
TDT4715 - MASTER PROJECT REPORT
PARALLELIZATION OF AN OPEN SOURCE GAME

IDAR BORLAUG

KNUT IMAR HAGEN

MAIN ADVISOR:
DR. ANNE CATHRINE ELSTER

FALL 2006

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science

II

Abstract

Multithreading of games has recently become a hot topic. More CPUs
are now being delivered with several cores. Games can greatly benefit
from this. You now have more processing power to create better Artifi-
cial Intelligence, to use more physics to create more realistic games and
larger and more complex games. It is a must for gaming companies to
take advantage of this, because it will give you an edge compared to com-
petitors. The goal of this project is to see how well a typical game can
be parallelized on modern multicore architectures. For this task, an open
source game is chosen. With an open source game it is easier to test mod-
ifications and give something back to the community. The open source
game OpenTTD (Open Transport Tycoon Deluxe) is chosen as a test case
we found, because the code is easy to read, and it is reasonably well doc-
umented.

This report explains how the code is analyzed and time consuming
parts identified. Time consuming parts are then parallelized if possible.
Game logic, sound system and graphics are modules that would increase
performance if parallelized. The game logic showed to impose a few ob-
stacles, which make it very difficult to parallelize.

The sound system is parallelized, resulting in no game play delays
if the sound system waits for I/O resources. The graphics module con-
sists of two parts: drawing the graphics, and pushing data to the graphics
card. The push process is changed so that it runs in parallel with the game
logic. These changes resulted in a significant speedup of 26% without sig-
nificantly impacting single core performance.

This work hence illustrates how multithreaded games can take advan-
tage of modern multicore architectures.

III

Preface
This report describes how to approach multithreading of an open source game,
and how this is done with OpenTTD [1W].

This report is written as part of a Master Project at the Department of Computer
Science at NTNU. The course name is TDT4715 - Algorithm construction and
visualization, depth study. The main advisor is Dr. Anne Cathrine Elster.

The references in this report is numbered with [#X] where # is number of cited
article/book, and X is W or B, which means Web or Book.

We would like to thank Dr. Anne Cathrine Elster for giving us valuable input
throughout the project, and Thorvald Natvig for being a helping hand with Posix
threads.

The final source code including our implementations can be found on the en-
closed CD in this report, or (until summer 2007) in the subversion repository at
the following address:
http://linux-warer.homeip.net/svn

Trondheim, December 18, 2006.

Idar Borlaug Knut Imar Hagen

_____________________ _____________________

http://linux-warer.homeip.net/svn

CONTENTS IV

Contents

List of Figures 6

List of Tables 7

1 Introduction 9
1.1 Choice of game . 9
1.2 Game description . 9
1.3 Project goal . 11
1.4 Outline . 11

2 Related work 12

3 Multithreaded game engine architectures 14
3.1 Synchronous function parallel model 14
3.2 Asynchronous function parallel model 14
3.3 Data parallel model . 15

4 Code analysis 17
4.1 The code . 17
4.2 Code layout . 17

4.2.1 Main method . 17
4.2.2 The MainLoop() . 17
4.2.3 The GameLoop() . 18
4.2.4 The StateGameLoop() . 18
4.2.5 Overall design . 21

4.3 Performance analysis . 22
4.3.1 Game with small map and fewer vehicles 22
4.3.2 Larger map and more vehicles 22

5 Project results 24
5.1 Sound . 25

5.1.1 Description . 25
5.1.2 Solution . 25
5.1.3 Problems . 25
5.1.4 Lessons learned . 25

5.2 StateGameLoop() . 26
5.2.1 Description . 26
5.2.2 Solution . 26
5.2.3 Problems . 26
5.2.4 Lessons learned . 28

5.3 StateGameLoop() second attempt 28
5.3.1 Description . 28
5.3.2 Solution . 28
5.3.3 Problems . 30
5.3.4 Lessons learned . 30

5.4 StateGameLoop() third attempt 30
5.4.1 Description . 30

CONTENTS V

5.4.2 Solution . 30
5.4.3 Problems . 31
5.4.4 Lessons learned . 31

5.5 Graphics . 31
5.5.1 Description . 31
5.5.2 Solution . 32
5.5.3 Problems . 32
5.5.4 Lessons learned . 34

6 Discussion 35

7 Future work - redesigning the game 37
7.1 Graphics . 37
7.2 PushGraphics . 37
7.3 Sound . 37
7.4 User Input . 37
7.5 Game state . 37
7.6 New design . 39

8 Conclusion 40

References 41

Definitions 44

LIST OF FIGURES VI

List of Figures

1 OpenTTD Screen shot 1 . 10
2 OpenTTD Screen shot 2 . 10
3 Synchronous function parallel model 14
4 Asynchronous function parallel model 15
5 Data parallel model . 16
6 MainLoop() . 17
7 GameLoop() . 18
8 StateGameloop() . 19
9 Overall design . 21
10 StateGameloop() threaded 1 . 27
11 StateGameloop() threaded 2 . 29
12 DrawSurfaceToScreen . 33
13 Redesign . 39

LIST OF TABLES VII

List of Tables

1 Small game, GameLoop() . 22
2 Small game, StateGameLoop() . 22
3 Large game, GameLoop() . 22
4 Large game, StateGameLoop() . 23

LIST OF TABLES VIII

1 INTRODUCTION 9

1 Introduction

The goal of this project is to see how well a typical game can be parallelized
on modern multicore architectures. This report investigates how to do multi-
threading of an already existing open source game. An open source game is a
computer game that is developed by various people, often from different coun-
tries and places. The code source is free for all to download and experiment
with, and anyone can play the game.

1.1 Choice of game

We decided on an open source game, because it has available source code,
and it is possible to test modifications and give something back to the commu-
nity. The open source game OpenTTD (Open Transport Tycoon Deluxe) [1W]
was chosen because it was easy to read the code, and it was reasonably well
documented, compared to other open source games we investigated. Another
reason is that it is based on the well known and legendary game TTD [2W].

1.2 Game description

OpenTTD is a clone of the Microprose game "Transport Tycoon Deluxe" [2W],
a popular game originally written by Chris Sawyer. It attempts to mimic
the original game as closely as possible while extending it with new features.
OpenTTD is licensed under the GNU General Public License version 2.0. [3W]

When you start the game, you are loaned a large amount of money to build
a transporting network. The quest is to build the best network to become the
richest transport tycoon in the world. You will compete against other players
in a network game, or against AI players. The clue is to build the network
quickest and be the smartest, so you will earn the most money. These net-
works consist of train and bus stations, airports, docks, linking roads, railways,
air and ship networks. You also need to build all the vehicles, as trains with
wagons, trucks, buses, airplanes and ships. These will transport passengers,
goods, oil, lumber, iron, steel, etc. between the stations, using the transporting
network. A nice part of a network is shown in a screen shot at Figure 1. As the
years go by, you’ll have the chance to buy more advanced and faster vehicles
and ships, if you can afford them.

The networks you are building can be very complex, and you got to have
good control when you connect railways in junctions. A pretty example of
how things can be done is shown in a screen shot at Figure 2. You also have to
deal with town councils that express individual and varying attitudes. There
are also some disasters you have to handle, such as UFOs landing on your
property, mine collapses, bus, lorry and aircraft malfunctions. To add more
money to your wallet, you may also takeover other companies, and also fund
new industries which will need your transportation network.

As a summary, the game is to build a huge transport network and make
money. When a big network has been built, much CPU time is needed to run
the transporting vehicles, among other CPU consuming activities.

1 INTRODUCTION 10

Figure 1: OpenTTD Screen shot 1

Figure 2: OpenTTD Screen shot 2

1 INTRODUCTION 11

1.3 Project goal

The goal of this project is to see how well a typical game can be parallelized on
modern architectures. If successful, you now have more processing power to
create better Artificial Intelligence, use physics to create more realistic games,
and larger and more complex games. This will give you an edge compared to
competitors.

1.4 Outline

This document is organized as follows:

• Introduction where we describe the game that is chosen

• Related work in multithreading of games

• Code analysis where we have analysed the code of OpenTTD and mea-
sured time of critical portions

• Project results where we present what we have investigated and imple-
mented

• Discussion of the project results

• Future work is a description of how OpenTTD should have been de-
signed from the ground up if it were to support multithreading

• Conclusion of the project results

• A list of references used in this document

• A list of special abbreviations and terms used in this text

2 RELATED WORK 12

2 Related work

In the past, there has been a minor focus on multithreading games. The reason
is because the games mostly are run on desktop computers, and these comput-
ers traditionally have one CPU. Recently, it has become more common to have
a multicore CPU on desktop computers. A current example is Intel Core 2 Duo
[4W]. This CPU has two cores, which share up to 4 MB L2 cache. Intel claims
that this among other technical details yields truly parallel computing.

Nowadays, the focus on multithreading games has grown, mostly because
multicore processors have become more common, as mentioned. Another rea-
son is that the 3D graphics and Artificial Intelligence (AI) in the new games
consumes more resources than the older games. A need for more resources
has hence become an issue. One method is to try to optimize the already writ-
ten code, another is to multithread the code. The optimal solution would be
to have optimized multithreaded code. Examples of new game engines that
use this technique are Doom 3 [5W] and Unreal 3 [6W]. Anandtech asked
Tim Sweeney, a developer of the Unreal 3 engine about multithreading, which
gives us a very good hint about multithreading [7W]:

For multithreading optimizations, we’re focusing on physics, an-
imation updates, the renderer’s scene traversal loop, sound up-
dates, and content streaming. We are not attempting to multithread
systems that are highly sequential and object-oriented, such as the
gameplay.

Galactic Civilization 2 uses multithreaded AI. Since it is a turn based strat-
egy game, it has resources available when you make your turn. These re-
sources are used on the AI, so the AI is almost finished with its turn when you
end yours. If the game wasn’t developed this way, the end turn time would be
long and gameplay would suffer greatly [8W] [9W].

A good example of how to improve the graphics using multithreading is
described in the article "Multithreaded terrain smoothing" [10W]. Here it is
described how to use multithreading to realize real-time terrain height field
smoothing. Two interesting techniques that are described, are multithreaded
tessellation with OpenMP, and asynchronous multithreaded tessellation. The
OpenMP version seems well understandable and structured, they even apply
a receipt of how to check the actual speedup, using FPS counting. It is good
to be aware of reasons why the speedup is not as high as expected. One is
claimed by Amdahl’s law [1B] (page 40-42) that the maximum speedup you
can get is limited by the serial portion of your code. The asynchronous version
states that the threads can just pick up a new tile when the other is done. The
main thread checks if new tiles are available, and uses the new ones if they are.

The games that are mentioned so far are commercial games. This project
concentrates on an open source game. An open source game that is multi-
threaded is a rare case, and we have not found such a game. The reason is
probably because different volunteers work on the game, and cooperation on
developing a game is less tricky if multithreading is out of the picture.

Intel has written a report [11W] on how to use Intel tools on the most com-
mon open source game engines to get the best possible performance out of

2 RELATED WORK 13

these. They conclude at last that dividing the source code in multiple threads
will quicken execution time, if there are available processors. They have used
OpenMP [12W] for parallelization.

More studies have been done by Intel on multithreading of games [13W]. A
recommendation here is to use a thread pool, which is a queue of asynchronous
threads to be executed. It is stated that this technique is already used in several
games. An idea is to divide problems in subproblems, that is subthreads, so
that they become easier to solve. In the end the solutions can be combined to
a whole solution of the problem, but this is often difficult. Anyway, this is a
mathematical way of thinking, that is being more and more welcomed in the
game development. A final tip that is worth mentioning is to be creative and
cheat to limit the need of synchronized execution of threads if the user of the
game will not notice it.

As stated in the above, today most games that use threading, have paral-
lelized parts of the game that is easily separated from the rest of the code, like
particle generators, AI, sound updates, etc. A reason for this is that the game
will also run normally on a single CPU. Because you will only loose visual
effects, the game will work just as good. There are areas where data paral-
lelization also can be used. Pathfinding of different units can be done at the
same time, since it only reads values from the map. AI players can run inde-
pendently of each other.

In multithreading, it’s normal and often necessary to have locks. This is a
problem because games have a high FPS. If a game has 100 FPS that means
everything needs to be calculated in under 10ms for every frame. Even worse,
some games have FPS up to 200, which means we have even less time. There-
fore, locks and synchronization must be kept to a minimum, one each frame is
a good number. Unfortunately, all problems can’t be solved without locks.

3 MULTITHREADED GAME ENGINE ARCHITECTURES 14

3 Multithreaded game engine architectures

There are basically two ways to multithread a program / game; data and task
parallelization. Data parallelization is used when there is a large dataset that
needs to be processed, mostly matrix operations. This is used in scientific
computing and other fields. In games, task parallelization is more common,
because there are lots of different jobs (physics updates, AI, game logic, graph-
ics, network, sound). Many of these can be run in parallel if there are few
interactions between the respective parts [14W].

Figure 3: Synchronous function parallel model

3.1 Synchronous function parallel model

If you can find parallel tasks that can be run simultaneously from an existing
game loop, they can be run in separate threads. These tasks should not interact
or communicate, they should be independent. An example of this could be
executing a physics task while calculating an animation. Figure 3 shows a
game loop parallelized using this technique.

If you only have two threads, this will not scale well, for example on a quad
core processor. Then two of the cores would have spent their time idle. This
means that this model has an upper limit of how many cores it supports, the
number of parallel tasks in the loop.

3.2 Asynchronous function parallel model

The last model was a synchronous version, an asynchronous one will not con-
tain a game loop. Instead the tasks run at their own pace, and uses the latest
updates available from the other tasks. You can then parallelize tasks that
are dependent on each other. The information in the communication between
them is gathered in an update that the other tasks use when they are ready

3 MULTITHREADED GAME ENGINE ARCHITECTURES 15

Figure 4: Asynchronous function parallel model

(polling for new data). Figure 4 shows an example of the asynchronous func-
tion parallel model.

Also this model has limited scalability, because of the number of tasks that
run simultaneous. Anyway, since tasks don’t need to be truly independent,
this model can support a larger amount of tasks and hereby a larger amount of
processor cores than the synchronous model. There are also some drawbacks.
One is that if three tasks are dependent on each other, and a task that is de-
pendent on the first starts right before the first is finished, and the third starts
right before the second task is finished. This will result in a delay of up to two
times the optimal scenario. Another drawback is, if the tasks use greatly dif-
ferent CPU time, the slowest will reduce the utilization dramatically, because
the others will have to wait for it to finish.

3.3 Data parallel model

The Data parallel model is about finding similar data so the tasks on these can
be performed in parallel. One example is in a first person shooter game with AI
bots, such that all the bots computing can be divided in two or more threads,
because they will have the same goal, to hit your character, and not each other.
An optimal solution is to have as much threads as there are processor cores
available. Figure 5 shows an example of the data parallel model, which have
two object threads running in parallel. This means that it is suitable for a dual
core, if these threads are well balanced.

The example with the AI bots assumed that the bots did not interact with
each other. When a bot sees an enemy, they will need to broadcast this to the
other bots, resulting in an interaction between different threads. This could
reduce the amount of parallelization, because of synchronization primitives
that block. Anyway, there is a solution in message passing and using the latest
update available. It also helps to group objects which have the highest chance

3 MULTITHREADED GAME ENGINE ARCHITECTURES 16

Figure 5: Data parallel model

to interact with each other. The AI bots which are far apart in the game world
can be in their own threads, because they will most likely have no interaction.
There are no reason for a bot to yell to another bot 5 miles away.

A great thing with this model is the excellent scalability in that it can set the
number of object threads to the number of processor cores.

4 CODE ANALYSIS 17

4 Code analysis

4.1 The code

OpenTTD is an open source game released under the GPL [3W]. The code is
written in C, the ANSI-C flavor used by MS Visual Studio. Lately contributions
have been accepted in C++. The code is written for cross platform compatibil-
ity and runs on all modern flavours of Unix, Win32, BeOS, OS/2 and MacOS
X. The game uses SDL [15W] for graphics and input on some of the operating
systems. This ensures less platform specific code.

4.2 Code layout

4.2.1 Main method

The main method takes care of initialization before it starts the main game
loop. When the game loop ends, it cleans up resources and quits gracefully.
The overall layout is described in Section 4.2.5.

4.2.2 The MainLoop()

The MainLoop() is rather simple. First it polls SDL for input from input de-
vices, like mouse and keyboard. Then it sets the new tick, and calls the GameLoop().
The GameLoop() will move everything one tick forward and make changed
pieces of the screen dirty. Finally, UpdateWindows() draws the dirty pieces
to the screen array. Then, DrawSurfaceToScreen() sends the dirty parts to the
graphics card.

Figure 6: MainLoop()

PollEvent() is a small loop in itself, it runs through every key and mouse
action taken since last loop. Every event is mapped onto a set of global vari-
ables. _cursor specifies the state of the cursor. There are variables for different
mouse buttons and one for last key pressed.

IncreaseTick() will increase the global tick of the game. This will make the
game logic move forward.

GameLoop() updates everything in the game to the new tick. This involves
running the AI, moving all units, and animating animations. This will be dis-
cussed in a later section.

4 CODE ANALYSIS 18

UpdateWindows() draws dirty blocks, text messages, the cursor and the
landscape. This is done by looping through changes made in the game loop.

DrawSurfaceToScreen() takes all dirty rectangles and pushes them to the
graphics card.

4.2.3 The GameLoop()

The GameLoop() consists of three stages, first it calls the StateGameLoop()
which handles the game state and moves it forward. Second, it calls Input-
Loop(), which handles input from mouse/keyboard made available by PollEvent()
loop earlier. Last, it calls the MusicLoop(), which makes the music play.

Figure 7: GameLoop()

StateGameLoop() handles all game logic and runs the AI. More info on this
later.

The InputLoop() takes the variables made by the PollEvent() and modifies
the game according to input; mouse movement, wheel, scrolling, clicking and
keyboard interaction. The keyboard input is given to the focused window in
the game.

The MusicLoop() plays the background music. It checks to see if music is
playing. If it is not, it will start the new song in the play list.

4.2.4 The StateGameLoop()

StateGameLoop() takes care of all the game logic. It animates the tiles, in-
creases the date, runs tile procs, updates all vehicles, updates landscape, runs
the AI players, updates events in windows and handles news.

AnimateTile() goes through all tiles that should be animated and animates
them.

IncreaseDate() increases the date of the game, and it also goes through
TextMessageDailyLoop(), printing new text messages. The next loop in In-
creaseDate() is DisasterDailyLoop() which checks if a disaster is ready to be
launched. The last loop is WaypointDailyLoop() which runs through all way
points and deletes those marked for deletion. It also runs through various
Monthly and Yearly loops for players, engines, towns, industries, stations,

4 CODE ANALYSIS 19

Figure 8: StateGameloop()

road vehicles, trains, aircrafts and ships. Yearly and monthly loops mostly
check if the vehicles had a negative profit the last month/year, or check if they
are too old, etc. IncreaseDate() also changes the last service date on all vehicles.

RunTileLoop() goes through some tiles each round and updates their status
to the new tick. If the loop encounters a tile on the same level as water, and
it’s also next to water, the tiles are made water. On railroad tiles it will remove
barren or build fences if the ground is grass. Roads are made barren, and if
close to a town with road reconstruction, it will handle the road reconstruc-
tion. Station tiles only adds the animated tiles to the animation list. Town tiles
will build bigger buildings, remove buildings, and move goods from houses
to stations. Tree tiles add more trees or grow them to bigger trees. Bridge/-
tunnel tiles doesn’t do much, it only changes the ground type to the correct
one. Unmoveable tiles (only a player’s Head Quarter) will move cargo to sta-
tions. Industry tiles will move goods to stations, move the construction one
step ahead, play sound and animate if there is an animation. Tile dummy does
nothing. Clear tile removes everything on the tile.

CallVehicleticks() goes through every vehicle in the game, and calls their
tick method. Finally, it goes through all vehicles in depots, for automatic re-
placing. The tick methods for all the vehicles are described next, and those
are: TrainTick(), RoadVeh_Tick(), Ship_Tick(), Aircraft_Tick(), EffectVehicleT-
ick() and DisasterVehicle_Tick().

TrainTick() will increase the tick of the train by one. It will also Increase
the number of days that cargo has been in transit. Next, it handles crash an-
imation, reversing of direction, stopping the train, loading and unloading of
cargo, smoke animation, check if we collided, setting speed, handle the orders
for the train and choose which direction the train should take.

RoadVeh_Tick() will increase tick and cargo days. It will check if it has
crashed with a train and handle the corresponding animation. It will check the
orders and handle loading of goods. If vehicle is in a depot, it will be serviced
and moved out. Speed is set, and the vehicles are moved forward on the road
to their new position.

Ship_Tick() will increase tick and cargo days, handle ship orders, loading
and unloading of cargo, depot handling and find new direction and move the
ship towards that direction.

Aircraft_Tick() will increase tick and cargo days, animate crash animation,

4 CODE ANALYSIS 20

handle breakdowns, smoke animation, process orders, loading and unloading
of cargo and move the aircraft to the next position.

EffectVehicleTick() will handle the animations of chimney smoke, steam
smoke, diesel smoke, electric spark, explosions, normal smoke, breakdown
smoke, bulldozer and bubble.

DisasterVehicle_Tick() will handle the moving of animations and disasters.
CallLandscapeTick() grows the towns, which means making new and larger

buildings, builds roads and changes terrain to fit the town. It plants a new tree
at a random spot. All stations will update their ratings and new acceptance is
set. Industries will produce goods. It goes through players and checks if they
have a company name, then generates one if they don’t, maybe starts an AI
player.

AI_RunGameLoop() runs the AI and decides on which commands the AI
should take.

CallWindowTickEvent() will call an event function on all windows. This
will have a different behavior on different types of windows, mostly updating
window data and marking changed sections as dirty.

NewsLoop() checks if there are new news articles. If there are articles, the
first will be displayed.

4 CODE ANALYSIS 21

4.2.5 Overall design

Figure 9: Overall design

4 CODE ANALYSIS 22

4.3 Performance analysis

The measurements done here are wallclock time, averaged over several ticks
when playing the game, and will not reflect every aspect of the game play, only
a special case. When another player is playing, he/she will probably do it in
another way and that will give completely different measurement times. These
measurements are only used as a rough estimate of how much time different
parts of the game code consumes.

4.3.1 Game with small map and fewer vehicles

Function Loops avg time in micros
GameLoop 1246 439,58
UpdateWindows 1092 238,67
DrawSurfaceToScreen 525 6744

Table 1: Small game, GameLoop()

You can see that GameLoop() uses twice as much time as the drawing
loop (UpdateWindows). DrawSurfaceToScreen() runs 10 times longer than the
other two. This is not a correct number, because DrawSurfaceToScreen() uses
a lot of CPU time in the loops when it has to update a lot of rectangles on
the screen. When there are no rectangles left to update, it takes less than five
microseconds.

Function Loops avg time in micros
NewsLoop 766 3,46
InputLoop 766 14,37
CallWindowsTickEvent 766 5,42
CallLandscapeTick 766 22,211
CallVehicleTicks 766 326,96
RunTileLoop 766 127,45
IncreaseDate 766 16,34
AnimateAnimatedTiles 766 6,74

Table 2: Small game, StateGameLoop()

CallVehicleTicks() is the most expensive loop within the GameLoop(), next
comes RunTileLoop().

4.3.2 Larger map and more vehicles

Function Loops avg time in micros
GameLoop 1713 1651
UpdateWindows 1714 1077
DrawSurfaceToScreen 2233 4225

Table 3: Large game, GameLoop()

4 CODE ANALYSIS 23

With a larger map and more vehicles, the GameLoop() has increased in
time, the drawing loop also increased. It seems that the GameLoop() still is the
slowest loop excluding DrawSurfaceToScreen(). As you can see, time spent in
DrawSurfaceToScreen() is less here than in the small game. This reflects that
DrawSurfaceToScreen() is not dependent on the size of the game, but on the
display size.

Function Loops avg time in micros
NewsLoop 1736 3,38
InputLoop 1736 7,5
CallWindowsTickEvent 1736 5,35
CallLandscapeTick 1736 60,62
CallVehicleTicks 1736 1099,0
RunTileLoop 1736 254,47
IncreaseDate 1735 78,63

Table 4: Large game, StateGameLoop()

CallVehicleTicks() is the loop that increased the most with more vehicles
and larger map. With even bigger maps and even more vehicles, this will
probably become very expensive.

From the measurements, it is apparent that drawing takes a lot of time.
Anyway, the game logic is still worse. It would be preferable to do some logic
in the GameLoop() in parallel. CallVehicleTicks() uses so much compared to
the others, that this one must at least run in its own thread. That would remove
all the time from the other loops.

5 PROJECT RESULTS 24

5 Project results

This section describes the different modules that we planned to multithread,
the problems we encountered during implementation and the solutions.

We made a framework for encapsulating threads [16W] in the game. The
reason we did this was because of code reuse, and making the code more neat,
but mostly because Posix threads [16W] are not supported by all platforms, as
this game is intended to be. That means that for other operating systems, the
same methods have to be implemented. The methods for Unix is implemented
in the file thread.c which existed in the source when we started on this project.
The whole thread.c file is included in Appendix A, thread.c. The following
functions have been added:

• struct OTTDMutex

• struct OTTDCondition

• struct OTTDBarrier

• OTTDMutex* OTTDMutexCreate(void)

• int OTTDMutexLock(OTTDMutex* mu)

• int OTTDMutexUnlock(OTTDMutex* mu)

• int OTTDMutexDestroy(OTTDMutex *mu)

• OTTDCondition* OTTDConditionCreate(void)

• int OTTDConditionSignal(OTTDCondition* co)

• int OTTDConditionWait(OTTDCondition* co)

• int OTTDConditionTimedWait(OTTDCondition* co, int msec)

• int OTTDConditonDestroy(OTTDCondition *co)

• OTTDBarrier* OTTDBarrierInit(int number)

• void OTTDBarrierWait(OTTDBarrier* barrier)

Functions for creating, joining and exiting threads were created before, so
we used these in our code.

5 PROJECT RESULTS 25

5.1 Sound

The sound subsystem was chosen as a good candidate to thread mainly for two
reasons: it contains a decent amount of I/O, and it’s not vital that the sound is
100% synchronized with the system.

5.1.1 Description

When the sound system gets a request to play a sound, it loads the sound from
disk and pushes it to the sound card. This involves disk read and the moving
of data to the sound card, both of which can have spikes in I/O wait. If this was
put in a separate thread, the game would continue as normal, but the sound
would come a few frames later. Most people wouldn’t mind hearing the sound
a few frames later to avoid a frame lag.

5.1.2 Solution

A worker thread for playing sound was implemented. The main game thread
sends which sounds are to be played to a queue. It then wakes up the sound
thread. The sound thread reads which sounds are queued, and play these in
correct order until the queue is empty. It then goes back to sleep, waiting for a
new awakening. Fortunately, the queue implementation which was present in
the game, was already thread safe when one thread pops and one pushes.

The file-IO subsystem was modified. Since all the file accesses through this
file-IO subsystem was read-only, there is no reason why we shouldn’t have
one file handle for each thread. We therefore created a hash map to store the
different file handles in together with the positioning variable. This created
another problem. The GenerateWorld thread uses some code that depends
on open files, and the files being in a specific position. Since the main thread
was in wait mode when the generate world thread was running, there didn’t
seem to be a problem. Therefore we stored the thread-id for the sound thread
and used that when the sound thread wanted to access files, else we used 0.
Therefore the two other threads now use the same file handles and the sound
thread has one of its own.

Code is located in Appendix A, sound.c.

5.1.3 Problems

When we started the game for the first time with the sound thread, it ran fine
for a while, then crashed. It appeared that the file-IO subsystem used a global
positioning variable to remember the file position. This made a bit of trouble
when two threads tried to seek to their respective parts of a file. The last one
to seek gave the other thread invalid data.

5.1.4 Lessons learned

It is a very bad idea to keep a generic global pointer to files being read. When
there are two threads that read from the same file, and both want to move the

5 PROJECT RESULTS 26

file pointer to a location they want to read from, one of the threads will get the
wrong data and most likely crash in some way.

5.2 StateGameLoop()

The StateGameLoop() is located in the openttd.c file. This loop is thoroughly
described in Section 4.2.3 and 4.2.4.

5.2.1 Description

The Section 4.3 Performance analysis, indicates that functions worth multi-
threading are CallVehicleTicks() and RunTileLoop(), because these have the
highest time value. If these functions are put in two threads, they can be run
in parallel with each other, and with the other functions. The pathfinding is
run from CallVehicleTicks() and it is used to compute the path where trains
are going to travel along the track rail, where buses/trucks are going to drive
along the road, or where ships are going to sail to avoid hitting land during
the voyage. The pathfinding algorithm is rather intensive in its usage of CPU
resources. Actually, when more vehicles are in the map, then more resources
are used, so this is something worth parallelizing, and the worth increases as
the game time goes by.

5.2.2 Solution

First, we made one thread each for the functions CallVehicleTicks() and Run-
TileLoop(). These were created at the top of the StateGameLoop() and joined
at the bottom. With this code, they will run in parallel with each other, and the
other methods in StateGameLoop(). This worked fine, but we realized that cre-
ating two threads for every time StateGameLoop() is called, is time consuming.
That is because StateGameLoop() is called in every VideoMainLoop() iteration.
Therefore we made an initializing method that created two threads, and used
a barrier to synchronize the threads with the main thread. Now, there will not
be time wasted in creating the threads. Anyway, time spent in the barrier calls
are also a bit time consuming, but it is not significant (three microseconds per
barrier).

Because CallVehicleTicks() is so intensive and time consuming, mostly be-
cause of the pathfinding algorithm, we needed to parallelize this method as
well. This was done with a division of the loop where all vehicles in the game
are investigated, and different methods are performed on these, including the
pathfinding. One thread now runs a loop with all the trains, and another
thread runs the remaining vehicles.

From Figure 10 we see that there are four threads, including the main thread,
running at the same time in StateGameLoop().

5.2.3 Problems

A lot of trouble, which was not foreseen, appeared during this particular mod-
ule. These errors were random, and it could go hours and days before they
actually crashed the program. The game was tested on a single core processor.

5 PROJECT RESULTS 27

Figure 10: StateGameloop() threaded 1

5 PROJECT RESULTS 28

LoadUnLoadVehicle() reported some problems. Apparently the gobal _play-
ers array was manipulated by different threads. It was difficult to find out
where this was done. The function sets _current_player to vehicle owner, and
then it calls functions that read _current_player to set some attribute on the
player. This is done instead of just passing player as an argument. This is
now done in our code in those methods called from LoadUnLoadVehicle(). It
effectively removed problems relating to _players and _current_player.

VehiclePositionChanged() runs the method GetRawSprite(), which gave a
segmentation fault. This is because several threads use that method, and im-
ages have been removed when this thread tries to access the sprite for the im-
age reference. This was solved by locking the actual GetSprite() method in
VehiclePositionChanged() with a mutex.

GetItemFromPool() is an inline function that reports an assert failure. This
is something that is unexplainable, and it remains as a random error.

Another error was in the gameplay when we saw that trains which had
goods wagons attached, changed the image of its wagons when it drove along
a vertical track, but vertical only. This error happened only once, but it will
most likely happen again in another game play.

When running this on a dual core processor, things got even worse, and
new random errors appeared. Anyway, this time the errors appeared more
often, which is what we expected.

The biggest problem was that the network playing did not work anymore,
because it no longer was synchronized. Then, we decided to begin all over
with the StateGameLoop(). The next section describes the new parallelization
of this loop.

5.2.4 Lessons learned

Consider time spent in creating and joining threads vs using barrier. Don’t use
global variables as arguments for functions.

5.3 StateGameLoop() second attempt

As there were a lot of problems with our first attempt to parallelize the StateGameLoop(),
this is our next attempt.

5.3.1 Description

Since CallVehicleTicks() gave us many problems, we took another approach.
We tried to make CallVehicleTicks() run in the main thread, and export every-
thing else to another thread. This would not be an optimal solution, but it will
give a good starting point to approach CallVehicleTicks() later.

5.3.2 Solution

The solution now is to create another thread that will leviate some of the work
from the main thread. We created two barriers before and after StateGameLoop().
AnimateAnimatedTiles() is left at the top together with IncreaseDate(), because
when these were put into the extra thread, they created a lot of problems. They

5 PROJECT RESULTS 29

Figure 11: StateGameloop() threaded 2

5 PROJECT RESULTS 30

are not the most intensive functions either. What we managed to leviate was
RunTileLoop(), CallLandscapeTicks() and CallWindowTickEvent().

5.3.3 Problems

When parallelizing the RunTileLoop(), we got the same problem here as with
our first attempt. LoadUnLoadVehicle() created problems with the global _play-
ers array. Because they used the wonderful global variables as input argu-
ments, we created Player input arguments to all functions under LoadUnLoad-
Vehicle() and changed all other places where these functions were used.

AnimateAnimatedTiles() when moved, created a lot of different segmenta-
tion fault errors. The same with IncreaseDate(). Apparently the program needs
to run AnimateAnimatedTiles() before IncreaseDate() and RunTileLoop() after
IncreaseDate().

This worked very well in single player, it ran for days without any prob-
lems. When we started multiplayer, it ran for quite some time. After a while
we got a random synchronization error. This happens with the original game
too, so we thought it was not a big issue. Later, when we had a larger game
with more vehicles, the synchronization errors started to become more fre-
quent and in the end they appeared after a few minutes.

5.3.4 Lessons learned

Take small steps and test thoroughly. Since this is our second attempt, we test
with dual core and network play after each minor change.

5.4 StateGameLoop() third attempt

We gave a final attempt to get networking to function properly.

5.4.1 Description

Since network playing actually didn’t work as well as we had hoped in the
second attempt of the StateGameLoop(), we now give it another try.

5.4.2 Solution

We first started with RunTileLoop() as it was the most CPU intensive function
after CallVehicleTicks(). Instead of dividing tasks, we now tried to data paral-
lelize the loop. RunTileLoop() loops through the map array with an interval of
8 tiles. So in every tick, 1/8 of the tiles are processed. What we first tried was
to divide this loop in two threads with each thread using an interval of 16 tiles
starting 8 tiles from each other. This would split the loop in half. Anyway, this
did not remove the synchronization problems. Therefore, we tried two loops
with an interval of 8. Instead of taking all tile types in one loop, we used if
statements, so some of the tile types were processed by one thread and the rest
by the other thread. This worked for some tile types.

CallLandscapeTicks() calls seven different functions. We tried to do these in
parallel. Three of these had to be run in sequence in one thread, so those were

5 PROJECT RESULTS 31

put in the main thread. We then put one function in the other thread, because
we wanted also that thread to do something. The two remaining functions
were taken by the thread that claimed to run the function first. This will help
even the load between the two threads. It was implemented by a mutex for
each function, and a boolean variable which said if the function was already
run or not.

5.4.3 Problems

RunTileLoop() gave us some headache, increasing the interval still gave net-
work synchronization problems. When we divided by tile type, it worked for
some tile types, but not others. After a while of trying and failing, we found a
few combinations of division of tile types that worked with network play. Un-
fortunately they were the types that did very little work. CallLandscapeTicks()
worked great, but normally it uses only 20 microseconds which accounts for
very little of the time each tick. We could however see that both CPUs were
used during gameplay.

The multiplayer protocol for OpenTTD works by comparing the numbers
received by the InteractiveRandom() function on each client. This function is
called a number of times throughout the game code. If each client does ex-
actly the same each tick, it will be the same on each client. However, when we
started to multithread, things worked perfectly in single player, because in sin-
gle player it wasn’t that important if one action was delayed a tick because of
a race condition somewhere in the code. When we tried multiplayer, it created
a few problems, because when thread synchronization issues delayed some-
thing one tick, InteractiveRandom() would not be called the same amount of
times on each client.

5.4.4 Lessons learned

Allowing things to be randomly executed is not a good idea with network
synchronization, because it can create inconsistencies between the game state
on different clients.

5.5 Graphics

The Graphics system is rather processor intensive. So much of the time in a
frame is spent doing graphics calculations. This is the reason we chose to look
at this system.

5.5.1 Description

When GameLoop() is finished, UpdateWindows() is executed. UpdateWin-
dows() updates all the windows and calls methods that draw different parts of
the screen. To draw the screen, it needs to know what state the game is in at
this particular moment. This is stored in quite a few variables. There are lists
with different vehicle types, there is an array describing the map. There is a
global date variable, a tick variable, etc. So there are a lot of global variables

5 PROJECT RESULTS 32

describing game state. The GameLoop() also invalidates certain parts of the
screen, where objects have moved, so that they will be redrawn.

When UpdateWindows() then comes along, it will start drawing everything
that has been changed. It will go through all windows, and redraw them as
necessary. This will start by calling some window events, and then DrawDirty-
Blocks(). DrawDirtyBlocks() will go through the viewport (window you see)
and redraw everything that is dirty, with DrawOverlappedWindowForAll().
Now, it will redraw everything that is within that rectangle, with a global
pointer to where in the rectangle we are. Because many functions draw dif-
ferent things, they are called in a specific order and will draw their respective
parts of the rectangle. This will happen in order through the use of the global
pointer, which will move as they draw different parts of the rectangle.

Last, DrawSurfaceToScreen() will take the changed pixel array and push it
to the graphics card.

5.5.2 Solution

Each window has its own window event which could have been parallelized.
That is only if you have windows on your screen, which you normally have
very few of. If you have windows, their information isn’t updated every tick.
However, the viewport is updated when something changes in the area where
the viewport is.

We didn’t change the code under UpdateWindows() because it created a lot
of problems and would require a complete rewrite of the drawing functions.

We did, however, run DrawSurfaceToScreen() in another thread. This func-
tion reads from the pixel array and puts the changed data to the graphics card.
The pixel array is updated through a bunch of functions in UpdateWindows(),
so it couldn’t go in parallel with UpdateWindows(). However, the GameLoop()
doesn’t modify the pixel array, it just marks tiles as dirty for the UpdateWin-
dows() function to redraw. So now, DrawSurfaceToScreen() runs in parallel
with the GameLoop() as shown in Figure 12.

Code is located in Appendix A, sdl_v.c.

5.5.3 Problems

It was a big problem with the code that all game state data was spread out
on many different variables. To change this, would have required a complete
rewriting of the game.

DrawDirtyBlocks() goes through everything and redraws rectangles to the
pixel array. This would also be possible to parallelize, but each of the func-
tions called under DrawDirtyBlocks() draw different parts of the screen. These
functions are dependent on the global pointer to the pixel array. They move
the pointer ahead when they are done drawing one area. This means that all
drawing functions would need to be rewritten with pointers to the pixel array
as private input parameters.

Also the sprite cache used, was not thread safe. When two threads tried to
load sprites at the same time, it corrupted the cache array.

It would be possible to use two different pixel arrays and draw to each
one in a round robin fashion. To get this to work, you need to draw what

5 PROJECT RESULTS 33

Figure 12: DrawSurfaceToScreen

5 PROJECT RESULTS 34

was changed in the two previous ticks, so you need to store dirty tiles for two
ticks. If you only paint the last tick, the pixel arrays would only get every other
update. If this was implemented, UpdateWindows() would take, in worst case,
twice as long to run. Anyway, DrawSurfaceToScreen() would be able to run in
parallel with UpdateWindows(). As you can see, this is not favorable with only
one CPU, because it would then create extra processing.

5.5.4 Lessons learned

It’s important not to have two threads calling SDL. Only one thread should call
SDL functions.

6 DISCUSSION 35

6 Discussion

The goal of this project was to see how well a typical game could be paral-
lelized on modern multicore architectures. Because we didn’t have time to
rewrite the whole game, this needed to be done without rewriting too much
code. Therefore we tried to parallelize parts of the game with minor modi-
fications. This resulted in many problems with the code, that made it very
difficult to parallelize. There were a huge amount of global variables used
from many different functions, and recursive functions that counted the re-
cursion in global variables. As a result, the outcome was not as good as we
had hoped. These problems occurred when we tried to run threads within
the GameLoop(). Because this code was not intended to be parallelized when
it was created, many years ago, it required a lot of work. We changed a few
functions so they did not make segmentation faults, but still there were prob-
lems. Especially with the network synchronization.

We started a bit too late with testing of the network, so we didn’t discover
those problems before we had done a lot of work on the game code. This re-
sulted in a major setback. It would have been better to start testing the network
gameplay right away. In single player, though, we were able to gain some sig-
nificant speedup. Unfortunately it broke the network synchronization.

The sound system also got an overhaul. We changed it from being an inte-
grated part of the GameLoop() to be a separate thread that plays sound when
it has the resources. Playing of sounds involves reading data from the disk
and pushing this to the sound card. Reading from disk can sometimes take
much longer than one might think, and even worse if there is additional disk
activity. Now, if this happens, the sound will only be delayed until the data is
ready from the disk. The game will continue as nothing happened. We were
happy with this solution, it removed a problem that might create infrequent
lags in the game.

We were also able to parallelize the DrawSurfaceToScreen() function to-
gether with GameLoop(). If we use the average numbers obtained from our
tests, it will give an increase of 6% and 23% in the small and large game we
tested. Again, these numbers should not be taken literally. It’s at best, a very
rough estimate, because of the very high variation in the time it takes to run
the two methods. Because of this, it was impossible to see if the spikes in both
functions correlate. If the time correlate to some degree, it might give even
better results. If we were unlucky and they didn’t correlate, it would be even
worse. This was only for two games, and as you can see from those numbers,
the smaller game uses more time in DrawSurfaceToScreen() than the larger
game. It should be roughly equal, only screen resolution should affect the time
in DrawSurfaceToScreen() or the amount of dirty pieces on the screen. Now, it
looks like DrawSurfaceToScreen() takes a lot longer than the GameLoop(). If
there is added more complex game logic to the GameLoop() (better AI, more
advanced pathfinding, etc.) it will not increase the time it takes to complete
a tick on a dual CPU machine. So this will make it more compelling for the
developers to create a better game.

If you design a game from the ground up, you can take a lot of consid-
erations that would make it much easier to multithread. Separating code into

6 DISCUSSION 36

separate modules and try to avoid communication between different modules.
This will result in a much better performance increase than we achieved. It will
be possible to parallelize parts of the code that in our case would require a total
rewrite of the program.

As we saw in our early research, very few in the game industry have ex-
perience with multithreading. It will be costly to make multithreaded games,
because it will require more time spent in debugging and more time spent in
coding. In the future, game manufacturers won’t have a choice, the CPU will
contain more and more cores in the foreseeable future.

7 FUTURE WORK - REDESIGNING THE GAME 37

7 Future work - redesigning the game

Because of the many problems with the existing code, a future approach would
be to start from scratch, and design the game from a multithreaded perspec-
tive. In this section, such a design of OpenTTD as a multithreaded game, is
described.

7.1 Graphics

Since this is a 2D game, all graphics are processed on the CPU. There is a
pointer to the array, defining the screen that decides where to draw. Instead of
drawing to this array sequentially through the entire array, you can divide it
into different discrete parts. So one thread is responsible for drawing x(0,200)
and y(0,200). The next one x(200,400) and y(0,200) etc. This will make 4 threads
doing their own parts with no interference from the other threads. There
would be some overhead with calculating which windows should be on the
respective parts of the screen. Anyway, this is also done today, it’s calculated
which parts are inside the screen, and which are not.

This might lead to different completion times for the different parts of the
screen, and one thread might be finished before the others. To correct this, the
screen could be split in 16 pieces and 4 threads could go through them one at
a time. Then, the completion time would be much closer to each other.

7.2 PushGraphics

When the graphics drawer threads are done, another thread should start push-
ing this data to the graphics card. This can be done simultaneously with the
game data processing and the reading of user input.

7.3 Sound

Sound could be put into a separate thread and played when the CPU has re-
sources for it. Put the sound requests in a queue and play them when resources
are available for it. That is exactly like we did.

7.4 User Input

User input is now handled in the beginning of the loop. This is important to
finalize before you run code that depends on the input. Today, the stored input
is read from different parts of the code. SDL does caching of user input, so the
input is ready when your thread reads the input. This means, it’s not the most
CPU intensive work. We would suggest just putting it in front of game state
and leave it single threaded.

7.5 Game state

Today, the game state is sequential. We have parallelized some of the code.
With a redesign it’s important to make the CallVehicleTicks() thread safe, be-

7 FUTURE WORK - REDESIGNING THE GAME 38

cause here is where most of the work is done when updating game state. Un-
fortunately, there are some parts of the code that need to interact with each
other. It might be easiest to run a loop with trains because trains interact
with other trains, but not ships and planes. A lot of work is needed to re-
design this code. The problem with running one kind of vehicle, is that in
most games there is a huge amount of trains and planes, which will make an
uneven amount of work. Again, this time has a high deviation from frame to
frame, so the best model for game state would be to have a work controller,
which worker threads take tasks from in a dynamic fashion. Then, one thread
could start with trains and another thread could do all the other vehicles, and
continue on tile loop for updating tiles.

7 FUTURE WORK - REDESIGNING THE GAME 39

7.6 New design

Figure 13 is an overview of the implementation of the redesigned game.

Figure 13: Redesign

8 CONCLUSION 40

8 Conclusion

In this report, we looked at issues related to parallelizing computer games.
As a test case we use an open source game (OpenTTD). More CPUs are now
being delivered with several cores. Games can greatly benefit from this. You
now have more processing power to create better Artificial Intelligence, use
physics to create more realistic games, and larger and more complex games. It
is a must that games take advantage of this, because it will give you an edge
compared to competitors. This study looked at how one can parallelize a game
so that one can take advantage of the extra processing power without rewriting
the game.

Because OpenTTD is a game that is not multithreaded, we had to look at
the source code, and analyze it, including measuring time spent in various
loops and functions. It has to be done that way, because only then you will
know what is worth parallelizing and what is not.

We found that if the game should function both on a single core and dual
core CPU, including network playing, the following of our multithreaded im-
plementations work together. First sound updates, where all sounds are pushed
into a queue, and one thread dequeues the sounds and plays them. The second
is pushing of the pixel array to the graphics card, which takes longer than the
game loop. With a thread doing this, the main thread which includes the game
loop will actually wait for the thread to finish. This opens for a more heavy
game logic, including a more complex AI and better pathfinding.

The best way to parallelize the whole game would, however, be to rewrite
the entire game from the ground up. It would then be important to always
think of multithreading, so that loops and functions could be run indepen-
dently of each other. This is not how it is done today, as discussed in the
previous section. If the code were to utilize more CPUs than what we have
managed to do, the best approach would be to rewrite the loop UpdateWin-
dows(), so that it can be run with more than one thread. This means that two
or more threads update different parts of the pixel array.

The techniques used here can easily be adapted to other games.

REFERENCES 41

References

Books

[1B] John L. Hennessy and David A. Patterson
Computer Architecture A Quantitative Approach, 3rd Edition
Morgan Kaufman, 2003

[2B] Peter Prinz & Tony Crawford
C in a nutshell - A desktop quick reference
O’Reilly Media, Inc., 2006

Web pages and web articles

[1W] OpenTTD
OpenTTD open source game
http://openttd.org/
Last visited 29.08.2006

[2W] Original TTD
Original Transport Tycoon Deluxe game
http://www.tycoongames.net/ttdpages.html
Last visited 29.08.2006

[3W] GNU General Public License
The GPL
http://www.gnu.org/copyleft/gpl.html
Last visited 29.08.2006

[4W] Intel Core 2 Duo
Description of Intel Core 2 Duo
http://www.intel.com/products/processor/core2duo/
Last visited 30.08.2006

[5W] Doom 3 engine
Description of the doom 3 engine
http://en.wikipedia.org/w/index.php?title=Doom_3_
engine&oldid=80052181
Last visited 31.10.2006

[6W] Unreal 3 engine
Description of the unreal 3 engine (version 3.0)
http://en.wikipedia.org/w/index.php?title=Unreal_
Engine&oldid=84792687
Last visited 31.10.2006

http://openttd.org/
http://www.tycoongames.net/ttdpages.html
http://www.gnu.org/copyleft/gpl.html
http://www.intel.com/products/processor/core2duo/
http://en.wikipedia.org/w/index.php?title=Doom_3_engine&oldid=80052181
http://en.wikipedia.org/w/index.php?title=Doom_3_engine&oldid=80052181
http://en.wikipedia.org/w/index.php?title=Unreal_Engine&oldid=84792687
http://en.wikipedia.org/w/index.php?title=Unreal_Engine&oldid=84792687

REFERENCES 42

[7W] Anandtech article of multithreading games
Chapter of article is a dialog between Anandtech and an unreal 3 engine
developer, Tim Sweeney
http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=
2377&p=3
Last visited 01.09.2006

[8W] Galactic Civilization 2
Forum for Galactic Civilization 2
http://apolyton.net/forums/showthread.php?threadid=
73514
Last visited 10.10.2006

[9W] The Quest for More Processing Power, Part Two: "Multicore and multi-
threaded gaming"
Article at Anandtech.com
http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=
2377&p=4
Last visited 10.10.2006

[10W] Multithreaded terrain smoothing
Article about multithreaded terrain smoothing
http://gamasutra.com/features/20060531/gruen_01.shtml
Last visited 21.09.2006

[11W] Open Source Game Development
Open Source Game Development description from Intel
http://www.intel.com/cd/ids/developer/asmo-na/eng/
254761.htm
Last visited 01.09.2006

[12W] OpenMP
Open Multi Processing website
http://www.openmp.org/
Last visited 01.09.2006

[13W] Practical examples of multi-threading in games
A presentation by Leigh Davies from Intel
http://www.ati.com/developer/brighton/07%20Intel%
20Practical%20Multithreading.pdf
Last visited 05.09.2006

[14W] Multithreaded game engine architectures
A web article by Ville Mönkönnen
http://www.gamasutra.com/features/20060906/monkkonen_
01.shtml
Last visited 26.10.2006

[15W] SDL Simple Directmedia Layer
Cross-platform media library.
http://www.libsdl.org/.
Last visited 29.08.2006

http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2377&p=3
http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2377&p=3
http://apolyton.net/forums/showthread.php?threadid=73514
http://apolyton.net/forums/showthread.php?threadid=73514
http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2377&p=4
http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2377&p=4
http://gamasutra.com/features/20060531/gruen_01.shtml
http://www.intel.com/cd/ids/developer/asmo-na/eng/254761.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/254761.htm
http://www.openmp.org/
http://www.ati.com/developer/brighton/07%20Intel%20Practical%20Multithreading.pdf
http://www.ati.com/developer/brighton/07%20Intel%20Practical%20Multithreading.pdf
http://www.gamasutra.com/features/20060906/monkkonen_01.shtml
http://www.gamasutra.com/features/20060906/monkkonen_01.shtml
http://www.libsdl.org/

REFERENCES 43

[16W] Posix Threads
Posix threads explained
http://www-128.ibm.com/developerworks/linux/library/
l-posix1.html
Last visited 20.11.2006

http://www-128.ibm.com/developerworks/linux/library/l-posix1.html
http://www-128.ibm.com/developerworks/linux/library/l-posix1.html

REFERENCES 44

Definitions

The following are special abbreviations and terms used in the text.

Abbreviation Definition
AI An abbreviation for Artificial Intelligence
API An abbreviation for Application programming interface
CPU An abbreviation for Central Processing Unit
DIRTY If a tile is dirty, it means that it must be scheduled for a

process to update it and redraw it to the screen
FPS An abbreviation for Frames Per Second

Another abbreviation is First Person Shooter (type of games)
PIXEL ARRAY An array in memory representing pixel information for all pixels

on the screen
SDL An abbreviation for Simple DirectMedia Layer [15W]
SPRITE A two-dimensional image or animation that is integrated into

a larger scene
TESSELLATION A tessellation or tiling of the plane is a collection of plane figures

that fills the plane with no overlaps and no gaps
TICK A step in the game logic
TYCOON A person who controls a large portion of a particular industry

and whose wealth derives primarily from said control
VIEWPORT The current window that is viewed on the screen

REFERENCES 45

Appendix A - Source Code

This section contains three code files, which demonstrates the code that gave
the most significant speedup. Our modifications are marked with // OUR
CODE and // END OUR CODE.

thread.c

/∗ $Id : t h r e a d . c 5978 2006−08−20 1 3 : 4 8 : 0 4Z t r u e l i g h t $ ∗ /

include " s t d a f x . h"
include " thread . h"
include <sys/time . h>
include < s t d l i b . h>

i f defined (__AMIGA__) || defined (__MORPHOS__) || defined (NO_THREADS)
OTTDThread ∗OTTDCreateThread (OTTDThreadFunc funct ion , void ∗arg)
{ return NULL; }
void ∗OTTDJoinThread (OTTDThread ∗ t) { return NULL; }
void OTTDExitThread (void) { NOT_REACHED () ; } ;

e l i f defined (__OS2__)

define INCL_DOS
include <os2 . h>
include <process . h>

s t r u c t OTTDThread {
TID thread ;
OTTDThreadFunc func ;
void∗ arg ;
void∗ r e t ;

} ;

s t a t i c void Proxy (void∗ arg)
{

OTTDThread∗ t = arg ;
t−>r e t = t−>func (t−>arg) ;

}

OTTDThread∗ OTTDCreateThread (OTTDThreadFunc funct ion , void∗ arg)
{

OTTDThread∗ t = malloc (s i ze of (∗ t)) ;

i f (t == NULL) return NULL;

t−>func = funct ion ;
t−>arg = arg ;
t−>thread = _beginthread (Proxy , NULL, 32768 , t) ;
i f (t−>thread != −1) {

return t ;
} e lse {

f r e e (t) ;
return NULL;

}
}

REFERENCES 46

void∗ OTTDJoinThread (OTTDThread∗ t)
{

void∗ r e t ;

i f (t == NULL) return NULL;

DosWaitThread(&t−>thread , DCWW_WAIT) ;
r e t = t−>r e t ;
f r e e (t) ;
return r e t ;

}

void OTTDExitThread (void)
{

_endthread () ;
}

e l i f defined (UNIX)

include <pthread . h>

s t r u c t OTTDThread {
pthread_t thread ;

} ;

/ / OUR CODE

/ / added s t r u c t s t o wrap p t h r e a d v a r i a b l e s / s t r u c t s
s t r u c t OTTDMutex {

pthread_mutex_t mutex ;
} ;

s t r u c t OTTDCondition {
pthread_mutex_t mutex ;
pthread_cond_t cond ;

} ;

s t r u c t OTTDBarrier {
p t h r e a d _ b a r r i e r _ t b a r r i e r ;

} ;

OTTDThreads _threads ;

bool _done_graphics = f a l s e ;

/ / r e t u r n a t h r e a d i d r e p r e s e n t i n g a unique t h r e a d
uint OTTDThreadid (void)
{

return p t h r e a d _ s e l f () ;
}

/ / END OUR CODE

OTTDThread∗ OTTDCreateThread (OTTDThreadFunc funct ion , void∗ arg)
{

OTTDThread∗ t = malloc (s i ze of (∗ t)) ;

REFERENCES 47

i f (t == NULL) return NULL;

i f (p thread_create (&t−>thread , NULL, funct ion , arg) == 0) {
return t ;

} e lse {
f r e e (t) ;
return NULL;

}
}

void∗ OTTDJoinThread (OTTDThread∗ t)
{

void∗ r e t ;

i f (t == NULL) return NULL;

pthread_ jo in (t−>thread , &r e t) ;
f r e e (t) ;
return r e t ;

}

/ / OUR CODE

OTTDBarrier∗ OTTDBarrierInit (i n t number)
{

OTTDBarrier∗ b a r r i e r = malloc (s i ze of (OTTDBarrier)) ;
p t h r e a d _ b a r r i e r _ i n i t (& b a r r i e r −>b a r r i e r , (void ∗) " " , number) ;
return b a r r i e r ;

}

void OTTDBarrierWait (OTTDBarrier∗ b a r r i e r)
{

p thread_barr ier_wai t (& b a r r i e r −>b a r r i e r) ;
}

/ / END OUR CODE
void OTTDExitThread (void)
{

p thread_ex i t (NULL) ;
}

/ / OUR CODE
OTTDMutex∗ OTTDMutexCreate (void)
{

OTTDMutex∗ mu = malloc (s i ze of (OTTDMutex)) ;

i f (mu == NULL) return NULL;

i f (pthread_mutex_init (&(mu−>mutex) ,NULL) == 0) {
return mu;

} e lse {
f r e e (mu) ;
return NULL;

}
}

i n t OTTDMutexLock (OTTDMutex∗ mu)
{

REFERENCES 48

return pthread_mutex_lock (&(mu−>mutex)) ;
}

i n t OTTDMutexUnlock (OTTDMutex∗ mu)
{

return pthread_mutex_unlock (&(mu−>mutex)) ;
}

i n t OTTDMutexDestroy (OTTDMutex ∗mu)
{

i n t tmp = pthread_mutex_destroy (&(mu−>mutex)) ;
f r e e (mu) ;
return tmp ;

}

OTTDCondition∗ OTTDConditionCreate (void)
{

OTTDCondition∗ co = malloc (s i ze of (OTTDCondition)) ;

i f (co == NULL) return NULL;

i f (pthread_mutex_init (&(co−>mutex) ,NULL) == 0
&& pthread_cond_ini t (&(co−>cond) ,NULL) == 0) {
return co ;

} e lse {
f r e e (co) ;
return NULL;

}
}

i n t OTTDConditionSignal (OTTDCondition∗ co)
{

return pthread_cond_signal (&(co−>cond)) ;
}

i n t OTTDConditionWait (OTTDCondition∗ co)
{

return pthread_cond_wait (&(co−>cond) , &(co−>mutex)) ;
}

i n t OTTDConditionTimedWait (OTTDCondition∗ co , i n t msec)
{

s t r u c t t imeval now ;
s t r u c t t imespec timeout ;
s t r u c t timezone tz ;
tz . tz_minuteswest = 0 ;
tz . tz_ds t t ime = 0 ;
gett imeofday (&now,& tz) ;
t imeout . tv_sec = now . tv_sec + (i n t) msec /1000;
timeout . tv_nsec = now . tv_usec ∗ 1000 + msec%1000 ∗ 1000000 ;
return pthread_cond_timedwait (&(co−>cond) , &(co−>mutex) , &timeout) ;

}

i n t OTTDConditonDestroy (OTTDCondition ∗co)
{

i n t tmp = pthread_cond_destroy (&(co−>cond)) ;
f r e e (co) ;
return tmp ;

REFERENCES 49

}

/ / END OUR CODE
e l i f defined (WIN32)

include <windows . h>

s t r u c t OTTDThread {
HANDLE thread ;
OTTDThreadFunc func ;
void∗ arg ;
void∗ r e t ;

} ;

s t a t i c DWORD WINAPI Proxy (LPVOID arg)
{

OTTDThread∗ t = arg ;
t−>r e t = t−>func (t−>arg) ;
return 0 ;

}

OTTDThread∗ OTTDCreateThread (OTTDThreadFunc funct ion , void∗ arg)
{

OTTDThread∗ t = malloc (s i ze of (∗ t)) ;
DWORD dwThreadId ;

i f (t == NULL) return NULL;

t−>func = funct ion ;
t−>arg = arg ;
t−>thread = CreateThread (NULL, 0 , Proxy , t , 0 , &dwThreadId) ;

i f (t−>thread != NULL) {
return t ;

} e lse {
f r e e (t) ;
return NULL;

}
}

void∗ OTTDJoinThread (OTTDThread∗ t)
{

void∗ r e t ;

i f (t == NULL) return NULL;

WaitForSingleObject (t−>thread , INFINITE) ;
CloseHandle (t−>thread) ;
r e t = t−>r e t ;
f r e e (t) ;
return r e t ;

}

void OTTDExitThread (void)
{

ExitThread (0) ;
}
endif

REFERENCES 50

sound.c

/∗ $Id : sound . c 5609 2006−07−26 0 3 : 3 3 : 1 2Z b e l u g a s $ ∗ /

include " s t d a f x . h"
include " openttd . h"
include " f u n c t i o n s . h"
include "map . h"
include " mixer . h"
include " sound . h"
include " v e h i c l e . h"
include "window . h"
include " viewport . h"
include " f i l e i o . h"
include " queue . h"
include " thread . h"

typedef s t r u c t F i l e E n t r y {
uint32 f i l e _ o f f s e t ;
u int32 f i l e _ s i z e ;
uint16 r a t e ;
u int8 bi ts_per_sample ;
u int8 channels ;

} F i l e E n t r y ;

typedef s t r u c t SoundInfo {
u int sound ;
i n t panning ;
u int volume ;

} SoundInfo ;

s t a t i c uint _ f i l e _ c o u n t ;
s t a t i c F i l e E n t r y ∗ _ f i l e s ;
/ / OUR CODE
s t a t i c Queue ∗soundqueue ;
s t a t i c void∗ SoundPlayer (void∗ arg) ;

s t a t i c OTTDThread ∗ soundthread ;
s t a t i c OTTDCondition ∗ soundcondition ;
/ / END OUR CODE

define SOUND_SLOT 63
/ / Number o f l e v e l s o f panning p e r s i d e
define PANNING_LEVELS 16
/ / OUR CODE
extern OTTDThreads _threads ;
/ / END OUR CODE
s t a t i c void OpenBankFile (const char ∗ f i lename)
{

F i l e E n t r y ∗ f e ;
u int count ;
u int i ;

FioOpenFile (SOUND_SLOT, f i lename) ;
count = FioReadDword () / 8 ;
f e = c a l l o c (count , s i ze of (∗ f e)) ;

i f (f e == NULL) {

REFERENCES 51

_ f i l e _ c o u n t = 0 ;
_ f i l e s = NULL;
return ;

}

_ f i l e _ c o u n t = count ;
_ f i l e s = f e ;

FioSeekTo (0 , SEEK_SET) ;

for (i = 0 ; i != count ; i ++) {
f e [i] . f i l e _ o f f s e t = FioReadDword () ;
f e [i] . f i l e _ s i z e = FioReadDword () ;

}

for (i = 0 ; i != count ; i ++ , f e ++) {
char name [2 5 5] ;

FioSeekTo (fe−>f i l e _ o f f s e t , SEEK_SET) ;

/ / Check f o r s p e c i a l c a s e , s e e e l s e c a s e
FioReadBlock (name , FioReadByte ()) ; / / Read t h e name o f t h e sound
i f (strcmp (name , " Corrupt sound ") != 0) {

FioSeekTo (1 2 , SEEK_CUR) ; / / Sk ip p a s t RIFF h e a d e r

/ / Read r i f f t a g s
for (; ;) {

u int32 tag = FioReadDword () ;
u int32 s i z e = FioReadDword () ;

i f (tag == ’ tmf ’) {
FioReadWord () ; / / wFormatTag
fe−>channels = FioReadWord () ; / / wChannels
FioReadDword () ; / / s a m p l e s p e r s e c o n d
fe−>r a t e = 11025 ;
/ / s eems l i k e a l l s a m p l e s s h o u l d be p l a y e d a t t h i s r a t e .
FioReadDword () ; / / avg b y t e s p e r s e c o n d
FioReadWord () ; / / a l i g n m e n t
fe−>bits_per_sample = FioReadByte () ; / / b i t s p e r sample
FioSeekTo (s i z e − (2 + 2 + 4 + 4 + 2 + 1) , SEEK_CUR) ;

} e lse i f (tag == ’ atad ’) {
fe−>f i l e _ s i z e = s i z e ;
fe−> f i l e _ o f f s e t = FioGetPos () | (SOUND_SLOT << 2 4) ;
break ;

} e lse {
fe−>f i l e _ s i z e = 0 ;
break ;

}
}

} e lse {
/∗
∗ S p e c i a l c a s e f o r t h e jackhammer sound
∗ (name in sample . c a t i s " Corrupt sound ")
∗ I t ’ s no RIFF f i l e , but raw PCM d a t a
∗ /

fe−>channels = 1 ;
fe−>r a t e = 11025 ;
fe−>bits_per_sample = 8 ;

REFERENCES 52

fe−> f i l e _ o f f s e t = FioGetPos () | (SOUND_SLOT << 2 4) ;
}

}
}

s t a t i c bool SetBankSource (MixerChannel ∗mc, uint bank)
{

const F i l e E n t r y ∗ f e ;
i n t 8 ∗mem;
uint i ;

i f (bank >= _ f i l e _ c o u n t) return f a l s e ;
f e = &_ f i l e s [bank] ;

i f (fe−>f i l e _ s i z e == 0) return f a l s e ;

mem = malloc (fe−>f i l e _ s i z e) ;
i f (mem == NULL) return f a l s e ;

F ioSeekToFi le (fe−> f i l e _ o f f s e t) ;
FioReadBlock (mem, fe−>f i l e _ s i z e) ;

for (i = 0 ; i != fe−>f i l e _ s i z e ; i ++)
mem[i] += −128; / / Conver t uns igned sound d a t a t o s i g n e d

a s s e r t (fe−>bits_per_sample == 8 && fe−>channels == 1
&& fe−>f i l e _ s i z e != 0 && fe−>r a t e != 0) ;

MxSetChannelRawSrc (mc, mem, fe−>f i l e _ s i z e , fe−>rate , MX_AUTOFREE) ;

return t rue ;
}

bool S o u n d I n i t i a l i z e (const char ∗ f i lename)
{

/ / OUR CODE
soundqueue = new_Fifo (1 0 0) ;
soundcondition = OTTDConditionCreate () ;
soundthread = OTTDCreateThread(&SoundPlayer , (void ∗) f i lename) ;
/ / END OUR CODE
return t rue ;

}

/ / Low l e v e l sound p l a y e r
s t a t i c void PlaySound (uint sound , i n t panning , u int volume)
{

MixerChannel ∗mc ;
uint l e f t _ v o l , r i g h t _ v o l ;

i f (volume == 0) return ;
mc = MxAllocateChannel () ;
i f (mc == NULL) return ;
i f (! SetBankSource (mc, sound)) return ;

panning = clamp (panning , −PANNING_LEVELS, PANNING_LEVELS) ;
l e f t _ v o l = (volume ∗ PANNING_LEVELS) − (volume ∗ panning) ;
r i g h t _ v o l = (volume ∗ PANNING_LEVELS) + (volume ∗ panning) ;
MxSetChannelVolume (mc, l e f t _ v o l ∗ 128 / PANNING_LEVELS,

REFERENCES 53

r i g h t _ v o l ∗ 128 / PANNING_LEVELS) ;
MxActivateChannel (mc) ;

}
/ / OUR CODE
s t a t i c void∗ SoundPlayer (void∗ arg) {

SoundInfo ∗ s i ;
s i = NULL;
_threads . sound = OTTDThreadid () ;
OpenBankFile (arg) ;
while (t rue) {

s i = soundqueue−>pop (soundqueue) ;
i f (s i == NULL) {

OTTDConditionTimedWait (soundcondition , 3 0 0) ;
}
i f (s i != NULL) {

PlaySound (s i−>sound , s i−>panning , s i−>volume) ;
f r e e (s i) ;
s i = NULL;

}
}

}

s t a t i c void StartSound (uint sound , i n t panning , u int volume)
{

SoundInfo ∗ s i = malloc (s i ze of (SoundInfo)) ;
s i−>sound = sound ;
s i−>panning = panning ;
s i−>volume = volume ;
soundqueue−>push (soundqueue , s i , 1) ;
OTTDConditionSignal (soundcondition) ;

}
/ / END OUR CODE

s t a t i c const byte _vol_factor_by_zoom [] = { 2 5 5 , 190 , 1 3 4 } ;

s t a t i c const byte _sound_base_vol [] = {
128 , 90 , 128 , 128 , 128 , 128 , 128 , 128 ,
128 , 90 , 90 , 128 , 128 , 128 , 128 , 128 ,
128 , 128 , 128 , 80 , 128 , 128 , 128 , 128 ,
128 , 128 , 128 , 128 , 128 , 128 , 128 , 128 ,
128 , 128 , 90 , 90 , 90 , 128 , 90 , 128 ,
128 , 90 , 128 , 128 , 128 , 90 , 128 , 128 ,
128 , 128 , 128 , 128 , 90 , 128 , 128 , 128 ,
128 , 90 , 128 , 128 , 128 , 128 , 128 , 128 ,
128 , 128 , 90 , 90 , 90 , 128 , 128 , 128 ,

90 ,
} ;

s t a t i c const byte _sound_idx [] = {
2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ,

10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 ,
18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 ,
26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 ,
34 , 35 , 36 , 37 , 38 , 39 , 40 , 0 ,

1 , 41 , 42 , 43 , 44 , 45 , 46 , 47 ,
48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 ,
56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 ,
64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 ,

REFERENCES 54

72 ,
} ;

s t a t i c void SndPlayScreenCoordFx (SoundFx sound , i n t x , i n t y)
{

const Window ∗w;

i f (msf . e f f e c t _ v o l == 0) return ;

for (w = _windows ; w != _last_window ; w++) {
const ViewPort∗ vp = w−>viewport ;

i f (vp != NULL &&
IS_INSIDE_1D (x , vp−>v i r t u a l _ l e f t , vp−>vir tua l_width) &&
IS_INSIDE_1D (y , vp−>v i r t u a l _ t o p , vp−>v i r t u a l _ h e i g h t)) {

i n t l e f t = (x − vp−>v i r t u a l _ l e f t) ;

StartSound (
_sound_idx [sound] ,
l e f t / (vp−>vir tua l_width / ((PANNING_LEVELS << 1) + 1))
− PANNING_LEVELS, (_sound_base_vol [sound] ∗
msf . e f f e c t _ v o l ∗ _vol_factor_by_zoom [vp−>zoom]) >> 15

) ;
return ;

}
}

}

void SndPlayTileFx (SoundFx sound , Ti le Index t i l e)
{

/∗ e m i t s sound from c e n t e r o f t h e t i l e ∗ /
i n t x = Ti leX (t i l e) ∗ TILE_SIZE + TILE_SIZE / 2 ;
i n t y = TileY (t i l e) ∗ TILE_SIZE + TILE_SIZE / 2 ;
Point pt = RemapCoords (x , y , GetSlopeZ (x , y)) ;
SndPlayScreenCoordFx (sound , pt . x , pt . y) ;

}

void SndPlayVehicleFx (SoundFx sound , const Vehic le ∗v)
{

SndPlayScreenCoordFx (sound ,
(v−>l e f t _ c o o r d + v−>right_coord) / 2 ,
(v−>top_coord + v−>bottom_coord) / 2

) ;
}

void SndPlayFx (SoundFx sound)
{

StartSound (
_sound_idx [sound] ,
0 ,
(_sound_base_vol [sound] ∗ msf . e f f e c t _ v o l) >> 7

) ;
}

REFERENCES 55

sdl_v.c

/∗ $Id : s d l _ v . c 6380 2006−09−04 1 7 : 3 0 : 3 0Z rubid ium $ ∗ /

include " . . / s t d a f x . h"

i f d e f WITH_SDL

include " . . / openttd . h"
include " . . / debug . h"
include " . . / f u n c t i o n s . h"
include " . . / gfx . h"
include " . . / macros . h"
include " . . / sdl . h"
include " . . / window . h"
include " . . / network . h"
include " . . / v a r i a b l e s . h"
include " sdl_v . h"
include <SDL . h>

include " . . / thread . h"

/ / OUR CODE
OTTDBarrier ∗ v i d e o b a r r i e r ;
s t a t i c OTTDThread ∗videothread ;
void∗ VideoThread (void ∗) ;
i n t t h r e a d _ e x i t = 0 ;
/ / END OUR CODE

s t a t i c SDL_Surface ∗ _sdl_screen ;
s t a t i c bool _all_modes ;

define MAX_DIRTY_RECTS 100
s t a t i c SDL_Rect _ d i r t y _ r e c t s [MAX_DIRTY_RECTS] ;
s t a t i c i n t _num_dirty_rects ;

s t a t i c void SdlVideoMakeDirty (i n t l e f t , i n t top , i n t width , i n t height)
{

/ / p r i n t f (" SDLVIDEOMakeDirty\n ") ;
i f (_num_dirty_rects < MAX_DIRTY_RECTS) {

_ d i r t y _ r e c t s [_num_dirty_rects] . x = l e f t ;
_ d i r t y _ r e c t s [_num_dirty_rects] . y = top ;
_ d i r t y _ r e c t s [_num_dirty_rects] .w = width ;
_ d i r t y _ r e c t s [_num_dirty_rects] . h = height ;

}
_num_dirty_rects ++;

}

s t a t i c void UpdatePalet te (u int s t a r t , u int count)
{

SDL_Color pal [2 5 6] ;
u int i ;

for (i = 0 ; i != count ; i ++) {
pal [i] . r = _ c u r _ p a l e t t e [s t a r t + i] . r ;
pal [i] . g = _ c u r _ p a l e t t e [s t a r t + i] . g ;
pal [i] . b = _ c u r _ p a l e t t e [s t a r t + i] . b ;
pal [i] . unused = 0 ;

REFERENCES 56

}

SDL_CALL SDL_SetColors (_sdl_screen , pal , s t a r t , count) ;
}

s t a t i c void I n i t P a l e t t e (void)
{

UpdatePalet te (0 , 2 5 6) ;
}

s t a t i c void CheckPaletteAnim (void)
{

i f (_ p a l _ l a s t _ d i r t y != −1) {
UpdatePalet te (_ p a l _ f i r s t _ d i r t y , _ p a l _ l a s t _ d i r t y − _ p a l _ f i r s t _ d i r t y + 1) ;
_ p a l _ l a s t _ d i r t y = −1;

}
}

s t a t i c void DrawSurfaceToScreen (void)
{

i n t n = _num_dirty_rects ;
i f (n != 0) {

_num_dirty_rects = 0 ;
i f (n > MAX_DIRTY_RECTS)

SDL_CALL SDL_UpdateRect (_sdl_screen , 0 , 0 , 0 , 0) ;
e lse

SDL_CALL SDL_UpdateRects (_sdl_screen , n , _ d i r t y _ r e c t s) ;
}

}

s t a t i c const uint16 d e f a u l t _ r e s o l u t i o n s [] [2] = {
{ 640 , 4 8 0 } ,
{ 800 , 6 0 0 } ,
{ 1 0 2 4 , 7 6 8 } ,
{ 1 1 5 2 , 8 6 4 } ,
{ 1 2 8 0 , 8 0 0 } ,
{ 1 2 8 0 , 9 6 0 } ,
{ 1 2 8 0 , 1 0 2 4 } ,
{ 1 4 0 0 , 1 0 5 0 } ,
{ 1 6 0 0 , 1 2 0 0 } ,
{ 1 6 8 0 , 1 0 5 0 } ,
{ 1 9 2 0 , 1200}

} ;

s t a t i c void GetVideoModes (void)
{

i n t i ;
SDL_Rect ∗∗modes ;

modes = SDL_CALL SDL_ListModes (NULL, SDL_SWSURFACE +
(_ f u l l s c r e e n ? SDL_FULLSCREEN : 0)) ;

i f (modes == NULL)
e r r o r (" sdl : no modes a v a i l a b l e ") ;

_all_modes = (modes == (void ∗) −1) ;

i f (_all_modes) {

REFERENCES 57

/ / a l l modes a v a i l a b l e , put some d e f a u l t one s h e r e
memcpy(_ r e s o l u t i o n s , d e f a u l t _ r e s o l u t i o n s , s i ze of (d e f a u l t _ r e s o l u t i o n s)) ;
_num_resolutions = lengthof (d e f a u l t _ r e s o l u t i o n s) ;

} e lse {
i n t n = 0 ;
for (i = 0 ; modes [i] ; i ++) {

i n t w = modes [i]−>w;
i n t h = modes [i]−>h ;
i f (IS_INT_INSIDE (w, 640 , MAX_SCREEN_WIDTH + 1) &&

IS_INT_INSIDE (h , 480 , MAX_SCREEN_HEIGHT + 1)) {
i n t j ;
for (j = 0 ; j < n ; j ++) {

i f (_ r e s o l u t i o n s [j] [0] == w && _ r e s o l u t i o n s [j] [1] == h) break ;
}

i f (j == n) {
_ r e s o l u t i o n s [j] [0] = w;
_ r e s o l u t i o n s [j] [1] = h ;
i f (++n == lengthof (_ r e s o l u t i o n s)) break ;

}
}

}
_num_resolutions = n ;
S o r t R e s o l u t i o n s (_num_resolutions) ;

}
}

s t a t i c void GetAvailableVideoMode (i n t ∗w, i n t ∗h)
{

i n t i ;
i n t bes t ;
u int d e l t a ;

/ / a l l modes a v a i l a b l e ?
i f (_all_modes) return ;

/ / i s t h e wanted mode among t h e a v a i l a b l e modes ?
for (i = 0 ; i != _num_resolutions ; i ++) {

i f (∗w == _ r e s o l u t i o n s [i] [0] && ∗h == _ r e s o l u t i o n s [i] [1]) return ;
}

/ / use t h e c l o s e s t p o s s i b l e r e s o l u t i o n
bes t = 0 ;
d e l t a = abs ((_ r e s o l u t i o n s [0] [0] − ∗w) ∗ (_ r e s o l u t i o n s [0] [1] − ∗h)) ;
for (i = 1 ; i != _num_resolutions ; ++ i) {

u int newdelta = abs ((_ r e s o l u t i o n s [i] [0] − ∗w) ∗ (_ r e s o l u t i o n s [i] [1] − ∗h)) ;
i f (newdelta < d e l t a) {

bes t = i ;
d e l t a = newdelta ;

}
}
∗w = _ r e s o l u t i o n s [bes t] [0] ;
∗h = _ r e s o l u t i o n s [bes t] [1] ;

}

extern const char _opent td_revis ion [] ;

ifndef ICON_DIR

REFERENCES 58

define ICON_DIR " media "
endif

i f d e f WIN32
/∗ L e t ’ s r e d e f i n e t h e LoadBMP macro with b e c a u s e we a r e d y n a m i c a l l y
∗ l o a d i n g SDL and need t o ’SDL_CALL ’ a l l f u n c t i o n s ∗ /

#undef SDL_LoadBMP
define SDL_LoadBMP(f i l e) SDL_LoadBMP_RW(SDL_CALL SDL_RWFromFile (f i l e , " rb ") , 1)
endif

s t a t i c bool CreateMainSurface (i n t w, i n t h)
{

SDL_Surface ∗newscreen , ∗ icon ;
char capt ion [5 0] ;

GetAvailableVideoMode(&w, &h) ;

DEBUG(driver , 1) (" sdl : using mode %dx%d" , w, h) ;

/∗ Give t h e a p p l i c a t i o n an i c o n ∗ /
icon = SDL_CALL SDL_LoadBMP(ICON_DIR PATHSEP " openttd . 3 2 .bmp") ;
i f (icon != NULL) {

/∗ Get t h e c o l o u r k e y , which w i l l be magenta ∗ /
uint32 rgbmap = SDL_CALL SDL_MapRGB(icon−>format , 255 , 0 , 2 5 5) ;

SDL_CALL SDL_SetColorKey (icon , SDL_SRCCOLORKEY, rgbmap) ;
SDL_CALL SDL_WM_SetIcon (icon , NULL) ;
SDL_CALL SDL_FreeSurface (icon) ;

}

/ / DO NOT CHANGE TO HWSURFACE, IT DOES NOT WORK
newscreen = SDL_CALL SDL_SetVideoMode (w, h , 8 , SDL_SWSURFACE | SDL_HWPALETTE |

l l s c r e e n ? SDL_FULLSCREEN : SDL_RESIZABLE)) ;
i f (newscreen == NULL)

return f a l s e ;

_screen . width = newscreen−>w;
_screen . height = newscreen−>h ;
_screen . p i t c h = newscreen−>p i t c h ;

_sd l_screen = newscreen ;
I n i t P a l e t t e () ;

s n p r i n t f (caption , s i ze of (capt ion) , "OpenTTD %s " , _opent td_revis ion) ;
SDL_CALL SDL_WM_SetCaption (caption , capt ion) ;
SDL_CALL SDL_ShowCursor (0) ;

GameSizeChanged () ;

return t rue ;
}

typedef s t r u c t VkMapping {
uint16 vk_from ;
byte vk_count ;
byte map_to ;

} VkMapping ;

REFERENCES 59

define AS(x , z) { x , 0 , z }
define AM(x , y , z , w) { x , y − x , z }

s t a t i c const VkMapping _vk_mapping [] = {
/ / Pageup s t u f f + up / down

AM(SDLK_PAGEUP, SDLK_PAGEDOWN, WKC_PAGEUP, WKC_PAGEDOWN) ,
AS(SDLK_UP, WKC_UP) ,
AS(SDLK_DOWN, WKC_DOWN) ,
AS(SDLK_LEFT , WKC_LEFT) ,
AS(SDLK_RIGHT, WKC_RIGHT) ,

AS(SDLK_HOME, WKC_HOME) ,
AS(SDLK_END, WKC_END) ,

AS(SDLK_INSERT , WKC_INSERT) ,
AS(SDLK_DELETE, WKC_DELETE) ,

/ / Map l e t t e r s & d i g i t s
AM(SDLK_a , SDLK_z , ’A’ , ’Z ’) ,
AM(SDLK_0 , SDLK_9 , ’ 0 ’ , ’ 9 ’) ,

AS(SDLK_ESCAPE, WKC_ESC) ,
AS(SDLK_PAUSE, WKC_PAUSE) ,
AS(SDLK_BACKSPACE, WKC_BACKSPACE) ,

AS(SDLK_SPACE, WKC_SPACE) ,
AS(SDLK_RETURN, WKC_RETURN) ,
AS(SDLK_TAB, WKC_TAB) ,

/ / Func t i on k e y s
AM(SDLK_F1 , SDLK_F12 , WKC_F1, WKC_F12) ,

/ / Numeric p a r t .
/ / What i s t h e v i r t u a l k e y c o d e f o r numeric e n t e r ??

AM(SDLK_KP0 , SDLK_KP9 , WKC_NUM_0, WKC_NUM_9) ,
AS(SDLK_KP_DIVIDE , WKC_NUM_DIV) ,
AS(SDLK_KP_MULTIPLY, WKC_NUM_MUL) ,
AS(SDLK_KP_MINUS, WKC_NUM_MINUS) ,
AS(SDLK_KP_PLUS , WKC_NUM_PLUS) ,
AS(SDLK_KP_ENTER, WKC_NUM_ENTER) ,
AS(SDLK_KP_PERIOD , WKC_NUM_DECIMAL)

} ;

s t a t i c uint32 ConvertSdlKeyIntoMy (SDL_keysym ∗sym)
{

const VkMapping ∗map ;
uint key = 0 ;

for (map = _vk_mapping ; map != endof (_vk_mapping) ; ++map) {
i f ((u int) (sym−>sym − map−>vk_from) <= map−>vk_count) {

key = sym−>sym − map−>vk_from + map−>map_to ;
break ;

}
}

/ / c h e c k s c a n c o d e f o r BACKQUOTE key , b e c a u s e we want t h e key
/ / l e f t o f "1" , not a n y t h i n g e l s e (on non−US k e y b o a r d s)

i f defined (WIN32) || defined (__OS2__)

REFERENCES 60

i f (sym−>scancode == 41) key |= WKC_BACKQUOTE;
e l i f defined (__APPLE__)

i f (sym−>scancode == 10) key |= WKC_BACKQUOTE;
e l i f defined (__MORPHOS__)

i f (sym−>scancode == 0) key |= WKC_BACKQUOTE;
/ / yes , t h a t key i s c o d e ’0 ’ under MorphOS :)

e l i f defined (__BEOS__)
i f (sym−>scancode == 17) key |= WKC_BACKQUOTE;

e l i f defined (__SVR4) && defined (__sun)
i f (sym−>scancode == 60) key |= WKC_BACKQUOTE;
i f (sym−>scancode == 49) key |= WKC_BACKSPACE;

e l i f defined (__sgi__)
i f (sym−>scancode == 22) key |= WKC_BACKQUOTE;

else
i f (sym−>scancode == 41) key |= WKC_BACKQUOTE; / / Linux c o n s o l e
i f (sym−>scancode == 49) key |= WKC_BACKQUOTE;

endif

/ / META a r e t h e command k e y s on mac
i f (sym−>mod & KMOD_META) key |= WKC_META;
i f (sym−>mod & KMOD_SHIFT) key |= WKC_SHIFT ;
i f (sym−>mod & KMOD_CTRL) key |= WKC_CTRL;
i f (sym−>mod & KMOD_ALT) key |= WKC_ALT;
/ / t h e s e two l i n e s r e a l l y h e l p p o r t i n g h o t k e y combos . Uncomment t o use

i f 0
p r i n t f (" scancode c h a r a c t e r pressed %d\n" , sym−>scancode) ;
p r i n t f (" unicode c h a r a c t e r pressed %d\n" , sym−>unicode) ;

endif
return (key << 16) + sym−>unicode ;

}

s t a t i c i n t Pol lEvent (void)
{

SDL_Event ev ;

i f (! SDL_CALL SDL_PollEvent(&ev)) return −2;

switch (ev . type) {
case SDL_MOUSEMOTION:

i f (_cursor . f i x _ a t) {
i n t dx = ev . motion . x − _cursor . pos . x ;
i n t dy = ev . motion . y − _cursor . pos . y ;
i f (dx != 0 || dy != 0) {

_cursor . d e l t a . x += dx ;
_cursor . d e l t a . y += dy ;
SDL_CALL SDL_WarpMouse (_cursor . pos . x , _cursor . pos . y) ;

}
} e lse {

_cursor . d e l t a . x = ev . motion . x − _cursor . pos . x ;
_cursor . d e l t a . y = ev . motion . y − _cursor . pos . y ;
_cursor . pos . x = ev . motion . x ;
_cursor . pos . y = ev . motion . y ;
_cursor . d i r t y = true ;

}
break ;

case SDL_MOUSEBUTTONDOWN:
i f (_ r i g h t c l i c k _ e m u l a t e && SDL_CALL SDL_GetModState () & KMOD_CTRL) {

REFERENCES 61

ev . button . button = SDL_BUTTON_RIGHT ;
}

switch (ev . button . button) {
case SDL_BUTTON_LEFT :

_left_button_down = true ;
break ;

case SDL_BUTTON_RIGHT :
_right_button_down = true ;
_ r i g h t _ b u t t o n _ c l i c k e d = true ;
break ;

case SDL_BUTTON_WHEELUP: _cursor . wheel−−; break ;
case SDL_BUTTON_WHEELDOWN: _cursor . wheel ++; break ;

default : break ;
}
break ;

case SDL_MOUSEBUTTONUP:
i f (_ r i g h t c l i c k _ e m u l a t e) {

_right_button_down = f a l s e ;
_left_button_down = f a l s e ;
_ l e f t _ b u t t o n _ c l i c k e d = f a l s e ;

} e lse i f (ev . button . button == SDL_BUTTON_LEFT) {
_left_button_down = f a l s e ;
_ l e f t _ b u t t o n _ c l i c k e d = f a l s e ;

} e lse i f (ev . button . button == SDL_BUTTON_RIGHT) {
_right_button_down = f a l s e ;

}
break ;

case SDL_ACTIVEEVENT :
i f (! (ev . a c t i v e . s t a t e & SDL_APPMOUSEFOCUS)) break ;

i f (ev . a c t i v e . gain) { / / mouse e n t e r e d t h e window , e n a b l e c u r s o r
_cursor . in_window = true ;

} e lse {
UndrawMouseCursor () ; / / mouse l e f t t h e window , undraw c u r s o r
_cursor . in_window = f a l s e ;

}
break ;

case SDL_QUIT : HandleExitGameRequest () ; break ;

case SDL_KEYDOWN: /∗ To gg l e f u l l −s c r e e n on ALT + ENTER/ F ∗ /
i f ((ev . key . keysym .mod & (KMOD_ALT | KMOD_META)) &&

(ev . key . keysym . sym == SDLK_RETURN || ev . key . keysym . sym == SDLK_f)) {
ToggleFul lScreen (! _ f u l l s c r e e n) ;

} e lse {
_pressed_key = ConvertSdlKeyIntoMy(&ev . key . keysym) ;

}

break ;

case SDL_VIDEORESIZE : {
i n t w = clamp (ev . r e s i z e .w, 64 , MAX_SCREEN_WIDTH) ;

REFERENCES 62

i n t h = clamp (ev . r e s i z e . h , 64 , MAX_SCREEN_HEIGHT) ;
ChangeResInGame (w, h) ;
break ;

}
}
return −1;

}

s t a t i c const char ∗ SdlVideoStar t (const char ∗ const ∗parm)
{

char buf [3 0] ;

const char ∗ s = SdlOpen (SDL_INIT_VIDEO) ;
i f (s != NULL) return s ;

SDL_CALL SDL_VideoDriverName (buf , 3 0) ;
DEBUG(driver , 1) (" sdl : using dr iver ’%s ’ " , buf) ;

GetVideoModes () ;
CreateMainSurface (_ c u r _ r e s o l u t i o n [0] , _ c u r _ r e s o l u t i o n [1]) ;
MarkWholeScreenDirty () ;

SDL_CALL SDL_EnableKeyRepeat (SDL_DEFAULT_REPEAT_DELAY,
SDL_DEFAULT_REPEAT_INTERVAL) ;

SDL_CALL SDL_EnableUNICODE (1) ;
return NULL;

}

s t a t i c void SdlVideoStop (void)
{

SdlClose (SDL_INIT_VIDEO) ;
}

s t a t i c void SdlVideoMainLoop (void)
{

u int32 n e x t _ t i c k = SDL_CALL SDL_GetTicks () + 3 0 ;
uint32 c u r _ t i c k s ;
uint32 p a l _ t i c k = 0 ;
i n t i ;
u int32 mod;
i n t numkeys ;
Uint8 ∗keys ;
i n t time1 , time2 ;
/ / OUR CODE
/ / Thread i n i t i a l i z a t i o n
v i d e o b a r r i e r = OTTDBarrierInit (2) ;
videothread = OTTDCreateThread (VideoThread ,NULL) ;
/ / END OUR CODE
for (; ;) {

InteractiveRandom () ; / / randomness

while ((i = Pol lEvent ()) == −1) { }
i f (_exit_game) return ;

mod = SDL_CALL SDL_GetModState () ;
keys = SDL_CALL SDL_GetKeyState(&numkeys) ;

i f defined (_DEBUG)
i f (_ s h i f t _ p r e s s e d)

REFERENCES 63

else
i f (keys [SDLK_TAB])

endif
{

i f (! _networking && _game_mode != GM_MENU) _fast_forward |= 2 ;
} e lse i f (_ fas t_forward & 2) {

_fast_forward = 0 ;
}

c u r _ t i c k s = SDL_CALL SDL_GetTicks () ;
i f ((_ fas t_forward && ! _pause) || c u r _ t i c k s > n e x t _ t i c k)

n e x t _ t i c k = c u r _ t i c k s ;

i f (c u r _ t i c k s == n e x t _ t i c k) {
n e x t _ t i c k += 3 0 ;

_ c t r l _ p r e s s e d = ! ! (mod & KMOD_CTRL) ;
_ s h i f t _ p r e s s e d = ! ! (mod & KMOD_SHIFT) ;

i f d e f _DEBUG
_dbg_screen_rect = ! ! (mod & KMOD_CAPS) ;

endif

/ / d e t e r m i n e which d i r e c t i o n a l k e y s a r e down
_dirkeys =

(keys [SDLK_LEFT] ? 1 : 0) |
(keys [SDLK_UP] ? 2 : 0) |
(keys [SDLK_RIGHT] ? 4 : 0) |
(keys [SDLK_DOWN] ? 8 : 0) ;

GameLoop () ;
/ / OUR CODE
/ / p r i n t f (" g a m e L o o p B a r r i e r \n ") ;
OTTDBarrierWait (v i d e o b a r r i e r) ;
/ / END OUR CODE
_screen . d s t _ p t r = _sdl_screen−>p i x e l s ;

UpdateWindows () ;
/ / OUR CODE
/ / OTTDBarrierWait (v i d e o b a r r i e r) ;
/ / i n t t ime3 = g e t T i m e I n M i c r o s e c o n d s () ;
/ / p r i n t f (" GameLoop () : %d\nUpdateWindows () : %d\n " , t ime2−t ime1 , t ime3−t ime2) ;
/ / END OUR CODE
i f (++ p a l _ t i c k > 4) {

CheckPaletteAnim () ;
p a l _ t i c k = 1 ;

}
/ / OUR CODE
/ / t ime1 = g e t T i m e I n M i c r o s e c o n d s () ;
/ / DrawSur faceToScreen () ;
OTTDBarrierWait (v i d e o b a r r i e r) ;
/ / t ime2 = g e t T i m e I n M i c r o s e c o n d s () ;
/ / p r i n t f (" D r a w S u r f a c e t o S c r e e n %d\n " , t ime2−t ime1) ;
/ /END OUR CODE

} e lse {
SDL_CALL SDL_Delay (1) ;
OTTDBarrierWait (v i d e o b a r r i e r) ;
_screen . d s t _ p t r = _sdl_screen−>p i x e l s ;
DrawTextMessage () ;

REFERENCES 64

DrawMouseCursor () ;
/ / OUR CODE
/ / t ime1 = g e t T i m e I n M i c r o s e c o n d s () ;
OTTDBarrierWait (v i d e o b a r r i e r) ;
/ / t ime2 = g e t T i m e I n M i c r o s e c o n d s () ;
/ / p r i n t f (" D r a w S u r f a c e t o S c r e e n %d\n " , t ime2−t ime1) ;
/ /END OUR CODE

}
}
t h r e a d _ e x i t = 1 ;

}
/ / OUR CODE
void∗ VideoThread (void∗ per) {

OTTDBarrierWait (v i d e o b a r r i e r) ;
while (! t h r e a d _ e x i t) {

OTTDBarrierWait (v i d e o b a r r i e r) ;
DrawSurfaceToScreen () ;
OTTDBarrierWait (v i d e o b a r r i e r) ;

}

}
/ / END OUR CODE

s t a t i c bool SdlVideoChangeRes (i n t w, i n t h)
{

return CreateMainSurface (w, h) ;
}

s t a t i c void SdlVideoFul lScreen (bool f u l l _ s c r e e n)
{

_ f u l l s c r e e n = f u l l _ s c r e e n ;
GetVideoModes () ; / / g e t t h e l i s t o f a v a i l a b l e v i d e o modes
i f (! _video_driver−>change_resolut ion (_ c u r _ r e s o l u t i o n [0] , _ c u r _ r e s o l u t i o n [1])) {

/ / s w i t c h i n g r e s o l u t i o n f a i l e d , put b a c k f u l l _ s c r e e n t o o r i g i n a l s t a t u s
_ f u l l s c r e e n ^= true ;

}
}

const HalVideoDriver _sdl_video_dr iver = {
SdlVideoStart ,
SdlVideoStop ,
SdlVideoMakeDirty ,
SdlVideoMainLoop ,
SdlVideoChangeRes ,
SdlVideoFullScreen ,

} ;

endif

	List of Figures
	List of Tables
	Introduction
	Choice of game
	Game description
	Project goal
	Outline

	Related work
	Multithreaded game engine architectures
	Synchronous function parallel model
	Asynchronous function parallel model
	Data parallel model

	Code analysis
	The code
	Code layout
	Main method
	The MainLoop()
	The GameLoop()
	The StateGameLoop()
	Overall design

	Performance analysis
	Game with small map and fewer vehicles
	Larger map and more vehicles

	Project results
	Sound
	Description
	Solution
	Problems
	Lessons learned

	StateGameLoop()
	Description
	Solution
	Problems
	Lessons learned

	StateGameLoop() second attempt
	Description
	Solution
	Problems
	Lessons learned

	StateGameLoop() third attempt
	Description
	Solution
	Problems
	Lessons learned

	Graphics
	Description
	Solution
	Problems
	Lessons learned

	Discussion
	Future work - redesigning the game
	Graphics
	PushGraphics
	Sound
	User Input
	Game state
	New design

	Conclusion
	References
	Definitions

