the size of the filter is equivalent to the amount
of computations per pixel. This is however a very parallelizable problem in
that calculations form one pixel is independent of the neighboring pixels and
therefore they can be parallelized, but the dependency here is between the
neighboring sub problems in that we need a padding with the neighboring
values. Below we have pseudo code showing the code to generate the filter,
which in our case is a gausian filter, and the convolution process. For more
details regarding the convolution process see Gonzales et al. [36].

57

4.5. OPTIMIZING IMAGE PROCESSING ALGORITHMS

1 Input data X
2 Result t a b l e R
3
4 for each po int x dimension
5 for each po int y dimension
6 for each po int z dimension
7 for each po int x dimension o f f i l t e r
8 for each po int y dimension o f f i l t e r
9 for each po int z dimension o f f i l t e r

10 image value in po int += value o f f i l t e r ∗ value o f
cor re spond ing token in X

11 add image value to R in coord inate (x , y , z)
12 }

Pseudo code for 3D convolution algorithm

On the CPU we have both a single processor and a quad processor version of the
code. We use OpenMP to multi-thread and use the computations capabilities
of the CPU. Here each thread solves for one pixel by iterating over the size of
the filter, which in our case is of size 133. the values for the filter are placed in
constant memory which helps because then after these values are buffered they
only use on cycle to be read and used and they are not removed form the L1
cache since they are used all the time in each calculation of a pixel. The other
values however must be interchanged, and even though the computations are
for three dimensions and there are jumps in memory, the profiler results show
that there are close to zero percent cache and prefetcher misses. Which means
that we were able to memory optimize the algorithm. For the profiler results
see Table 4.6.

Table 4.6: Intel Vtune results for 3D Convolution

L2 cache Miss L1 cache Miss Branch Mispred. Prefetch Miss
0.6% 0.7% 0.4% 2.5%

when calculated on the GPU we also focused on utilizing the memory available
to best perform the computations. That is why we used constant memory in
this scenario as well, which works similarly in that it uses only one cycle to
be fetched when need and since it is used all the time is is important that
it is available. Here as well as in the other algorithms we have a problem
in coalesced memory access, in that when accessing the data in any other
dimension other than the width of the cube we will be forced to jump in
the memory causing it to be non coalesced, but since each value is accessed
once and written once we do not have the use for shred memory, and that

58

CHAPTER 4. COMPRESSION AND FILTERING ALGORITHM
OPTIMIZATIONS AND IMPLEMENTATIONS

Figure 4.5: NVIDIA CUDA profiler results for 3D convolution

means that we cannot optimize against this and accept that this is part of the
nature of this problem and that it is what makes interesting to benchmark
and compare to the CPU version since the global memory on the GPU is a
limiting factor. We also tuned this algorithm with respect to threads and
blocks to adjust occupancy for the Fermi architecture. In contrast to the old
CUDA architecture where we were not able to achieve 100% occupancy because
of the register use. In the Fermi architecture this was possible because there
is support for more register use per multiprocessor. We have mentioned the
most crucial elements considered when implementing the algorithm for a more
detailed look at the access patterns, see [4]. For Profiler results of the CUDA
code see Figure 4.5.

4.5.2 Optimizing Hough Transform

In contrast to convolution, the Hough transform has no overlapping sub-
problem and therefore much easier to handle when it comes to reading in
compressed data form disk. Considering the options we discussed earlier for
the format of the compressed data. The option that will most benefit both con-
volution and the Hough transform would have to be smaller sized compressed
blocks. This is because if we go for the option of adding the neighboring values
in the compressed block we would be reading and compressing more data than
needed for the filtering. We will be looking in more detail at this aspect in the
result and discussion in Chapter 6, and the tests we ran on both options to
see which results in most I/O speedup.

The Hough transforms computation complexity is based upon the number of

59

4.5. OPTIMIZING IMAGE PROCESSING ALGORITHMS

points selected to be computed. The transform starts off by selecting a set of
points in the image and then by using the transform one can see which of the
points are most aligned. The trouble with the algorithm is that it is prone to
conflicted writes to memory. The algorithm reads in coordinates for the set
of points in the cartesian and then uses these coordinates to calculate the r
and θ values in the Hough domain. The problem is that separate points in the
cartesian domain have similar values in the Hough domain, thereby the write
conflict. The pseudo code of the algorithm is presented below.

1 Input data X \\ t u p l e s o f po in t s (x , y) coo rd ina t e s
2 Result t a b l e R
3
4 for each po int in X
5 for each ange l in r e s u l t i n g image
6 c a l c u l a t e rva lue us ing x , y and ange l
7 lookup (r , ange l) coo rd inate in r e s u l t image R, and add 1 to

value
8 }

Pseudo code for Hough transform 2D algorithm

In our implementation, we are performing the calculations on two dimensional
slices such that each thread actually performs all the calculations on the points
for the two dimensional image. This is to avoid write conflicts between threads
when parallelizing. This will make the algorithm separable and non dependent,
resulting in it being very parallel. Looking at our profiler results for the CPU
implementation we could see that the algorithm is memory optimized in the
sense that there are few cache and prefetcher misses, but an unavoidable nature
of this algorithm is the conflicted writes when parallelized. And our solution
to limit its effects on the algorithm is to avoid the conflict between threads,
which seem to work given our profiler results. The results of the profiler are
show in Table 4.7.

Table 4.7: Intel Vtune results for Hough Transform

L2 cache Miss L1 cache Miss Branch Mispred. Prefetch Miss
0.5% 0.3% 0.5% 1.3%

When it comes to the GPU implementation, we have followed much of the same
optimization steps as in the CPU parallelized OpenMP version. This implies
that each thread solves for a separate two dimensional image and this avoids
write conflicts between threads, which results in good parallelity. However
there is a timeout limit on the GPU set by the operating system, which means

60

CHAPTER 4. COMPRESSION AND FILTERING ALGORITHM
OPTIMIZATIONS AND IMPLEMENTATIONS

Figure 4.6: CUDA profiler snapshot of the Hough transform execution

that for larger dimensions it could be a problem. This was avoided by turning
off this limitation and not going back on the method. This is because if we were
to divide the two dimensional image then we would have conflicting wirtes to
worry about. For the Fermi architecture here again the optimization made was
to tweek th threads and block sizes to meet the requirements of the occupancy
calculator [9]. We were able to achieve a 100% occuancy, which is visible in
the results as one can see in later chapters.

4.6 Our AESC Library

Part of the this thesis is to create a compression library that uses our findings
and the use of the GPU with CUDA. The AESC is a compression library
specifically designed for seismic data that use the GPU and is a collection
of compression algorithms that we have been discussing in this chapter. The
library functions demand a pointer to the input data and output data, the
dimensions of the seismic cube, and the amount of threads and blocks that
are to be used on the GPU. The amount of threads is important and should
be set by the programmer using the library because it is dependent on the
architecture one is running on, and we advise the use of the CUDA occupancy
calculator [9] to gain most speedup of using the library. An overview of all the
functions available in this library are presented in Appendix E, and we have
also presented the parameters.

61

4.6. OUR AESC LIBRARY

62

CHAPTER 5

Predictive Model for Seismic Processing I/O

The aim of this predictive model is to estimate I/O execution time of a certain
seismic process. The process is divided into two parts. One, being the I/O
process of the seismic data, which we have focused on accelerating in this the-
sis. The other is the computation process that we looked at accelerating in our
previous work [4]. In both cases the execution time will be dependent on the
hardware as well as the algorithms used to execute. This implies that the mod-
els will reflect this by using variables that can be tested on a certain machine
first, to then estimate the rest of the process to be run on that machine.

The normal I/O process on any machine can be expressed as Equation 5.1.
Where n is the amount of data to be read/written measured in bytes, and r
is the rate at which the disk is able to read/write the data measured in bytes
per second. This functions returns the time spent to read or write a certain
amount of data.

t(n)I/O =
n

rdisk
(5.1)

In our case, we are aiming at speeding up the normal I/O process by com-
pressing the data such that the disk read/write rate r is no longer the main
bottleneck in the system, but one can introduce compression and decompres-
sion algorithms performed on a computation unit to help accelerate the process.
This means that the time spent will no longer be dependent on the I/O unit
alone, but also the computation unit. This introduces the dependency between
compression rates of the algorithms and their efficiency.

The new I/O process can then be modeled in two parts, and conceptually is
modeled as in Equation 5.2. This expresses that the I/O time is now the time

63

5.1. SYNCHRONOUS MODEL

it takes to read or write the compressed amount of data, tcompressedIO, and the
time it takes to compress or decompress the data. This concept reflects the
synchronous model. One is also able to model this asynchronously, which we
will look at later.

t(n)SyncI/O = t(n)compressedI/O + t(n)compress/decompress (5.2)

5.1 Synchronous Model

When using the conceptual model and is expressing it as a function of the
original data size n, it will be as in Equation 5.3 for the case of reading from
disk, and Equation 5.4 for when writing. Here ncompressed is the amount of
compressed data in bytes, which is dependent of the algorithm one uses to
compress and can also be expressed as ncompressed = n ∗ C, where C is the
compression factor and n is the original data size in bytes. rdisk is, as earlier,
the rate at which the disk reads or writes seismic data depending on the formula
and is expressed in bytes per second. Whereas r(n)decompress is the rate, in
bytes per second, n bytes are produced by the decompressing algorithm, and
r(n)compress is the the rate at which n bytes are compressed. It is important to
note the difference to avoid erronious estimates.

t(n)read =
ncompressed
rdisk

+
n

rdecompress
(5.3)

t(n)write =
ncompressed
rdisk

+
n

rcompress
(5.4)

The main difference between Equation 5.3 and 5.4 is that when compressing,
the original data size is compressed into a compressed file size. While when
decompressing the compressed file size is used to reproduce the original file
size. The difference is then the amount of reads and writes to memory. When
compressing one reads the original file size n than writes ncompressed = n ∗ C
amount of compressed data, where C is the compression factor dependent on
the algorithm used. When decompressing it is the opposite situation, where
one writes to memory more than reading. The total time used to compress
or decompress is about the same becasue one performs the same operations
in reverse, but usually decompression is considered slower because one has to
write more. In our case, we only decompress to memory to perform calculations

64

CHAPTER 5. PREDICTIVE MODEL FOR SEISMIC PROCESSING I/O

and then compress the data again when storing it back to disk making the
compression and decompression times quite similar. This is because now that
the disk reads and writes the same amount of data, in contrary to standard
compression, the major factor is the memory bandwidth, which is usually
pretty equal for reads and writes. This is reflected in our results

5.2 Asynchronous Model

When we start using more than one processor and parallelize code, one can
do so synchronously by first reading then performing computations on several
computation units. Another alternative is to split the reading and computa-
tions into different threads and perform them in parallel. This way one would
hide a lot of the computation time with I/O time or the other way around
depending on which step is the most time consuming. By reading the data
asynchronously, one would have to divide it into blocks this way one could
read a small part and start performing computations on that, only to read the
next part as these computations are being performed in parallel. This way
one would hide these computations. In Figure 5.1, we illustrate the scenario
of asynchronous reads by splitting the data into 5 blocks.

Figure 5.1: Asynchronous I/O Pipeline

Conceptually this would result in the model presented in Equation 5.5, where
b is the number of blocks and Max(x,y) is a function that returns the greater
execution time between processes x and y. the other variables have been ex-
plained previously in the synchronous model.

t(b, nb)AsyncI/O = t(nb)compI/O +

(b− 1)MAX(t(nb)compI/O, t(nb)comp/decomp) +

t(nb)comp/decomp (5.5)

65

5.3. COMPRESSION COMPUTATION AND I/O TRADEOFFS

A clear advantage here would be to increase the number of blocks to decrease
the overhead from the first and last block of the asynchronous process. But, one
has to keep in mind that all reads and writes have an overhead when invoked,
which means that if one reads small amount of values per read than the read
process will take much longer than reading a larger amount of sequential data.
This is why we try to read a large amount of sequential data per read and use
specific blocking techniques to do so. This was explored in our earlier work
with seismic data [4]. Therefore there is a tradeoff between increasing block
size and execution speeds.

5.3 Compression Computation and I/O Trade-

offs

Generally the tradeoff in this case is the time taken to compress and the
resulting compression rate. Optimally one would like to have a compression
algorithm that takes little time to execute and compresses the data well. This
way one would reach the best speedup compared to the normal I/O process.
But, in reality there is a relation between the time one uses on compressing data
contra the execution time, which is that the more time one spends the more
one is able to compress. This works ofcourse only to a certain extent where
the data isno longer compressable. But, the more time demanding methods
compress better as well.

Generally when one is aiming at using compression, the main goal is to com-
press as much as possible while there is no time limiting factor i.e. one can use
a lot of time to achieve the compression. In our case on the other hand, we are
limited by the normal I/O time. If the execution time of a compression algo-
rithm exceeds that of normal I/O than it will never be able to achieve speedup,
and therefore should use regular I/O. That is why we are aiming at using the
computation power of the GPU to run heavier compression algorithms fast
enough to gain I/O speedup. This also means that when comparing to faster
I/O units such as the SSD disk one has even more limited time and must
therefore depend even more on fast compression algorithms, which in return
gives limiting compression options.

In the case of performing the compression and I/O operations synchronously
one would be limited by the execution time of both since they are performed
after one another. This is always the case when performing on a single CPU,
everything is performed sequentially. While in the case of parallelism and

66

CHAPTER 5. PREDICTIVE MODEL FOR SEISMIC PROCESSING I/O

Figure 5.2: Showing advantages in execution time for combinations of fast/slow
compression, high and low compression rates and asynchronous compression

using several threads on the CPU, one can perform the computations and
I/O asynchronous, and then one would be limited by the execution time of
the part that is most time consuming. This way one can hide either the I/O
or the computations in by overlapping the two and the one with the highest
execution time will be overshadowing the other. This gives more dimensions
and possibilities to use more comprehensive compression algorithms even on
fast I/O units, up to a certain point of course. The same applies as earlier
that if the compression algorithm is more time consuming than the original
I/O time then it will not give any speedup. See Figure 5.2 for details.

67

5.3. COMPRESSION COMPUTATION AND I/O TRADEOFFS

68

CHAPTER 6

Results, Discussion and Analysis of

Benchmarkes

In this chapter, we will be presenting and discussing the benchmarked results of
our implemented algorithms. We will study the results of individual algorithms
and analyze the attempts at using the GPU to accelerate the computations.
We will also discuss the results of executing on different hardware and interpret
the behavior of the algorithms across different platforms. More importantly
we will discuss the results of I/O acceleration efforts.

We will also look at the effects of different choices made and the outcomes
they give to the I/O process. Choices such as the devised compression format
or choosing between lossless or lossy algorithms. We will analyze the use of
synchronous and asynchronous I/O. Finally we will see how all this effects the
overall process including filtering the compressed data. This will allow us to
evaluate of how effective the use of the GPU can be to the seismic filtering
process.

This chapter is divided into 4 sections. In Section 6.1, we will discuss the
hardware used to benchmark our results. We will have a look at the data sets
used to test and what significance this has for our results in Section 6.2. The
final two sections will be benchmarks for the individual algorithms, Section
6.3, and the effect the algorithms have on the seismic filtering process, Section
6.4. Here we will discuss and analyze in detail the behavior of the algorithms
and the their influence on the seismic process. We will look at how the process
will probably change depending on the platforms and computational hardware
the algorithms may potentially run on.

69

6.1. HARDWARE & PLATFORMS USED FOR TESTING

6.1 Hardware & Platforms Used for Testing

Before introducing the benchmarking results it is important to point out the
hardware and platforms we have been testing on. We have been testing on
two machines that have different hardware specifications. The first machine is
one that is put together by us and runs on a windows 7 operating system. A
list of the hardware in the first machine is described in Table 6.1. It is worth
noting that we have mentioned alternative options on the hardware such as
the disk and GPU. This is mainly to underline that we have used the same
machine, but have changed to the alternative option such as when we tested
the new Fermi architecture of NVIDIA. When it comes to the alternative disk
we added another disk to add more variety to our tests.

Table 6.1: Table showing the system components used in machine 1

CPU Intel Q9958 2.81GHz
RAM 8 GB DDR3 memory

Disk: Alternative 1 Samsung 750 GB 7200 rpm Disk
Disk: Alternative 2 Samsung 500 GB 10000 rpm Disk

GPU1 (used for display) NVIDIA Geforce 8600
GPU2: Alternative 1 NVIDIA Tesla c1060
GPU2: Alternative 2 NVIDIA Tesla c2050

The second machine is put together by the personnel of the group, which a
powerful machine that has some of the newest hardware one can find, but one
cannot change the hardware on this machine. This is why we could not have the
combination of SSD and Fermi. This machine uses a Linux operating system
and is accessed remotely. It is worth noting that the change in operating system
can be a source of different results in that the operating system schedule tasks
differently. An overview of the hardware of the second machine is presented in
Table 6.2.

Table 6.2: Table showing the system components used in machine 2

CPU Intel i7 2.81GHz
RAM 12 GB DDR3 memory
Disk Cosair SSD disk 256 GB
GPU NVIDIA Tesla s1070

70

CHAPTER 6. RESULTS, DISCUSSION AND ANALYSIS OF
BENCHMARKES

6.2 Data Sets for Tests

During our thesis we got permission to use two seismic data sets. One given to
us by Schlumberger, which is part of the West-cam oil filed. The other given
by Statoil, which is part of the Gullfaks oil filed. The problem with these
data sets that they are not that large, and newer sets that are actually larger
are confidential. That is why we have combined these sets, and rotate the
sets to get a larger cube that has the same statistical distribution such that
it is representative of seismic data. We have created several sizes of the sets
ranging from 256MB to 32GB. The sets are randomly put together such that
we get distributions that vary a little such that we get a representative view
of compressing data. The data sets were verified as representable by engineers
in Schlumberger [1] [26]. The reason to have different sizes is to see how the
algorithms scale. Actual seismic data from test sets are presented Figure 6.1

Figure 6.1: Seismic BMP images generated by our framework, based on the
Westcam raw data set [1]

In this work we define a larger data sets as a set that does not fit into memory
and therefore one is forced to access the disk several times. This is such that
the I/O time is representative for the algorithms. The largest memory we
have is on the second machine we are testing on, which has 12 GB of memory.
But, given the need to duplicate some arrays for result arrays and some extra
memory for aspects such as the RLE dictionary and the Gaussian filter for the
convolution. That is why even for that machine with larger memory, it will
access the disk up to 8 times for the largest data set.

The dimensions of the data sets vary from 4003 to 20003 floats, and the non-

71

6.3. COMPRESSION ALGORITHMS PERFORMANCE AND VISUAL
RESULTS

binary dimensions force us to take into account boundary conditions. And
makes optimizations more difficult, which makes the tests and scenarios more
realistic.

6.3 Compression Algorithms Performance and

Visual Results

In this section, we will be presenting, discussing and analyzing our results
of benchmarks. The focus here will be to look at the results of individual
compression algorithms run on different platforms. This way we can analyze
performance on a smaller scale. In contrast to later sections where we discuss
the performance and effects the algorithms have on larger processes such as
I/O or the seismic filtering process. The layout of section is devided by the
algorithms we have implemented, and within those subsections we comment
implementations on the platforms of CPU, Quad-CPU and GPU.

6.3.1 Modified RLE Benchmarks

In Figure 6.2, we present the various execution times of the RLE algorithm
for the various platforms given the size of the data. Our results show that
the quad-core CPU is significantly faster than the GPU at compressing. The
results also show that we are able to achieve a 3 times speedup, compared
to a single core CPU implementation, for larger data sets. While a 3.5 times
speedup for smaller sets.

It is important to note that the compression rate for varying data sets and
sizes was significantly similar, at a compression ratio of 1.31. This is signif-
icant because it indicates that our analysis of the data and our approach to
compressing seismic data with selective compression was successful and robust.
The compression rates are similar for all platforms.

Visually the results of this algorithm are no different before or after construc-
tion. This is because the algorithm is of the lossless nature. Meaning that no
data is lost, which results in no error.

72

CHAPTER 6. RESULTS, DISCUSSION AND ANALYSIS OF
BENCHMARKES

Figure 6.2: Execution time results for RLE algorithm

Why is the CPU faster than the GPU when performing RLE?

There are two major reasons as to why RLE would run faster on a quad core
CPU than the GPU. One, is the sequential nature of the algorithm. The other,
is the efficiency of he GPU on bit-wise operations. It is documented [23] that
the GPU is about four times slower at processing bit-wise operations than
the CPU. That is why even with the massively parallel nature of the GPU,
a linear speedup will not be achieved compared to the CPU. Another aspect
is that each thread would have to wait for other threads to finish before one
thread could be responsible to attach the compressed bit together with the
other. This will give a dependency in that most threads would be idle before
being able to attach their part. One might suggest that using a tree structure
to perform the attachment of the sub-problems, but this would not give any
speedup. The reason is that as a sub-problem is to be attached all its bits
have to be shifted, which is the overhead of attaching. By attaching larger
subproblems together, as one does in a tree structure, it would result in the
same amount of bit-wise shift operations as the linear method. That is why it
would not make a difference.

73

6.3. COMPRESSION ALGORITHMS PERFORMANCE AND VISUAL
RESULTS

Why does normal RLE not give the desired I/O speedup results?

As we have mentioned earlier, seismic data is quite noisy. This means that
there are many spikes in the data and little consistent values in a row. Run
length depends on the data being of the evenly distributed and the same values
occur after each other. For example one can replace 50 floats of the same colour
in a row with 2 floats expressing the colour and the count, which would give a
compression ratio of 25. The fact the data is noisy can actually give a negative
compression, which means that the compressed file is actually larger than the
original. This was actually the case to begin with, and we optimized by aiming
at a selective repeated value to achieve compression.

What effects did the zero optimization have on the compression ratio
and computation time?

When optimizing the RLE algorithm we aimed at only compressing for zeroes
in a row because after studying the data we found that only zeros actually come
in a row. This was done by combining RLE with a dictionary look-up, where
each address in the dictionary gave the address of the next zeroes in a row and
the compressed data stated the number/count in the same array index. This
was very successful in the sense that normal RLE gave a compression ratio
of 0.71, which means that the compressed file was 1.42 times larger than the
original. While the optimized RLE gave a compression ratio of 1.31, which
is about 77% smaller than the original data. This optimization had also a
positive effect on the execution time, in that it is faster since it does not have
to account for similar number other than zero. This gives an advantage in that
execution time is critical for the I/O speedup

Is RLE encoding a viable option for the compression process?

The I/O speedup of the process is at about 1.05 for the larger sets. This
means that by using RLE for compression on a quad core CPU then one is
able to accelerate the I/O process by 5%. This is not a significant change. The
limiting factors here are both the compression ratio and the execution time.
The compression ratio is an indicator of the maximum attainable speedup
for the I/O process given a compression algorithm. This is because it is an
indicator of how much data will be read by the disk, given that one is able
to hide most of the computation in an asynchronous fashion, this will be the
major portion of the execution time and hence the best indicator for maximum

74

CHAPTER 6. RESULTS, DISCUSSION AND ANALYSIS OF
BENCHMARKES

I/O speedup. Another intersting result is when RLE is run on the SSD disk
we get a speed down, which in turns shows that the speedup gained for the
HDD disk is limited. That is why one can conclude that it is not a viable
option and one might as well use standard disk access.

Are there other lossless algorithms that can give better results?

In the domain of compression, there can be many algorithms found. Most of
them are in the category of lossless. But, they do have one thing in common
and that is that they are time consuming. The most effective algorithms such
as the algorithms that predict and adapt to their data are time consuming in
that they need to study the data and then compress it. Algorithms such as
LZMA that are used in common compression tools such as the winzip and rar
format, have been tested in our thesis. We used the tools to compress our
data, but the compression takes up to minutes to perform, and the result is
not that much better. The best compression ratio we achieved was with the
Winrar tool, which gave a compression ratio of 1.66. Other lossless methods
such as the one used by Xie and Qin [50] also resulted in a compression ratio
of 1.6. Here they used the method of arithmetic encoding in combination
with floating point compression, which we discussed in the data compression
chapter (Chapter 3). In other words there are methods that can compress
slightly more, but need more computation time that they are not useful in our
scenario of beating I/O time.

Why is there a difference in speedup between the smaller and larger
data sets?

For the smaller data sets there are fewer shift operations and smaller tables
that are to be put together when parallelizing. This results in that for smaller
data sizes one will get faster executions when parallelizing, while for larger
sets one gets a more stable execution time that reflets beter the operations
performed. The smaller sets showed a speedup of about 3.5 when run on 4
threads, while the largest dataset resulted in a 3.1 speedup.

6.3.2 Huffman Encoding Benchmarks

The execution times for our Huffman encoding are presented in Figure 6.3 in
a graph. Here data sets of various sizes are tested and their execution time

75

6.3. COMPRESSION ALGORITHMS PERFORMANCE AND VISUAL
RESULTS

is recorded. A notable result here is that all the compressed blcks showed a
similar tendency in compression rate, with a compression ratio of 1.4. this
indicates that the maximum achievable speedup is 1.4, which already looks
like is not a viable option in the same way as RLE.

Figure 6.3: Execution time results for Huffman encoding algorithm

How does our CUDA implementation relate to other Huffman im-
plementations?

We achieved similar speedups as others who have performed Huffman encoding
on the GPU (such as [20]), but we differ in that we have an approach that better
utilizes the memory hierarchy of the CUDA architecture. We use constant
memory to utilize memory access to the lookup table because it is buffered,
which means that our computations are more optimized. This shows that the
issue with the huffman algorithm is not the computational complexity, but
rather its sequential nature. We were able to achieve a 1.2 speedup for the
huffman algorithm on the GPU in contrast to the GPU, but in this case te GPU
did not give an advantage good enough to beat general I/O time. This makes
this algorithm not a viable option for I/O speedup, but has the advantage

76

CHAPTER 6. RESULTS, DISCUSSION AND ANALYSIS OF
BENCHMARKES

of being better at lossless compression than RLE for non transformed seismic
data.

What effects do our optimizations have on the algorithm?

The most effective optimization we implemented is the predefined huffman
tree, which is generated at the beginning of the program. This optimizations
resulted in dropping to have to read the entire data set twice from disk. Be-
cause in normal huffman algorithm the data set is read once to generate a tree
and then again to compress. This optimization was able to cut the execution
time in half by simply predefining the data to be read in and predefining a
huffman tree. This optimization is only possible if one knows the data to be
compressed beforehand, which we do in this case. When testing on the several
datasets we have all returned a similar compression rate, which means that
our assumptions about the nature of seismic data is correct.

Another optimization that influenced the execution time drastically is instead
of building a tree we have created a lookup table for all combinations of the
256 values a byte can have, and this is done with a base of replacing to bits at
a time. This will add a bit of a delay to begin with to generate the table, but
accelerates the execution in a way that we skip many bit-wise operations to
access the data to bits at a time. This was the optimization made it possible
to beat I/O time at all, because we now traverse the data a byte at a time
instead of to bits at a time, resulting in a quarter of the operations. In other
words the algorithm is 4 times faster because of this.

What makes the algorithm less efficient on the GPU?

The GPU is well known for its computational advantage for algorithms that
can be parallelized. But, it does come with its limitations. The GPU is made
to operate on floating point data and therefore when operating with bit-wise
operations, which are performed on integers, it is not effective enough as the
CPU. This is of course a problem for compression in that we try to replace
existing bits to express the same information with fewer bits, therefore we must
use bit-wise operations. Having said that, one would probably get a speedup
on the GPU even when performing only bit-wise operations, if the problem is
separable and parallelizable.

In compression one has to always put together the separate compressed blocks
to a compressed array, and the more pieces one has to put together the more

77

6.3. COMPRESSION ALGORITHMS PERFORMANCE AND VISUAL
RESULTS

troublesome it will get. To utilize the computational advantage of the GPU we
would have to use many threads to hide computations, but having each thread
wait for the other to put together the data is too time consuming, and as we
have discussed earlier there is no way around it. This is even a trend that
we see when scaling on the CPU. That we do get a speedup up, but far from
linear speedup. This is because there is a sequential overhead in putting the
data together. Proceeding to use the GPU might cause that overhead to grow
because then there are several more communications that need to take place
between threads causing an even greater overhead. This sequential nature of
the algorithm is the biggest cause of lacking in computational advantage on
the GPU.

How does the algorithm scale?

The results clearly show that the algorithm scales well in computational through-
put and that the compression ratio is similar for the various test sets. This is a
good sign that shows that our algorithm is stable in that it is able to compress
the same amount of data every time. It also verifies our assumptions about the
seismic data distributions. It also shows that the time spent on creating the
look-up table for the algorithm is insignificant and gives such a great speedup
for the algorithm as a whole. Other aspects of its scaling is how it scale cross
platform. The results indicate that the algorithm functions better on the CPU
than the GPU, which reasons are discussed earlier.

6.3.3 Naive DCT Benchmarks

The naive DCT in our work is implemented in two dimensions, this is mainly
because the results after the two dimensional implementation revealed the need
for a faster algorithm, but that the compression rates were very useful. That
is why we approached the AAN algorithm and implemented in in three dimen-
sions. The DCT results however showed how effective transform encoding is
compared to lossless encoding without having to lose much data. To measure
the loss of the data we used a common formula in image processing that is
the root mean square error. This is a good indicator if there are spikes in the
resulting transformation because by squaring the difference a spike would gain
more error. One could however argue that one could simply use the mean error
in this case since the error should not be more than two decimal places and is
the average error is less than that we have a quite reliable error margin. The
formula we used to calculate the error is as follows:

78

CHAPTER 6. RESULTS, DISCUSSION AND ANALYSIS OF
BENCHMARKES

rMSE =

√∑n
x=0(I(x)−O(x))2

n
(6.1)

The one dimensional DCT gave a mean error of 0.0024 while the two dimen-
sional DCT gave a mean error of 0.0032. This is error is however emphasized in
the case of using the rMSE, which resulted in an error of 43 and 81 respectively
for the one and two dimensional case. What this means is that there are few
errors since the average error is almost similar, but the few errors are spikes
of change that are even visible on the visual results. However for the visual
results we can see that the traits of the data have not changes significantly,
and the image is quite similar. After consulting engineers at Schlumberger
[1][26], we confirmed that these results are acceptable, and that given this loss
of data close to no influence is made on further analysis. This shows that we
are within acceptable error rates. The before and after images of the seismic
data with 10x zoom shows the effects that we mentioned of spike data and few
errors in Figure 6.4.

Figure 6.4: Before and after images of the transform encoding process using the
naive DCT algorithm, generated by our framework

The execution time results of the naive DCT for both one and two dimensions
are shown in Figures 6.5 and 6.6. Here one can clearly see that the GPU is a
great asset in the transform encoding process and the cooperation between it
and the CPU have given great results. The compression rates of the DCT are
1.55 and 3.01 respectively for the one and two dimensional case. Which shows
that the maximum speedup one is able to achieve is much larger than that of
the lossless algorithms, which opens up a potential to actually beat I/O time
significantly even on newer disk platforms.

79

6.3. COMPRESSION ALGORITHMS PERFORMANCE AND VISUAL
RESULTS

Figure 6.5: Execution time results for naive DCT 1D algorithm

How does the quantization step help in compression?

One of the significant aspects of the DCT is that it is able to compress the
energy in the frequency domain better than the fourier transform. In the
quantization step of the process a low pass filter is used to remove noise from
the seismic images. By doing so one gets better compression because only some
of the data is valuable now. In our quantization step we set values that are close
to zero to actual zero. This is usually the last 4 of the 8 elements evaluated in
the transform. This can be used as an advantage in the transforming algorithm
in that not all 8 values need to be evaluated one could only evaluate 4 of them
since the last 4 would be set to zero anyways. However by setting the value to
zero of values that are not even close will result in a large loss of data. The
reason as to why this gives such good compression is because when setting
values that come directly after each other to zero and we run our modified
RLE on them. We get to compress a four 32 bit float as a 1 bit tag and a one
floating point counter, which gives greater compression.

80

CHAPTER 6. RESULTS, DISCUSSION AND ANALYSIS OF
BENCHMARKES

Figure 6.6: Execution time results for naive DCT 2D algorithm

Why does the compression ratio vary for compression in different
dimensions?

By transforming the data in several dimensions more of the transform would be
zeroed out and this gives more room form the RLE algorithm to compress the
data. In the one dimensional case if all te data was non zero we would be able
to express 8 floats with 5 floats and 8 bits. This results in a compression ratio
of 1.52, which is almost the case in our data as well. For the 2 dimensional
case however we would have for each 8x8 (64 floats) block only a 4x4 (16
floats) of significant data, the rest 48 floats are then zeros that can be easily
compressed. The placing of this data would give the RLE algorithm the chance
to compress twice as much data. This is because the first 4 rows of transformed
data would be similar to the one dimensional scenario, which comes from the
fact that a new block starts every 8 elements. But, the next 4 rows would only
be zeroes causing them to be expressed with one float. This means that one can
express double as much data with same amount of compression giving room
for doubling the compression rate, which again agrees with our results. And
this is how expanding to new dimensions gives the advantage of compression,
because several rows or even 2D slices (in the 3D case) are then zeroed out

81

6.3. COMPRESSION ALGORITHMS PERFORMANCE AND VISUAL
RESULTS

creating more room for compression.

How does the algorithm scale on the different platforms?

The naive DCT gives good compression ratios, which give room for more I/O
speedup, but is very computationally expensive. This is why we see the great
scaling of using the GPU for the transformation. In this thesis, we do not
measure the speedup as a speedup of performing only the transform from the
CPU to the GPU, which works very well, but rather the whole compression
process when performed on the CPU in contrast to being performed by coop-
eration between the CPU and GPU. This cooperation gives a great advantage
and a computational speedup of about 13 for the one dimensional case and a
computational speedup of 24 for the two dimensional case. This is primarily
because the GPU is so efficient in performing the transforms, and when is be-
comes more computationally expensive the GPU excels, as we see in the two
dimensional case. But, the fact that the computation time is accelerated for
the compression process does not mean that I/O speedup, which is the goal
has gained any significant advantage.

Why not perform the naive DCT in three dimensions?

The reason for this is that even thought the computations can be performed
faster using the GPU we still do not get any I/O speedup. The fact is that
there are way too many computations involved and if it does not give any I/O
speedup, given our limited time, we should be looking at methods that can.
The most crusil element here is that the DCT proved that larger compression
is allowed, which we already know from previous work done on seismic images,
but we needed to look at faster DCT algorithms to make it work for our cause,
namely I/O acceleration. The fact that there are faster algorithms for the
DCT id why it is widely used in codecs for film and audio, without the fast
DCT we would not be able to stream the data in the way we do today in video
formats such as MPEG. To sum up, even though we did not perform the naive
DCT in three dimensions, we did so for the AAN/fast DCT algorithm and the
naive implementation identifying the possibilities.

82

CHAPTER 6. RESULTS, DISCUSSION AND ANALYSIS OF
BENCHMARKES

How does this method compare to the lossless methods?

Clearly, this method gives better compression ratios than that of the lossless
algorithms with litte loss. But, given that there is this much potential in the
compression ratio in terms of maximum I/O speedup one is able to reach. The
lossless algorithms are better percentage-wise than the naive DCT algorithm,
even when run on the GPU, and this comes from the computational complexity
of the transform. To clarify, the compression ratio of the huffman encoding
algorithm is 1.4 and this gives a 1.2 I/O speedup compared to normal I/O
time. This means that about 86% of the potential is met with the algorithm,
after optimization of course. While for the two dimentional DCT which gave
the best I/O speedup, the maximum I/O speedup is at 3.01, which is the
compression ratio. On the other hand the I/O speedup is at 2.4, which is
about 77 %. This clearly shows the point we made earlier that ther DCT has
the potential, but given a faster algorithm we could better use the advantge
this method presents. One can also argue that overall the transform coding
method with the naive DCT has more speedup with little loss, and therefore
is better, but it is good to look beyond that as well.

Why use RLE and not Huffman in the encoding step of the trans-
formcoding?

The main reason for this is because RLE with our optimization is more efficient
at compressing the transform. Without our optimization it would be the other
way around. But, since we in the quantization step as mentioned earlier zero
out the higher frequencies, more compression is achieved. Besides the huffman
algorthim would not be as efficient as it is now, because we would have to take
two runs through the data to create a huffman tree. This is mainly because
we do not know before hand how the data would look like and therefore must
perform more work to compress it. This would make the huffman transform
less efficient when it comes to execution time as well.

How does the Fermi architecture effect the DCT algorithm?

The Fermi architecture has the advantage of having a cached structure, more
cores and faster memory, and therefore it is safe to assume a speedup when
using it. But, what sort of speedup can be expected and why did we get the
speedup that we did by simply changing graphical processors. The NVIDIA
FERMI tesla card c2050 has double the cores, which means that it has double

83

6.3. COMPRESSION ALGORITHMS PERFORMANCE AND VISUAL
RESULTS

the computational power, but it only has 40% faster memory access since it
uses DDR5 memory. This means that the algorithms run on this platform that
are not dependent on caching, which is the case with transforms, a maximum
of 2 times speedup is the limit. This is of course a great improvement, but
one should not be surprised if this is not always achieved. This is because
the algorithm has a lot of memory access where every access I to a different
address, such it is in transforms, the time spent on memory access can only be
speed up to 1.4 times. This means that depending on the distribution between
memory access and computation one can get a speedup between 1.4 and 2.
This is of course given that one optimizes for the platform. For algorithms
that benefit from caching the scenario differs significantly, and even greater
speedups can be achieved. But, in our case a speedup of 1.8 is achieved, and
this is because of the memory bandwidth holding back computational power.
Having said that a speedup of this magnitude is very significant and compared
to the CPU a speedup of 43 is achieved for the two dimensional case in contrary
to the older architecture and the 24 times speedup.

6.3.4 AAN Implementation Benchmarks

The results of execution wall clock times of the AAN algorithm used with
our RLE algorithm for transform encoding are shown in Figures 6.7, 6.8 and
6.9. Since the AAN algorithm is very efficient we have performed it up to 3
dimensions, where the GPU implementation is a cooperation between the GPU
and the CPU. Here the GPU performs the transformation and quantization
steps and the CPU is encoding using the RLE algorithm. One can clearly
see that there is an advantage of using the GPU over the PU, but what is
interesting is how the algorithm actually scales across the dimensions. For
the one and two dimensional case the computations are so few compared, that
compared to the time spent on transfers the CPU is actually able to outperform
the GPU. It is not before the three dimensional case where the computations
become so heavy that the GPU excels.

As mentioned earlier, some of the interesting results are that the algorithm is
computationally fast that even the CPU is able to catch up to the GPU, given
the transfer penalty the GPU suffers on the PCI express bus. In Figures 6.10,
6.11 and 6.12, we show how the balance between computation and communi-
cation when performing the AAN algorithm . One tends to forget about one
of the major limitations of the GPU when working on larger data sets, namely
the memory transfer from host to device. This is very time consuming, and
when the computations are less dominant we clearly see its effects.

84

CHAPTER 6. RESULTS, DISCUSSION AND ANALYSIS OF
BENCHMARKES

Figure 6.7: Execution time results for AAN DCT 1D algorithm

Another aspect worth noting is the error and visual aspect of the 3D transform,
which we performed now that it is useful for the I/O speedup purpose. In
Figure 6.13, we show the visual results of all the compressions performed and
reconstructed using the AAN algorithms in all three dimensions. The mean
error is still quite low and is at 0.0046, but more spikes are present here than
before, which is why the rMSE is at 81.2, but the results are stil within the
reasonable visual perspective as mentioned earlier and this only emphasizes
our point on that the image only lacks some minor parts of the image and only
some minor spike are missing, which is why the average is not effected. But
the values that do change, change dramatically, which pushes the rMSE up.
The images illustrate the point better.

85

6.3. COMPRESSION ALGORITHMS PERFORMANCE AND VISUAL
RESULTS

Figure 6.8: Execution time results for AAN DCT 2D algorithm

Figure 6.9: Execution time results for AAN DCT 3D algorithm

86

CHAPTER 6. RESULTS, DISCUSSION AND ANALYSIS OF
BENCHMARKES

Figure 6.10: CUDA profiler snapshot of the DCT AAN 1D execution

Figure 6.11: CUDA profiler snapshot of the DCT AAN 2D execution

Figure 6.12: CUDA profiler snapshot of the DCT AAN 3D execution

87

6.3. COMPRESSION ALGORITHMS PERFORMANCE AND VISUAL
RESULTS

Figure 6.13: Before and after images of the transform encoding process using the
AAN DCT algorithm in several dimensions, generated by our framework

How does the AAN algorithm differ in computation complexity from
the naive DCT?

The naive method of computing the DCT has an asymptotic running time
of Θ(n2) for the one dimensional case and Θ(n2m2) for the two dimensional
case, where each letter represents the size of the block to be calculated in each
dimension. Since one is calculating n elements using n traversal per element,
this gives n2m2 + nm multiplications including the scaling multiplication per-
formed in the end. While there are n additions for each element calculated and
it takes (nm-1) operations to add those number there will be nm(nm−1) addi-
tions. That means that computing a block of size 8x8 using the naive method
requires 8192 floating point operations when not using the separability of the
DCT. On the other hand we have the AAN algorithm that is built upon the
FFT which has a complexity of Θ(nlg(n)), and scales similarly. Given the flow
graph of the AAN algorithm we see that there are 29 additions performed and
13 multiplications per 8 elements in a single block in the one dimensional case,
which gives 336 floating point operations. While in the two dimensional case
we will get a 672 floating point operations per cube and one can clearly see how
much more effective this method is. Our results in run time also reflect this,
but we must take into account memory bandwidth and other such variables to
fully reflect the situation since floating point operations only reflect computa-
tions performed. But comparing our analysis we see that the AAN algorithm
is about 12 times faster in theory, and in practice it is about 9 times faster on
a single thread CPU. This is mainly because of the memory bandwidth which
is a simmilar communication cost for both.

88

CHAPTER 6. RESULTS, DISCUSSION AND ANALYSIS OF
BENCHMARKES

Why does the AAN algorithm scale better?

The AAN algorithm as mentioned earlier is not as computationally expensive
as the naive DCT, and therefore when performed on the GPU the transfer
limitation is more present. The GPU has a major drawback in that it needs
the data to be transferred to it from the system memory to its global memory
before computations are performed. This is not an issue for computationally
intensive algorithms since the transfer time is then masked by the computation
time. But, for larger data sets this is a major issue in that the transfer time is
about half the time spent on the GPU, as we showed earlier in Figures 6.10,
6.11 and 6.12. This is a problem because here again the bus bandwidth is an
issue for further optimization.

How does the possibility to expand to three dimensions effect the
compression ratio and error?

The compression rate achieved with the three dimensional DCT are greater
than those before it and give a breakthrough in the purpose of beating I/O
time. The compression rate is at 6.58 for larger sets. Here again the compres-
sion ate does not vary drastically, which means that its stable for compressing
various sizes and examples of seismic data. And with the efficiency of the AAN
algorithm on the GPU for the three dimensional case, a I/O speedup of 6.2 is
achieved on a fast HDD disk (70MB/s tansfer rate).

How does the Fermi architecture effect the AAN algorithm?

When running the CUDA implementation on the NVIDIA Tesla Fermi card
c2050, we could see little change in the speedup. This is mainly because the
FERMI architecture accelerates the computations done on the card, but the
transfer time, which is the bottleneck for this algorithm is the same for most
graphical accelerators. The exception are those that are integrated and share
the system memory with the CPU. Since the transfer bandwidth is the bot-
tleneck and about half the time is spent on transfer, the speedup attained by
switching graphic cards in this case was limited to 1.3. this a minor speedup
given the resource difference in the two graphic cards, the tesla c1060 and
c2050. This is return gives a speedup of 10 when compared to a single thread
CPU implementation on an Intel i7 machine. Some of the reasons this is so
is because the algorithm used here is less computationally intensive than the
naive DCT and so lesser speedup is gained between computation platforms.

89

6.3. COMPRESSION ALGORITHMS PERFORMANCE AND VISUAL
RESULTS

But, the important matter here is that the I/O speedup gained with this com-
plexity is substantial. This proves that the graphical processor does not excel
in all cases, but it does give room to offload the CPU and create possibilities
to accelerate the I/O process.

6.3.5 LOT Implementation Benchmarks

Results of the wall clock execution times for our LOT algorithm are presented
in Figure 6.14. Some of the first notable results are that the compression rate
has not changed much, rather it has increased slightly because of the increase
in size of the compressed LOT, because of the addition of the zero blocks.
Another aspect worth noting is that the execution time has doubled for the
single core CPU, but only effected slightly the GPU implementation which is
good because this will give more speedup on the GPU and it means that the
extra computations are being hidden well with the parallelization. However,
given that the transformation did not give more compression, there is no I/O
speedup to gain from this method. Rather it is a method that will achieve less
I/O speedup, which is a contradiction to our goal. Making this approach not
that viable. The only reason this method would then be viable is if the effects
on the error would be greater such that we can compress more given the same
error as the DCT.

Visually the LOT does look better than the DCT compressed blocks as one can
see in Figure 6.15. It helps greatly against the blocking effects. However the
mean error produced is slightly larger for the one dimensional case it went from
0.0024 to 0.0031, but on the other hand the root mean square error (rMSE)
has dropped. This indicates that there are several values with errors, which
results in the mean error rising, but the errors are less spikey, which leads to
a lower values when squared.

Why use the LOT for compression?

The LOT is a solution for the DCT transform in that it uses overlapping basis
to solve the visual blocking issue. The visual results show that this has worked
quite well in that it it has lowered blocking effect, but the main reason as to
why the LOT is used on seismic data is because it is able to decrease error
such that it gives room for more compression. We see that it does reduce
error, but not significantly, and the mean error is actually higher. Visually
the error seems to be less since the blocking has vanished, but is the replaced

90

CHAPTER 6. RESULTS, DISCUSSION AND ANALYSIS OF
BENCHMARKES

Figure 6.14: Execution time results for LOT algorithm

with minor spikes. The compression achieved with the LOT was not better,
it was actually more or less the same. Therefore the motivation was to use
the reduction of error to increase compression, but the error was not reduced
significantly and the compression is similar. Knowing the the LOT uses more
execution time because of the computational complexity, we are set back in
reaching I/O speedup and therefore this is not a viable option for our goal.

Why should we not explore further GenLOT on the basis of our LOT
results?

Given what we discussed in the precious question. We now know that there
are valid motivations in pursuing more advanced lapped orthogonal transforms
such as the GenLOT, but given our results that show that we are sacrificing
a lot of computation time and get little return in compression. This strategy
will not work for our purpose of beating I/O time even through it might work
generally for better compression, which is also shown by Duval et.al [14] and
given our results is valid. But, nevertheless we cannot pursue this because
we are limited by the normal I/O time and the GenLOT will add to many

91

6.3. COMPRESSION ALGORITHMS PERFORMANCE AND VISUAL
RESULTS

Figure 6.15: Seismic data after transform coding LOT and AAN in 1D, generated
by our framework

computation with little return for compression. Hence the decision not to use
it based on our results.

How does the LOT effect the error and the compression rate?

The mean error for the one dimensional LOT is 0.0031, which is larger than
that of the DCT. But, the root mean square error (rMSE) dropped from 22.3
to 21.5. This indicates that there are more values with errors, which results
in the mean error rising, but the errors are of less magnitude, which leads to
a lower values when squared and reduce the rMSE. This is emphasized in the
visuals as well. Given these results one can see that the error is not reduced
enough for us to compress more, and to achieve this reduction demanded such
computational sacrifice that we were not able to reach the same I/O speedup
as we did with the DCT. Making the AAN algorithm the better option in this
case. The compression rate was similar for the LOT as the DCT because they
have the same quantization step and therefore compress similarly. The LOT
has its advantages, but does not serve our goal.

How does the Fermi architecture effect the LOT algorithm?

The LOT algorithm being quite similar to the AAN is effected in the same
way. The results show a greater speedup in this case because of the higher

92

CHAPTER 6. RESULTS, DISCUSSION AND ANALYSIS OF
BENCHMARKES

computation complexity, which in turn reduces the effects of the transfer of
data to the GPU. A speedup of 8.1 is achieved using the Fermi architecture on
the one dimensional case contra the 5.3 achieved on the NVIDIA tesla c1060.
To put this into perspective the AAN algorithm gave a speedup of 2.8 for the
one dimentional case. This proves how more compuationally intensive this
algorithm actually is compared to the AAN algorithm. No further dimensions
were explored for the LOT when it was discovered not to be useful for the goal
of this thesis.

How does the LOT compare to the AAN computationlly?

In the previous section about the AAN algorithm, we showed how the AAN
algorithm demands 672 floating point operations per 8x8 block that is to be
calculated. We chose to analyse the two dimensional case since the näıve
method of the DCT was only developed for the two dimensions given that it
showed to be limiting and the research moved forward to a faster algorithm,
mainly the AAN. To build further on this comparison we will analyze the
computational needs for a 8x8 LOT block that is to be transformed. Knowing
that the LOT is built upon the DCT, we have used the AAN DCT as a
foundation for the fast LOT, which means that before starting we would need
672 floating point operations to get to the starting point of the algorithm.
Following the flow graph we then note that there are 14 multiplications, 16
additions and 6 multipy-adds performed as well. Since these are performred
on 8 variables in 2 dimensions then the complexity of a two dimensional block
of size 8 is 672+2∗8∗14+2∗8∗16+2∗8∗6 = 1248 floating point operations,
which is almost double the arithmetic complexity. This is well reflected in the
results we have obtained. And the GenLOT for each step will only add to this
complexity making less useful for us.

6.4 Image Processing Algorithms Performance

and Visual Results

In this section, we will be presenting, discussing and analyzing our results
of benchmarks. The focus here will be to look at the results of individual
image processing and filtering algorithms run on different platforms. This way
we can analyze performance on a smaller scale. In contrast to later sections
where we discuss the performance and effects the algorithms have on larger

93

6.4. IMAGE PROCESSING ALGORITHMS PERFORMANCE AND
VISUAL RESULTS

processes such as I/O or the seismic filtering process. The layout of section is
devided by the algorithms we have implemented, and within those subsections
we comment implementations on the platforms of CPU, Quad-CPU and GPU.

6.4.1 3D Convlution Benchmarks

When it comes to testing convolution in contrast to I/O, the size of the filter
has a major effect on performance. This is because the larger the filter, the
more compu- tation there is to do per pixel. Therefore it is not only interesting
to increase the problem size, but also increase the size of the filter and compare
on both levels. The filter sizes the majority of tests explored are 5, 9 and 13.
One can clearly see the effects of using a bigger filter and the increase in com-
putation time. Our findings generally focus on a filter of size 13 because of the
computational complexity and it being exampliary representative. execution
time results for convolution are presented in Figure 6.16.

Figure 6.16: Execution time results for 3D convolution algorithm with filter size
133

The results indicate that for large data sets that the GPU is actually about 17
times faster than a uni-core CPU. And is expected to be faster as long as each

94

CHAPTER 6. RESULTS, DISCUSSION AND ANALYSIS OF
BENCHMARKES

thread has a lot to do i.e. the size of filter is large. Because each pixel has to
calculate values along the filters dimensions. Nonetheless a 17 time speedup is
actually a good result in the case of pre-processing large amounts of data. In
the case where one would use 16 hours on a uni-core. On the GPU it would
run in about 54 minutes. Thereby one has reduced the problem dimensions
from hours to minutes.

To utilize the processing capabilities of the GPU one has to make sure that
there are enough threads available to actually perform all the calculations
and obtain maximum occupancy on the GPU. NVIDIA have produced an
occupancy calculator [9] that helps developers to analyze their implementations
and show how much of the GPU is actually occupied at a time. Here there is
a fine balance between the number of threads, blocks and registers one uses.
Because there is a limited number of registers per kernel then restrictions are
introduced to the max amount of threads. In the case of this convolution
algorithm there is a need for 23 registers (information retrieved from the cubin
file), which results in only 63% of possible threads can be run at a single kernel
launch. Meaning that only 63% occupancy can be obtained. The alternative
is to push some values from the registers to global memory and run more
threads. But since the register values are used often and forced lowering of
register use in the complier would be place values in global memory will result
in lower performance. This is because registers are accessed much faster than
global memory and the values in these registers are used constantly. On the
Fermi architecture on the other hand we have 100% occupancy because of the
advantages the architecture permits.

Visually we will see a blurred image after convolution becuse of the use of
a gaussian filter. The larger the filter the more blurred the image gets. For
sample result see Figure 6.17.

What Makes Convolution Parallel Friendly?

Before attempting to parallelize an algorithm it is good to know that it is
parallelizable. Convolution is an imaging technique, and like most imaging
techniques one is performing similar actions on several pixels [36]. If these
actions are independent as in the case of convolution, then one can run actions
of each pixel in parallel with other neighboring pixels. This is actually part of
the motivation behind the structure of the GPU and the way it is used (consid-
ering its SIMD architecture). Convolution also meets all the requirements of
Bernstein’s conditions (as mentioned in Section 2.1) in that each pixel is com-
pletely independent of the others. Another interesting aspect in convolution

95

6.4. IMAGE PROCESSING ALGORITHMS PERFORMANCE AND
VISUAL RESULTS

Figure 6.17: Blur using 3D convolution with filter size 133, generated by our
framework

is that calculations performed per pixel are actually quite time consuming in
that each pixel must travers the length of the filter mask. The fact that being
able to mask other computations behind each calculation should show great
speedup. These are some of the motivation behind parallelizing convolution
and why it is such a parallel friendly technique. The major bottle neck here
is that since so many calculations are performed per pixel is the correct use of
caches such that calculations are done in an optimal fashion.

Spatial vs. Fourier Domain

This thesis has a scope only accounting for spatial domain filtering as it is
the most expensive of the two and because of time limitations. Convolution
can be perormed in the fourier domain, but has its limitations. For example,
The fourier domain is asyptotically faster than the spatial domain, but has
limitations such as the data set dimensions have to be a power of two [1]. This
is usually not the case for seismic data, and therefore one would have to pad
the data, which could cause distorsion or noise in the filtered image. This gives
justification that performing convolution in the spatial domain is also usedfull
in some cases, and to account for the limitations of the time available, our
project focuses on the spatial domain.

96

CHAPTER 6. RESULTS, DISCUSSION AND ANALYSIS OF
BENCHMARKES

Memory Access Patterns in Uni-Core CPU Implementation

In the first implementation only the use of one CPU core was in focus. This of
course has the advantage of having to narrow the focus on optimizing memory
use for one core, which then should be easy to expand to the use of quad cores
with the use of threads, more precisely in this case the use of OpenMP.

Lets have a closer look at how the memory works in this case. After having
read to the buffer there are three levels of cache that can be utilized. The data
in the buffer is aligned according to rows read from disk. This is a problem
because when filtering for a pixel we will be looking at all its neighbors in
all three dimensions. Which means that one must perform several jumps in
memory to obtain the next values. This is of course not ideal, but since the
jumps in memory are regulated by the dimensions of the filter, which are
constant, the pre-fetcher should be able to recover them while calculations are
being perform resulting in close to no cache misses. This is seen in the profiler
results where when running on one CPU the cache misses are 0.01% of the
time. Because of the nature of how the data is aligned and the constant jumps
in memory the prefetcher is actually able to memory optimize the convolution
algorithm.

This is the case of fetching from the buffer to the third level of cache. In the
case of when the correct data is retrieved in the third level of cache. One is then
retrieving a subset of that data to the level 2 and level 1 cache for calculations.
The nice thing here is that now the data is aligned such that each sub cube, of
an equal size as the filter, are placed after one another. And when performing
calculations in the level 1 cache then the data needed is aligned such that
it is read in a straight line resulting in well aligned data on all levels of the
architecture. The only cache misses present are when one reaches the end of a
the data set in the x dimension, and proceeds to jump to the next row below
it. This cache miss occurs on the level 2 and level 1 cache and is a result of
non-overlapping data between the two pixels being filtered. In the normal case
there is overlap between neighboring pixels and one can perform calculations
on these values since they are in the cache while the pre-fetchers attains the
next values, but in the case where there is no overlap one must wait for the
values to be gathered before proceeding. This is a rare case, because of the
blocking pattern, and that is why it does not effect the overall cache misses of
the application.

97

6.4. IMAGE PROCESSING ALGORITHMS PERFORMANCE AND
VISUAL RESULTS

Memory Access Patterns in Quad-Core CPU Implementation

Knowing that one has an optimal serial implementation one can then justify
comparisons with other implementations to analyze gained speedup. In the
quad-core implementation one can use this optimal structure of memory and
aligned data to run 4 threads where all the data in the level 3 cache is shared.
This should result in that the implementation be more bound by memory
bandwidth since memory access is optimized. Given that there are now 4
CPU performing the same task as one did before and are totally independent
this should result in a theoretical 4 time speedup. Some bottlenecks here
are of course the memory transfer rates, but the implementation should come
quite close for large amounts of data and computation. In this thesis, the
results obtained are a 3.57 speedup, which is close to the theoretical value and
also underlines the fact that the implementations are memory optimized. The
profiler also indicates this in the same way as for the uni-core implementation.

Memory Access Patterns in GPU Implemenatation

Other than transferring the data to the graphical processor one has to op-
timize the kernel (algorithm running on the GPU) such that it utilizes the
performance capabilities of the GPU. As mentioned before, convolution is a
very bandwidth bound problem and on the GPU there are several layers of
memory that can accelerate bandwidth, but they need to be explicitly pro-
grammed to. The shared memory layer is a private memory for each block
such that threads within the block can communicate and cooperate without
having to access global memory. This is memory that can be accessed within
one cycle and is on chip, but needs to be transfered from global memory [23].
In the case of convolution there is no communication or cooperation within the
threads and therefore it is not used. There is another layer of memory that can
prove to be useful in this case, and that is constant memory. The issue here
is that constant memory is small in size. One could use the global memory to
run ones code from, but the memory latency would ruin performance [23].

Why use Constant Memory and Not Shared Memory?

Shared memory is the fastest of all buffer layers on the GPU. It can be accessed
within one cycle of computation. The only other buffer that has this attribute
is constant memory, and even here it is only valid for best case when the data
is coalesced. The trouble with both these buffer is their size. Both are in the

98

CHAPTER 6. RESULTS, DISCUSSION AND ANALYSIS OF
BENCHMARKES

range of KB, even though constant memory is 4 times larger. The issue with
shared memory is that it needs to be updated per kernel launch and one cannot
send data directly to it since it is on chip. To use shared memory one has to
retrieve data from the global memory and then do calculations on them. The
trouble is that since it is so small (16KB) not much data will be buffered there
and the overhead work of transferring the data from global memory might
result in a decrease in performance. Making its use both complicated and
with no guarantee of speedup.

Constant memory on the other hand is off-chip and can be updated directly
without having to go through global memory, and it does not require to be
updated per kernel launch. But, it must be allocated statically. Meaning that
one must at compilation time decide how much memory should be allocated.
This is ideal for values that are constant throughout the computations, hence
its name. Another limitation here is that constant memory is read-only from
device. Therefore it cannot be used to store convoluted data, but in this
implementation it is used to store the convolution filter. This is ideal since
the convolution filter is used in all the calculation and retrieving results from
it is half the job in convolution. Therefore if coalesced it can be retrieved in
one cycle (best case) resulting in great speedup. And since the filter values
are read only this is ideal. If the filter is to be placed in shared memory
then it would have to retrieved from global per kernel launch, which is a great
overhead compared to the use of constant memory. Shared memory also has
to be coalesced to perform well.

What if Convolution Filter is Larger Than Constant Memory?

For filter sizes larger than 25x25x25 there will not be enough space in constant
memory. There are two solutions here either one can run everything from
global memory, which the results show gives a 12 times speedup. Or, one
could perform several iterations with a smaller filter. The result would be
visually similar, in the case of blurring, and computationally there are similar
amounts of operations performed. Mathematically however it is not similar
and a larger filter should be used. A larger filter would only result in more
computations, but the trouble with using smaller filters is that one would
double communication time and time spent transferring data to the GPU,
since the operation is done several times. Therefore placing all data in global
would most likely give a better execution time. Since disk access and memory
bandwidth are the main bottlenecks and doubling their time of execution would
probably result in a sub-optimal solution.

99

6.4. IMAGE PROCESSING ALGORITHMS PERFORMANCE AND
VISUAL RESULTS

6.4.2 Hough Transform Benchmarks

The Hough transform implementation is significantly different from 3D con-
volution. It does not have any overlapping subproblems, which makes it more
parallel friendly. In this way each thread is entirely independent of the other.
The other is that this algorithm is more memory access dependent, each thread
does more memory writes than computations. For convolution one calculated
all values within the filter to calculate one pixel, which lead to high computa-
tion and low memory bandwidth per pixel calculated. But, here for each pixel
a set of angels are presented and a r value is calculated and for each r calcu-
lation a write is performed to add to the hough domain. This just means that
it is more dependent on the bottleneck that the memory bandwidth imposes
than the computation capabilities of the GPU and CPU even if we are to sale
the number of point that should be calculated.

Figure 6.18: Execution time results for Hough transform algorithm

The results for visuals and the execution times of the Hough transform are
presented in Figures 6.19 and 6.18 respectively. As we can see the algorithm
scales well on the CPU in that a speedup of about 4 is gained for using 4
threads even on larger data sets. This mainly because the overhead of creating

100

CHAPTER 6. RESULTS, DISCUSSION AND ANALYSIS OF
BENCHMARKES

the threads becomes irrelevant as one scales. Other significant speedup results
are that of the GPU. By using the NVIDIA tesla c1060 we achieved a speedup
of 50 compared to the single core CPU. This is a significant change, which is
more or less expected in because the algorithm is so parallelizable. For the
Fermi graphic card tesla c2050 it was even more, at a speedup of 64 from
a single core CPU and a speedup of 1.28 from the older GPU architecture.
This might be surprising because as we know the Fermi architecture provides
both faster memory access and double as many computation core, and not to
mention caching. Why did these aspects not have a greater influence on the
end result?

Figure 6.19: Visual results of the Hough transform, generated by our framework

Why do we achieve this speedup on the GPU? and why is there no
significant difference on the Fermi architecture?

Given that we do have a 100% occupancy we know that all the cores on the
GPU are performing computations. And given the parallel nature of the al-
gorithm discussed earlier we expect a linear speedup when it comes to com-
putations. When using the CPU and making use of several cores the speedup
is linear, but this is only because 4 threads writing simultaneously does not

101

6.4. IMAGE PROCESSING ALGORITHMS PERFORMANCE AND
VISUAL RESULTS

occupy the bandwidth of the memory. As we expand the algorithm on the
GPU we see that of course a gain in computation is achieved in that more
computation can be hidden, but the algorithm does not scale linearly because
of the bottleneck of the memory. The bus to the memory is a 384 bit bus,
which means that 48 floats can be transferred simultaneously. In contrast to
the one float for the single thread and sequential algorithm that it is compared
to, which results in a 48 times speedup on only this basis. But, this is just
a rough estimate there are other factors here at play such as hidden compu-
tations, latency, ques of cores ready to write and their delay, but all of these
together give a speedup of 50 for the GPU implementation.

How does the memory access pattern effect performance?

The issue with this algorithm is that it is more data intensive than computa-
tion intensive. This means that all the cores would need access to the buss
connecting the memory and the computation units on the GPU. The bus and
memory bandwidth will then be limiting the algorithm rather than the number
of cores available and the computation intensities available. This is evident
in the speedup gained by switching graphic card platforms. The fact that the
spread nature of the writes of the algorithms creates a deficiency in the caching
performed and thereby renders caching useless as an optimization this is both
seen on the CPU and Fermi implementation in that the results do not ben-
efit from the caching available. The memory access pattern of the algorithm
however makes it dependent on memory bandwidth rather than computational
efficiency.

Why do we not get a greater speedup when using the Fermi archi-
tecture?

The memory bandwidth is increased by 40% on the Fermi GPUs, and the ex-
ecution time of the Hough transform is 30% more effective, given that some
overhead is lost to latency and computation percentage, the results clearly
show that the algorithms bottleneck is memory and bus bandwidth. Another
interesting aspect is that the algorithm does not profit from the caching sys-
tem available on the CPU and Fermi GPU because of the non predictive and
spread nature of the algorithms writes. Values are cached for access but are
not accessed often enough when in cache to make an impact. It might even
be a source of latency that we mentioned earlier. Knowing that the Fermi
architecture should give speedup because it has double th ecores and faster

102

CHAPTER 6. RESULTS, DISCUSSION AND ANALYSIS OF
BENCHMARKES

and cached memory is a viable hypothesis, but the extent to which it does
so varies. In the case of the Hough transform it is limited by the memory
bandwidth and the memory access nature of the algorithm.

6.5 Effects of Compression on the Seismic Fil-

tering Process

Now that we have discussed the algorithms individually, in this section, we
look at how the compression and filtering algorithms implemented on the GPU
will effect the seismic process. The first section, Section 6.4.1, discusses how
compression algorithms influenced I/O speedup on several platforms such as
HDD disk, SSD disk, Quad core CPU and GPU, including the new Fermi
architecture of GPUs designed by NVIDIA. Here the focus is on how this
effected both synchronous and asynchronous I/O compared to normal I/O
access. In Section 6.4.2, a closer look at the predictive model is presented.
Here an analysis of the validity of the model and how well its predictions
scale on various platforms are presented. In the final section, Section 6.4.3, a
detailed look at how this I/O speedup can be used in two given scenarios of
filtering is presented. One being with overlapping sub-problems and the other
without, and an analysis of how much speedup can be gained form the whole
process will also be discussed. Another aspect of the compression that will be
taken into account here is the effects of the compression format on the process.

6.5.1 I/O speedup

The I/O speedup is measured as in Equation 6.2 where we compare the new
I/O time using compression to the normal sequential I/O time. The aim is
to study the advantage the compression algorithms give for disk access, and
to map which option is the most effective. We have studied two scenarios of
I/O one being synchronous and the other asynchrnous. Pur test were also
conducted on differet disk platforms. Two hard disk drives (HDD) of varying
transfer rates. One being 40 MB per second and the other 70 MB per second.
We have also tested on a solid state disk (SSD), which is of newer technology
and has a speed of 140 MB per second for transfers. That is double the speed
of the faster HDD disk.

103

6.5. EFFECTS OF COMPRESSION ON THE SEISMIC FILTERING
PROCESS

I/O speedup =
Normal Sequential I/O time

New I/O time using compression
(6.2)

In Figures 6.20 and 6.21 we have displayed the I/O speedup results for the
different platforms. In Figure 6.20, we have displayed the results for the syn-
chronous runs, and Figure 6.21 presents the asynchronous results. The result-
ing execution times that are presented are the only the fastest, which means
that some are preformed on only the CPU and other with the aid of the GPU.
The lossless algorithms as discussed earlier are the ones that benefit mostly
form the CPU, and the transform encoding algorithms are run on the GPU for
the same reasons. The CPU used to benchmark these results is the Intel i7 965,
and the the GPU is the NVIDIA tesla c2050. Again this is the case because
they gave the best performance, and to see how they performed compared to
other alternatives see Section 6.3

Figure 6.20: Execution time results for synchronous I/O

One can clearly see the advantages of using asynchronous I/O when it comes
to hiding computations and communication times. In most cases, the speedup
achieved for the asynchronous I/O was very close to the maximum speedup
one is able to gain. And this comes from little delays in the beginning and end
of the asynchronous I/O. For these tests we have used a compression format
of dividing the input data into smaller pieces such that the larger files where
200 pieces large. This decreased the maximum compression rate slightly, but
gave the great speedup that we achieved.

104

CHAPTER 6. RESULTS, DISCUSSION AND ANALYSIS OF
BENCHMARKES

Figure 6.21: Execution time results for Asynchronous I/O

Why does Asynchronous I/O not give desired speedup results on
faster I/O platforms for some of the compression algorithms?

There are some trends here that need a closer look such as the 3D AAN actually
becomes faster as we increase disk speeds to begin with, but becomes slower
on the SSD disk. This is actually not that surprising for the asynchronous
case. As we explained earlier in the asynchronous case, for each sub block one
of the threads will be waiting for the other to finish. Here one of the threads
is used for reading from disk, while the other is performing computations. If
the computations are more time consuming than the reads than then they will
dominate the execution time and the speedup will become less. This is because
the speedup is compared to disk speed, and if the computations are not fast
enough than the speedup will be limited. This is what we actually see happen
for the SSD disk, where the disk is faster than the algorithm and therefore we
get a speed down compared to when using a slower disk. But, in the other
case where the I/O time is still dominant over the computations such as they
are for the HDD disks tested, a speedup is obtained by going to a faster disk,
and resulting in our best result yet, which is an I/O speedup of 6. Another
example of the effects of a too slow computation algorithm is the naive 2D
DCT and AAN 2D DCT, where they both have the same execution time, but
one is dominated by computation and the other by communication time.

105

6.5. EFFECTS OF COMPRESSION ON THE SEISMIC FILTERING
PROCESS

What effects do the different platforms have on I/O speedup?

The tests are conducted on several platforms to explore how the speed of
the disk effects the out come of the speedup. The trend for the synchronous
approach is the speedup is less for faster platform, which is expected since
the platforms it runs on are quite fast to begin with. But, when comparing
the average throughput of the algorithm from disk to memory the algorithms
with compression run on faster disks are much faster. In fact, comparing this
change to the original slow disk we get speedups of about 10. Nevertheless
we compare the speedups to the current disk one uses. This is because if
that is the disk available on the machine, than that will be the disk to beat
for I/O time. Some similar tendencies are experienced for the asynchronous
implementations, but with the exception that here the results depend on which
element is mostly dominant in, communication of computations. We explain
how this effects speedup earlier, but it is worth noting that the trend explained
earlier is present for all the algorithm. As they are performed on the SSD disk
the speedup is limited differently, but the throughput is even greater than that
of the synchronous.

Why does asynchronous I/O out perform the synchronous approach?

The major advantage of the asynchronous I/O is that one gets to hide compu-
tation and communication time in parallel. This actually gives the advantage
of being efficient in all cases as long as the computations are not dominating the
communication. This means that as long as one has a compression and is read-
ing less data, then by performing computations in the background of reading
the compressed data, one will get speedups. Making asynchronous an approach
that is useful even for lossless and slow algorithms that give little maximum
speedup. This is seen when performing RLE on all three platforms. The mai-
mum speedup of the algorithm, which is the compression rate is at 1.3. And
the speedup obtained form the different platforms is 1.3(HDD1),1.29(HDD2)
and 1.24(SSD), which is really close to optimal. This is what makes asyn-
chronous I/O beat the synchronous approach. There are of course limitations,
such as if the computations are dominant and the disk one runs on is even
faster than that which we are testing one then the speedup will be limited,
but in all cases it will beat synchronous I/O time because one gets to hide the
communication time. And in the extreme case of having really fast close to
zero disk access time, the two approaches will be similar in execution time, but
otherwise asynchronous will always outperform the synchronous approach.

106

CHAPTER 6. RESULTS, DISCUSSION AND ANALYSIS OF
BENCHMARKES

6.5.2 Predicted Model

The focus in this section is on how well the predicted model matches the
actual results. We have tested the model by using a couple of measurements
on a smaller block, and given those results we estimate the execution time
of the larger blocks of data. A graph representing the estimated and actual
execution times for the synchronous model is shown in Figure 6.22. While a
graph representing the asynchronous predicted and actual results is shown in
Figure 6.23. The mathematical definitions used to estimate these predictions
are from Chapter 5, and were tested to estimate all the behavior of the various
algorithms.

Figure 6.22: Predicted execution time for synchronous model

Given that the models used are quite simple, the predictions were very close to
the actual execution times and performed well. There are of course some error
that can occur in that some functions become more evident in their scaling
such as standrac c functions such a memcpy() and memset(). But, the results
prove that these estimates can be used with an error of +-2%, which is quite
accurate given the simplicity of the models.

107

6.5. EFFECTS OF COMPRESSION ON THE SEISMIC FILTERING
PROCESS

Figure 6.23: Predicted execution time for asynchronous model

What are the sources of error for the predictive model?

The predictive model takes into account the simple interactions of the disk
and computation units, but there are other factors that effect performance
that are harder to predict. One of the major source of error is the effects of
the operating system. All processes in the operating system are given a priority
and are cued such that they get their share of computations. What type of cue
of the algorithms behind this are not predictable since they adapt and change,
and in such cases as for the windows OS they are not known for the public.
These effects are not visible for the short executions of the program, which
are used for the model to predict the outcome. This is why the prediction
might be over estimating the execution times, but this is a changing process.
Depending on what is running and which operating system its running on, one
will get different behavior.

Another source of error is that the algorithms used do not scale as simply as
our model predicts. We run short tests were we try to use the throughput
of the algorithms to estimate for larger sizes of data. This can be useful for
simple estimation, but at the same time some of the algorithms scale differently

108

CHAPTER 6. RESULTS, DISCUSSION AND ANALYSIS OF
BENCHMARKES

and therefore give different throughput as they scale. Most likely the change
will not be severe enough to cause a totally erroneous estimate, but it has its
effects.

Why are the errors more evident in the asynchronous model?

When estimating the asynchronous model there are more uncertain factors.
Lke in the case of having a compression algorithm and disk with similar
throughput on smaller datasets then as they scale he dominance is changed.
When estimating the asynchronous model we use the MAX function to see
which is dominant I/O or compression and to use that as a estimate for which
process will overshadow the other. This might not be the same case for smaller
and larger datasets and therefore adds more error to the prediction. But, gen-
erally speaking the error will again not be that evident. Another source of
error is that one would have two threads and thereby more uncertainty from
the operating system when it comes to scheduling as explained prevously.

Given the accuracy of the model what can it be used for?

The accuracy of the model is within 2% error and this is quite good for a pre-
diction of such long execution times. The prediction I accurate enough to use
for scheduling such tasks and even for managerial planning. This estimation
can be used to see if the method about to be used is useful or if there are
better approaches without having to run for hours on lager sets of data. It can
also be used to aid in the planning phases of certain projects that will need
this type of I/O acceleration. The model can be used in a scheduler of load
balancing locally in some software that can estimate given a type of data and
the compression available, the execution times that are to be expected, and
on this basis chose and execute the most efficient. The model however can
not be used for estimating smaller sets of data in which other factors play a
role, such as latency and bandwidth, OS scheduling and so on. In these cases,
one would need a more accurate and replicative model for a good estimation.
But, in our case of large datasets, these factors are overshadowed by the long
computation and communication times.

109

6.5. EFFECTS OF COMPRESSION ON THE SEISMIC FILTERING
PROCESS

How can the accuracy be improved?

The accuracy of the model can be improved by taking into account the fac-
tors mentioned previously. Factors such as the latency and bandwidth, OS
scheduling, GPU transfer times, and so on. In other words the model should
take into account more of the representative stages in the computation and
communication processes. As the model is now it is simplistic, but also useful
for the cause we wish to use it. This of course does not mean that it should
not be improved or tweaked for special use in other fields.

6.5.3 Seismic Filtering Process Speedup

In this section, an analysis of the compression algorithms to speedup the seis-
mic filtering process is presented. The focus is on the use of the different
formats to perform convolution and hough transform on the seismic data. The
significance of these tests is the fact that the overlapping sub problems of the
convolution process will cause difficulties for the compressed I/O process and
to solve this we would have to compromises the efficiency of the Hough trans-
form. This way we would find a middle ground for the nature of the filtering
process of seismic data and see what speedups we could expect from this.

Figure 6.24 presents the execution times of the hough transform in under
normal circumstances and using the different compression formats dicussed
earlier. Format 1, is where we have large blocks of data compressed at a time.
This gives good compression, but makes it hard for overlapping sub problems.
Format 2 is where we include the neighboring pixels in the block of data as
we compress, this makes it efficient for overlapping sub problems, but creates
issues for the in that the compression rate goes down and slows the problems
that do not overlap. And Format 3 is where we compress small blocks of data
at a time, this effects compression rate a bit, but opens up possibilities for
both over lapping and non overlapping sub problem filtering algorithms.

The results show that for the Hough transform, the most effective format is
format 1, and the least effective is format 2. In Figure 6.24 we present similar
results, but for the 3D convolution algorithm. Here we see that the most
effective format is format 2, and the least effective is format 1. While in both
cases, for Hough transform and convolution, format 3 is a good middle ground
solution.

In Figure 6.25 we show the speedups of both the hough transform and 3D
convolution as part of the entire seismic filtering process are presented for

110

CHAPTER 6. RESULTS, DISCUSSION AND ANALYSIS OF
BENCHMARKES

Figure 6.24: Effects of compression formats on seismic process for the seimic
filtering algorithms 3D convolution and Hough transform

scaling data sizes. The speedup is compared to the alternative of reading the
data sequentially from disk and performing the calculations on the CPU. Our
solution to speed this process involves using the GPU and compression. One
can see that the speedup for reading and filtering the seismic data with the
hough transform is 25, and for 3D convolution it is 16.5. In both cases this
speedup is consistent as the problem size scales. This is the case when using
HDD disks. While when using SSD disks a speedup of 19 is achieved for the
hough transform and a speedup of 13 is achieved for 3D convolution.

When should one use the different formats?

From the results it is obvious that the first format works well for processing
non overlapping sub problem filtering algorithms such as the hough transform.
This is not surprising because this format gives the highest compression rates
and therefore the most speedup, and since there are no dependencies forced by
the algorithms, this format should be used for all algorithms that match the
nature of the hough transform. The second format, which includes neighboring

111

6.5. EFFECTS OF COMPRESSION ON THE SEISMIC FILTERING
PROCESS

Figure 6.25: Speedups of the seismic process given a seismic filtering algorithm for
compression format 3

values, limits compression in that there is more to be compressed and therefore
the compression rate drops. This reduction in the compression rate results in
a reduction of the I/O speedup attained form using compression. But, this
is faster than having to decompress several blocks to compute the filter for a
single block. And therefore the tradeoff works only positively on the process
and this format is recommended for all algorithms that need neighboring data.
If one is to use both overlapping and non-overlapping sub problem algorithms
then the third format is the best compromise. But, there is a thin line there
as well. If the dominant calculations are those of an overlapping nature then
format 2 is recommended. However an alternative such as format 3 is good to
have as one adapts to the needs of the process.

Why does format 2 have a major effect on the non-overlapping sub
problem algorithms?

By including the neighboring values in the block to be compressed one is
duplicating data in the compressed blocks. This will then result in more data to

112

CHAPTER 6. RESULTS, DISCUSSION AND ANALYSIS OF
BENCHMARKES

be compressed than the actual amount of data. This effects the I/O process in
that the compression rates will be reduced, and by reducing them the maximum
I/O speedup will be limited. Compromising a bit of I/O speedup to accelerate
a slow process such as overlapping sub problems is a good tradeoff, but for
algorithms such as the hough transform that do not need the neighboring data
this only has a negative effect.

What do the speedups achieved entail?

the speedups achieved for the seismic filtering process prove that by the use
of the GPU and compression the existing seismic process can be improved
dramatically. The compressibility of seismic data with the use of transform
encoding is able to accelerate I/O and the parallel nature of the filters applied
to the data the GPU is able to accelerate them several times over. Our finding
then entail that it is wise to adapt the GPU as part of the seismic process and
that compression can be an alternative to accelerating disk access through
hardware changes. The results also entail that the cooperation between CPU
in GPU can prove to be more useful than simple comparisons between the
two, and performance can be greatly accelerated by identifying and using the
advantages each platform brings. Such as in the case of compression.

113

6.5. EFFECTS OF COMPRESSION ON THE SEISMIC FILTERING
PROCESS

114

CHAPTER 7

Conclusions and Future Work

One of the main challenges of developing high performance applications on
modern computer architectures is to overcome limitations in memory and disk
bandwidth and latency. Today these are much slower than computation speeds
and are often the bottleneck in computer systems. In this thesis, we focused
on optimizing compression methods for signal and image data to accelerate
disk access. Large seismic datasets were used as test cases. Our methods were
developed on both CPU and GPU to see if there are any advantages in the
architectural features to be exploited. When the files are compressed than the
bandwidth limitation would apply to only reading the compressed file. Then
by utilizing computation capabilities of the CPU and GPU for decompression,
one would accelerate access to these data. Both lossless and lossy compression
methods were implemented and tested within a developed framework that
runs both synchronous and asynchronous I/O. We also looked at using both
the GPU and CPU to gain an even further advantage. A mathematical model
and a compression library were also produced. the I/O speedup gained and
the effects on the seismic process.

The next section, Section 7.1, summerizes our results, including algorithm per-
formance, I/O speedup and our results impact on the seismic process. Possible
future work within the field is presented in Section 7.2.

7.1 Conclusions

The lossless compression algorithms that were tried were RLE (run length en-
coding) and Huffman encoding. These were tweaked and optimized for com-
pressing of seismic data, and resulted in a compression ratio of 0.83 and 0.71 on

115

7.1. CONCLUSIONS

all platforms tested. Both of these algorithms were chosen on the criteria that
they are fast to perform. However, since they do not compress much of the
data, the bandwidth bottleneck was still evident. Nevertheless, they resulted
in 1.08 and 1.1 speedup respectively in disk access in the synchronous method
and 1.3 and 1.4 speedup in the asynchronous method. This was tested on a
HDD disks that have an averagetransfer rate of 35MB/s and 70MB/s. Note,
However, they both gave negative speedup results when run on faster platforms
such as SSD disk which averaged 140MB/s transfer rates, which proves one of
two things either the algorithms are slow or the compression is little. When
tested on the GPU these algorithms performed slower than on the CPU. This
has much to do with the fact that the GPU is slower on bit-wise operations
and since both algorithms have a sequential nature, we are not able to use the
vast parallel computation capabilities of the GPU. In other words, the CPU is
superior in this case.

We were, however, much more successful when it came to lossy compression.
Seismic data is is typically noisy data, which makes is hard to compress. How-
ever, by filtering the noise and transforming the data to the frequency domain,
one can achieve great compression rates with little error. We experimented
with transformations in several dimensions and used algorithms that were
usually used in image compression such as the DCT (discrete cosine trans-
form), and the LOT (lapped orthogonal transform). The best compression
rates where achieved by using the DCT in 3 dimensions and combining this
with a modified RLE. This gave a compression ratio of 0.16. the transform
in this case was performed on the GPU because of its parallel nature (which
showed an 8 time speedup compared to the CPU), and the RLE was per-
formed on the CPU because of its sequential nature. Testing on HDD and
SSD platforms we were able to achieve respectively 3.7 and 2.5 speedup on the
synchronous model, and a speedup of 6 and 3.3 on the asynchronous model.
This was done with an average error of 0.46% per float in the seismic data,
which is within a reasonable loss of two decimal places. We later tested for
LOT to see if we could reduce the error, but results show that this effects
speedup and compression size more than the error term and that is why we
did not continue to look at this any further.

A mathematical model was further on developed and empirically tested with
our results. The model proved to be accurate, with up to 5% error in some
cases, despite its simplistic nature. This model can be used to estimate running
larger data sets, by measuring variables on smaller sets and adapting the model
to the device it runs on. The intention of the model is to give an estimate of
execution time for I/O on a system using compression both synchronously and

116

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

asynchronously, and it proved to be reasonably accurate for both.

Our Compression implementation was tested on a larger scale in the seismic
filtering process. We tested it on two typical algorithms that were used on
seismic data. One being 3D convolution, which is used for filtering in general.
The other is the Hough transform, which is used to detect lines in the seismic
data. By executing these algorithms on the GPU (NVIDIA Tesla c2050 Fermi)
we achieved a speedup of 23 for 3D convolution and a speedup of 62 for Hough
transform. The Hough transform is a more parallelizable algorithm in the sense
that there are no dependencies and a good non-colliding memory structure.
Whereas 3D convolution requires a lot of memory jumps and is harder to
accelerate. Nevertheless we felt it necessary to test and see how the GPU
could accelerate both I/O and computations on seismic data. The end result
when performing convolution was a total speedup of the system by 16.5. This
is because 3D convolution is time consuming that most of the time is used on
computations anyway. While for the Hough transform the total speedup was
25. This means that by using compression and the GPU to do calculation on
seismic data this would result in a speedup of 16.5 or 25 on the entire process
for overlapping and non overlapping sub problems respectiely.

7.2 Future Work

Presented below are suggestion for future work within the researched field.

Autotuning: One of the major challenges GPU programmers are facing is
the blocking of the data such that separate threads can perform calculations
on them. The fact is that per today it is the programmer that has to chose
the block size and thread count and match it with the capabilities of the GPU
and the kernel running. This effects performance greatly and sometimes by
running with more threads or a rewrite of the kernel to distribute the work
between the threads differently, can make the difference. This is a problem for
both CUDA and OpenCL. NVIDIA has its CUDA calculator to help choose
an optimal thread count to gain most occupancy, but it is also stated that
anything above 50% occupancy will give an optimal execution situation. This
comes from the scheduler that runs these kernels. A very useful thing to work
on further is an autotuning program that is able to chose these factors for
the programmer to optimize the running of the kernels on the GPU. This
will make GPU programming easier and will automatically give the optimal
running. One could even experiment with assembly level autotuning that could
help rewrite the kernels to be more optimal aswell.

117

7.2. FUTURE WORK

3D visualization: During this thesis we have been producing 2D images
of the compressed data by decompressing and filtering then storing the data
uncompressed before visualizing it. This is of course not the case when one
will be dealing with this data in a seismic application. This is why one should
look at ways to present the data in its compressed format. The challenge here
is that the compression is non uniform, meaning that one does not know which
compressed block has which part of the original image. This makes even 3D
representation challenging and lesser effective in some cases. 3D representation
can be done with the help of the level of detail algorithms such that one
selectively selects what to show given the scope. Visualization is definitely
an area where compression will have great effects and present challenges for
large data sets, where one has to decompress several blocks to select a few
datapoints.

GenLOT: During this thesis we have been performing many transforms on
the GPU in CUDA, and have mentioned how building upon the fast DCT
would give room for more speedup. In our case of compression to beat I/O it
did not help speedup when we increased to the next step, namely LOT. But
when looking at general compression of seismic data the GenLOT is used, and
a CUDA implementation of this would be interesting for testing how well the
algorithm runs on the GPU. The preliminary tests show that good speedup is
expected in running on the GPU.

Hardware: because of time limitations in this thesis, we were not able to
optimize our code to run on the Fermi architecture. Although we have tested
it and showed how well it performs one can look at optimization for the use of
caches in the new architecture. Another aspect that can be tested is multiple
GPUs for compression. Although we tested that convolution scales almost per-
fectly by using several GPUs [4], one should also test for the other transforms
we have created in this thesis. Preliminary results show that the problem will
scale well. Luckily, with the creation of the compression library it should be
easier.

Model: The predictive model in some cases gives an error up to 5%. This can
be improved by adding more complexity to the model and expanding on traits
such as estimating latency and communication times.

OpenCL: Since the implemented algorithms are to be run on multiplatforms
in the library, one can look at using OpenCL to make the transition easier.
There can be some optimization limitations since the compilers for C and
CUDA are more optimal than that of OpenCL at the moment, which is why
we avoided using it. But, in the future when this is no longer an issue it is an

118

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

good alternative to look into.

7.3 Closing Remark

By optimizing filtering of seismic data we quickly learned that the systems I/O
bandwidth and latency was a limiting factor. This is the case for most opti-
mizations performed on newer platforms because of the gap between memory
bandwidth and processor performance. We believe that our work approaches a
viable solution to narrowing this gap with an alternative other than a hardware
solution. This work can create further possibilities for compression accelera-
tion in that it has laid a foundation that others can build upon, especially with
our library. We will not be surprised to see more approaches to narrowing the
bandwidth/throughput gap in the future as it is one of the main bottlenecks
on modern systems.

119

7.3. CLOSING REMARK

120

Bibliography and References

[1] V. Aarre. Schlumberger stavanger. personal communication.

[2] N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transform. IEEE
Trans Computing, 1974.

[3] S. Akhter and Jason Roberts. Multi-Core Programming: Increasing per-
formance through software multi-threading. Intel press, first edition, 2006.

[4] A. A. Aqrawi. 3d convolution of large datasets on modern gpus. Norwegian
University of Science and Technology, 2009.

[5] Y. Arai, T.Agui, and M.Nakajima. A fast dct-sq scheme for images. Trans-
actions of the Institute of Electronics, Information and Communication
Engineers, 1988.

[6] P. Cassereau, D. Staelin, and G. de Jager. Encoding of images based on
a lapped orthogonal transform. IEEE Transactions on Communication,
1989.

[7] IEEE Circuits and Systems Society. Ieee standard no.1180-specifications
for implementation of 8x8 inverse cosine transform. IEEE Technical re-
port, 1991.

[8] Microsoft Corporation. Microsoft msdn c++ library.
http://msdn.microsoft.com/en-us/library/default.aspx, accessed 2010-
03-02.

[9] Nvidia Corporation. Nvidia cuda occupancy calculator [online].
http://developer.download.nvidia.com/compute/cuda
/CUDA Occupancy calculator.xls, accessed 2010-04-31.

[10] Nvidia Corporation. Nvidia cuda reference manual [online].
http://developer.download.nvidia.com/compute/cuda/2 3/toolkit
/docs/CUDA Reference Manual 2.3.pdf, accessed 2009-12-02.

[11] G. Davis and A. Nosratinia. wavelet based image coding: an overview.
applied and computational control, signals, and circuits, 1998.

121

BIBLIOGRAPHY AND REFERENCES

[12] R. L. de Queiroz, T. Q. Nguyen, and K. R. Rao. The genlot: Generelized
linear-phase lapped orthogonal transform. IEEE Transactions on Image
Processing, 1996.

[13] R. Duda and P. Hart. Use of the hough transform to detect lines and
curves in pictures. Communicatoins of the ACM, 1972.

[14] L. C. Duval, V. Bui-Tran, T. Q. Nguyen, and T. D. Tran. Genlot opti-
mization techniques for seismic data compression. IEEE Transactions on
Image Processing, 2000.

[15] L. C. Duval and T. Q. Nguyen. Seismic data compression: a compara-
tive study between genlot and wavelet compression. Proceedings of SPIE
conference on wavelet applications in signal and image processing, 1999.

[16] R. Eidisen. Comparing cg and cuda implementations of selected transform
algorithms. Norwegian University of Science and Technology, 2008.

[17] B. Flury. A First Course in Multivariate Statistics. Springer Verlag, first
edition, 1997.

[18] J. E. Fowler and R. Yagelt. Lossless compression of volume data. IEEE
Transactions on Image Processing, 1995.

[19] R. Gerber, A. Bik, K. Smith, and X. Tian. The software optimization
cookbook. Intel press, second edition, 2006.

[20] D. Haugen. Seismic data compression and gpu memory latency. Norwe-
gian University of Science and Technology, 2009.

[21] J. Hennessey and D. Patterson. Computer Architecture a quantitative.
Morgan Kaufman, third edition, 2003.

[22] R. Hovland. Latency and bandwidth impact on gpu systems. Norwegian
University of Science and Technology, 2009.

[23] D. B. Kirk and W. W. Hwu. Programming Massively Parallel Processors.
Elsevier INC., first edition, 2010.

[24] P. Komma, J. Fischer, F.Duffner, and D. Bartz. Lossless volume data
compression schemes. Tagung conference on simulation and visualization,
2007.

[25] E. Kreyszig. Advanced Engineering Mathematics. Peter Janzow, 8th edi-
tion, 1999.

[26] C. Larsen. Schlumberger stavanger. personal communication.

122

BIBLIOGRAPHY AND REFERENCES

[27] C. Larsen. Utilizing gpus on cluster computers. Norwegian University of
Science and Technology, 2006.

[28] J. Makhoul. A fast cosine transform in one and two dimensions. IEEE
Transactions on Acoustics, Speech, and Signal Processings, 1980.

[29] H. S. Malvar. Signal Processing with Lapped Transforms. Artech house,
first edition, 1992.

[30] H. S. Malvar and D. H. Staelin. The lot: Transform coding without block-
ing effect. IEEE Transactions on Acoustics, Speech, and Signal Processing,
1989.

[31] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scallable parallel pro-
gramming with cuda. Nvidia Corporation, 2008.

[32] OpenMP. http://openmp.org, accessed 2009-09-11.

[33] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J Phillips.
Gpu computing. Proceedings of the IEEE, 2008.

[34] D. Patterson. University of berkley. personal communication.

[35] W. B. Pennebaker and J. L. Mitchell. JPEG Still Image Data Compres-
sion. Van Nostrand Reinhold, 1st edition, 1993.

[36] R. E. Woods R. C. Gonzales. Digital Image Processing. Prentice-Hall
PTR, third edition, 2008.

[37] P. Ratanaworabhan, J. Ke, and M. Burtscher. Fast lossless compression
of scientific floating-point data. IEEE Computer society, 2006.

[38] J. Reinders. VTune Performance Analyzer Essentials: Measurement and
tuning techniques for software developers. Intel press, first edition, 2005.

[39] S. Saha. Image compression from dct to wavelets: a review. ACM, 2000.

[40] D. Salomon. Data Compression the complete reference. Springer, fourth
edition, 2007.

[41] Seg Technical Standards Committee. SEG Y rev 1 Data Exchange Format,
2002.

[42] H. Sorenson, D. Jones, M. Heideman, and C. Burrus. real valued fast
foiurier transforms. IEEE Transactions on Acoustics, Speech, and Signal
Processings, 1987.

123

BIBLIOGRAPHY AND REFERENCES

[43] D. Spampinato. Modeling communication on multi-gpu systems. Norwe-
gian University of Science and Technology, 2009.

[44] G. Statchev et al. Using graphics processors for high-performance com-
putations and visualization of plasma turbulence. Computing in Science
and Engineering, 2009.

[45] B. D. Tseng and W. C. Miller. On computing the discret cosine transform.
IEEE Transactions on Computers, 1978.

[46] A. B. Watson. Image compression using the discrete cosine transform.
Mathematica, 1994.

[47] M. Wilkes. The memory gap and the future of high performance memories.
ACM Sigarch computer architecture news, 2001.

[48] B. Wilkinson and M. Allen. Parallel Programming, pages 3–26. Prentice-
Hall PTR, second edition, 2005.

[49] S. Winograd. On computing the discret fourier transform. Mathematics
of Computation, 1978.

[50] X. Xie and Q. Qin. Fast lossless compression of seismic floating-point
data. IEEE Computer society, 2009.

124

APPENDIX A

Orthogonal Transform Theory

This chapter includes more detilaed descriptions of the DCT, AAN and LOT
algorithms. They are presented in that order.

A.1 DCT (Discrete Cosine Transform)

Like all Fourier-related transforms, the DCT expresses functions as the sum
of sinusoid with different frequencies and amplitudes. And like the DFT the
DCT operates on a function at a finite number of discrete data points. The
distinction between the two, which is apparent from the name, is that the DCT
only uses cosine functions , while the DFT uses both sine and cosine in the
form of complex exponentials. However, a deeper distinction is that the DCT
implies different boundary conditions than other related transforms. DCTs are
essentially DFTs of real-even data, meaning that one can design a fast DCT
algorithm by taking an FFT and eliminating the redundant operations due to
the symmetry. This is what makes the DCT compute efficient.

There are many definitions of this transform, in this thesis we will be using
the IEEE standard 1180 definition [7], which is the most common and even
used in the JPEG standard [35].

Given n real numbers xt for t=0,...,n-1

The forward discrete cosine transform of xt, Yf for f=0,...,n-1, is given by

Yf =

√
2

n
Cf

n−1∑

t=0

xt cos
(

(2t+ 1)fπ

2n

)
(A.1)

125

A.1. DCT (DISCRETE COSINE TRANSFORM)

The inverse of the discrete cosine transform of Yf , xt (t=0,...,n-1) is given by

xt =

√
2

n

n−1∑

f=0

CfYf cos
(

(2t+ 1)fπ

2n

)
(A.2)

Where in both the forward and inverse Cf is given by

Cf =

{
1/
√

2 forf = 0
1 forf > 0

(A.3)

Another interesting aspect about the definition of the DCT is that it is separa-
ble. That makes it easy to expand to l dimensions. This is done by performing
the transform on a dimension and then use the transformed data to transform
in another dimension. The important thing is that one performs the inverse
on the transformed data in the same order it is transformed. This can be
performed up to l dimensions.

What makes the DCT better for compression than DFT? First of all the DCT
is better at compacting energy at low frequencies compared to the DFT that
spreads them throughout a larger frequency spectrum. This results in more
loss when cutting frequency values in the quantization process. This is what
makes the DCT more efficient for compression/encoding. The fact that there
will be many zeroes in a row in an image that will result in better compression.
Another aspect worth noting is the fact that the DCT is a real transform,
meaning that it only has real numbers unlike the DFT, which has complex
numbers. This makes it even easier to encode than the DFT because of not
having to account for the complex numbers. For a more in depth study of the
comparison of the DCT and DFT is shown Davis and Nosratinia [11]

This of course does not mean that the DCT does not have its limitations and
drawbacks. One of its major flaws is that even without the quantization, by
simply transforming and inversing the transform of an image using the DCT
on block sizes smaller than the image will result in data loss. This was however
proven to be insignificant for a block size of 8, as shown by Pennebaker [35].
Another aspect worth noting that when using block sizes smaller than that of
the dimension of the image one gets a blocking effect. This comes from the lack
of overlap between the neighboring blocks basis functions. What this means
that as one compresses more of the data, the block sizes used are more visible
because of the sharp edges between blocks due to the lack of overlapping basis
functions. This is something that we will later discuss when looking at the
solution, mainly the lapped orthogonal transform LOT.

126

APPENDIX A. ORTHOGONAL TRANSFORM THEORY

A.2 Fast DCT: The AAN Algorithm

The AAN algorithm is a 8-point 1D DCT algorithm that relies on the fact
that one can obtain a N element DCT from 2N element DFT. The definition
of the DFT for N real numbers is

F (u) =
k−1∑

x=0

s(x)e
−j2πux

k (A.4)

To extend this definition to a 2N real number definition one can extend s(x)
symmetrically about (2N − 1)/2 with the relation of s(x) = s(2N − x− 1) for
x values from N to 2N − 1. It is proven by Tseng et.al in [45] that if F (u) is
a 2N element DFT of s(x), then for we have the equation

<(F (u))

2 cos(πu
2N

)
=

N−1∑

x=0

s(x) cos
(

(2x+ 1)uπ

2N

)
(A.5)

Looking at the Equation A.5, we see that the right hand side is similar to the
the definition of the DCT in Equation A.1, but missing the adjusting constant
that is multiplied by it. One can then argue that by using the real values of the
extended DFT and scaling them one is able to calculate DCT values, which is
expressed in Equation A.1. This will of course result in 2N DFT values that
need to be calculated, but since the values are symmetrical and we only need
to use the real values much of the computations can be avoided as shown by
Winograd in [49]. This method of calculating the DCT is known as the AAN
algorithm and is one of the quickest methods, and is used in the JPEG libraries
such as the one developed by the independent JPEG library.

In Figure A.1 one can find a flow graph showing the operations that are to
be performed on a 8 point AAN DCT. The flow graph can be interpreted in
the manner that black dots are an add function, the arrows are negations and
boxes are multiplication functions. Other legends like the line and white circle
are just a way to simplify tracing the values needed in the calculations. By
following the graph from left to right one would be calculating the DCT and
by following it from right to left one would be calculating the IDCT. This is
because of the orthogonal nature of the transform.

An aspect worth noting is that the AAN algorithm only uses 13 multiplications
of two types. One being the scaling and normalization factors of si, and the
other are necessary to compute the DCT and are expressed as ax. The values

127

A.2. FAST DCT: THE AAN ALGORITHM

Figure A.1: Flowgraph of the AAN algorithm based on Pennebaker [35] and Arai
et.al. [5] design, and obtained from [27], legends were added to simplify

understanding

for these are constant and are shown here (these definitions are obtaind from
[35]):

a1 =

√
2

2
(A.6)

a2 =
√

2 cos
(

3π

8

)
(A.7)

a3 = a1 =

√
2

2
(A.8)

a4 =
√

2 cos
(
π

8

)
(A.9)

128

APPENDIX A. ORTHOGONAL TRANSFORM THEORY

a5 = cos
(

3π

8

)
(A.10)

The si values are used to convert the DFT coefficients to DCT coefficients and
are calculated as follows.

s0 =

√
2

4
(A.11)

si =
1

4 cos
(
iπ
2N

) (A.12)

For further information regarding the AAN and the scaling factors, read Pen-
nebaker [35] and/or Arai et.al [5] work.

A.3 Lapped Orthogonal Transform

The definition of the LOT is quite simple since it is a basic matrix multipli-
cation, see Equation A.13, where T is the transformation matrix and x is the
input data. T is here a MNxNM matrix, where N is the number of elements
in a block and M is the number of blocks. The transformation matrix then is
consisted of smaller matrices that reflect the even and odd values of the DCT
basis functions of the given block. This is done in a way such that each block
in the input data is multiplied with a Px matrix. Here the matrix P0 is the
one used for all blocks except the ones on the edges because they have fewer
neighboring blocks.

y = Tx (A.13)

P0 = PZ (A.14)

where

P =
[
De −Do De −Do

J(De −Do) J(Do −De)

]
(A.15)

129

A.3. LAPPED ORTHOGONAL TRANSFORM

and

Z =
[
I 0

0 Z̃

]
(A.16)

Here, I and J are respectively identity and counter identity matrices. Whereas
De and Do are matrices containing even and odd DCT basis functions of the
current block. Z̃ is a matrix approximated by N/2-1 sequence of rotations
Ri. Where each rotation contains a plain rotation Y (θi). These are defined as
follows:

Z̃ = R1R2...RN/2−1 (A.17)

and

Y (θi) =
[

cos(θi) sin(θi)
− sin(θi) cos(θi)

]
(A.18)

For a LOT of Block size 8, there are three optimal angles used in the rotation
matrix, as shown in [29], and are:

[θ1 θ2 θ3] = [0.13π 0.16π 0.13π] (A.19)

One the advantages that the LOT has is that it is separable just like the DCT
meaning that it works well for k-dimensions. By just calculating the input
one dimension at a time. Other advantages, as mentioned earlier, it helps in
removing the blocking effect and this in return can give more compression and
less error in the reconstructed image after performing the inverse operation.
Another aspect worth noting is that since the transform is orthogonal it is
easy to perform the inverse operation. The disadvantage this has is that it is
computationally more demanding than the DCT and therefore slower.

Now we will discuss the algorithm discussed by Malvar [29] also known as the
Type I fast LOT. In this algorithm one computes first the DCT an then uses
two blocks of size 8 from the DCT to calculate a block of the LOT transform.
In Figure A.2, we show a flowgraph of the algorithm where the multiplication
with P and Z are shown to show the connection to the definition discussed
earlier, and how the two bloks of DCT are used to calculate the LOT block.

130

APPENDIX A. ORTHOGONAL TRANSFORM THEORY

Figure A.2: Flowgraph of the LOT algorithm based on Malvar and Staelin [30]
design, and obtained with permission from [27], legends were added to simplify

understanding

Figures A.3 and A.4 show how the calculations for the Z and Y rotation matri-
ces are performed. While Figure A.5 illustrates how the whole process works,
and there are some aspects worth noting. The first DCT data to be trans-
formed using the scheme has to be padded. The padding, a block of zeros, is
added as the first and last block of the DCT data. The reason for the padding
is because one needs two blocks of DCT data to produce a block of LOT data.
This also can cause a problem for compression because the LOT output is one
block larger than the original DCT data as seen in Figure A.5. Results in
Malvar’s article and book [30] [29] show that the blocking effect is solved by
using this method. But, for compression, it is worth noting that this is not
necessarily the case for all images, but the blocking effect is always reduced.
Another aspect worth noting is that the LOT is an orthogonal transform such
as the DCT, and can be decoded by simply tracing the flow graphs in reverse.
Making both the forward and backward transform equally efficient.

131

A.3. LAPPED ORTHOGONAL TRANSFORM

Figure A.3: Flowgraph showing the Z matrix based on Malvar and Staelin [30]
design, and obtained with permission from [27], see legends from Figure A.2 to

simplify understanding

Figure A.4: Flowgraph showing the Y rotaion matrix based on Malvar and Staelin
[30] design, and obtained with permission from [27], see legends from Figure A.2 to

simplify understanding

132

APPENDIX A. ORTHOGONAL TRANSFORM THEORY

Figure A.5: Flowgraph showing the larger process of the transform based on
Malvar and Staelin [30] design, and obtained with permission from [27], see legends

from Figure A.2 to simplify understanding

133

A.3. LAPPED ORTHOGONAL TRANSFORM

134

APPENDIX B

Annotated Bibliography

This section will focus on introducing papers and theses chosen to be discussed
with the intention to emphasize work done in a similar field before and how this
project will build upon them. The main fields focused on here are volume data
compression, seismic data compression, lossless and lossy data compression,
and various transforms. All these topics are relevant to this thesis, and have
been researched to lay a foundation for the implementations performed.

Below is an annotated bibliography of significant prior work done in adjacent
fields of this thesis.

Lossless volume data compression schemes. P. Komma et al. [24]

This is a recent paper published at the Tagung conference, in Germany, on sim-
ulation and visualization. Here Komma et al. [24] describe different schemes
and methods for lossless volume data compression. They categorize these in
six different categorize and test algorithms from each category to compare how
effective these methods can be. The data used here is primarily medical CT,
MRI and ultra sound scan data. This is relevant for this thesis because par-
allels can be seen between seismic and medical data, and since they are both
volume data these algorithms and methods are applicable. A difference be-
tween medical and seismic data is that medical data has to be lossless whereas
seismic data can be lossy to a certain degree. Nevertheless if a lossless alterna-
tive is fast and can compress data well then it should be of interest. A closer
look at the categorize considered will be presented in later chapters in this
chapter.

135

Lossless compression of volume data. J. E. Fowler and R. Yagelt.
[18]

This is a paper from IEEE transactions on image processing, which focuses
on entropy encoding as a category and explains in detail the different steps
one has to take to achieve compression of volume data using known entropy
encoding standards such as zip, gzip, compress, and others. Fowler and Yagelt
also introduce a custom compression algorithm, which makes use of Huffman
encoding, which is interesting for this thesis since it shows the potential of
using existing techniques in a new way. In contrast to this thesis parallelism
is not addressed and not to mention the use of accelerators such as the GPU
to improve runtime.

Fast Lossless Compression of Scientific Floating-Point Data. P. Ratana-
worabhan et al. [37]

This is a paper from IEEE Computer society, that discusses a method within
arithmetic encoding to compress the floating point data type. This as well is
a lossless compression method that seems to work well given a good predic-
tion algorithm. The method focuses on predicting the next float and then by
performing an XOR operation between the original and predicted float one
will get a float that contains many zeros in a sequence. Then by using run
length encoding or huffman one can compress each number to a much smaller
bit size. This can prove to be very efficient if one is able to predict the cor-
rect float, and being lossless it is very interesting to see how well it is able to
compress the data. The downside with this algorithm is that it builds upon
other compression methods making the execution time longer. This might not
be optimal for our purposes.

Fast Lossless Compression of Seismic Floating-Point Data. X. Xie
and Q. Qin. [50]

This is also a paper form IEEE Computer society that builds upon the findings
of [37]. Here they discuss using the arithmetic encoding on seismic data with
a combination of both huffman and run length encoding. They introduced a
prediction algorithm that works well for seismic data and was able to beat
other lossless methods in compression ratio, but has the flaw of being slower.
The compression ratio they achieved was 1.77, which is quite good for lossless
compression. This is interesting for this thesis because it is directly related to

136

APPENDIX B. ANNOTATED BIBLIOGRAPHY

compressing seismic data, and the results show that it is a better method than
conventional lossless compression.

Discrete cosine transform, N. Ahmed et al. [2]

This a heavily cited paper published in 1974 in IEEE transactions on comput-
ers. Here Ahmed et al. explain the discrete cosine transform and its use in the
area of digital processing for the purpose of pattern recognition. Here they in-
troduce a fast algorithm for the transform and compare it to other transforms
used in similar applications such as the Haar transform, slant transform, dis-
crete Fourier transform, and others. This is a useful paper because the discrete
cosine transform is used in data compression and this paper explains it and its
nature in image processing.

Image compression using the discrete cosine transform. A. B. Wat-
son. [46]

This is a paper written for the journal mathematica, which explains how the
cosine transform can be used in image compression. First it speaks generally
about orthogonal transforms and compression, then it goes in depth in the
subject of using the discrete cosine transform (DCT) for compression. This
is a useful paper in that it shows in detail how the transform can compress
images and how the pattern recognition discussed in Ahmed et al. [2] is useful.
Algorithms and run-times are also discussed here. This is good to use as a
foundation for orthogonal transformations and their use in compression, which
is very relevant for this thesis. The limitations here are that the DCT and
orthogonal transforms are lossy methods in compression.

A Fast DCT-SQ Scheme for Images. Y. Arai et al. [5]

This is a paper from transactions of the institute of electronics, information and
communication engineers, which is really popular in the field of compression
and image processing. It is about a fast DCT algorithm, known as the AAN
algorithm. Arai et al. Are able to calculate the DCT without having to go
through all the näıve computations and matrix multiplications. Rather they
reuse calculated values and scale them to match the results of the DCT. This
paper is originally written in Japanese, but has been used in many image and
sound standards including JPEG. That is why a reproduction of their work in

137

a book by Pennebaker and Mitchell [35]is where the algorithm is retrieved for
this thesis. This is important for this thesis because their fast implementation
can be useful when expanding lossy compression in several dimensions.

The LOT: Transform Coding Without Blocking Effect. H. S. Malvar
and D. H. Staelin. [30]

This paper is from IEEE transactions on acoustics, speech, and signal Pro-
cessing, and approaches a common problem when filtering and compressing
using the DCT. One of the major issues with using the DCT is that as files
are compressed more and more they start getting blocking effects. This means
as more details are filtered away, depending on the block size used to perform
the DCT, one will be able to see the edging and blocking effects. In this paper
they discuss an approach that builds upon the DCT and is able to filter images
to the same extent, but avoids blocking effects. This is done by expanding the
basis functions of the DCT such tat they overlap. This method is interesting
for this thesis since it means that by compressing as much with this method
as the DCT one is able to get a lower error term, and the end result after
decompression is more correct and closer to the original image. This comes of
course with the price of more calculations, but there are fast LOT algorithms
that we will consider.

The GenLOT: Generelized Linear-Phase Lapped Orthogonal Trans-
form. R. L. de Queiroz [12]

This is a paper from IEEE transactions on image processing that approaches
the idea of having a generalized lapped orthogonal transform. Here they show
that one can perform a generalized LOT on several levels or degrees. Just as
the LOT builds upon DCT, the GenLOT in the same manner builds upon it
but now takes into consideration more than just neighboring blocks depending
on the degree one chosses. The GenLOT of the 1st degree is basically a stan-
dard DCT, while in the second degree it is the LOT and so on. For degrees of
2 or higher the GenLOT gives even better results than the LOT when it comes
to image quality, and better compression rates. This s useful for this thesis
because it means that one can experiment to which degree the GenLOT can
still give litte error and still be able to compress more than the other methods.
It is of course very computationally demanding since it performes more cal-
culation than both DCT and LOT in higher degrees, which would imply that
running it on the GPU should interesting since it is very parallelizable.

138

APPENDIX B. ANNOTATED BIBLIOGRAPHY

GenLOT Optimization Techniques for Seismic Data Compression.
L. C. Duval et al. [14]

This paper is also from IEEE transactions on image processing, and builds
upon the paper by Queiroz et al. [12]. The focus here is to apply the GenLOT
on seismic data and find an optimal scheme for compression with little loss in
data. This will prove to be useful since their result can be used to optimize
compression in our GenLOT implementation, but their can also be a tradeoff
of executoin speed, which they do not account for. This is really interesting
for us since we intend not only to compress the data as much as possible, but
to do so with a fast execution time or at least find an optimal balance between
compression ratio and execution time.

139

140

APPENDIX C

Benchmarking Tables

Below is a list of the Benchmark tables that we have included in the order
they are presented

• Run Length Encoding (RLE)

• Huffman encoding

• 1D naive DCT

• 2D naive DCT

• 1D AAN DCT

• 2D AAN DCT

• 3D AAN DCT

• Lapped orthogonal transform (LOT)

• Filtering Hough transform and 3D convolution

• Synchronous I/O

• Asynchronous I/O

141

142

APPENDIX C. BENCHMARKING TABLES

143

144

APPENDIX C. BENCHMARKING TABLES

145

]

146

APPENDIX C. BENCHMARKING TABLES

147

148

APPENDIX C. BENCHMARKING TABLES

149

150

APPENDIX C. BENCHMARKING TABLES

151

152

APPENDIX D

Source Code

This chapter focuses on presenting the source code for the most important
algorithms develped in this thesis.

D.1 RLE

1 void compressRLE (float∗ DCT_data , float∗output_data , unsigned int∗
RLE_dic) {

2
3 long long int counter = 1 ;
4 dic_addrss = 0 ;
5 bool foo = false ;
6
7 float current_element = DCT_data [0] ;
8 float next_element = DCT_data [1] ;
9

10 out_addrss = 0 ;
11
12 for (unsigned int i = 2 ; i < block_size ; i++){
13
14 if (current_element == 0 && current_element == next_element) {
15 current_element = next_element ;
16 next_element = DCT_data [i] ;
17 counter++;
18 foo = true ;
19 }
20 else{
21 if (foo) {
22 RLE_dic [dic_addrss] = out_addrss ;
23 output_data [out_addrss] = counter ;
24 out_addrss++;

153

D.1. RLE

25 dic_addrss++;
26 current_element = next_element ;
27 next_element = DCT_data [i] ;
28 counter = 1 ;
29 foo = false ;
30 }
31 else{
32 output_data [out_addrss] = current_element ;
33 out_addrss++;
34 current_element = next_element ;
35 next_element = DCT_data [i] ;
36 counter = 1 ;
37 }
38 }
39 }
40 if (foo) {
41 RLE_dic [dic_addrss] = out_addrss ;
42 output_data [out_addrss] = counter ;
43 }
44 else{
45 output_data [out_addrss] = current_element ;
46 }
47 }

1 void decompressRLE (float∗ input_data , float∗output_data , unsigned
int∗RLE_dic) {

2 long long int first = 0 ;
3 long long int second = 0 ;
4 unsigned int k = 0 ;
5 unsigned int rle_value = 0 ;
6
7 while (RLE_dic [k] != 0 | | k == 0) {
8 rle_value = RLE_dic [k] ;
9 for (long long int i = first ; i < rle_value ; i++){

10 input_data [second] = output_data [i] ;
11 second++;
12 first++;
13 }
14 if (first == rle_value) first++;
15
16 for (int i = 0 ; i < output_data [rle_value] ; i++){
17 input_data [second] = 0 ;
18 second++;
19 }
20
21 k++;
22 }
23 }

154

APPENDIX D. SOURCE CODE

D.2 Huffman

1 void generateHuffTable () {
2
3 hf_codes = (unsigned int ∗) malloc (sizeof (int) ∗256) ;
4 hf_lengths = (unsigned int ∗) malloc (sizeof (int) ∗256) ;
5
6 unsigned int∗ hf_codes_temp = (unsigned int ∗) malloc (sizeof (int

) ∗4) ;
7 unsigned int∗ hf_lengths_temp = (unsigned int ∗) malloc (sizeof (

int) ∗4) ;
8
9 hf_codes_temp [0] = 0 ; // 0 0

10 hf_codes_temp [1] = 6<<(32−3) ; // 1 1 0 . . . 0
11 hf_codes_temp [2] = 2<<(32−2) ; // 1 0 0
12 hf_codes_temp [3] = 14<<(32−4) ; // 1 1 1 0 . . 0
13
14 hf_lengths_temp [0] = 1 ;
15 hf_lengths_temp [1] = 3 ;
16 hf_lengths_temp [2] = 2 ;
17 hf_lengths_temp [3] = 4 ;
18
19 unsigned char∗ tuples = (unsigned char ∗) malloc (sizeof (unsigned

char) ∗8) ;
20 tuples [0] = 192 ;
21 tuples [1] = 48 ;
22 tuples [2] = 12 ;
23 tuples [3] = 3 ;
24
25 unsigned int temp ;
26 unsigned int current_int ;
27 unsigned int bit_counter ;
28 unsigned int length ;
29 unsigned char tuple ;
30 unsigned char mychar = 0 ;
31
32 #pragma omp p a r a l l e l for
33 for (int i=0; i<256; i++){
34 current_int = 0 ;
35 bit_counter = 0 ;
36
37 for (int tuple_i = 0 ; tuple_i < 4 ; tuple_i++) {
38 tuple = mychar & tuples [tuple_i] ;
39 tuple = tuple >> (3−tuple_i) ∗2 ;
40 temp = hf_codes_temp [tuple] ;
41 length = hf_lengths_temp [tuple] ;
42 temp = temp >> bit_counter ;
43 current_int |= temp ;

155

D.2. HUFFMAN

44 bit_counter += length ;
45 }
46 mychar++;
47
48 hf_codes [i] = current_int ;
49 hf_lengths [i] = bit_counter ;
50 }
51 }

1 void compressHuff () {
2
3 unsigned int bit_counter = 0 ;
4 unsigned int current_int = 0 ;
5 long long int int_counter = 0 ;
6 unsigned int hf_code ;
7 unsigned int hf_length ;
8 unsigned int rest_hf_code ;
9 unsigned char tuple ;

10 out_addrss = 0 ;
11 unsigned int ∗ int_array ;
12
13 #pragma omp p a r a l l e l p r i v a t e (b i t counte r , c u r r e n t i n t , i n t counte r

, h f code , h f l eng th , r e s t h f c o d e , tuple , i n t a r r a y) shared (
out addrs s) num threads (4)

14 {
15 int threadid = omp_get_thread_num () ;
16 int num_threads = omp_get_num_threads () ;
17 int_counter = 0 ;
18 int_array = (unsigned int ∗) malloc (nbytes/num_threads) ;
19 //memset (i n t a r r ay , 0 , nbytes /num threads) ;
20
21 for (int char_i = nbytes/num_threads∗threadid ; char_i < nbytes/

num_threads ∗(threadid+1) ; char_i++) {
22 tuple = input_data [char_i] ;
23 hf_code = hf_codes [tuple] ;
24 hf_length = hf_lengths [tuple] ;
25 // S h i f t
26 hf_code = hf_code >> bit_counter ;
27 // Or
28 current_int |= hf_code ;
29 // Update b i t c o u n t e r
30 bit_counter += hf_length ;
31
32 if (bit_counter > 32) {
33 // S h i f t l e f t o r i g i n a l h f code in to r e s t h f c o d e
34 rest_hf_code = hf_codes [tuple] << hf_lengths [tuple]−(

bit_counter−32) ;
35 int_array [int_counter] = current_int ;
36 int_counter++;

156

APPENDIX D. SOURCE CODE

37 current_int = 0 ;
38 // Or
39 current_int |= rest_hf_code ;
40 // Update b i t c o u n t e r
41 bit_counter −= 32 ;
42 }
43 }
44
45 #pragma omp critical
46 {
47 memcpy(&output_data [out_addrss] , int_array , int_counter ∗4) ;
48 out_addrss += int_counter ∗4 ;
49 }
50 free (int_array) ;
51 }
52 }

1 void compressHuffGPU () {
2 // a l l o c a t e dev i ce memory
3 unsigned int ∗hf_codes_d ;
4 unsigned int ∗hf_lengths_d ;
5 unsigned int∗ output_data_d ;
6 unsigned char∗ input_data_d ;
7 unsigned int ∗ int_array ;
8
9 cudaMallocHost ((void ∗∗)&int_array , nbytes) ;

10 cudaMalloc ((void ∗∗)&hf_codes_d , 256∗sizeof (unsigned int)) ;
11 cudaMalloc ((void ∗∗)&hf_lengths_d , 256∗sizeof (unsigned int)) ;
12 cudaMalloc ((void ∗∗)&input_data_d , nbytes) ;
13 cudaMalloc ((void ∗∗)&output_data_d , nbytes) ;
14
15 int ∗ current_th ;
16 cudaMalloc ((void ∗∗)¤t_th , sizeof (int) ∗4) ;
17
18 // s e t ke rne l launch c o n f i g u r a t i o n
19 dim3 threads = dim3 (1 , 1) ;
20 dim3 blocks = dim3 (1 , 1) ;
21
22 cudaMemcpy (hf_lengths_d , hf_lengths , 256∗sizeof (unsigned int) ,

cudaMemcpyHostToDevice) ;
23 cudaMemcpy (hf_codes_d , hf_codes , 256∗sizeof (unsigned int) ,

cudaMemcpyHostToDevice) ;
24 cudaMemcpy (input_data_d , input_data , nbytes ,

cudaMemcpyHostToDevice) ;
25
26 huff_kernel (blocks , threads , input_data_d , output_data_d ,

hf_codes_d , hf_lengths_d , current_th) ;
27
28 int ∗ temp = (int ∗) malloc (nbytes) ;

157

D.3. NAIVE DCT

29 cudaMemcpy (temp , output_data_d , nbytes , cudaMemcpyDeviceToHost) ;
30
31 memcpy (output_data , temp , nbytes) ;
32
33 // r e l e a s e
34 cudaFree (input_data_d) ;
35 cudaFree (output_data_d) ;
36 cudaFree (hf_codes_d) ;
37 cudaFree (hf_lengths_d) ;
38 }

D.3 Naive DCT

1 void compressDCT2D () {
2
3 // p r i n t f (” Compress \n”) ;
4
5 float temp = 0 ;
6 float tempcos1 = 0 ;
7 float tempcos2 = 0 ;
8 float tempsqrt1 = 0 ;
9 float tempsqrt2 = 0 ;

10 float pi = 3.14159265358979323846f ;
11 int i , j , l , m , x , y ;
12
13 #pragma omp p a r a l l e l for p r i v a t e (tempcos1 , tempcos2 , temp ,

tempsqrt1 , tempsqrt2 , j , y , x , l , m) num threads (4)
14 for (i = 0 ; i < (block_size/vc) ; i+=4){
15 for (j = 0 ; j < vc ; j+=4){
16
17 for (x = 0 ; x < 2 ; x++){
18 for (y = 0 ; y < 2 ; y++){
19
20 for (l = 0 ; l < 4 ; l++){
21 for (m = 0 ; m < 4 ; m++){
22 tempcos1 = ((((float) 2∗(float)l)+(float) 1) ∗(float)x∗

pi) / ((float) 8) ;
23 tempcos2 = ((((float) 2∗(float)m)+(float) 1) ∗(float)y∗

pi) / ((float) 8) ;
24 temp += input_data [(i+l) ∗vc+j+m] ∗ cos (tempcos1) ∗

cos (tempcos2) ;
25 }
26 }
27 if (x == 0) tempsqrt1 = 1.0 f / sqrt ((float) 2) ;
28 else tempsqrt1 = 1.0 f ;

158

APPENDIX D. SOURCE CODE

29 if (y == 0) tempsqrt2 = 1.0 f / sqrt ((float) 2) ;
30 else tempsqrt2 = 1.0 f ;
31 DCT_data [(i+x) ∗vc+j+y] = 0 .5 f ∗ tempsqrt1 ∗ tempsqrt2 ∗

temp ;
32 temp=0;
33 }
34 }
35 }
36 }
37 }

1
2 void compressDCT () {
3
4 float temp = 0 ;
5 float tempcos = 0 ;
6 float tempsqrt = sqrt ((float) 2/(float) 8) ;
7 float pi = 3.14159265358979323846f ;
8
9 //#pragma omp p a r a l l e l f o r p r i v a t e (tempcos , temp , tempsqrt)

num threads (4)
10 for (int i = 0 ; i < block_size ; i+=8){
11 for (int j = 0 ; j < 4 ; j++){
12 for (int k = 0 ; k < 8 ; k++){
13 tempcos = ((((float) 2∗(float)k)+(float) 1) ∗(float)j∗pi) / ((

float) 16) ;
14 temp += input_data [i+k] ∗ cos (tempcos) ;
15 }
16 if (j == 0) tempsqrt = sqrt ((float) 2/(float) 8) / sqrt ((float)

2) ;
17 else tempsqrt = sqrt ((float) 2/(float) 8) ;
18 DCT_data [i+j] = tempsqrt ∗ temp ;
19 temp=0;
20 }
21 }
22 }

1 void decompressDCT () {
2 float temp = 0 ;
3 float tempcos = 0 ;
4 float tempsqrt = sqrt ((float) 2/(float) 8) ;
5 float pi = 3.14159265358979323846f ;
6
7 #pragma omp p a r a l l e l for p r i v a t e (tempcos , temp) num threads (4)
8 for (int i = 0 ; i < block_size ; i+=8){
9 for (int j = 0 ; j < 8 ; j++){

10 temp = DCT_data [i] / sqrt ((float) 2) ;
11 for (int k = 1 ; k < 8 ; k++){

159

D.3. NAIVE DCT

12 tempcos = ((((float) 2∗(float)j)+(float) 1) ∗(float)k∗pi) / ((
float) 16) ;

13 temp += DCT_data [i+k] ∗ cos (tempcos) ;
14 }
15 output_data [i+j] = tempsqrt ∗ temp ;
16 }
17 }
18 }

1 __global__ void DCT_kernel (float∗ input_data_d , float∗ DCT_data_d ,
int mul , int ic)

2 {
3 int i = (blockIdx . y ∗ gridDim . x ∗ ic + blockIdx . x ∗ ic +

threadIdx . x + blockDim . x ∗ mul) ∗8 ;
4
5 float temp = 0 ;
6 float tempcos = 0 ;
7 float tempsqrt = sqrt ((float) 2/(float) 8) ;
8 float pi = 3.14159265358979323846f ;
9

10 for (int j = 0 ; j < 4 ; j++){
11 for (int k = 0 ; k < 8 ; k++){
12 tempcos = ((((float) 2∗(float)k)+(float) 1) ∗(float)j∗pi) / ((

float) 16) ;
13 temp += input_data_d [i+k] ∗ cos (tempcos) ;
14 }
15 if (j == 0) tempsqrt = sqrt ((float) 2/(float) 8) / sqrt ((float) 2) ;
16 else tempsqrt = sqrt ((float) 2/(float) 8) ;
17 DCT_data_d [i+j] = tempsqrt ∗ temp ;
18 temp=0;
19 }
20 }

1 __global__ void deDCT_kernel (float∗ input_data_d , float∗
DCT_data_d , int mul , int ic)

2 {
3 int i = (blockIdx . y ∗ gridDim . x ∗ ic + blockIdx . x ∗ ic +

threadIdx . x + blockDim . x ∗ mul) ∗8 ;
4
5 float temp = 0 ;
6 float tempcos = 0 ;
7 float tempsqrt = sqrt ((float) 2/(float) 8) ;
8 float pi = 3.14159265358979323846f ;
9

10 for (int j = 0 ; j < 8 ; j++){
11 temp = DCT_data_d [i] / sqrt ((float) 2) ;
12 for (int k = 1 ; k < 8 ; k++){
13 tempcos = ((((float) 2∗(float)j)+(float) 1) ∗(float)k∗pi) / ((

float) 16) ;

160

APPENDIX D. SOURCE CODE

14 temp += DCT_data_d [i+k] ∗ cos (tempcos) ;
15 }
16 input_data_d [i+j] = tempsqrt ∗ temp ;
17 }
18 }

D.4 Fast DCT AAN

1 void compressDCTAAN () {
2
3 float s0 = 0 ;
4 float s1 = 0 ;
5 float s2 = 0 ;
6 float s3 = 0 ;
7 float s4 = 0 ;
8 float s5 = 0 ;
9 float s6 = 0 ;

10 float s7 = 0 ;
11
12 float temp0 = 0 ;
13 float temp1 = 0 ;
14 float temp2 = 0 ;
15 float temp3 = 0 ;
16 float temp4 = 0 ;
17 float temp5 = 0 ;
18 float temp6 = 0 ;
19 float temp7 = 0 ;
20 float tempA5 = 0 ;
21
22 float pi = 3.14159265358979323846f ;
23
24 float a1 = sqrt (2 . 0 f) /2 ;
25 float a5 = cos (3∗pi /8 .0 f) ;
26 float a2 = sqrt (2 . 0 f) ∗ a5 ;
27 float a3 = a1 ;
28 float a4 = sqrt (2 . 0 f) ∗ cos (pi /8 .0 f) ;
29
30 float s_0 = sqrt (2 . 0 f) /4 .0 f ;
31 float s_1 = 1.0 f / (4 . 0 f ∗ cos (1 . 0 f ∗ pi / 16 .0 f)) ;
32 float s_2 = 1.0 f / (4 . 0 f ∗ cos (2 . 0 f ∗ pi / 16 .0 f)) ;
33 float s_3 = 1.0 f / (4 . 0 f ∗ cos (3 . 0 f ∗ pi / 16 .0 f)) ;
34 float s_4 = 1.0 f / (4 . 0 f ∗ cos (4 . 0 f ∗ pi / 16 .0 f)) ;
35 float s_5 = 1.0 f / (4 . 0 f ∗ cos (5 . 0 f ∗ pi / 16 .0 f)) ;
36 float s_6 = 1.0 f / (4 . 0 f ∗ cos (6 . 0 f ∗ pi / 16 .0 f)) ;
37 float s_7 = 1.0 f / (4 . 0 f ∗ cos (7 . 0 f ∗ pi / 16 .0 f)) ;

161

D.4. FAST DCT AAN

38
39 #pragma omp p a r a l l e l for p r i v a t e (s0 , s1 , s2 , s3 , s4 , s5 , s6 , s7 , temp0 ,

temp1 , temp2 , temp3 , temp4 , temp5 , temp6 , temp7 , tempA5) num threads
(4)

40 for (int i = 0 ; i < block_size ; i+=8){
41 temp0 = input_data [i+0] ;
42 temp1 = input_data [i+1] ;
43 temp2 = input_data [i+2] ;
44 temp3 = input_data [i+3] ;
45 temp4 = input_data [i+4] ;
46 temp5 = input_data [i+5] ;
47 temp6 = input_data [i+6] ;
48 temp7 = input_data [i+7] ;
49
50 s0 = temp0 + temp7 ;
51 s1 = temp1 + temp6 ;
52 s2 = temp2 + temp5 ;
53 s3 = temp3 + temp4 ;
54 s4 = −temp4 + temp3 ;
55 s5 = −temp5 + temp2 ;
56 s6 = −temp6 + temp1 ;
57 s7 = −temp7 + temp0 ;
58
59 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;

temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;
60
61 s0 = temp0 + temp3 ;
62 s1 = temp1 + temp2 ;
63 s2 = −temp2 + temp1 ;
64 s3 = −temp3 + temp0 ;
65 s4 = −temp4 − temp5 ;
66 s5 = temp5 + temp6 ;
67 s6 = temp6 + temp7 ;
68
69 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;

temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;
70
71 s0 = temp0 + temp1 ;
72 s1 = −temp1 + temp0 ;
73 s2 = (temp2 + temp3) ∗ a1 ;
74 s4 = temp4 ∗ a2 ;
75 s5 = temp5 ∗ a3 ;
76 s6 = temp6 ∗ a4 ;
77 tempA5 = (temp4+temp6) ∗a5 ;
78
79 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;

temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;
80
81 s4 = −temp4 − tempA5 ;

162

APPENDIX D. SOURCE CODE

82 s6 = temp6 − tempA5 ;
83
84 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;

temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;
85
86 s2 = temp2 + temp3 ;
87 s3 = temp3 − temp2 ;
88 s5 = temp5 + temp7 ;
89 s7 = −temp5 + temp7 ;
90
91 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;

temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;
92
93 s4 = temp4 + temp7 ;
94 s5 = temp5 + temp6 ;
95 s6 = −temp6 + temp5 ;
96 s7 = temp7 − temp4 ;
97
98 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;

temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;
99

100 DCT_data [i+0] = temp0 ∗ s_0 ;
101 DCT_data [i+2] = temp2 ∗ s_2 ;
102 DCT_data [i+1] = temp5 ∗ s_5 ;
103 DCT_data [i+3] = temp7 ∗ s_7 ;
104 }
105 }

1 _global__ void DCTAANrow_kernel (float∗ input_data_d , float∗
DCT_data_d , int mul , int ic)

2 {
3 int i = (blockIdx . y ∗ gridDim . x ∗ ic + blockIdx . x ∗ ic +

threadIdx . x + blockDim . x ∗ mul) ∗8 ;
4
5 float s0 = 0 ; float s1 = 0 ; float s2 = 0 ; float s3 = 0 ; float s4 =

0 ; float s5 = 0 ; float s6 = 0 ; float s7 = 0 ;
6 float temp0 = 0 ; float temp1 = 0 ; float temp2 = 0 ; float temp3 = 0 ;

float temp4 = 0 ; float temp5 = 0 ; float temp6 = 0 ; float temp7 =
0 ; float tempA5 = 0 ;

7 float pi = 3.14159265358979323846f ;
8 float a1 = sqrt (2 . 0 f) /2 ; float a5 = cos (3∗pi /8 .0 f) ; float a2 =

sqrt (2 . 0 f) ∗ a5 ; float a3 = a1 ; float a4 = sqrt (2 . 0 f) ∗ cos (pi
/8 .0 f) ;

9 float s_0 = sqrt (2 . 0 f) /4 .0 f ; float s_1 = 1.0 f / (4 . 0 f ∗ cos (1 . 0 f
∗ pi / 16 .0 f)) ; float s_2 = 1.0 f / (4 . 0 f ∗ cos (2 . 0 f ∗ pi /
16 .0 f)) ; float s_3 = 1.0 f / (4 . 0 f ∗ cos (3 . 0 f ∗ pi / 16 .0 f)) ;

10 float s_4 = 1.0 f / (4 . 0 f ∗ cos (4 . 0 f ∗ pi / 16 .0 f)) ; float s_5 =
1.0 f / (4 . 0 f ∗ cos (5 . 0 f ∗ pi / 16 .0 f)) ; float s_6 = 1.0 f /
(4 . 0 f ∗ cos (6 . 0 f ∗ pi / 16 .0 f)) ; float s_7 = 1.0 f / (4 . 0 f ∗

163

D.4. FAST DCT AAN

cos (7 . 0 f ∗ pi / 16 .0 f)) ;
11
12 temp0 = input_data_d [i+0] ; temp1 = input_data_d [i+1] ; temp2 =

input_data_d [i+2] ; temp3 = input_data_d [i+3] ; temp4 =
input_data_d [i+4] ; temp5 = input_data_d [i+5] ; temp6 =
input_data_d [i+6] ; temp7 = input_data_d [i+7] ;

13
14 s0 = temp0 + temp7 ; s1 = temp1 + temp6 ; s2 = temp2 + temp5 ; s3 =

temp3 + temp4 ; s4 = −temp4 + temp3 ; s5 = −temp5 + temp2 ; s6 = −
temp6 + temp1 ; s7 = −temp7 + temp0 ;

15 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;
temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;

16
17 s0 = temp0 + temp3 ; s1 = temp1 + temp2 ; s2 = −temp2 + temp1 ; s3 = −

temp3 + temp0 ; s4 = −temp4 − temp5 ; s5 = temp5 + temp6 ; s6 =
temp6 + temp7 ;

18 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;
temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;

19
20 s0 = temp0 + temp1 ; s1 = −temp1 + temp0 ; s2 = (temp2 + temp3) ∗ a1

; s4 = temp4 ∗ a2 ; s5 = temp5 ∗ a3 ; s6 = temp6 ∗ a4 ; tempA5 = (
temp4+temp6) ∗a5 ;

21 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;
temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;

22
23 s4 = −temp4 − tempA5 ; s6 = temp6 − tempA5 ;
24 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;

temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;
25
26 s2 = temp2 + temp3 ; s3 = temp3 − temp2 ; s5 = temp5 + temp7 ; s7 = −

temp5 + temp7 ;
27 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;

temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;
28
29 s4 = temp4 + temp7 ; s5 = temp5 + temp6 ; s6 = −temp6 + temp5 ; s7 =

temp7 − temp4 ;
30 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;

temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;
31
32 DCT_data_d [i+0] = temp0 ∗ s_0 ;
33 DCT_data_d [i+1] = temp5 ∗ s_5 ;
34 DCT_data_d [i+2] = temp2 ∗ s_2 ;
35 DCT_data_d [i+3] = temp7 ∗ s_7 ;
36 DCT_data_d [i+4] = temp1 ∗ s_1 ;
37 DCT_data_d [i+5] = temp4 ∗ s_4 ;
38 DCT_data_d [i+6] = temp3 ∗ s_3 ;
39 DCT_data_d [i+7] = temp6 ∗ s_6 ;
40 }

164

APPENDIX D. SOURCE CODE

D.5 Fast LOT

1 __global__ void LOTrow_kernel (float∗ input_data_d , float∗
DCT_data_d , int mul , int ic)

2 {
3 int i = (blockIdx . y ∗ gridDim . x ∗ blockDim . x+ blockIdx . x ∗

blockDim . x + threadIdx . x) ∗(ic) ;
4 int i2 = (blockIdx . y ∗ gridDim . x ∗ blockDim . x+ blockIdx . x ∗

blockDim . x + threadIdx . x) ∗(ic+16) ;
5
6 float s0 = 0 ; float s1 = 0 ; float s2 = 0 ; float s3 = 0 ; float s4 =

0 ; float s5 = 0 ; float s6 = 0 ; float s7 = 0 ;
7 float temp0 = 0 ; float temp1 = 0 ; float temp2 = 0 ; float temp3 = 0 ;

float temp4 = 0 ; float temp5 = 0 ; float temp6 = 0 ; float temp7 =
0 ;

8 float pi = 3.14159265358979323846f ;
9 float cos13 = cos ((float) 0 .13∗ pi) ; float sin13 = sin ((float) 0 .13∗

pi) ; float cos16 = cos ((float) 0 .16∗ pi) ; float sin16 = sin ((
float) 0 .16∗ pi) ;

10
11
12 temp0 = 0 ;
13 temp2 = 0 ;
14 temp4 = 0 ;
15 temp6 = 0 ;
16 temp1 = DCT_data_d [i+0] + DCT_data_d [i+1] ;
17 temp3 = DCT_data_d [i+2] + DCT_data_d [i+3] ;
18 temp5 = DCT_data_d [i+4] + DCT_data_d [i+5] ;
19 temp7 = DCT_data_d [i+6] + DCT_data_d [i+7] ;
20
21 s0 = (temp0+temp1) /2 ; s2 = (temp2+temp3) /2 ; s4 = (temp4+temp5) /2 ;

s6 = (temp6+temp7) /2 ; s1 = (temp0−temp1) /2 ; s3 = (temp2−temp3)
/2 ; s5 = (temp4−temp5) /2 ; s7 = (temp6−temp7) /2 ;

22 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;
temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;

23
24 s1 = (temp1 ∗ cos13) − (temp3 ∗ sin13) ;
25 s3 = (temp1 ∗ sin13) + (temp3 ∗ cos13) ;
26 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;

temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;
27
28 s3 = (temp3 ∗ cos16) − (temp5 ∗ sin16) ;
29 s5 = (temp3 ∗ sin16) + (temp5 ∗ cos16) ;
30 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;

temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;
31
32 s5 = (temp5 ∗ cos13) − (temp7 ∗ sin13) ;
33 s7 = (temp5 ∗ sin13) + (temp7 ∗ cos13) ;

165

D.5. FAST LOT

34 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;
temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;

35
36 input_data_d [i2+4+0]=s0 ;
37 input_data_d [i2+4+1]=s1 ;
38 input_data_d [i2+4+2]=s2 ;
39 input_data_d [i2+4+3]=s3 ;
40 input_data_d [i2+4+4]=s4 ;
41 input_data_d [i2+4+5]=s5 ;
42 input_data_d [i2+4+6]=s6 ;
43 input_data_d [i2+4+7]=s7 ;
44
45 for (int j = 0 ; j < ic ; j+=8){
46 temp0 = DCT_data_d [i+j+0] − DCT_data_d [i+j+1] ;
47 temp2 = DCT_data_d [i+j+2] − DCT_data_d [i+j+3] ;
48 temp4 = DCT_data_d [i+j+4] − DCT_data_d [i+j+5] ;
49 temp6 = DCT_data_d [i+j+6] − DCT_data_d [i+j+7] ;
50 temp1 = DCT_data_d [i+j+8] + DCT_data_d [i+j+9] ;
51 temp3 = DCT_data_d [i+j+10] + DCT_data_d [i+j+11] ;
52 temp5 = DCT_data_d [i+j+12] + DCT_data_d [i+j+13] ;
53 temp7 = DCT_data_d [i+j+14] + DCT_data_d [i+j+15] ;
54
55 s0 = (temp0+temp1) /2 ; s2 = (temp2+temp3) /2 ; s4 = (temp4+temp5)

/2 ; s6 = (temp6+temp7) /2 ; s1 = (temp0−temp1) /2 ; s3 = (temp2−
temp3) /2 ; s5 = (temp4−temp5) /2 ; s7 = (temp6−temp7) /2 ;

56 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;
temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;

57
58 s1 = (temp1 ∗ cos13) − (temp3 ∗ sin13) ;
59 s3 = (temp1 ∗ sin13) + (temp3 ∗ cos13) ;
60 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;

temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;
61
62 s3 = (temp3 ∗ cos16) − (temp5 ∗ sin16) ;
63 s5 = (temp3 ∗ sin16) + (temp5 ∗ cos16) ;
64 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;

temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;
65
66 s5 = (temp5 ∗ cos13) − (temp7 ∗ sin13) ;
67 s7 = (temp5 ∗ sin13) + (temp7 ∗ cos13) ;
68 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;

temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;
69
70 input_data_d [i2+12+j+0]=s0 ;
71 input_data_d [i2+12+j+1]=s1 ;
72 input_data_d [i2+12+j+2]=s2 ;
73 input_data_d [i2+12+j+3]=s3 ;
74 input_data_d [i2+12+j+4]=s4 ;
75 input_data_d [i2+12+j+5]=s5 ;

166

APPENDIX D. SOURCE CODE

76 input_data_d [i2+12+j+6]=s6 ;
77 input_data_d [i2+12+j+7]=s7 ;
78 }
79
80 temp0 = DCT_data_d [i+ic−8] − DCT_data_d [i+ic−7] ;
81 temp2 = DCT_data_d [i+ic−6] − DCT_data_d [i+ic−5] ;
82 temp4 = DCT_data_d [i+ic−4] − DCT_data_d [i+ic−3] ;
83 temp6 = DCT_data_d [i+ic−2] − DCT_data_d [i+ic−1] ;
84 temp1 = 0 ;
85 temp3 = 0 ;
86 temp5 = 0 ;
87 temp7 = 0 ;
88
89 s0 = (temp0+temp1) /2 ; s2 = (temp2+temp3) /2 ; s4 = (temp4+temp5) /2 ;

s6 = (temp6+temp7) /2 ; s1 = (temp0−temp1) /2 ; s3 = (temp2−temp3)
/2 ; s5 = (temp4−temp5) /2 ; s7 = (temp6−temp7) /2 ;

90 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;
temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;

91
92 s1 = (temp1 ∗ cos13) − (temp3 ∗ sin13) ;
93 s3 = (temp1 ∗ sin13) + (temp3 ∗ cos13) ;
94 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;

temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;
95
96 s3 = (temp3 ∗ cos16) − (temp5 ∗ sin16) ;
97 s5 = (temp3 ∗ sin16) + (temp5 ∗ cos16) ;
98 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;

temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;
99

100 s5 = (temp5 ∗ cos13) − (temp7 ∗ sin13) ;
101 s7 = (temp5 ∗ sin13) + (temp7 ∗ cos13) ;
102 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;

temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;
103
104 input_data_d [i2+12+ic+0]=s0 ;
105 input_data_d [i2+12+ic+1]=s1 ;
106 input_data_d [i2+12+ic+2]=s2 ;
107 input_data_d [i2+12+ic+3]=s3 ;
108 input_data_d [i2+12+ic+4]=s4 ;
109 input_data_d [i2+12+ic+5]=s5 ;
110 input_data_d [i2+12+ic+6]=s6 ;
111 input_data_d [i2+12+ic+7]=s7 ;
112 }

1 __global__ void deLOTrow_kernel (float∗ input_data_d , float∗
DCT_data_d , int mul , int ic)

2 {
3

167

D.5. FAST LOT

4 int i = ((blockIdx . y ∗ gridDim . x ∗ blockDim . x+ blockIdx . x ∗
blockDim . x + threadIdx . x) ∗(ic+16)) +4;

5 int i2 = (blockIdx . y ∗ gridDim . x ∗ blockDim . x+ blockIdx . x ∗
blockDim . x + threadIdx . x) ∗(ic) ;

6
7 float s0 = 0 ; float s1 = 0 ; float s2 = 0 ; float s3 = 0 ; float s4 =

0 ; float s5 = 0 ; float s6 = 0 ; float s7 = 0 ;
8 float s00 = 0 ; float s01 = 0 ; float s02 = 0 ; float s03 = 0 ; float

s04 = 0 ; float s05 = 0 ; float s06 = 0 ; float s07 = 0 ;
9 float temp0 = 0 ; float temp1 = 0 ; float temp2 = 0 ; float temp3 = 0 ;

float temp4 = 0 ; float temp5 = 0 ; float temp6 = 0 ; float temp7 =
0 ;

10 float temp00 = 0 ; float temp01 = 0 ; float temp02 = 0 ; float temp03
= 0 ; float temp04 = 0 ; float temp05 = 0 ; float temp06 = 0 ; float
temp07 = 0 ; float tempA5 = 0 ;

11 float pi = 3.14159265358979323846f ;
12 float cos13 = cos ((float) 0 .13∗ pi) ; float sin13 = sin ((float) 0 .13∗

pi) ; float cos16 = cos ((float) 0 .16∗ pi) ; float sin16 = sin ((
float) 0 .16∗ pi) ;

13
14 for (int j = 0 ; j < ic ; j+=8){
15 s0 = DCT_data_d [i+j+0] ; s1 = DCT_data_d [i+j+1] ; s2 = DCT_data_d [

i+j+2] ; s3 = DCT_data_d [i+j+3] ; s4 = DCT_data_d [i+j+4] ; s5 =
DCT_data_d [i+j+5] ; s6 = DCT_data_d [i+j+6] ; s7 = DCT_data_d [i+
j+7] ;

16 s00 = DCT_data_d [i+j+8] ; s01 = DCT_data_d [i+j+9] ; s02 =
DCT_data_d [i+j+10] ; s03 = DCT_data_d [i+j+11] ; s04 =
DCT_data_d [i+j+12] ; s05 = DCT_data_d [i+j+13] ; s06 =
DCT_data_d [i+j+14] ; s07 = DCT_data_d [i+j+15] ;

17
18 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;

temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;
19 temp00 = s00 ; temp01 = s01 ; temp02 = s02 ; temp03 = s03 ; temp04

= s04 ; temp05 = s05 ; temp06 = s06 ; temp07 = s07 ;
20
21 s7 = (temp7∗cos13) − (temp5∗sin13) ;
22 s5 = (temp7∗sin13) + (temp5∗cos13) ;
23 s07 = (temp07∗cos13) − (temp05∗sin13) ;
24 s05 = (temp07∗sin13) + (temp05∗cos13) ;
25 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;

temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;
26 temp00 = s00 ; temp01 = s01 ; temp02 = s02 ; temp03 = s03 ; temp04

= s04 ; temp05 = s05 ; temp06 = s06 ; temp07 = s07 ;
27
28 s5 = (temp5∗cos16) − (temp3∗sin16) ;
29 s3 = (temp5∗sin16) + (temp3∗cos16) ;
30 s05 = (temp05∗cos16) − (temp03∗sin16) ;
31 s03 = (temp05∗sin16) + (temp03∗cos16) ;

168

APPENDIX D. SOURCE CODE

32 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;
temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;

33 temp00 = s00 ; temp01 = s01 ; temp02 = s02 ; temp03 = s03 ; temp04
= s04 ; temp05 = s05 ; temp06 = s06 ; temp07 = s07 ;

34
35 s3 = (temp3∗cos13) − (temp1∗sin13) ;
36 s1 = (temp3∗sin13) + (temp1∗cos13) ;
37 s03 = (temp03∗cos13) − (temp01∗sin13) ;
38 s01 = (temp03∗sin13) + (temp01∗cos13) ;
39 temp0 = s0 /2 ; temp1 = s1 /2 ; temp2 = s2 /2 ; temp3 = s3 /2 ; temp4

= s4 /2 ; temp5 = s5 /2 ; temp6 = s6 /2 ; temp7 = s7 /2 ;
40 temp00 = s00 /2 ; temp01 = s01 /2 ; temp02 = s02 /2 ; temp03 = s03

/2 ; temp04 = s04 /2 ; temp05 = s05 /2 ; temp06 = s06 /2 ; temp07
= s07 /2 ;

41
42 s0 = temp0 − temp1 ;
43 s2 = temp2 − temp3 ;
44 s4 = temp4 − temp5 ;
45 s6 = temp6 − temp7 ;
46 s1 = temp00 + temp01 ;
47 s3 = temp02 + temp03 ;
48 s5 = temp04 + temp05 ;
49 s7 = temp06 + temp07 ;
50 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;

temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;
51
52 s1 = (temp0 − temp1) ;
53 s0 = temp1+temp0 ;
54 s3 = (temp2 − temp3) ;
55 s2 = temp3+temp2 ;
56 s5 = (temp4 − temp5) ;
57 s4 = temp5+temp4 ;
58 s7 = (temp6 − temp7) ;
59 s6 = temp7+temp6 ;
60 temp0 = s0 ; temp1 = s1 ; temp2 = s2 ; temp3 = s3 ; temp4 = s4 ;

temp5 = s5 ; temp6 = s6 ; temp7 = s7 ;
61
62 input_data_d [i2+j+0] = temp0 ;
63 input_data_d [i2+j+1] = temp1 ;
64 input_data_d [i2+j+2] = temp2 ;
65 input_data_d [i2+j+3] = temp3 ;
66 input_data_d [i2+j+4] = temp4 ;
67 input_data_d [i2+j+5] = temp5 ;
68 input_data_d [i2+j+6] = temp6 ;
69 input_data_d [i2+j+7] = temp7 ;
70 }
71 }

169

D.6. HOUGH TRANSFORM

D.6 Hough Transform

1 __global__ void hough_kernel (float∗ output_data_d , int mul , int ic
, int xc , int vc) {

2
3 float d = sqrt ((float)xc∗xc+vc∗vc) ;
4 float pi = 3.14159265358979323846f ;
5 float stepx = (float)xc /(float)d ;
6 float stepy = (float)vc /(float) 360 ;
7
8 int i = threadIdx . x + mul∗ic ;
9 int j = blockIdx . x ∗ 10 ;

10 int k = blockIdx . y ∗ 10 ;
11
12 // output data d [i]=10;
13
14 for (int l=0; l<vc ; l++){
15 float r = (float)j∗cos (((float)l/stepy) ∗(pi /180)) + (float)k∗

sin (((float)l/stepy) ∗(pi /180)) ;
16 float pointer = abs (r) ∗stepx ;
17 output_data_d [i∗xc∗vc+(int) pointer∗vc+l]+=25;
18 }
19 }

D.7 Convolution

1
2 __constant__ float d_filter [8 7 8 8] ;
3
4 __global__ void increment_kernel (float ∗d_data , float ∗d_token ,

int len , int x , int y , int offsetnrx , int offsetnry) {
5
6 // d data [0]= 0 ;
7
8 float imagevalue =0;
9

10 for (int l = 0 ; l < len ; l++) {
11 for (int m = 0 ; m < len ; m++) {
12 for (int n = 0 ; n < len ; n++) {
13
14 float temp = d_token [(blockIdx . y+l) ∗(x + len) ∗(y

+ len) + (blockIdx . x+m + (gridDim . x∗offsetnry))
∗(x + len)+ (threadIdx . x+n +(blockDim . x∗
offsetnrx))] ;

15 float temp2 = d_filter [(len∗len) ∗l + (len) ∗m + n] ;

170

APPENDIX D. SOURCE CODE

16 imagevalue += temp ∗ temp2 ;
17
18 }
19 }
20 }
21 d_data [(blockIdx . y) ∗ x ∗ y + (blockIdx . x +(gridDim . x∗offsetnry

)) ∗ x + (threadIdx . x)+(blockDim . x∗offsetnrx)] = imagevalue
/ (len∗len∗len) ;

22 }

1 void createFilter () {
2 const float PI = 3.14159265358979323846f ;
3 int len = standardDiv ∗ 4 + 1 ;
4 int d_filterLength = len∗len∗len ∗4 ;
5 filter = (float ∗) malloc ((len∗len∗len) ∗sizeof (float)) ;
6 float tempo ;
7
8 for (int i = 0 ; i < len ; i++) {
9 for (int j = 0 ; j < len ; j++) {

10 for (int k = 0 ; k < len ; k++) {
11 tempo = 0 ;
12 tempo = (1 / (pow (2 ∗ PI , (float) 1) ∗ sqrt (

standardDiv))) ;
13 tempo = tempo ∗ (pow (exp ((float) 1) , −((pow ((i − (

standardDiv ∗ 2)) , 2) + pow ((j − (standardDiv ∗
2)) , 2) + pow ((k − (standardDiv ∗ 2)) , 2)) /

(2 ∗ pow (standardDiv , 2))))) ;
14 filter [(len∗len∗i+len∗j+k)] = (float) (50 ∗ tempo) ;
15 }
16 }
17 }
18 }

171

D.7. CONVOLUTION

172

APPENDIX E

AESC Library Overview

Here we introduce an overview of the functions that can be used within the
seismic compression library AESC.

A list of all compression algorithms for the CPU are found below. these are
implemented with openMP pragmas and use 4 threads to perform calculations

• compressRLE()

• decompressRLE()

• compressHuff()

• decompressHuff()

• compressDCT()

• decompressDCT()

• compressDCT2D()

• decompressDCT2D()

• compressDCTAAN()

• decompressDCTAAN()

• compressDCTAAN2D()

• decompressDCTAAN2D()

• compressDCTAAN3D()

• decompressDCTAAN3D()

• compressLOT()

173

• decompressLOT()

A list of all compression algorithms for the GPU are found below. these
are implemented with NVIDIA CUDA, and perform the encoding step of the
transfrom encoding on the CPU using a modified RLE for seismic data.

• compressDCTGPU()

• decompressDCTGPU()

• compressDCT2DGPU()

• decompressDCT2DGPU()

• compressDCTAANGPU()

• decompressDCTAANGPU()

• compressDCTAAN2DGPU()

• decompressDCTAAN2DGPU()

• compressDCTAAN3DGPU()

• decompressDCTAAN3DGPU()

• compressLOTGPU()

• decompressLOTGPU()

174

APPENDIX F

Short Paper for PARA 2010

This is an extended abstract (short paper), written to be accepted to give a
talk at the PARA 2010 confernce in iceland. The actual paper will be written
later as the deadline is in September. The abstract was accepted and the talk
was given on Tuesday the 8th og June. For slides lookup the HPC-LAB groups
webpages.

175

Accelerating Disk Access Using Compression for Large Seismic
Datasets on modern GPU and CPU

Ahmed A. Aqrawi∗and Anne C. Elster†

Department of Computer and Information Science, Norwegian University of Science and Technology

Abstract One of the major challenges of modern architectures
is to overcome the limitations of disk and memory bandwidth,
which per today are much slower than computation speeds.In
this paper, several compression methods for efficient disk access
on both the CPU and GPU are described and empirically tested.
To reduce I/O time we have tested both lossless and lossy com-
pression algorithms and hardware alternatives. Our results show
that an I/O speedup of 2 is achieved by using an SSD vs. HDD
disk on seismic data. The use of compression for I/O gave a
speedup of 1.08 and 1.2 with lossless compression methods of
RLE and Huffman, respectaivly, and up to 6 for lossy methods
with an average error of 0.46%. Lossy methods include per-
forming variations of DCT, in several dimensions, and combin-
ing these with lossless compression methods such as RLE and
Huffman. The speedup was achieved by enabling collaboration
between the CPU and GPU.

Keywords GPGPU, CUDA, Compression, I/O acceleration,
Large datasets, SSD Disk

1 Introduction
Processing large datasets is very challenging for mod-
ern architectures since memory and disk access is now
much slower than computation speeds. Seismic data is
gathered by recording seismic waves (waves of force that
travel through the earth). This data is used in the field of
petroleum to discover the geological structures of the earth
and find natural resources such as oil and gas. To help in
this search seismic data is processed by many filters and
filtering methods to get a clearer subsurface image and to
view more relevant information such as faults and reser-
voirs, see Figure 1 for an example of seismic data. How-
ever, theses filter algorithms are very computationally in-
tensive and the data needed for these calculations are larger
than the space available in memory, causing several disk
accesses that slow down processing of the seismic data.
we are attempting to accelerate this process.

In recent years, it has been shown that the performance
capabilities of the GPU, in many cases, have exceeded that
of the CPU. This has lead to the use of the GPU not only
in graphic applications, but also in scientific calculations.
These trends have created a boom in the graphical process-

∗Email: aqrawi@stud.ntnu.no
†Email: elster@idi.ntnu.no

Figure 1: Seismic data example provided by Aarre [1]

ing architectures and manufacturers have started introduc-
ing new product lines specific for scientific calculations,
including the recently announced NVIDIA s2070 which
is to be based on their new Fermi GPU processor. Note
also that using the GPU for computations, frees up CPU
cycles for other parallel tasks. The GPU, can therefore,
like other co-processors, be viewed as an accelerator that
collaborates with the CPU.

Several tasks, such as image processing, seismic pro-
cessing (Aksnes and Elster [3]) and other physical mod-
eling as well as linear programming applications (Spamp-
inato and Elster [16]) have proven to be well paralleliz-
able on the GPU. In a previous project [4], we worked
with accelerating seismic algorithms by using the GPU and
CUDA. This resulted in a drastic change between the bal-
ance of computation and communication. to begin with
2% of the execution time is spent on disk access, while af-
ter accelerating the process 90% of the time is now used
on communication. The goal of this project is to look at
compression of large seismic data, and see if it can be used
to accelerate I/O disk access to complement our previous
work and accelerate both aspects of the seismic process.

2 Related Work
Data compression has existed for quite some time now and
there have been a lot of progression in the field. There
are mainly two categories of compression algorithms [9],

lossless and lossy. Lossless algorithms are compression
algorithms that do not lose any data in the compression
process. Lossy algorithms are those that change the origi-
nal data before compression and thereby resulting in a loss
of data.

When it comes to lossless compression of volume data
there are many ways to do so, but they mainly focus on en-
tropy encoding. This means that they focus on the nature
of the data. The most known here are run length encoding
(RLE) and huffman encoding. Fowler and Yaglet [6] show
ways to improve on the existing method of huffman encod-
ing, which we have done as well. Other than entropy en-
coding, there is also arithmetic encoding that is used often
in lossless compression. Ratanaworabhan et al. [13] intro-
duce a method of compressing floating point data. Since
seismic data is a collection of floating point data and it is
interesting to compress with this method. Xie and Qin [18]
buildt upon the method with respect to siesmic data and got
compression ratio of 1.7.

Lossy compression is performed by combining a trans-
form algorithm such as the fourier, cosine or lapped or-
thogonal transforms with a lossless compression method
[10]. By transforming the data to another domain and re-
moving the data with least effect on the original data, larger
compression is attained with little loss of data. This tech-
nique was shown with the DCT by A.B. Watson [17]. One
of the most common transforms to use is the discrete co-
sine transform, introduced by N. Ahmed et al. [2], and
later on optimized in a SQ scheme for image processing
by Y. Arai et al. [5]. This is now part of the JPEG image
standard [12]. Malvar et al [11] introduced ways to im-
prove on the DCT in compression with the use of the LOT,
which removes blocking effects from images.

3 Hardware and Implementations
In Tables 1 and 2, are lists of the hardware used in the two
machines that we benchmarked our results on. There are
significant differences in both machnies. First is the disk
on the second machine is an SSD disk and that in itself
can improve I/O time. The other difference is that there is
a more powerful CPU on the second machine, which will
improve execution time results, and the GPU is actually a
multiple GPU architecture which combines 4 Tesla 1060.

Type Name
CPU Intel Core 2 Quad Q9550 2.83GHz

GPU Nvidia Tesla 1060

Memory 8GB DDR3

Disk Samsung HDD disk HD735 500GB

Table 1: Hardware in first computer used in benchmark

3.1 Implementations
It is important to understand that in our case, when compet-
ing with I/O time, it is not only important that we compress

Type Name
CPU Intel Core i7 extreme 965 3.2GHz

GPU Nvidia Tesla s1070

Memory 12GB DDR3

Disk Cosair SSD 128GB

Table 2: Hardware in second computer used in bench-
mark

the data as much as possible, but it should be done effi-
ciently. That is why sometimes one has to comprise com-
pression rate for execution-time efficiency to even beat the
I/O time. Another aspect worth mentioning is that all the
implementations are focused on optimizing seismic com-
pression, such that they might not be optimal for data of
another nature.

seismic data is produced in the Segy format [15]. This
format is very extensive to explain, for detailed descrip-
tions read the manual [15]. The most important aspects
for compression and I/O are the fact that the data is quite
spread on disk and has a lot of detail to the extent that it
looks noise. The fact that the data is spread on disk results
in umps across the disk resulting in lower not optimal disk
access. The noisy data means that it is hard to compress
with traditional methods.

We first experimented with lossless compression meth-
ods such as RLE and Huffman without any modifications
to fit the nature of seismic data. RLE resulted in no com-
pression because of the noisy nature of seismic data. Af-
ter analyzing several seismic datasets we realized that if
we combined RLE with a dictionary lookup for the val-
ues that benefit from it, this results in the best compression
rates for the RLE algorithm. When it comes to huffman it
gave better compression rates, but used more time to com-
press because it needs to scan the whole data twice. First to
create a statistic to create the tree and second to compress
the data using this tree. This can be optimized given since
we are looking at seismic data. This means that the tree
and statistic will always be the same and therefore can be
pre-calculated. This makes the algorithm much faster and
able to beat RLE in both execution time and compression
rates.

On the GPU both of these algorithms are challenging to
perform since they have a sequential nature when combin-
ing the compressed values. In other words the compres-
sion can be done in parallel, but putting the pieces together
is not and requires communication between the threads,
which is another overhead. Another limiting factor is that
both these algorithms and other lossless algorithms use bit-
wise operation, which are really slow on the GPU. Non the
less a GPU implementation of Huffman was produced to
test these statements. The results show that the CPU is su-
perior to the GPU in bit wise operations and that combined
with the sequential nature of the algorithms gave poor re-
sults. In general there is a relation between compression

Figure 2: 5x zoomed into seismic images showing effects of lossy compression with DCT in several dimensions

ratio and speedup, and if the execution time of the com-
pression algorithms approaches zero, the I/O speedup will
be equal to the compression ratio. lossless compression
has shown to give little compression ratio. That is why we
did not implement floating point compression even though
it is a good alternative for compression it is time consum-
ing and therefore not fitting for this application.

Given that lossless compression is a combination of
changing the data and then compressing it using a loss-
less method, we have the advantage of letting the CPU and
GPU cooperate by offloading the data changing to the GPU
and the lossless compression can be done on the CPU.
In our case we have implemented the DCT as mentioned
in [2] in several dimensions on the GPU and we remove
the least significant data from the transformed data before
sompression. We used a block size of 8, which is common
in the JPEG standard [12]. And removed the 4 least impor-
tant values. The transform algorithm is combined with the
lossless compression of RLE, which proved to be the best
combination. We also implemented fast DCT algorithms
such as the AAN [5] [12] and compared all implementa-
tions between CPU and GPU performance and the rate at
which they are able to accelerate I/O.

When testing we are looking at large datasets. Our defi-
nition of a large dataset is that a dataset that does not fit into
memory. That is why our largest dataset is at 12GB, and
since we have to duplicate tables to store input and output
data and the operating system needs some of the memory,
even on the computer with 12 GB of memory only 4GB of
data can be read at a time. The GPU we use also has a lim-
iting factor there by only having 4GB of memory which
means that when performing calculations on the GPU we
have to transfer back and forth 3 times the input and out-
put data. All buffered reads and paging functionalities are
turned off such that the times recorded are representative.

rMSE =

√
∑N

x=0(f (x)−g(x))2

N
(1)

Our tests are conducted such that the code is executed
10 times and the median execution time is chosen as a rep-

resentative. This is to avoid spike values and since we have
a lot to test and large sets that take long time to test only 10
executions are performed, but we believe that this is rep-
resentative. During executions we have also developed a
framework that produces images from the seismic set (this
was done with help from [1] [?]), produce the compressed
file and we calculate the error for lossy algorithms using
the formula for root mean square error as stated in [7],
which is shown in Equation 1.

4 Results
When testing the different algorithms we have focused on
testing on two platforms, namely an HDD disk and SSD
disk. This is because the SSD is faster and it would be in-
teresting to see if these algorithms are able to beat the I/O
time of an SSD disk. The results from Figure 3 show that
compression can in fact increase I/O performance with the
use of the GPU, but only for lossy methods. The error cal-
culated varied for each dimension we increase in the DCT.
This is because as we increase the dimensions a bit more
information is removed to increase compression. There is
a balance here, which is shown in Figure 2.

The lossless methods proved to give some speedup in
I/O, but given their lack of compression ability because of
the noise in the seismic data, they proved to be of little ef-
ficiency. No significant results where obtained on either
platforms (HDD and SSD), and when tested on the GPU it
resulted in longer execution times. This is mainly because
of the limiting factors of the GPUs bit-wise operation ca-
pabilities and the fact that both RLE and huffman encoding
have a sequential nature.

By transforming and low pass filtering the data, as we
did with the DCT, we could remove the noise from the
data and get much better compression rates with low er-
rors. When this was performed the naive DCT method
showed no significant results on the CPU, but on the GPU
we were able to accelerate the transformation significantly
and this resulted in a 5 time speedup in I/O for the two
dimensional case. When testing for the three dimensional
case of the naive DCT even the GPU could not produce sig-

Figure 3: I/O speedup on HDD and SSD platforms

nificant results, which signaled the need for a faster DCT
algorithm. Since the DCT is such a popular algorithm in
image processing, there are significant advances. The most
commonly recognized fast algorithm is the AAN algorithm
[5]. Our implementation of the AAN gave good results
even on the CPU, and the best results on the GPU, which
is a 6 time speedup for the three dimensional case.

5 Conclusions and Future Work
Our results show that by compressing data one is able to
increase the performance of I/O for seismic data. This was
achieved with lossy compression that first filtered the seis-
mic data to reduce noise, using DCT with a low pass filter,
and then compressing using RLE. The implementation is
done cooperatively between the CPU and GPU. Our results
showed that the CPU is more efficient at lossless compres-
sion and that the GPU is faster at filtering, which is why
we combined the two. Since seismic data is used in sci-
entific calculations the lossy compression could not have
a large error. We achieved a 6 time I/O speedup with an
error of about 0.4%. Future work in this subject would be
to implement LOT and GenLOT to reduce the error and to
test the effects this speedup has on the seismic process as
a whole.

References
[1] V. Aarre. Schlumberger stavanger. personal communica-

tion.

[2] N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine
transform. IEEE Trans Computing, 1974.

[3] E. Aksnes and A. C. Elster. Porus rock simulations and lat-
tice boltzmann on gpus. to be published in Parallel Com-
puting: Architectures, Algorithms and Applications: Pro-
ceedings of the International Conference ParCo 2009, IOS
Press, 2010.

[4] A. A. Aqrawi. 3d convolution of large datasets on modern
gpus. Norwegian University of Science and Technology,
2009.

[5] Y. Arai, T.Agui, and M.Nakajima. A fast dct-sq scheme for
images. Transactions of the Institute of Electronics, Infor-
mation and Communication Engineers, 1988.

[6] J. E. Fowler and R. Yagelt. Lossless compression of vol-
ume data. IEEE Transactions on Image Processing, 1995.

[7] R. C. Gonzales and R. E. Woods. Digital Image Process-
ing. Prentice-Hall PTR, third edition, 2008.

[8] D. B. Kirk and W. W. Hwu. Programming Massively Par-
allel Processors. Elsevier INC., first edition, 2010.

[9] P. Komma, J. Fischer, F.Duffner, and D. Bartz. Lossless
volume data compression schemes. Tagung conference on
simulation and visualization, 2007.

[10] C. Larsen. Utilizing gpus on cluster computers. Norwegian
University of Science and Technology, 2006.

[11] H. S. Malvar and D. H. Staelin. The lot: Transform coding
without blocking effect. IEEE Transactions on Acoustucs,
Speech, and Signal Processing, 1989.

[12] W. B. Pennebaker and J. L. Mitchell. JPEG Still Image
Data Compression. Van Nostrand Reinhold, 1st edition,
1993.

[13] P. Ratanaworabhan, J. Ke, and M. Burtscher. Fast lossless
compression of scientific floating-point data. IEEE Com-
puter society, 2006.

[14] R.Eidissen. Comparing cg and cuda implementations of se-
lected transform algorithms. Norwegian University of Sci-
ence and Technology, 2008.

[15] Seg Technical Standards Committee. SEG Y rev 1 Data
Exchange Format, 2002.

[16] D. Spampinato. Modeling communication on multi-gpu
systems. Norwegian University of Science and Technol-
ogy, 2009.

[17] A. B. Watson. Image compression using the discrete cosine
transform. Mathematica, 1994.

[18] X. Xie and Q. Qin. Fast lossless compression of seismic
floating-point data. IEEE Computer society, 2009.

180

APPENDIX G

Poster ISC 2010

This is a poster used at the International super computing 2010 (ISC 2010)
conference in Hamburg Germany. This is a poster displayed on our stand with
intentions to inform of our newly gained results with the newest technology
with in the field, namely the FERMI architechture. the major focus here is
to infrom how the Fermi architecture boosted our results. We are happy to
inform that the poster gain some attention, and participants were curious as
to how we achieved our results and how much different was it to work with
the technology.

The poster can be found on the next page.

181

I/O Speedup for Large Datasets Using Compression
on Modern CPU & GPU Architectures (FERMI)

Ahmed A. Aqrawi (Master Student) and Dr. Anne C. Elster (Advisor)
Department of computer and information science, NTNU

Transform Encoding
The transform encoding process includes three steps shown
in the figure to the right. The transformation and
quantization steps, which are to transform the data into
another domain and filter it, are best done using the GPU
because of their parallelizable nature. While the encoding
step, which in our case is a modified RLE, is best done on
the CPU because of its sequential nature. We have used
the GPU and CPU in asynchronous co-operation to perform
the compression.

DCT 3D DCT AAN 3D LOT 1D
0

100

200

300

400

500

600

700

Execution time comparison to FERMI arcitechture

Intel i7 Single
Intel i7 Quad
Nvidia Tesla c1060
Nvidia Tesla c2050
(FERMI)

Algorithm

E
xe

cu
tio

n
tim

e
(s

)

Visual Results
We performed our compression on seismic data of large sizes
(32GB). Transform Coding is a lossy compression method,
which means that some data is lost in the process. We have
measured the amount of data lost by calculating the root mean
square error (rMSE), and as we can see from the images to the
left, little data is lost using this method. But, one can clearly see
a visible loss.

Benchmarks
In the graph to the right, we have shown the various
execution times for the main compression algorithms on
different platforms. The results show that the GPU
implementations are superior in computation power, and
within the GPU results the FERMI GPU is about 1.7 times
as fast.

In the graph below, we show the results of accelerating I/O
on different platforms using compression. These are results
for asynchronous executions, where the CPU is reading
data and aiding the encoding, simultaneously as the GPU
performs the transformations and quantizations. We have
tested the process on both HDD and SSD disks.

R
LE

 (S
in

gl
e)

R
LE

(Q
ua

d)

H
uf

fm
an

 (S
in

gl
e)

H
uf

fm
an

 (Q
ua

d)

H
uf

fm
an

 (G
P

U
)

1D
 D

C
T

(S
in

gl
e)

2D
 D

C
T

(S
in

gl
e)

1D
 A

A
N

 (S
in

gl
e)

2D
 A

A
N

 (S
in

gl
e)

3D
 A

A
N

 (S
in

gl
e)

1D
 D

C
T

(Q
ua

d)

2D
 D

C
T

(Q
ua

d)

1D
 A

A
N

(Q
ua

d)

2D
 A

A
N

(Q
ua

d)

3D
 A

A
N

(Q
ua

d)

1D
 D

C
T

(G
P

U
)

2D
 D

C
T

(G
P

U
)

1D
 A

A
N

(G
P

U
)

2D
 A

A
N

(G
P

U
)

3D
 A

A
N

(G
P

U
)

0

1

2

3

4

5

6

7

I/O Speedup HDD I/O Speedup SSD

Compression algorithm

I/O
 s

pe
ed

up
 c

om
pa

re
d

to
 p

la
tfo

rm

I/O bandwidth is often a major bottleneck for dataintesive algorithms. Our work looks at seismic filtering as an example
of dataintensive algorithm, and aims at accelerating the process with the use of compression. By compressing the data,
less data is read from the disk, and the computation capabilities of the GPU is then used for faster decompression.

Conclusions & Future Work
The results show that an I/O
speedup of up to 6.2 can be
achieved using this method with
the use of the GPU in the
compression process. Future
work would involve looking at
other compression altenatives,
and more advaced hardware as
it is made available. A Multi-
GPU solution can also be
explored.

Acknowledgements
We would like to thank NVIDIA for their contribution of hardware through their professor
affiliates program. We would also like to thank Sclumberger and Statoil for their contribution
of seismic data. A spesial thanks to Christian Larsen for all his help.

	Title Page
	Problem Description
	Abstract
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	Introduction
	Goals
	Contributions
	Thesis Outline

	Parallel Computing
	Parallel Computing Theory
	Amdahl's Law
	Gustafson's Law
	Speed Up Limitations
	Data Dependencies
	Types of Parallelism
	Classes of Parallel Computers

	OpenMP and Multithreading
	Main Features
	Pros and Cons
	Performance expectations

	GPU and CPU Architectural Features
	Main aspects of CPU architecture
	Main aspects of GPU architecture

	CUDA Programming Model

	Data Compression, Filtering and Seismic Data
	Previous Work on Compression
	Lossless Compression Algorithms
	Run Length Encoding (RLE)
	Huffman Encoding
	Arithmetic Encoding
	Lossless Compression of Floating-Point Data

	Lossy Compression Algorithms
	Compression Using Transforms
	DCT (Discrete Cosine Transform)
	Fast DCT: The AAN Algorithm
	Lapped Orthogonal Transform

	Filtering Algorithms
	Convolution
	Hough Transform

	Seismic Data

	Compression and Filtering Algorithm Optimizations and Implementations
	The File Compression Format
	Our Testing Frameworks
	Producing Images
	Producing Seismic Cubes
	Synchronous and Asyncronous I/O
	Benchmarking Framework

	Optimizing Lossless Compression Algorithms
	Optimizing RLE w/ Dictionary lookup
	Optimizing Huffman Encoding

	Optimizing Lossy Compression Algorithms
	Optimizing the Naive DCT Algorithm
	Optimizing Fast DCT: The AAN Algorithm
	Optimizing Fast LOT

	Optimizing Image Processing Algorithms
	Optimizing 3D Convolution
	Optimizing Hough Transform

	Our AESC Library

	Predictive Model for Seismic Processing I/O
	Synchronous Model
	Asynchronous Model
	Compression Computation and I/O Tradeoffs

	Results, Discussion and Analysis of Benchmarkes
	Hardware & Platforms Used for Testing
	Data Sets for Tests
	Compression Algorithms Performance and Visual Results
	Modified RLE Benchmarks
	Huffman Encoding Benchmarks
	Naive DCT Benchmarks
	AAN Implementation Benchmarks
	LOT Implementation Benchmarks

	Image Processing Algorithms Performance and Visual Results
	3D Convlution Benchmarks
	Hough Transform Benchmarks

	Effects of Compression on the Seismic Filtering Process
	I/O speedup
	Predicted Model
	Seismic Filtering Process Speedup

	Conclusions and Future Work
	Conclusions
	Future Work
	Closing Remark

	Bibliography and References
	Appendices
	Orthogonal Transform Theory
	DCT (Discrete Cosine Transform)
	Fast DCT: The AAN Algorithm
	Lapped Orthogonal Transform

	Annotated Bibliography
	Benchmarking Tables
	Source Code
	RLE
	Huffman
	Naive DCT
	Fast DCT AAN
	Fast LOT
	Hough Transform
	Convolution

	AESC Library Overview
	Short Paper for PARA 2010
	Poster ISC 2010

