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Problem Description

Specialiced graphics hardware, GPUs, has in recent years had a rapid increase in both
performance and programmability. This has made it interesting as a platform for general purpose
computations.

Ultrasound imaging has for many years been one of the most popular medical diagnostic tools.
Compared to X-rays, computed tomography(CT) and magnetic resonance imaging (MRI),
ultrasound has the advantages of safety, low cost and interactivity. With the recent introduction of
3D ultrasound, the requirement for data processing has increased tremendously.

In this thesis, we want to study the intersection of these two fields. The objectives are to:
* Evaluate image enchancement techniques that are currently implemented on the CPU to see if it
is possible to implement them on the GPU. An important subgoal is to conduct performance
comparison of the two solutions.
 
* Evaluate image enchancement techniques that are currently not in use, but are made possible
with the use of GPU technology.

If the first two objectives are met, other related tasks may be explored.

Assignment given: 15. January 2007
Supervisor: Anne Cathrine Elster, IDI





Abstract

The wavelet transform is used for several applications including signal enhancement, com-
pression (e.g. JPEG2000), and content analysis (e.g. FBI fingerprinting). Its popularity is due
to fast access to high pass details at various levels of granularity.

In this thesis, we present a novel algorithm for computing the discrete wavelet transform
using consumer-level graphics hardware (GPUs). Our motivation for looking at the wavelet
transform is to speed up the image enhancement calculation used in ultrasound processing.
Ultrasound imaging has for many years been one of the most popular medical diagnostic
tools. However, with the recent introduction of 3D ultrasound, the combination of a huge
increase in data and a real-time requirement have made fast image enchancement techniques
very important.

Our new methods achieve a speedup of up to 30 compared to SIMD-optimised CPU-based
implementations. It is also up to three times faster than earlier proposed GPU implementa-
tions. The speedup was made possible by analysing the underlying hardware and tailoring
the algorithms to better fit the GPU than what has been done earlier. E.g. we avoid using
lookup tables and dependent texture fetches that slowed down the earlier efforts. In addi-
tion, we use advanced GPU features like multiple render targets and texture source mirroring
to minimise the number of texture fetches.

We also show that by using the GPU, it is possible to offload the CPU so that it reduces its
load from 29% to 1%. This is especially interesting for cardiac ultrasound scanners since they
have a real-time requirement of up to 50 fps. The wavelet method developed in this thesis is
so successful that GE Healthcare is including it in their next generation of cardiac ultrasound
scanners which will be released later this year.

With our proposed method, High-definition television (HDTV) denoising and other data in-
tensive wavelet filtering applications, can be done in real-time.
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Chapter 1
Introduction ’Begin at the beginning,’ the King

said, very gravely, ’and go on till
you come to the end: then stop.’
-Lewis Carroll

This chapter provides the motivation and the outline of this thesis. The intended audience of
this thesis are professionals in the field of medical visualisation. Experience with computer
visualisation is not required, but recommended for a thorough understanding of the thesis.

1.1 Motivation

When Röntgen first discovered x-rays in 1895, he triggered off a medical revolution. Today
it is unimaginable to have a modern hospital without x-ray equipment like Computed To-
mography (CT). Later, other methods like Magnetic Resonance Imaging (1967), and medical
ultrasound (1956) has also been developed. A more recent breakthrough (1980s) is the use
of computers to process and enhance the images to facilitate viewing. Image enhancement
drastically improves the clinical value of the equipment and therefore it is ubiquitous today.
As the physical imaging equipment has been improved over the years, more and more data
needs to be processed. At the same time, the practitioners require better quality and real-
time access to the data. Ultrasound has been an especially popular choice for real-time and
portable imaging, mainly because of its non-invasive nature and small size.

Medical equipment used to be composed of special-purpose computer parts designed for
the task. In later years, general-purpose hardware is increasingly replacing these parts. The
rationale is twofold. First, it lets the manufacturer concentrate its efforts on the software.
Secondly, the price of general purpose hardware is usually much lower than that of special
purpose because of the mass production of the former. Actually, a large share of the hardware
in a modern ultrasound scanner is the same as the hardware that resides in a computer under
an office desk.

The ever-increasing amount of medical data, combined with the use of general purpose hard-
ware, makes the task of fully utilising this hardware very important. The need for more
computing power easily outgrows the hardware, and so the algorithms have to be tuned to a
compromise between quality and speed. This problem is not new, and much effort has been
put into investigating algorithms and methods for the x86, Intels dominating processor ar-
chitecture. Such efforts are still important and will continue to be important in the future.
However, there are other ways to increase the computational power of the computer system.

1



2 1. Introduction

One component that has gone almost unnoticed so far is the graphics processor (GPU). The
explanation for this oversight is simple Until recently, it couldn’t be programmed at all. How-
ever, the gaming industry has driven the development forward, and today’s GPUs are not just
programmable, they are also much more powerful than the CPU in terms of raw computing
power.

One important image-enchancement method used in medical imaging, and for ultrasound
specifically, is wavelet filtering. Wavelets are a mathematical tool that makes it possible to
decompose images and describe them in terms of a course approximation and several levels
of detail. It is often said that by using wavelets it is possible to ’see the forest and the trees’.

In this thesis, we will investigate the possibility of using the GPU for wavelet image filtering
in the context of medical ultrasound. The main goal is to offload the CPU so that it can be
used for other tasks. Another and more ambitious goal is to make the enhancement faster
than the CPU, and open up for possibilities of even more refined methods than the ones used
today.

1.2 Thesis outline

This thesis has three main parts. The first part (Chapter one) contains background informa-
tion and theory about ultrasound, GPU and wavelet filters. The second part (Chapter two)
contains a description of the algorithms and methods developed during this thesis. The final
part (Chapter four and five) holds the results and a conclusion. In addition to these three
parts, an appendix includes practical information about the running the programs developed
and listings of some of the important parts of our GPU code.

Real-Time Wavelet Filtering on the GPU



Chapter 2
Background A dwarf on a giant’s shoulders sees

farther of the two
-Didacus Stella

In this chapter, we will present the main theories behind our work. In Section 2.1, we in-
troduce the graphics processor (GPU), discuss the hardware features and how to program it.
We will also explain why we choose to program the GPU. In Section 2.2, we present medi-
cal ultrasound, the context of this thesis. Section 2.3 discusses the theoretical background on
wavelets. Section 2.4, the theory behind the filters we have implemented is discussed.

2.1 Graphics Processing Unit

The Graphics Processing Unit (GPU) is a special-purpose computing unit designed and op-
timised for computation related to 3D graphic rendering. In recent years, the GPU has been
transformed from a static pipeline with modest capabilities to a very flexible and powerful
computation unit. Owens et al. [1] is an excellent survey of the current state of General-
Purpose computation on GPUs (GPGPU). For practical programming info, tips and tricks
Gpu Gems [2] is highly recommended. Both resources are used heavily in this section. In this
chapter, we will discuss the the differences between CPUs and GPUS (Section 2.1.1). Then
(in Section 2.1.2) a GPU programming model will be discussed. Finally, the programming
techniques and GPU architecture will be discussed.

2.1.1 The what and why, CPU vs. GPU

The Central Processing Unit (CPU) in a modern PC, is composed of millions of transistors.
Each year the number of transistors in a CPU increases. In 1965, Intel’s chairman Gordon
Moore predicted that the number of transistors that could be fabricated on a single processor
die would double each other year. This prediction still holds this day. However, the compu-
tational power does not double each year. Approximate numbers from [3] indicate that each
year the

• Capability of a processor increases 71 percent.

• Transistor speed increases 15 percent.

3



4 2. Background

• Memory bandwidth increases 25 percent.

• Memory latency increases 5 percent.

It is easy to see from this list that the computing power increases much faster than the com-
munication ability. This has been a known problem in VLSI design for a long time. Until
recently the solution to this problem has been to add layers of faster memory between the
processor and the main memory. We have registers, on-die caches, off-die caches, main mem-
ory, disk and tapes. This additional caching requires a lot of transistors. On a modern CPU
the computing unit only occupies a small part of the total space on a chip. As an example, the
ALU (Algorithmic-Logic Unit) on the Itanium 2 occupies 6.5% of the total die space [4]. In ad-
dition to cache, the processor also uses prefetching to speed up memory access. To make sure
that the correct memory is prefetched additional transistors have to be used to implement
techniques like branch-prediction, instruction snooping, etc. For a general-purpose processor
like the CPU, the methods mentioned above and the transistor resource utilisation has been a
successful tactic for the last decades. However, a major drawback to this tactic has been that
it is inherently optimised for single threaded programs with no parallelism.

For applications that actually have data parallelism, the route that the traditional CPU has
gone is not the best option. A good example is media processing. A typical media operation
is to execute a small series of computations on each data element in the media stream. For
these kinds of operations, both the cache and the extra prefetching is useless. In fact, they may
both hurt the execution speed because of cache thrashing. Another similar example of parallel
computation is 3D-rendering. As 3D applications, and especially games, required more and
more computational resources during the 1990’s it became apparent that the CPU wouldn’t
be able handle the load by itself. The first modern consumer GPU was born in 1996. 1 By the
turn of 2000 almost all consumer PCs contained a GPU, and today it is ubiquitous. A timeline
with the computing power of GPUs and CPUs is shown in Figure 2.1.
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Figure 2.1: Performance timeline, GPU vs. CPU. Figure reproduced from [1]

The GPU is a good example of special-purpose hardware that is tailored for one specific task,
3D rendering. In the beginning, 3D rendering was also all it could be used for. As the GPUs
evolved they have become more flexible, and it is now possible to program them to do a

1We define a modern GPU to be a graphic board with 3D processing abilities, not just a framebuffer.

Real-Time Wavelet Filtering on the GPU



2.1. Graphics Processing Unit 5

variety of tasks. In a recent survey carried out in [1], a number of applications were listed,
such as rigid body simulations, linear algebra solvers, fluid simulations, image segmentation,
Fast Fourier Transforms (FFTs), and Discrete Cosine Transforms (DCTs), database searches, to
mention a few. Not only is it possible to implement these methods on the GPU, for most of
these applications the GPU will outperform the CPU several-folds. How is this possible? As
mentioned, one of the main problems with the CPU is that it assumes serial data and that it
focuses its transistors on techniques to ‘avoid‘ memory latency. The GPU, on the other hand,
assumes massively parallel data and a relatively simple series of computations on this data,
so it can concentrate its transistors on the computational part. An illustration of this can be
seen in Figure 2.2 taken from a recent NVIDIA document [5].

Cache

ALU
Control

ALU ALU

ALU

DRAM

(a) CPU

DRAM

(b) GPU

Figure 2.2: The relative number of transistors used for ALU and cache by a CPU and a GPU.
Figure reproduced from [5].

This causes the GPU to have much more raw computing power than a similarly sized and
priced CPU. In Table 2.1, a number of high-end GPUs and CPUs are compared. Price esti-

xPU \ Property Cost Bandwidth GFLOPS

Radeon X1900 XTX $400 51.0 240.0
GeForce 7900 GTX $340 38.4 240.0
Geforce 8800 GTX $599 86.4 345.0
Intel DualCore X6800 $999 8.5 50.0

Table 2.1: Comparison of high-end CPUs and GPUs on some key figures.

mates are gathered from [7, 6], GPU performance estimates from [8] and CPU performance
estimates from [1, 9].

Erik Axel Nielsen



6 2. Background

2.1.2 Stream Programming Model

As we have seen in the previous section, the GPU has massive amounts of raw computational
power compared to the CPU. The main reason for this is that it is tailored for 3D graphics
programming, which in turn implies that we cannot apply the standard CPU programming
models directly to the GPU. Instead one typically use a model called the Stream Programming
Model which fits nicely on the GPU [4]. The stream model consists of two key concepts [3]:

• Stream An ordered set of data consisting of the same data type. Streams can be of any
length, but they are usually long. The datatype can be arbitrarily complex. A stream
can be copied, divided into substreams and operated on by kernels.

• Kernel A basic operation consisitng of a small number of operations. A kernel performs
a computation on one or more streams and outputs one or more streams. 2 The kernel
output are functions only of their inputs. The operation on one element of a stream is
never dependent on the computation of another element in the same stream. This is a
key property to make the model easily parallelisable.

Applications are made by chaining multiple kernels together. In Figure 2.3, an example stream
model from [3] is shown. The application is the 3D graphics pipeline. There are two kinds

Vertex 
Program

Triangle 
Assembly

Texture
Memory

Transformed
Vertex Stream Clip/Cull/

Viewport

Triangle
Stream

Rasterization

Screen-Space
Triangle Stream

Vertex
Stream

Vertex 
Program

Unprocessed
Fragment Stream

Composite

Fragment
Stream

Framebuffer

Pixel
Stream Image

Figure 2.3: The graphics pipeline as a stream model. Reproduced from [3].

of parallelism exposed by this model. First, the data-level parallelism is quite easy to imagine
because each element in a stream is of the same data type and they undergo the same op-
erations. Also, since we can chain multiple kernels, this model can be task-parallelised and
deeply pipelined.

2.1.3 The Graphics Pipeline

We have seen that a GPU contains massive computing power and that the stream program-
ming model fits nicely to its graphics pipeline. In this section, we will take a closer look at the
internal structure of a GPU and how to actually execute kernel programs on a GPU.

The rendering process

The rendering process starts with the application creating a scene description based on poly-
gons. The process of rendering these polygons to the screen is called display traversal [10].

2A very similar concept to a kernel is the map function known from functional programming.

Real-Time Wavelet Filtering on the GPU



2.1. Graphics Processing Unit 7

We can break this process into three big parts:

1. Geometry processing

2. Fragment operation

3. Compositing and outputting to buffer

This process used to be fixed. This means each part of the process had a fixed number of steps
and features, and the developer could only set some parameters controlling the rendering.
These parameters usually controlled:

• Transformation from local models 3D-coordinates to 2-D screen coordinates.

• Lighting and shading. This could be the number of light sources and which colours.

• Some parameters controlling depth-culling and other efficiency measures.

The last sub-process would output the end result to the GPU’s frame buffer. The frame buffer
is the part of memory on the graphics board that will be rendered to the screen. Recently,
however, the fixed function pipeline was replaced with a much more flexible pipeline. Such a
pipeline is shown in Figure 2.4.

Vertex Program

Vertex Processing

Primitive 
Assembly

Fragment Processing Compositing

Clipping/Culling 
Viewport 
Mapping

Rasterization Fragment 
Program

Frame-Buffer 
Operations

Vertices Transformed
Vertices Primitives Screen-Space

Primitives
Unprocessed
Fragments

Shaded
Fragments Pixels

Figure 2.4: The new programmable graphics pipeline. Reproduced from [11].

Programmable pipeline

The display traversal in a programmable pipeline is the same as for fixed function pipelines,
but as the name implies, it is now possible to program some parts of the pipeline. This can
be done with special micro programs, called shaders in the graphics literature. Two kinds
of shaders exist, fragment shader and vertex shader. Until quite recently, these microprograms
had to be developed in assembly language., However, several special purpose high-level lan-
guages has been developed in the last three years. The three main ones are:

1. GL Shading Language (GLSL), developed by the Open GL committee.

2. High Level Shading Language (HLSL) which is Microsoft’s shading language.

3. C for graphics (Cg) which was developed by NVIDIA
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The three languages are very similar and show strong similarities to C. In this thesis, HLSL
will be used. The reason for this choice was the author’s previous exposure to the accompa-
nying DirectX framework. The choice of framework and language showed to have very little
effect on the thesis work and porting our methods to another framework should be fairly easy.

We will now take a look at the different processing stages and their programmability.

Geometry processing

As mentioned, the scene graph is represented as polygons. The application feeds these poly-
gons to the GPU as vertices. A vertex may contain a number of properties. The obvious ones
are position, colour, opacity and texture coordinates. The developer may specify any kind
and any number of extra properties by defining a custom vertex declaration. As vertices enter
the GPU, the first step is to perform linear operations on these vertices. This is done by a mi-
croprogram called the vertex shader. The vertex shader may alter any of the properties of the
vertex. The usual operations performed are transformation from model coordinates to screen
coordinates and per-vertex lighting. In addition to the vertex properties, the vertex shader
may also access per frame parameters called uniforms. An example of a uniform is the matrix
used to transform the vertex into screen space. The vertex shader may also access the texture
memory. An important limitation, however, is that unlike vertices may not be deleted or cre-
ated in the shader. Only modification of the properties are allowed. After being processed
by the vertex shader, the vertices are assembled into geometric primitives: points, lines and
triangles. The primitives are clipped, culled, mapped to the viewport and rasterised.

Fragment operation

As the primitives are rasterised, the GPU decomposes each primitive into fragments. Each
fragment corresponds to a pixel in screen space. For each fragment, a microprogram called
the fragment shader is run. The inputs to the fragment shader are interpolated versions of the
output values from the vertices contributing to the primitive owning the fragment. Like the
vertex shader, the fragment shader may also use uniform variables and texture memory for
its operation. In addition, the fragment shader may use dependent texture reads. These are two
texture reads where the memory position of the latter is dependent upon the content of the
first read.

Compositing and outputting to buffer

After each fragment is processed in the fragment shader, we have a fragment ready to be put
on the screen. Still there are some fixed processing options left. These include:

• Culling The GPU can discard a fragment based on a depth test, scissor test, alpha test
or stencil test.

• Blending The fragment colour can be combined with the colours already in the buffer.

Blending is the act of combining the fragment created in the current rendering pass, the source
fragment, with the fragment already present in the output buffer, the destination fragment. De-
noting each fragment as a vector ci = {ri, gi, bi, ai}, the fraction of the fragment used in
the blending is fi where fi is the vector ci with each component multiplied by a constant fi.
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2.1. Graphics Processing Unit 9

i ∈ {src, dst}. This gives us
fsrc = fsrccsrc

fdst = fdstcdst

(2.1)

Any number may be used for the constants but the most used are:

fsrc = asrc

fdst = 1− asrc
(2.2)

which is called alpha blending.

If the fragment passes all culling tests and is blended, we can finally render it to the output
buffer. Usually the output buffer is the frame buffer, a special memory location on the graphic
board that represents the screen. With a programmable pipeline we can also render to texture
memory or even several output buffers at once.

2.1.4 General-Purpose computation on GPUs (GPGPU)

In this section, we will look at how we can employ the GPUs described in the previous section
for general purpose computation (GPGPU) using the stream model.

Figure 2.5 shows the workflow of a typical GPGPU program.

Init Application
Init DirectX

Set stream data
Upload Texture

Execute kernels
Fragment 
shading

Start process
Draw Quad

Display

Save result
Render to 
Texture

Figure 2.5: The workflow for an image filter

Streams

The streams of the GPU are textures. These are very similar to arrays used on the CPU.
They can contain up to four 32-bit floating point pr. element. These are called r,g,b,a (red,
green, blue and alpha). The names stem from graphics, but the names are irrelevant when
programming GPGPU. We hence have basically the same as a float[x][4] on the CPU. However,
unlike the CPU, these can be swizzeled without cost. To swizzle is to rearrange or select the
components of a single element. In Listing 2.1, a small example of swizzle operation can be
seen.

float4 vector = {1,2,3,4}; // A four component element
vector.rgba; // same as just using vector, gives 1,2,3,4
vector.rrrr; // will select 1,1,1,1
vector.gb; // will select only element 2,3

Listing 2.1: Nine Tap Vertex Shader

The stream has to be explicitly uploaded from main memory to GPU memory to be usable.
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10 2. Background

Kernels

The GPU has two types of programmable processors, the vertex processor and the fragment
processor. For GPGPU the fragment processor is usually the preferred choice. There are two
reasons for this. First, GPUs typically have more fragment processors than vertex processors.
As an example the GeForce 7800 GTX has 8 vertex processors and 24 fragment processors.
Second, the fragment processor has the ability to write directly to texture memory. The output
from the vertex processor, on the other hand, has to travel through the rasteriser and fragment
processor. Which makes it more difficult to program. Thus, most of the computational work
in GPGPU programs is done in the fragment processors, but the vertex processors can perform
some auxiliary functions as we shall see in later chapters.

Invocation

The fragment shaders are executed by drawing geometry. Usually, we draw a quadrilateral
with the same amount of fragments as the number of elements in the desired output. In Figure
2.6(a), we can see an example quadrilateral drawn. One example fragment is shown with its
interpolated texture coordinates. In Figure 2.6(b), a quad with interpolated colours are shown
to help visualise the interpolation. By adjusting the texture coordinates in the vertices used in
the quadrilateral, we can adjust which texture memory each fragment shader uses. We will
see examples of this in the later chapters.

Reading back

The primary method of reading back from GPU memory is by rendering to texture. It is
also possible to read back from the frame buffer, but this is much slower. After the result is
rasterised to the texture we have to explicitly transfer the results back from GPU memory to
main memory. This operation flushes the GPU pipeline and should be used with care. In
many applications, discussed in this thesis, including our ultrasound framework, the result is
to be displayed on the screen, so it isn’t necessary to read back to the CPU at all. This speeds
up the applications noticeably.

Multiple output streams

In the stream model, it is possible to output several streams from a kernel. This is also possible
to do on the GPU with the use of multiple render targets (MRT). One important limitation is
that the streams written to (the textures) have to be of the same size.

2.1.5 Suitable applications for the GPU

As mentioned in the introduction, [1] contains a comprehensive survey over applications that
have been implemented on the GPU. Larsen [12] describes a GPU implementation of the Dis-
crete Cosine Transform. This is a nice example of a transform In this section we will discuss
which traits an application should have to be successfully ported to the GPU. Successfully can
be defined in various ways, but some important keywords are speedup, more power effective,
faster, more computation per dollar.

Arguably, the most important trait for a successful GPU application, is that it has high arith-
metic intensity [13].
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vertex.x = 0
vertex.y = 0
texture.x = 0
texture.y = 1

vertex.x = 512
vertex.y = 0
texture.x = 1
texture.y = 1

vertex.x = 512
vertex.y = 512
texture.x = 1
texture.y = 0

vertex.x = 0
vertex.y = 512
texture.x = 0
texture.y = 0

vertex.x = 290
vertex.y = 0
texture.x = 0.566
texture.y = 1

(a) Example of texture coordinates

(b) Interpolation of colours

Figure 2.6: Interpolation example

arithmetic intensity = operations / words transferred

As an example, consider simple vector addition: Even if the vectors are big this will certainly
go faster on the CPU than on a GPU. There is just too much overhead involved in copying
the vectors from main memory to GPU memory and back again compared to the number of
operations. In addition, it is important that we have enough data to work with. Even if we
have a complicated operation, if the data is small, the overhead of invoking the GPU will
dominate the time and the CPU will be faster. The question of how complicated a function
should be, or how big the data should be, to make it worthwhile using the GPU, is a difficult
one. There is no simple answer, but a rule of thumb could be: at least a couple of thousand of
elements and several multiple-add operations.

How the data is accessed is another important element. In GPU Gems 2 [14], the memory
read speed on a GPU and a CPU was measured. The GPU reading has become a bit faster
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since, but the general trend should still apply. The GPU reads sequential and random data
faster than the CPU, especially the sequential, but reading from the cache is much faster on
the CPU. These data are easily understood when we take the discussion from Section 2.1.1
into account, supporting the view of the GPU as a stream processor.

(a) Reading a single floating point with different memory access methods.

CPU

GPUNorth BridgeMain Memory

South Bridge Graphics 
Memory

Other Periperals

8 GB/s

6.4 GB/s

Display

6.4 GB/s 
or more

35 GB/s

(b) How the GPU connects to the rest of the PC

Figure 2.7: GPU memory overview. Figures reproduced from [14].

Flow control is one of the most important concepts in computation. Because of the highly
parallel nature of the GPU it doesn’t support flow control very well. On old architectures it
didn’t even support loops, but that has luckily been handled in the later years. It is possible to
do branching in a fragment or vertex program, but extensive branching is not recommended.
There exists a couple of methods to avoid branching, [1] has a good overview of the different
methods.
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2.2. Ultrasound 13

In parallel computing, the gather and scatter memory operations are two basic primitives that
can be used to explain the memory pattern of an algorithm or the capability of an API. In
stream computing, gather occurs when a kernel processing a stream element requests infor-
mation from other parts of the stream [13]. Scatter, on the other hand, distributes information
to other streams. GPU supports gather very well, but not scatter. Hence, applications should
be rewritten if they use scatter. One example of this is sorting. The scattering quick-sort is not
a good fit for the GPU, while the gather oriented bitonic sort is [15].

2.2 Ultrasound

Medical ultrasound is an non-invasive, real-time, portable method of performing medical
imaging. These properties makes it an attractive alternative to other imaging methods like
Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) that require large imo-
bile equipment. Ultrasound is used in many branches of medicine, but especially in cardiol-
ogy, obstetrics and gastroenterology. An introduction to modern ultrasound can be found in
[16].

An ultrasound machine shoots ultrasound pulses, in the 5-15 MHz range, from a transducer
into a body. The wave propagates into the tissue, while a small amount is reflected along the
path. The main condition for the reflection is ’impedance jumps’ which occur at the inter-
face between two tissues with different sound transmission interfaces. The transducer then
measures the strength and time of the reflected waves. Based on the time the pulse was sent,
the distance sound travels in soft tissue, and when the reflection returned, the distance the
returning wave has travelled into the tissue can be calculated. The resulting visualisation is a
beam where the pixel intensity is based on the energy of the reflected wave. By adding more
ultrasound probes in the transducer and changing the angle at which the ray is shot 2D and
3D ultrasound becomes possible. In Figure, 2.8 different ultrasound modes are shown.

(a) 1D (time on the X-axis) (b) 2D (c) 3D

Figure 2.8: Different Ultrasound modes

2.2.1 Ultrasound noise formulation

One of the fundamental problems faced by ultrasound imaging is the presence of speckle
noise. This kind of noise is common to all coherent systems and affect both human interpreta-
tion and computer-assisted techniques. Goodman (1976) [17] studied the statistical properties
of speckle noise and showed that when the resolution cell is small compared to the spatial
detail in the object and the image has been sampled coarsely enough the degradation at any
pixel can be assumed to be independent of degradation at all other pixels. He also showed
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that the degradation at each pixel can be modelled as multiplicative noise. In Jain [18], this is
formulated as:

f(x, y) = g(x, y)ηm(x, y) + ηa(x, y) (2.3)

g(x, y) is a piece-wise constant 2D function representing the unknown error-free image, f(x, y)
is the observed values of g(x, y), ηm(x, y) is the multiplicative noise, ηa(x, y) the additive
noise, (x, y) ∈ R. The additive noise ηa is relatively small compared to the multiplicative
noise in ultrasound images, so we can approximate Equation 2.3 by

f(x, y) = g(x, y)ηm(x, y) (2.4)

We can seperate noise and signal by applying the log transform:

log(f(x, y)) = log(g(x, y)) + log(ηm(x, y)) (2.5)

Actually this log transform is done anyway on commercial ultrasound systems because of the
limited dynamic range of the monitors. We can write 2.5 as

f(x, y)l = g(x, y)l + ηa(x, y)l (2.6)

The subscript of the noise is changed from m to a to point out that the noise is now actually
the same as white Gaussian additive noise. So the image enhancement algorithms has to deal
with additive Gaussian noise instead of multiplicative noise. The former task is much easier
than the latter.

There exists other formulations of ultrasound speckle noise, most of them quite complicated.
The formulation presented here is advanced enough for our purposes and has been shown to
work well in practice. For these reasons, this noise model will be used.

2.2.2 Ultrasound image restoration

Image restoration is an old field in computer science and a large number of methods has
been developed. Most methods proposed for ultrasound image enhancement are based on
these existing methods, but adjusted to suit the characteristic of the ultrasound imaging pro-
cess. In [19], some methods are listed: Median filtering [20, 21], Wiener filtering [18], adap-
tive weighted median filtering [22], adaptive speckle reduction (ASR), wavelet shrinkage and
Nonlinear Anisotropic Diffusion (NAD).

In this thesis, we will only look at some of the methods proposed. We will concentrate most
of our effort on the multiresolution methods. These methods are based on wavelets described
in Chapter 2.3. This thesis has been written in cooperation with the medical industry and the
selection of techniques are based on the techniques that are actually used in practice [23]. In
literature, it is popular to establish statistical methods that will work on all kinds of ultra-
sound equipment. In practice, it is often better to adjust the enhancement parameters to suit
different equipment. This thesis will assume hand-tuned instead of auto-tuned parameters.

2.3 Wavelets

Transforms on digital signals are used to obtain information that are not readily available by
analysing the signal in its raw form. Examples include the Hilbert transform, the Wigner
distribution, the Radon Transform and the most popular one: the Fourier Transform (FT).
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One reason for this popularity is due to the Fast Fourier Transform (see Cooley et al. [24]
for more information), which is a fast algorithm for computing the Fourier Transform. The
FT transforms a signal from the raw format into the frequency domain. The raw format is
usually the time domain, but when we are analysing images it is the spatial domain. The
Fourier transform is defined as:

f̂(ω) def=
∫

R
x(t) e−iωt dt

One important fact to notice is that the Fourier transform is integrated over the entire time
range. This gives Fourier one of its most important properties: A transformed signal will con-
tain the exact frequencies that existed in the original signal. All time (or spatial) information
is lost. 3 This may or may not be a big problem. For so-called stationary signals it has no ef-
fect. Stationary signals are signals which are constant in their statistical parameters over time
But for non-stationary signals we loose potentially important information in our transform.
Several schemes have been devised to counter this. One approach has been the Short-Time
Fourier Transform (STFT). The STFT assumes that the signal is stationary for some portion
of the signal. It then cuts the signal into small segments. The problem is that now we no
longer integrate over the whole time segment. According to Heisenberg Uncertainty Princi-
ple (HUP), we now no longer get exact frequency information. We can adjust this by changing
the segment length. If we let σt denote a time-spread around a time instant, and σω denote
the frequency spread around an instant, HUP states:

σ2
t σ

2
ω ≤

1
4

For our transformations the tradeoffs can be summed up as:

Segment size Time resolution Frequency resolution
Small Good Poor
Large Poor Good

Another approach is using a related transform, the wavelet transform.

2.3.1 Wavelets

In this chapter, we will present the current state as presented by [25, 26, 27, 28].

The word wavelet is a direct translation from French ‘ondolette‘ which means small wave,
and this is exactly what wavelets are. Functions which oscillates like a wave in limited space.
Wavelets have to satisfy certain requirements. ψ(x) is a wavelet given that oscillates, it aver-
ages to zero and that it is well localised. We use the wavelets quite similar to the way sines
and cosines are used in Fourier. But an important concept in wavelet analysis is scale. One
choses a wavelet, scales it and translates it to see its correlation with the signal being analysed.
When the signal correlates to a large (rude) scale we can see the course features, while small
scales will show the fine features. It is often said you can ’see the forest and the trees’.

The prototype function is called the mother wavelet. The scaled and translated wavelets are
called the baby wavelets. Given a wavelet ψ(x) we create baby wavelets ψs,τ (x) by scaling

3Since the transform is reversible we don’t actually ‘loose‘ any information. It is just unavailable in the trans-
formed signal.
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and s = 1

Figure 2.9: Examples of different wavelets

with s and translating by τ :

ψs,τ (x) =
1√
s
ψ(
x− τ
s

) (2.7)

2.3.2 Continuous wavelet transform

As indicated in the introduction we are interested in using the wavelets in transforms. The
continuous wavelet transform (CWT) is defined as:

Wψ(s, τ) :=
∫

R
f(x)ψ?s,τ (x)dx (2.8)

where ψ? is the complex conjugate of the wavelet ψ. To use a wavelet in the CWT it has to
abide the admissibility condition

0 < Cψ :=
∫

R

|ψ̂(ω)|2

|ω|
dω <∞ (2.9)

where ψ̂ denotes the Fourier transform of the wavelet ψ. In addition, the wavelet has to be
chosen from the space of L2(R). These conditions are usually satisfied by:∫

R
ψ(x)dx = 0 and ψ(0) = 0

and that ψ(ω)→ 0 as ω →∞ fast enough to make Cψ <∞.

It can be shown 4 that the CWT can approximate any function in L2(R) at arbitrary precision.
As a matter of fact, we can restrict our scaling factor to s = 2j , j ∈ Z and still be able to
represent any function. This transform, Wψ(2j , τ), is called the Dyadic transform.

4See [27] for details
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The inverse wavelet transform is defined as

f(x) =
1
Cψ

∫
R

∫
R
Wψ(s, τ)

ψs,τ (x)
s2

dτds (2.10)

f

t

(a) Wavelet decomposition

f

t

σω

σt

σt

σω

(b) Short-Time Fourier

f

t

σω

σt

σt

σω

(c) Wavelet

Figure 2.10: Time-Frequency resolution. Figures reproduced from [27]

Some example wavelets can be seen in Figure 2.9.

Since we are working with computers we would like to see how we could make this trans-
form discrete. This however, is not straight forward, and we have to make a detour into
Multiresolution Analysis first.

2.3.3 Multiresolution Analysis

Multiresolution Analysis (MRA) is a method where a signal is successively decomposed into
coarser details and approximations. We project a signal onto a sequence of approximation
spaces

{0} ⊂ . . . Vj+1 ⊂ Vj ⊂ Vj−1 . . . ⊂ L2(R) (2.11)

where the index j indicates resolution scale 2j . We can restrict ourselves to these subspaces
since we are working with dyadic transformations as discussed in Section 2.3.2. The differ-
ences between two approximation spaces are contained in the detail space Wj :

Vj ∩Wj = 0 and Vj−1 = Vj ⊕Wj (2.12)

Another way of saying this is that Vj are the sums of the Wj . We can write this explisitly as:
(this is the same as writing Equation 2.12 out)

VJ =
⊕

j>=J+1

Wj (2.13)

If the vector spaces V and W also satisfy:

• The basis functions that span the space are orthogonal to its translates by integers.

• The approximation at a resolution is self-similar:

f(·) ∈ V0 ⇔ f(2−j ·) ∈ Vj
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• In addition to the fact that they are nested vector spaces, all functions in all subspaces
can approximate all function in L2(R):⋂

j∈Z
Vj = 0

⋃
j∈Z

Vj = L2(R)
(2.14)

they are called a multiscale approximation of L2(R) [27].

Scaling and Wavelet functions

Since we would like to approximate an arbitrary signal within each subspace Vj we are look-
ing for basis functions that span the all the subspaces. Actually, it can be proven 5 that if Vj is
a multiscale approximation in L2(R) then there exists a single scaling function ϕ such that{

1√
2j
ϕ(
x− k2j2

2j
)
}

(2.15)

is an orthonormal basis of Vj . From this definition we can see that f(x) ∈ Vj+1 ⇔ f(2x) ∈ Vj .
Based on our previous assumptions we can write this out as an explicit recursive function:

ϕ(x) =
√

2
∑
k∈Z

hkϕ(2x− k)⇔ 1√
2
ϕ(
x

2
) =

∑
k∈Z

hkϕ(x− k) (2.16)

h is called the filter mask for scaling function ϕ.

For Wj , we call the basis spanning the vector space wavelets and they are denoted ψ. Every
basis functionψj−1 ofWj−1 is orthogonal to every basis functionϕj−1. Analogous to Equation
2.15 we have: {

1√
2j
ψ(
x− k2j2

2j
)
}

(2.17)

is an orthonormal basis of Wj . And analogous to Equation 2.16 we have

ψ(x) =
√

2
∑
k∈Z

g[kψ(2x− k)⇔ 1√
2
ψ(
x

2
) =

∑
k∈Z

gkψ(x− k) (2.18)

where g is the detail filter, and can be calculated as:

g[k] = 〈ψ(x),
√

2ϕ(2x− k)〉

The linkage between multiscale analysis and wavelet theory was first done by Mallat [29] and
it enables us to create a Discrete Wavelet Transform.

2.3.4 Discrete Wavelet Transform

The Multiscale Analysis presented above gives us a method of decomposing a signal into
components of different resolutions. We get the details by applying the wavelet function ψ

5see [29]
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(or its filter mask g) and the approximations with the scaling function ϕ, (or its filter mask h).
To the coarse level we can further apply the filters on the approximation recursively. If λ(x)j
is the approximation at level j and γ(x)j the detail we can write this as:

λ(x)j+1 =
k=∞∑
k=−∞

h(k)λj(2x+ k)

γ(x)j+1 =
k=∞∑
k=−∞

g(k)λj(2x+ k + 1)
(2.19)

This algorithm is called the Discrete Wavelet Transform. Note that unlinke the CTW the DWT
contains no redunancy. A block diagram showing three levels of the DWT is shown in Figure
2.11.

h[n]

g[n]

  2

  2

h[n]

g[n]

  2

  2

h[n]

g[n]

  2

  2

x[n]

γ1

γ2

γ0

λ0

λ2

λ1

Figure 2.11: An example with 3 levels DWT

The Discrete Wavelet Transform is sometimes called the Fast Wavelet Transform as an analogy
to the Fast Fourier Transform (FFT). Actually, the DWT is faster than the FFT, its complexity
is O(n) compared to FFT’s O(n log(n)).

It is important to understand that the DWT is not simply sampling the CWT. The wavelets
(and the associated filters) now have to be chosen carefully so that they are a basis of L2(R)
and in the form of Equation 2.17. So our choice for wavelets is quite restricted. If we fur-
ther restrict our filters g and h to have finite response (FIR)and be orthogonal we can create
the inverse filters h′ and g′ in such a way that we get perfect reconstruction. We call this
reconstruction synthesis and it can be written as

λj(x) =
k=∞∑
k=−∞

h′(k)λj−1(x+ k) +
k=∞∑
k=−∞

g′(k)γj−1(x+k) (2.20)

Creating a wavelet that meets all the required conditions is quite tedious and outside the
scope of this thesis. We shall instead use some of the already designed wavelets that have
been proven to satisfy the needed conditions.

2D Discrete Wavelet Transform

Since this thesis concentrates on images, we would like to extend the DWT to two dimen-
sions. There exists several methods for doing this. The easiest and most used is the separable
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approach. The separable 2D DWT is achieved by first applying the 1D DWT on the rows, and
then on the columns. This gives us four decomposed signals for each level of DWT:

• LL: The approximation. This is the signal that will be recursed further upon.

• LH: Horisontal approximation, vertical detail. This signal will contain specifically the
vertial details and can be used if one wants to apply a special filter for the vertical details.
(Like searching for vertical lines.)

• HL: Horisontal detail, vertical approximation.

• HH: Detail in both vertical and horisontal direction.
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h[n]
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(a) One level of 2D forward DWT
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(b) How (a) is usually visualised on screen.

Figure 2.12: 2D Forward DWT

In Figure 2.12, the 2D Forward DWT is shown, Figure 2.12(b) shows how the four signals are
visualised. LL is used for further decomposition, Figure 2.13 shows how a three level forward
DWT is visualized. Backward DWT is done the exact opposite way, first on the columns and
then on the rows. The other approach to 2D is called the non-separable approach and is still
on a basic research level. It will not be discussed further in this thesis.

Choice of Wavelets

Unlike the FT, we have to choose which wavelets to use for the wavelet transform. The main
reason we are using wavelets in this thesis is for denoising. Therefore, the wavelet we chose
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(a) Three level forward DWT (b) The forward DWT on a real picture.

Figure 2.13: Multiple levels of 2D DWT

have to fit this purpose. In [28], there is a discussion of the important properties the wavelet
should have for denoising. There are two main points.

• Denoising is facilitated by a sparse environment, i.e. the detail should contain few non-
neglible coefficients.

• The visual quality is important.

The first objective is met by having many vanishing moments Ñ and as small support size K as
possible. The theoretical limit is K = 2Ñ − 1 and is achieved in the Daubechies wavelets.
This is a family of wavelets usually denoted dbÑ . Visual quality is usually achieved by hav-
ing a regular and symmetric wavelet. Daubechies symlets symÑ are the most compactly
supported symmetric wavelets. In this thesis, the Daubiches 9/7 and 5/3 wavelets are used.
They are chosen because they are the most used in denoising litterature and they are used in
the JPEG2000 standard (indicating good visual quality) as well.

2.4 Filters

As part of this thesis, one goal was to assess the possibility of doing simple spatial filters used
in ultrasound processing on the GPU. In this section, we will take a look at these filters. The
theory of these filters can be found in any introductionary textbook on image processing like
Gonzales and Woods [30].

2.4.1 Gaussian blur

Gaussian blur is a widely used image filter. The effect of a Gaussian blur is to reduce noise
and detail of an image, i.e. a low pass on an image. The name Gaussian blur comes from the
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use of the normal distribution
G(r) =

1√
2πσ2

e−r
2/2pi3 (2.21)

which is also called the Gaussian distribution. r is the blur radius r2 = x2 + y2, σ the stan-
dard deviation or ‘the amount of blurring‘. Applying a Gaussian blur to a image is simply
convolving the image with the Gaussian distribution.
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(a) σ = 0.3
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(b) σ = 0.5

Figure 2.14: Gauss function

(a) The original picture,
Lena

(b) Gaussian filter applied (c) Laplacian edge en-
chancement applied

Figure 2.15: Example of image filtering

2.4.2 Edge enhancement

To do edge enhancement we have chosen to use the Laplacian. The Laplacian52f of an image
f(x, y) is given by:

52 f =
δ2f

δx2
+
δ2f

δy2
(2.22)

[30]. We are working on images, so we need a discrete representation. The discrete partial
derivatives are:

δ2f

δx2
= f(x+ 1, y) + f(x− 1, y)− 2f(x, y)

δ2f

δy2
= f(x, y + 1) + f(x, y − 1)− 2f(x, y)

(2.23)
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which gives us:

52 f = f(x, y + 1) + f(x, y − 1) + f(x+ 1, y) + f(x− 1, y)− 4f(x, y) (2.24)

Using only these equations directly would give us the features as greyish lines on a dark
background. If we add the original image back again we will get images with feature en-
hancement. So the final filter equation is given in Equation 2.25.

g(x, y) = 52f + f(x, y) (2.25)

2.4.3 Wavelet spatial filters

“The purpose of subband filtering is of course not to just decompose and recon-
struct. The goal of the game is to do some compression or processing between the
decomposition and reconstruction stages.” – Daubechies [25]

In Section 2.3, we introduced wavelets as a method of decomposing an image into a number
of detail coefficients and approximations. By applying the backward DWT we get the original
image back. If we apply filters to the decomposed results before composition it is possible to
refine the end result. There are some options on which of the coefficients to filter. In Figure
2.16, these options are shown on a two-level wavelet.
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Figure 2.16: Figure showing where filtering may be applied between forward and backward
DWT.

The most used option is to decompose the image entirely and then apply filter to the decom-
posed coefficients (f2, f3 and f4. It is also possible to apply a filter to the approximation before
further decomposing it (f1). Usually we apply different kinds of filters to the low pass part
f2 and the high pass part (f3 and f4). We will now discuss a popular wavelet filter called
Wavelet Shrinkage.

Wavelet Shrinkage (WS)

Wavelet Shrinkage is a filtering method that was first applied to denoising by Donoho [31].
The idea is that most speckle noise lies in the high frequencies of the image. In addition, the
noise will usually contribute less than the features. So if we reduce the detail coefficients we
can reduce the noise energy while still preserving most of the features. Since the noise is most
evident in the higher frequencies, WS applies more reduction to the finer detail coefficients,
and less to the coarser. In terms of levels, the low numbered levels are reduced more. The
reduction method used is thresholding. Especially two thresholding methods are used much
in literature, soft and hard thresholding. From [19] we have a definition of soft thresholding

u = S(v, t) = sign(v)(|v| − t)+ (2.26)
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where

(|v| − t)+ =

{
|v| − t if |v| > t

0 otherwise
(2.27)

Hard thresholding is defined as:

u = H(v, t) =

{
0 if t > v > −t
v if otherwise

(2.28)

The thresholding functions are shown in Figure 2.17 The difference between the two thresh-
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(a) The original function
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(c) Hard thresholding

Figure 2.17: Thresholding functions

olding functions are small in practice. Usually hard thresholding contains features better, but
also it contains more artefacts from the wavelet synthesis. An extreme example of these arte-
facts can be seen in Figure 2.18. As can be seen, these artefacts are quite similar to the artefacts
produced by hard filters in the Fourier domain.

(a) The original image (b) Thresholded image

Figure 2.18: Example of too much hard thresholding
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2.5 Previous GPU work on wavelets

The simple spatial filters has been implemented on the GPU by numerous authors. [32] lists
sample implementations of a Gaussian Filter. The Laplacian can be implemented in a similar
manner. Our implementation of these techniques is similar and exhibits similar performance.

As far as the authors knows, there has only been one previous attemt at implementing the
DWT, presented in [33]. The method presented uses a lookup table to check which data values
and kernel values should be used for each result. This table takes care of boundary conditions
and it also stores information about which kernel (high or low) that should be used. One of
the positive results of this design is that the decomposition and composition are very similar.
Also the design allows for wavelet kernels of different size without to much re-coding. The
downside to this approach is that it uses many texture reads and all but one of them are
dependent. Dependent texture reads are texture reads that depend on earlier texture reads in
the same kernel computation. A more detailed comparison of the previous method and our
contribution will be presented in Section 3.4.

All of the methods presented in this thesis have previously been implemented on the CPU.
We will hence also compare all our methods to CPU-equivalent implementations.
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Chapter 3
Novel Wavelet Techniques

The devil is in the details
-Proverb

The background theory for GPUs, Wavelets and Ultrasound were discussed in the previous
chapter. In this chapter, our novel methods will be presented, including a texture addressing
optimisation that we have used for both DWT and spatial filtering (Section 3.1). The main
techniques developed, DWT on the GPU, is described in Section 3.2. We have also imple-
mented spatial filters that are used between forward and backward DWT. These are described
in Section 3.3. In Section 3.4, we derive a theoretical model that can be used to analyse the
performance of the algorithms on the GPU.

3.1 Texture addressing on the GPU

One of the novel techniques developed is the texture addressing optimisation used in our
filters, both for the DWT and the spatial filters. The idea itself is not new, but it has not been
used in conjunction with DWT before.

In its most basic form, filters are just functions that take in an input image and outputs a
transformed output image. Usually, the image filters are defined by their filter kernels. A
filter kernel define how to construct one pixel in the output image. The input to the kernel is
usually at least the pixel in the same position in the input image as the current output value
calculated by the kernel, but also the pixels surrounding them are often used. The inputs
are often called ’taps’. This kind of computation maps perfectly to the GPU; One output and
several inputs. In Figure 3.1, a schematic overview of filtering process on a GPU is shown.
In order to execute a filter kernel (fragment program), we will have to know the address of
the corresponding pixel in the input texture. This will be achieved using the texture input
coordinates. As discussed in Section 2.1.4 the texture coordinates are given as arguments
to the vertices in the quad. They are then interpolated across the quad. Texture coordinate
addresses in DirectX are in [0, 1] regardless of the size of the source texture.

If we use a quad with texture coordinates, we can access the input pixel with same coordinates
as the current output pixel with:

27



28 3. Novel Wavelet Techniques
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Figure 3.1: Schematic overview of the filter rendering process.
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Figure 3.2: Explanation of different filter kernels.

float4 value = tex2D(Source, Tex);

We now have the address to the centre pixel. Almost all filter kernels use more taps. E.g. a
simple 3x3 kernel like the one in Figure 3.2(a). To compute the addresses we will have to add
or subtract the texel 1 width and height. The obvious way to do this would be to do it in the
fragment shader like this: (in this example for tap 5)

tap[5] = tex2D(Source,float2(Tex.x + texelWidth, Tex.y))

Since source texture coordinates go from 0 to 1, texelWidth is 1/sourceWidth. However, this
is quite inefficient. For a picture with 10242 elements, each coordinate will be computed 1
048 576 times! We can instead precompute the offsets in the vertex shader and pass them
along as parameters to the fragment shader. Listing 3.1 shows a vertex shader calculating the
addresses for the sample 9-tap kernel.

1A texel is one element in texture memory.
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NINE_TAP_STRUCT SevenTapVertexShader(INPUT_TEX input) {
NINE_TAP_STRUCT output = (NINE_TAP_STRUCT)0;

output.Position = mul(input.Position, mvpMatrix);
output.Tap0 = input.Tex + float2(0 - texelHeight, texelWidth);
output.Tap1 = input.Tex + float2(0 - texelHeight, 0 );
output.Tap2 = input.Tex + float2(0 - texelHeight, texelWidth);

output.Tap3 = input.Tex + float2(0, -texelWidth);
output.Tap4 = input.Tex
output.Tap5 = input.Tex + float2(0, texelWidth);

output.Tap6 = input.Tex + float2(0 + texelHeight, -texelWidth);
output.Tap7 = input.Tex + float2(0 + texelHeight, 0);
output.Tap8 = input.Tex + float2(0 + texelHeight, texelWidth);
return output;

}

Listing 3.1: Nine Tap Vertex Shader

Since it is only possible to transfer a small number, typically no more than nine, texture coor-
dinates from the vertex to the fragment shader, this method doesn’t always work. In this case,
some of the values can be precomputed in the vertex shader, while the rest is computed in the
fragment shader. In Figure 3.2(b), a kernel that can be used for separable 15x15 kernels is
shown. Here, the dots are precomputed in the vertex shader, while the crosses are computed
in the fragment shader.

The GPU allows for several interpolation methods when accessing texture memory. This
means that if you try to access an address between two elements, you can get a blend of
the two elements. For our application this is rarely what we want, so we have disabled this
option and chosen ‘point‘ selection. This mode chooses the texture element closest to the
address given.

3.2 DWT on the GPU

In this Section, we will discuss the main contribution of this thesis: A novel fast algorithm for
computing the DWT on the GPU. The method presented here is faster than any other method,
CPU or GPU, that the author knows about.

To recapitulate from Section 2.3.4, the two algorithms, or equations that the DWT consists of
are: Equation 2.19 (Forward DWT)

λ(x)j+1 =
k=∞∑
k=−∞

h(k)λj(2x+ k)

γ(x)j+1 =
k=∞∑
k=−∞

g(k)λj(2x+ k + 1)
(3.1)
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Figure 3.3: Schematic overview of the DWT process.

and Equation 2.20 (Backward DWT)

λj(x) =
k=∞∑
k=−∞

h′(k)λj−1(x+ k) +
k=∞∑
k=−∞

g′(k)γj−1(x+k) (3.2)

There are two known ways of implementing the DWT on the CPU. The most obvious is to
implement the convolution in Equation 3.1 and 3.2 directly. The other is called the lifting
scheme [34], which is an optimised version which uses approximately half of the floating-
point operations used in the direct version. For the CPU, the lifting scheme is clearly the
fastest algorithm. However, it uses two sub steps for each forward DWT level called lifting
and update. The update step is dependent upon the lifting step. To implement this on the GPU
we would have to use two render passes for each forward DWT, for a total of four passes
(2 steps * 2 directions) for each level of . The direct computation can be computed in one
step pr. direction, two in total for each forward DWT level. The situation is the same for
the inverse transform. A render pass causes a switch in the rendering context. This gives
quite a lot of overhead and should therefore be avoided. Our implementation of the DWT
uses the direct computation method. The algorithm contains five phases: initialisation, four
computational phases and display. The phases can be seen in Figure 3.3(b). The initialisation,
uploading of textures and display phases will not be described here as they have already been
covered in Chapter 2.1. Forward and Backward DWT will be discussed in Section 3.2.1 and
3.2.2 respectively.
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3.2.1 Forward Discrete Wavelet Transform

The equation presented in the previous section has an infinite filter size, but for practical
applications we will always have a finite filter. For a filter of size K, we can rewrite Equation
3.1 to:

λ(x)j−1 =
k=K∑
k=0

h(k)λ(2x− K

2
+ k)

γ(x)j−1 =
k=K∑
k=0

g(k)γ(2x+ 1− K

2
+ k)

(3.3)

A straightforward implementation of this would be to compute the high and low values as
shown in Listing 3.2.

lowResult[n] = 0;
for(int n=0;n<N;n+=2) {
for(int k=0;k<K;k++) {
lowResult[n/2] += source[n+k-K/2] * lowKernel[k]

}
}

highResult[n] = 0;
for(int n=0;n<N;n+=2) {
for(int k=0;k<K;k++) {
highResult[n/2] += source[n+k-K/2+1] * highKernel[k]

}
}

Listing 3.2: Forward DWT Pseudocode using two for-loops

For the CPU, this algorithm will run fast, and it is possible to implement it on the GPU using
two passes. By drawing a quad with size N

2 results in an equal number of fragment executed.
The inner loops can be directly implemented as fragment programs. However, this approach
has several drawbacks. First, it needs two render passes, and as we discussed this will hinder
performance. Secondly, it doesn’t take into account boundary conditions. This happens when
n < K

2 . In the previous implementation of DWT on the GPU, both of these problems were
solved by combining the for-loops and using a lookup table. The essence of their approach
can be seen in Listing 3.3.

for(int n=0;n<N;n++) {
if(n < N) {
allResults[n] = 0;
for(int k=0;k<K;k++) {
allResults[n] += source[n+k-K/2] * lowKernel[k]

}
} else {
allResults[n] = 0;
for(int k=0;k<K;k++) {
allResults[n] += source[n+k-K/2+1] * highKernel[k]

}
}

}

Listing 3.3: Forward DWT Pseudocode, old version
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The if-else statement has been written for clarity, it is not in their code. Instead, a lookup
table is used. This approach has some performance problems which we will discuss later, we
have chosen another route. Just like the previous implementation, we have chosen to rewrite
Listing 3.2 so it just consists of one for-loop instead of two. Our version is shown in Listing
3.4

for(int n=0;n<N;n+=2) {
lowResult[n] = 0;
highResult[n] = 0;
for(int k=0;k<K;k++) {
lowResult[n/2] += source[n+k-K/2] * lowKernel[k]
highResult[n/2] += source[n+k-K/2+1] * highKernel[k]

}
}

Listing 3.4: Forward DWT Pseudocode using one for-loop

This solves the problem of two render passes, but another problem arises because a fragment
shader can normally only output one value (the pixel that should be displayed on the screen).
This is solved by using the advanced technique Multiple Render Target (MRT) which makes
it possible to output up to eight values at the time. Using MRT itself is quite easy, but very
few GPGPU algorithms have used it so far because it is fairly new. One added benefit of com-
puting two values in one fragment shader is that we will need less texture lookups (memory
fetches). As we shall discuss later, avoiding texture lookups is critical to performance.

The second challenge is boundary conditions. The usual way to solve this for DWT is to mir-
ror the source so that lookups that occur outside the normal source bounds yield a mirrored
source. The previous implementation stated this as one of the most important reasons to use
a lookup table. In our implementation, we have chosen instead to use the build in support for
mirroring textures in the hardware.

The refactoring of the code from Listing 3.2 to Listing 3.4 might not seem intuitive at first, but
as we have shown, it turns out that it is a smart way to do the calculations considering the
hardware limitations and abilities of the GPU. We will now discuss the algorithm in greater
detail and try to explain some implementation intricacies that arise.

As the reader might have noticed, we have so far only discussed the 1D (horizontal) case. We
will continue to do so, because as we explained in Section 2.3, the DWT is separable and the
vertical forward transform is very similar to the horizontal case. We will leave the discussion
of the vertical version to the end of this section.

As discussed in Section 2.1.4, the common way to execute GPGPU-programs is to draw a quad
with the same size as the output. In forward DWT, the output is the same size as the input.
Half of it low pass result, the other half high pass. In our algorithm, we output the low and
high results into two different textures using the Multiple Render Targets (MRT) technique.
The output, and the quad we draw is really half the size of the input: [w2 , h]. This causes the
fragment shader to be called wh

2 = n
2 times, which is the same number of times the outer loop

in Listing 3.4 is called. If we let lowResult be the first texture target, and highResult the second,
the inner part in the listing is what we need to implement in the fragment program. It can
be very similar, but there are some technicalities involved in addressing the source texture.
Figure 3.4 and 3.5 shows the addressing used. The main point is letting the source texture
address run from 0 to 1 as usual, but in increments of 2 per drawn pixel. The reason we need
to do this is because we compute two values for each drawn pixel, both high and low value.
This corresponds to the + = 2 part in Listing 3.4. In Figure ??, the calculation of one pair of
low/high values is depicted.
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Figure 3.4: Forward DWT addressing

The vertical forward transform will be carried out on both results from the horizontal forward
transform, both high and low pass. First, we bind the high result as the source and draw a
quad with w

2 ,
h
2 . This will produce HH and HL. Then we bind the low result and calculate LH

and LL.

3.2.2 Backward Discrete Wavelet Transform

Unfortunately, the algorithm for the backward DWT is different from the forward transform.
This means that the method has to be developed independently. The previous GPU imple-
mentation managed to keep the GPU implementation similar by redefining the lookup table.
But since we are trying to get the maximum performance from the hardware our solution has
to be different.

We rewrite equation 3.2 to:

λj(x) =
k=K∑
k=0

h′(k)λj−1(x+ k − K

2
) +

k=K∑
k=0

g′(k)γj−1(x+ k − K

2
) (3.4)

As we can see, λj−1(x) and γj−1(x) is the upsampled and boundary extended low-pass and
high-pass signal respectively. In Figure 3.6, the backward transform of a single element using
a kernel with five elements is shown. As is shown, not all high and low values are used from
each filter kernel as it may seem from equation 3.4. Instead we create an ‘interleaved kernel‘
with every second parameter from the high and low kernels. The computation of element r2
is shown again in Figure 3.7(a), this time with the interleaved kernel. Every even calculation
will use this version of the interleaved kernel. The odd calculations will use the ’inversed’
version, swapping high and low elements. This is shown in Figure 3.7(b) for element r3. We
name the new interleaved kernels even kernel ĥ and odd kernel ĝ and define them as:

ĥ(x) =

{
h′(x) if x is odd
g′(x) otherwise

(3.5)
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Figure 3.5: Calculation of a single high/low pair

ĝ(x) =

{
h′(x) if x is even
g′(x) otherwise

(3.6)

The low pass kernel elements of the new kernels has to be used with results from the low pass
forward transform, and high pass kernel elements with the results from high pass forward
transform. This can also be seen in Figure 3.7. We define selectors zeven and zodd to be:

zeven(x) =

{
λ(x) if x is odd
γ(x) otherwise

(3.7)

zodd(x) =

{
λ(x) if x is even
γ(x) otherwise

(3.8)

We can now write a pseudocode program to compute the backward DWT.

for(int n=0;n<N;n++) {
if(isEven(n)) {
for(int k=0;k<K;k++) {
result[n] += zEven[n+k-K/2] * hHat[k];

}
} else {// odd
for(int k=0;k<K;k++) {
result[n] += zOdd[n+k-K/2] * gHat[k];

}
}

}

Listing 3.5: "DWT Synthesis Pseudocode"

As we can see from Listing 3.5 and the discussion above we have to act differently on even
and odd results. The straightforward way would be to use a conditional statement, but as
discussed in Section 2.1.4 conditional statements can be very expensive on the GPU. On the
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Figure 3.6: Performing backward DWT on element 2. The subscripts indicate position.
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(b) The two next computations

Figure 3.7: Simplified view of the backward transform

CPU the situation would be similar. The conditional branching in the loop could be avoided
by using static branch resolution, or ‘moving the conditional up the pipeline‘. So instead of
having one loop with conditional branching we could create two loops with no branching.
We can do the same on the GPU. By executing a different shader based on the result currently
calculated, even or odd, we can achieve this. By drawing quads that cover only the parts of
the result that we would like to execute we can choose the shader that should be excuted.
We draw quads covering the even parts when we would like to execute the even fragment
program and quads covering the odd parts when we would like to execute the odd fragment
program. Figure 3.8 shows how this will look for the horizontal case. The even part is first
calculated and then the odd. In total, the whole result is calculated.

The fragment programs are very similar to the inner loops of Listing 3.5.
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Figure 3.8: Static branch resolution by drawing quads.

3.2.3 Single channel version

In medical applications like ultrasound, the data usually consists of single channel values,
and doesn’t use the entire RGBA scale. The general DWT described in the previous sections
doesn’t efficiently compute these kind of single valued data. Actually, it will waste almost
1/4 of its capabilities. There exists at least two different approaches to this problem. The first
and perhaps most obvious idea is to pack the data four and four, use the general DWT and
then unpack it again. This is the approach taken by the various SSE CPU implementations
of the DWT. SSE is a special SIMD instruction set for the Intel x86 which can operate on 4
data values simultaneously. This implementation becomes complicated because we want to
do 2D DWT, and if the data values have to be unpacked and packed again for each of the two
directions, the overhead becomes larger than the efficiency gained. A comparison of different
SIMD implementations can be found in [35].

We have chosen another route. In our implementation, we use the additional channels to
avoid the use of multiple render targets. We write to two channels in the same texture during
horizontal forward transform and then to four channels during the vertical forward trans-
form. Obviously, this doesn’t use all the arithmetic capability of the GPU, but we benefit
greatly from additional memory coherence. In addition, when the forward DWT is done, we
will have all our data in one texture where it is easy to apply the filters to all the DWT re-
sults in a single render pass. This implementation is also very similar to the general RGBA
implementation, and the surrounding framework is almost identical.

3.3 Spatial filters

Between the forward and backward transforms we apply spatial filters to the high and low
pass data. In this section, we will discuss the filters developed during this thesis. Some of
the filters have already been explored in literature and our contribution is merely to use them
in a DWT setting. We have opted to include them for completeness. This includes Gaussian
and Laplacian filtering discussed in Section 3.3.1 and 3.3.2. Soft and Hard thresholding how-
ever, have not, to the authors knowledge, been implemented on the GPU. We develop special
versions of these filters tailored to the hardware in Section 3.3.3 and 3.3.4.
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3.3.1 Gaussian blur

As mentioned in Section 2.5 the Gaussian blur and the Laplacian has already been imple-
mented by previous authors. Our contribution is to create the filtering framework surround-
ing them, and this section is included mostly for completeness since these filters are used in
conjunction with the Discrete Wavelet Transform.

In Section 2.4.1, we discussed the Gaussian blur. A practical filter is shown in Figure 3.9(a).
It has σ = 1 and has been cut for radii larger than 2. The values at larger radii are so small
that they can be neglected. By convolving this filter with the image, we get a blurred image.
The Gaussian is separable, which means that we can do a horizontal and then a vertical blur.
This makes it possible to compute it in O(nMN) + O(mMN) instead of O(mnMN) where
m,n are kernel dimensions and M,N are image dimensions. In Listing 3.6, the fragment
code for horizontal filtering is shown. For simplicity we have shown it without vertex shader
optimisation discussed in the previous section.

float blurWeight[] = {0.0256,0.0952,0.1502,0.0952,0.0256};

PS_OUT GaussianBlurPS(INPUT_TEX input) {
PS_OUT output = (PS_OUT)0;

// Convolute
for(int i=0;i<6;i++)
output.rgb += tex2D(SourceSampler, float2(input.Center.x + (i-2)*

imageWidth, input.Center.y) *
blurWeight[i];

output.a = 1; // we don’t blur alpha
return output;

}

Listing 3.6: Fragment shader code for Gaussian filtering

0.0037 0.0146 0.0256 0.0146 0.0037

0.0146 0.0586 0.0952 0.0586 0.0146

0.0256 0.0952 0.1502 0.0952 0.0256

0.0146 0.0586 0.0952 0.0586 0.0146

0.0037 0.0146 0.0256 0.0146 0.0037

(a) 5x5 Gauss filter. σ=1

0 0.1 0

0.1 -0.4 0.1

0 0.1 0

(b) Laplacian as defined in
Equation 2.24

0.1 0.1 0.1

0.1 -0.8 0.1

0.1 0.1 0.1

(c) A diagonal Laplacian

Figure 3.9: Filter kernels

3.3.2 Edge enhancement

In Section 2.4.2, we discussed the Laplacian and derived a discrete formula. Two filters for
practical use are given in Figure 3.9. 3.9(a) is the one given in Equation 2.24. Figure 3.9(b) is
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the diagonal version. We use these filters in the same way as we used the Gaussian filters in
Section 3.3.1.

3.3.3 Soft thresholding

In Section 2.4.3, soft thresholding was discussed. On the CPU it has a quite simple and direct
implementation. Listing 3.7 shows it. However this does not fit especially good on the GPU.

double softThreshold(double input, double threshold) {
if(abs(input) < threshold) return 0.0;
if(input < 0.0) return input + threshold;
return input - threshold;

}

Listing 3.7: Soft Thresholding in C

The reason for this, is that this code uses branching, which unfortunately can be quite expen-
sive on the GPU [1]. Additionally, branching is one of the few operations that are not SIMD on
the GPU. Instead we have developed a method which uses the build-in intrinsics and avoids
branching. We use the following intrinsics:

• sign(val). Returns the sign of val. 0 if val is 0, -1 if val < 0 and 1 if val > 0.

• max(valOne, valTwo). Returns the maximum of valOne and valTwo.

• abs(val). Returns the absolute value of val.

All of these intrinsics work on vectors of up to 4 values and they are usually computed in
one cycle. As an example, max([1,2,3,4], [0,0,5,5]) will be [1,2,5,5]. If the function would only
contain positive values we could have used threshold(x) = max(0, val − T ) to get the soft
threshold, where T is the threshold value. Since this function is going to be used on wavelet
coefficients we have to generalise it to negative values as well. The function

float softThreshold(float x) {
return sign(x) * max(0, abs(val) - T)

}

Listing 3.8: Soft Thresholding in HLSL

will accomplish that. In Figure 3.10, we illustrate the different parts of this function.
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(a) The original
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(b) abs(x)− T
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(c) max(0, abs(x) −
T )

-5 -2.5 0 2.5 5

-2.5
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(d) Soft thresh-
olding sign(x) ∗
max(0, abs(x)− T )

Figure 3.10: Soft thresholding function explained
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3.3.4 Hard thresholding

Hard thresholding is very similar to soft thresholding as can be seen in the pseudo-code in
Listing 3.9.

double hardThreshold(double input, double threshold) {
if(abs(input) < threshold) return 0.0;
return input;

}

Listing 3.9: Hard Thresholding in C

Again we try to avoid the branching when implementing the threshold on the GPU. We use
the same operators as in soft thresholding, but the function it self is a bit different.

float hardThreshold(float x) {
return sign(max(abs(x)-T, 0) * x

}

Listing 3.10: Hard Thresholding in HLSL

The explanation for this function can be found in Figure 3.11.

-5 -2.5 0 2.5 5

-2.5

2.5

(a) The original
function f(x) = x

-5 -2.5 0 2.5 5

-2.5

2.5

(b) max(0, abs(x) −
T )

-5 -2.5 0 2.5 5

-2.5

2.5

(c)
sign(max(0, abs(x)−
T )))

-5 -2.5 0 2.5 5

-2.5

2.5

(d) Hard
thresholding
sign(max(0, abs(x)−
T )) ∗ x

Figure 3.11: Hard thresholding function explained

3.4 Theoretic GPU Performance model

In this section, we will formulate a model for the computation on the GPU. It is based on
theory from [36]. The GPU is complicated piece of hardware, but we will keep our model
very simple. One basic model of computation time breaks the computation time (Ttotal) into
overhead (Toverhead), memory transfer (Tupload) and computation time (Tcomputation). Such a
model is formulated in Equation 3.9.

Ttotal = Toverhead + Tupload + Tcomputation (3.9)

Considering Figure 3.12, which shows the architecture of a PC with a GPU, we can break
down the equation as follows:

The overhead consists mainly of the time spent in calling various functions from the DirectX
API. It is assumed to be independent of Nelements, the number of elements computed.

Toverhead = constant (3.10)

Erik Axel Nielsen



40 3. Novel Wavelet Techniques
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Main Memory Graphics 
Memory

PCI Express
8 GB/s
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DDR2
12.8 GB/s

DDR3
86.4 GB/s

Figure 3.12: A model of the system, including GPU, CPU and memory

Each element consists of four subelements: red, green, blue and alpha, and when an element
is transferred from main memory to the GPU, each subelement is represented by one byte. In
total four bytes are transferred per upload element (Nuploadbyte). The memory transfer time is
given by the following equation:

Tupload =
Nuploadbyte

Bcpu

Nuploadbyte = 4Nelement
(3.11)

Bcpu being the bandwidth between CPU main memory and GPU. The DWT requires floating
point precision for correct computation, so when we do further calculations, we represent the
elements as 16 bit floating point numbers. Thus, each texture memory element (Ntexturebyte)
occupies eight bytes. The GPU is able to do arithmetic operations and texture fetches simul-
taneously, which gives the following approximation for the computation time on the GPU:

Tcomputation = max(Tgpuarithmetic, Tgpumemtransfer)

Tgpumemtransfer =
Ntexturebyte ∗Otexture

Bgpu

Tgpuarithmetic =
4Nelement ∗Oarithmetic

Oarithmetic/s

Ntexturebyte = 8Nelement

(3.12)

Otexture and Oarithmetic is the number of texture and arithmetic operations respectively. Bgpu
is the memory bandwidth between the GPU memory and the GPU, Oarithmetic/s is the num-
ber of arithmetic operations the GPU can calculate per second. The arithmetic operations has
to be multiplied by four because each element consists of four subelements. The execution
time ratio (Rat) between arithmetic and texture operations is defined as follows:

Rat =
4Nelement/Oarithmetic/s

Ntexturebyte/Bgpu
(3.13)

This ratio tells us how many artithmetic operations we can perform per texture operation
before the arithmetic operations are the dominating factor.
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3.4.1 Example graphic card

In this Section, we will use the equations derived in the previous section to analyse one ex-
ample graphic card, the GeForce 8800 GTX. This is the card we later shall use for evaluation.
The cards basic properties are listed in Table 3.1.

Property GeForce 8800

Graphics Bus Speed 86.4GB/s
Memory (MB) 768
Core Clock (MHz) 575
Shader Clock (MHz) 1350
Stream Processors 128
Memory Interface DDR3, 684bits
Instructions per clock 2

Table 3.1: GeForce 8800 GTX performance numbers

Estimating the exact number of floating point operations per second (GFLOPS) on a GPU can
be difficult. We have used the following computation 2:

575Mhz ∗ 128processors ∗ 2flops/instruction ∗ 2instructions/clock = 332GFLOPS

Using the Microsoft fxc tool, which outputs assembly instructions, we have measured that
our programs consist of approximately 70% Multiply-Add (mad) arithmetic operations The
rest of the arithmetic operations are mainly declarations and mov operations. mad operates at
2 flops/instruction. The other arithmetic operations operates at 1-4 flops/instruction, which
makes an approximation of 2 flops/instruction a reasonable estimate.

The transfers between main memory and GPU are limited by the PCI-express bus which has
a maximum throughput of∼8GB/s. The GPU memory is DDR3 with a theoretical bandwidth
of ∼86.4GB/s.

We also used the fxc tool to estimate the number of operations needed by our programs.
These values are listed in Table 3.2. It might seem strange that the forward transform uses

Forward DWT Backward DWT
Algorithm \ Instructions Arithmetic Texture Arithmetic Texture

gpu-mono 19 5 10 5
gpu-colour 20 5 10 9
gpu-previous 140 28 140 28

Table 3.2: The number of fragment instructions used by the GPU implementations.

twice as many arithmetic operations as the the backward transform. The reason is that for-
ward DWT uses so many texture addresses that all can’t be precalculated in the vertex shader,
as discussed in Section 3.1. So it uses a couple of extra operations to calculate these addresses.
Another peculiar result is that the previous implementation uses the exact same number of

2from [37]
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operations in both backward and forward DWT. The reason is that they use a very similar
fragment program for both executions as discussed in Section 3.2.2. The differences between
colour and mono version will be further discussed in the evaluation chapter, in this analysis
we will use the colour version. Combining the forward and backward transform, but exclud-
ing the filters, our algorithm uses 14 texture operations and 30 arithmetic operations.

In Table 3.3, the variables and calculations from the above discussion are summarised for
Nelements = 5122. There are a number of interesting results in this table. The first is the

Variable Value

Nelement 5122

Bcpu ∼8GB/s
Bgpu ∼86.4GB/s
Oarithmetic 30
Otexture 14
Oarithmetic/s 332 GFLOPS
Tgpuarithmetic 0.09ms
Tgpumemtransfer 0.37ms
Rat 8.3
Tcomputation 0.37ms
Tupload 0.13ms
Ttotal 0.5ms

Table 3.3: Summary of variables, GeForce 8800

high number for Rat, ∼8. A program can have eight times as many arithmetic operations as
texture operations. The real number is probably a bit higher because we have not considered
latency issues. Our program (gpu-colour) has a ratio of∼2, and we can see that Tgpumemtransfer
dominates the GPU computation time.

Further, the table shows that approximately 25% of the time is spent transferring data to the
GPU. This time is a pure extra cost compared to calculating the DWT on the CPU, and it is
not possible to change it without changing underlying hardware.

3.4.2 Comparison with previous implementations

From Table 3.2 it is quite evident that our implementation uses less fragment operations than
the previous GPU implementation. We use 30 arithmetic and 9 texture operations, while the
previous implementation uses 280 arithmetic and 56 texture operations. The largest problem
is the 56 texture operations, by the time these are fetched, 450 arithmetic operations could
have been performed. The method uses texture operations for table lookup,kernel lookup
and data lookup. The new implementation only need data lookup, and it combines lookups
to compute several values. Another problem of the previous implementation, that doesn’t
manifest itself in the tables, is that it uses dependent texture reads. Dependent texture reads
are texture reads that depend on previous texture reads. They effectively stall the pipeline
until the read depended upon is completed. Our method uses no such reads. We therefore
expect a speedup over the previous gpu implementation.

It is difficult to directly compare the GPU with a CPU implementation because of the great
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difference in both hardware and algorithms used. An approximation is given in Equation
3.14.

speedup =
Tcputime
Tgputime

=
Tcputime

Toverhead + Tupload + Tcomputation

where

Tcputime =
Nelements ·Ocpu

Ocpu/s

(3.14)

Where Tgputime and Tcputime is the time to compute the DWT on the GPU and the CPU re-
spectively. In our case, Tgputime is the same as Ttotal which we defined earlier. Ocpu is the
number of operations needed to compute the DWT on the CPU, and Ocpu/s is the number
of operations per second on the CPU. In [1] Ocpu/s is approximated to 25 GFLOPS. We have
estimated Ocpu to 240 operations by using Microsoft Visual Studio.

Tcputime =
5122elements · 240operations

25e9operations/s
= 3.15ms

This gives an estimated speedup of:

speedup =
3.15
0.5

= 6.3

It should be stressed that this calculation is only a rough approximation. The next chapter
will show the actual results. We expect both Tcputime and Tcputime to be underestimated since
we have ignored overhead and latency issues.

In this chapter, we have discussed how to implement different ultrasound filters on the GPU.
The most important and complex was the wavelet filter. In the next chapter, we will bench-
mark and compare some of the different approaches that were discussed in this chapter.
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Chapter 4
Results Not to be absolutely certain is, I

think, one of the essential things in
rationality.
-Bertrand Russell

In this chapter, the performance and visual quality of the proposed algorithms are described.
In Section 4.1, the test setup is described. Performance benchmarking are given in Section 4.2
and visual quality, is analysed in Section ??. The main results are summarised in Section 4.3.

4.1 Testing environment

Our testbed includes two different GPUs from two different GPU generations. Both GPUs
were tested on an Intel(R) Pentium(R) 4 CPU 3.20GHz with 16KB L1 cache, 2MB L2 cache
and 1GB DDR2 RAM installed. The graphics cards used were NVIDIA GeForce 7600 GS and
NVIDIA GeForce 8800 GTX. Their properties are listed in Table 4.1.

The DWT filtering CPU program was tested on an Intel Core 2 Duo 2 Ghz (T7200) with 2 GB
of DDR2 memory. This processor has 4 MB of L2 cache.

All the programs were compiled using Visual Studio 2005 (8.0.50727.762) and the follow-
ing compile time optimisation options: /O2 (fast code) ,/GL (whole program optimisation),
/OPT:REF (eliminate unreferenced data) and /OPT:ICF (remove redundant comdats). For the
GPU programs DirectX9 April 2007 Retail version was used. The OS was Windows XP SP2,
with visual settings set to ‘for performance‘.
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Property GeForce 8800 GeForce 7600GS

Graphics Bus Technology PCI Express 16x PCI Express 16x
Memory (MB) 768 256
Core Clock (MHz) 575 400
Shader Clock (MHz) 1350 NA
Fragment Processors a NA 12.0
Vertex Processors a NA 5.0
Stream Processors a 128 NA
Memory Interface (bits) 684 128
Memory Bandwidth (GB/sec) 86.4 22.4
Fill Rate (Billion pixels/sec) 36.8 6.7
Drivers used 6.14.10.979 Forceware 93.71
Transistors (millions) 681 178
a GeForce 7600 has specific pixel and vertex processors, while the 8800

can dynamically assign processors for both tasks.

Table 4.1: The GPU specifications used in the test.

4.2 Benchmarking

This section will compare different implementations of the DWT. All of the programs com-
pute one analysis in three levels, Wavelet Shrinkage and a three level synthesis. For the GPU
programs, the time includes both uploading the data to the GPU and processing it. The fol-
lowing programs were tested:

• gpu-colour-32 GPU DWT as discussed in section 3.2. 32-bits

• gpu-colour-16 Same as gpu-colour-32 but with 16 bits precision.

• gpu-mono-32 GPU DWT on single channel data as discussed in section 3.2.3. 32-bits
precision.

• gpu-mono-16 Same as gpu-mono-32, but with 16 bits precision.

• previous-gpu-32 The program from [33]. It works on colour data with 32 bits precision.

• cpu-mono-32-single A SIMD-optimised CPU implementation. It works on singel channel
data.

• cpu-mono-32-dual Two cpu-mono-32-single programs running simultaneously. This is a
crude way to utilise the dual core, but as we shall see it works surprisingly well.

• gpu-*-*-7600gs Same as the gpu-* programs, but tested on a GeForce 7600GS instead of
the GeForce 8800 GTX.

The GPU supports both 16 bits and 32 bits of precision. The CPU, on the other hand doesn’t
support 16 bits, 32 bits is the lowest precision it supports. So one could argue that for a fair
comparison only the 32 bits versions should be compared. However, the extra precision is
unnecessary for the DWT, as the end results are identical for all practical purposes. 1 For this

1See section ?? for a comparison of 16 and 32 bits
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reason their results are compared directly to the 32 bits CPU versions as well as our own 32
bits GPU version.

4.2.1 Raw processing

In Table 4.2, the number of elements each algorithm can process pr micro second are com-
pared. Figure 4.3 shows the speedups of the algorithms relative to the CPU version.

Algorithm \ N 1282 2562 5122 10242 20482

gpu-mono-16 29.2 93.7 255.5 425.0 394.3
gpu-mono-32 29.5 92.7 255.5 321.2 273.8
gpu-colour-16 41.4 138.9 340.1 435.7 528.3
gpu-colour-32 41.3 139.6 326.1 435.6 441.8
previous-gpu-32 102.1 129.1 116.3 121.1 79.5
cpu-mono-32-single 17.7 17.7 18.1 17.7 17.7
cpu-mono-32-dual 35.0 35.0 35.0 35.0 35.0

Table 4.2: Performance comparison of different wavelet algorithms, measuring the number of
elements processed pr. micro second. The bold faced values indicate the largest number of
elements processed.
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Figure 4.1: The number of elements processed by the different methods pr ms, calculated for
different algorithms and data sizes.

Except for the smallest data size (1282) the methods developed in this thesis are superior to
the previous methods. Both the previously developed GPU method and the SIMD-optimised

Erik Axel Nielsen



48 4. Results

Algorithm \ N 1282 2562 5122 10242 20482

gpu-mono-16 1.6 5.3 14.1 24.0 22.3
gpu-mono-32 1.7 5.2 14.1 18.1 15.5
gpu-colour-16 2.3 7.8 18.8 24.6 29.8
gpu-colour-32 2.3 7.9 18.0 24.6 24.9
previous-gpu-32 5.8 7.3 6.4 6.8 4.5
cpu-mono-32-single 1.0 1.0 1.0 1.0 1.0
cpu-mono-32-dual 2.0 2.0 1.9 2.0 2.0

Table 4.3: Comparison of different wavelet algorithms, showing the speedups of the methods
relative to the single-CPU version

CPU method. For the largest size the best method is almost 30 times faster than the single
CPU version. The most important sizes are 2562 and 5122, since these are typical resolutions
of ultrasound data on a real scanner. In these cases, the proposed method is almost 19 times
and 24 times faster respectively.

Since the application in question, ultrasound, has a real time requirement, it is not only inter-
esting to see the raw processing power, but also how many frames it can render pr second.
This is shown in Table 4.4. Note that this table does not show an ”apple to apple” comparison.
The colour versions compute 4 times as many elements per frame, but as discussed in Section
3.2.3, ultrasound only needs one channel of data so computing four is a waste of resources if
it is possible to compute one in less time.

Algorithm \ N 1282 2562 5122 10242 20482

gpu-mono-16 1782 1430 975 405 94
gpu-mono-32 1801 1414 975 306 65
gpu-colour-16 632 530 324 104 31
gpu-colour-32 631 532 311 104 26
previous-gpu-32 1558 493 111 29 5
cpu-mono-32-single 1081 270 69 17 4
cpu-mono-32-dual 2162 541 138 34 8

Table 4.4: Comparison of different wavelet algorithms, showing the number of frames ren-
dered per second. Bold indicates the highest fps.

For practical use with ultrasound the numbers in Table 4.4 are probably more interesting than
the raw processing number. Not because we would like to render thousands of frames per
second, the limit from the transducers are 20 fps anyway, but rather because it tells us how
much more processing we can do before we dip below the required 20 fps. One of the goals of
this thesis was to consider if porting the enhancement techniques to the GPU would open up
the possibility of more advanced techniques. The gpu-mono techniques (the most interesting
ones from ultrasound perspective) achieves an astonishing 975 frames per second. This leaves
a lot of additional GPU resources available for more advanced techniques. And if we look at
only the filtering part the results are even more convincing. As we shall see shortly, we only
use ∼7% of the total spent time on filtering. The rest of the time is uploading, synthesis and
analysis which will be constant even if the filtering techniques are made more advanced.
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4.2.2 Further analysis

Part \ N 1282 2562 5122 10242 20482

Forward DWT 0.113 0.115 0.078 0.147 0.159
Backward DWT 0.307 0.401 0.694 1.157 2.033
Filtering 0.085 0.095 0.069 0.111 0.110
Uploading 0.033 0.058 0.159 1.002 8.295

Table 4.5: Breakdown of walltime for GPU Monochrome 16-bit

In Table 4.5, we have timed the different parts of the gpu-mono-16 program. In Figure 4.2,
the numbers from Table 4.5 are shown on a log-log scale. We have chosen to only look at the
gpu-mono-16 bit program because this is the most interesting for practical use in ultrasound
applications, but the relative sizes of the data are also representative for the 32 bits and colour
versions. This choice will be discussed in more detail in the discussion part.

Figure 4.2: Breakdown of walltime GPU Monochrome 16 bit on a log-log sale

One of the most intriguing aspects of computing the DWT on the GPU is that it offloads the
CPU which can be used to do other tasks. The real-time requirement of 3D ultrasound is 20
fps, and Table 4.6 shows the CPU load under this requirement. Only 20 fps is required because
the 3D ultrasound probes can’t gather data any faster. The 3D case is especially interesting
since it is the most data intensive mode, and offloading the CPU can be very beneficial. To
slow down the GPU versions, idle statements were inserted into the code to make the program
render exactly 20 fps. The GPU numbers in Table 4.6 were measured using the ’Task Manager’
application in Windows. The CPU numbers were calculated based on the numbers in Table
4.4. Numbers higher than 100% indicate failure to achieve 20 fps. Figure 4.3 shows the CPU
load for different solutions on 5122 elements. These tables show that by computing the DWT
on the GPU the CPU is offloaded considerably. On 5122 the load is 29% on the original single
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Algorithm \ N 1282 2562 5122 10242 20482

gpu-mono-16 1.0 % 1.0 % 1.0 % 3.0 % 8.0 %
cpu-mono-32-single 1.8 % 7.4 % 29.0 % 118.4 % 473.6 %
cpu-mono-32-dual 0.9 % 3.7 % 14.5 % 59.2 % 236.8 %

Table 4.6: Load on the CPU while rendering 20 fps.

(a) The current status, sin-
gle CPU

(b) Using dual-core CPU (c) The proposed solution,
using the GPU

Figure 4.3: Comparison of CPU load on 5122 elements.

CPU version. If we compute it on the GPU, the load is only 1%! This makes the CPU available
for other tasks.

In Section 3.2.3, we discussed the rationale for having a mono version. Theoretically it could
have a frame rate four times higher than the colour version. In that case, it would compute
the same number of elements per second. This theoretical limit is not possible to achieve, and
Table 4.7 shows the efficiency achieved by the mono version in 16 and 32 bits. An entry of
100% would mean that it is as effective as the colour version.

Algorithm \ N 1282 2562 5122 10242 20482

gpu-mono-16 70.5 % 67.5 % 75.1 % 97.5 % 74.6 %
gpu-mono-32 71.4 % 66.4 % 78.4 % 73.7 % 62.0 %

Table 4.7: The efficiency of the mono versions using the colour versions as reference.

All the previous numbers were benchmarked using the GeForce 8800 GTX graphics card. In
Table 4.8, and Table 4.9, the raw numbers and speedup for the GeForce 7600 GS are shown.
This is interesting from a computation/price. The GeForce 7600 was not able to compute
20482 in 32 bits because of its small amount of memory, and those results are marked NA in
the tables.

In Table 4.10, the raw performance, adjusted for price, is depicted. The prices used were $275
for the CPU, $850 for G8800, and $87 for GeForce 7600. 2

2Prices gathered from [38]
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Algorithm \ N 1282 2562 5122 10242 20482

gpu-mono-16 1917 535 174 42 10
gpu-mono-32 1470 387 103 25 6
gpu-colour-16 937 266 89 22 5
gpu-colour-32 565 182 59 15 NA
cpu-mono-32-single 1081 270 69 17 4
cpu-mono-32-dual 2133 533 133 33 8

Table 4.8: Performance comparison of different wavelet algorithms, measuring the number of
elements processed pr. micro second. GPU used: GeForce 7600GS

Algorithm \ N 1282 2562 5122 10242 20482

gpu-mono-16-7600gs 1.8 2.0 2.5 2.5 2.4
gpu-mono-32-7600gs 1.4 1.4 1.5 1.5 1.5
gpu-colour-16-7600gs 0.9 1.0 1.3 1.3 1.2
gpu-colour-32-7600gs 0.5 0.7 0.9 0.9 NA
cpu-mono-32-single 1.0 1.0 1.0 1.0 1.0
cpu-mono-32-dual 2.0 2.0 1.9 2.0 2.0

Table 4.9: Relative speedups using GeForce 7600 GS

The GeForce 7600 GS is low-end board from the previous generation graphic boards. At
the time of writing it was available for less than 100$ [38]. As the results show, it is quite a
bit slower than the GeForce 8800, but still faster than the CPU for all data sizes bigger than
1282. Considering that the desktop version of the processor used costs approximately 270$
this is a very good result. For ultrasound scanners the price/performance aspect is not very
important, but still not irrelevant. But since the scanner will contain both a high-end CPU and
GPU, the offloading of the CPU discussed earlier is more important. For other applications
however, Figure 4.4 should be interesting. It shows that for small sizes (less than 10242) the
GeForce 7600 gives most computation for each dollar. On 10242, and higher, the GeForce 8800
is the most economic. Considering that the 8800 is 10 times as expensive as the 7600 GS, this
result really shows how much the GPUs develop each hardware generation.

The visual quality achieved is comparable to the ones achieved in [19] and [31], and example
renderings are shown in Figure 4.5. In Figure 4.6, the difference between 16 and 32 bits on an
otherwise identical rendering is shown.

4.3 Discussion

As we can see from 4.2 and 4.3, our GPU method is much faster than the previous methods,
both CPU and GPU. We achieve a speedup of 30 compared to the CPU and speedup of three
compared to the previous GPU implementation. In addition, we are able to offload the CPU
from 29% to 1% when computing the DWT filter on 5122 data elements.

The numbers also give some other interesting findings. First, the GPU method speedups get
higher when the data size increases. This coincide with findings in [1]. The main reason lies in
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Algorithm \ N 1282 2562 5122 10242 20482

gpu-mono-16 5.73 18.40 50.15 83.42 77.38
gpu-colour-16 8.13 27.26 66.76 85.52 103.70
gpu-mono-16-7600gs 59.83 66.81 87.06 83.40 81.55
gpu-colour-16-7600gs 29.23 33.23 44.53 43.94 41.41
cpu-mono-32-single 10.73 10.73 10.96 10.73 10.73

Table 4.10: Performance from Table 4.2 and 4.8 adjusted for price.

0,00

20,00

40,00

60,00

80,00

100,00

120,00

Pe
rf

or
m

an
ce

 re
la

tiv
e 

to
 p

ric
e

Number of elements

gpu-mono-16

gpu-colour-16

gpu-mono-16-7600gs

gpu-colour-16-7600gs

cpu-mono-32-single

1282 2562 5122 10242 20482

Figure 4.4: The performance of 16-bit computation relative to size.

the overhead in executing a single rendering. This is constant regardless of the data size and
is amortised in the larger data sets. As can be seen in Table 4.5 and in Figure 4.2, the analysis
and filtering time are sublinear compared to the data size because the 128 processors of the
GPU are used more efficiently on large data.

16 and 32 bits precision seem to be irrelevant when working with small data sets, but on larger
sets there is a measurable difference. For data sets of size 20482 16 bits precision is ∼20% and
∼44% faster than 32 bits for the colour and mono version respectively. As can be seen in
Figure 4.6 it is very hard to see a visual difference between the two renderings.

The mono version is less efficient than the coloured version in terms of raw processing power,
and varies quite a bit depending on data size. On 10242 elements in 16 bits the efficiency is as
high as 97.5% which is very good. On other data such as 20482 using 32 bits, the efficiency is
as low as 62%. For these data sizes and types other approaches than ours should probably be
tested. This is left as future work.

In Table 4.11, we have compared our estimated results with the actual results. For both CPU
and GPU timings we were off by almost an order of magnitude. This is expected since we
ignored overhead and latency in our calculations. The speedup estimate, however, is almost
on target.
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Variable Predicted Actual Error

CPU 3.15ms 29ms 9.2
GPU 0.5ms 3.8ms 7.6
Speedup 6.3 7.3 1.2

Table 4.11: Comparison between theoretical model and actual results.

(a) The original image, ’vascular.png’ (b) Applying hard threshold

(c) Applying soft threshold (d) Applying wavelet shrinkage

Figure 4.5: Comparison of two different enchancement techniques
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(a) 16 bits (b) 32 bits

Figure 4.6: Comparison of 16bit and 32bit precision
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Chapter 5
Conclusions and Future Work

I may not have gone where I in-
tended to go, but I think I have
ended up where I needed to be
-Douglas Adams

5.1 Conclusion

In this thesis, we have looked at wavelet algorithm development target at the GPU. Our mo-
tivation was the increased need for speeding up the calculations needed in 3D ultrasound,
where presently the wavelet calculations take a significant amount of processing time.

By implementing a program that both outperforms and offloads the CPU we have shown that
performing wavelet image enhancement on the GPU is a viable solution. The techniques de-
veloped in this thesis were deemed so successful by GE Healthcare that they will be included
in their next generation of cardiac ultrasound scanners.

Main contributions

This thesis has three main contributions:

First, we showed that it is possible to implement a very fast wavelet transform on consumer-
level graphics hardware. The wavelet transform is the final step of of the "baking chain" – a
term used in ultrasound imaging to describe all the methods that are applied to the data after
it is collected by the transducer, but before they are displayed on a screen. Our novel wavelet
methods were developed, implemented and tested with such a baking chain. The techniques
implemented were directly applicable to a modern cardiac ultrasound scanner.

Second, we showed that our fast GPU wavelet methods can significantly outperform the cur-
rent state-of-the-art CPU-based implementations. Our implementation achieved a speedup
of 29.8 compared to a SIMD-optimised CPU version.

Porting algorithms from the CPU to the GPU usually results in a speedup of about 30%.
Howwever, we were able to show a three-fold speedup over previous wavelet GPU imple-
mentations. We achieved this by analysing the underlying hardware to find and remove the
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performance bottlenecks. The main performance bottleneck identified, was the use of depen-
dent, and too many, texture reads. These bottlenecks were removed by creating a novel GPU
method which used advanced GPU techniques to avoid texture fetches.

Third, we have shown that it is possible to offload the CPU so that it on realistically sized data
reduces its load from 29% to 1%. The main implication is that the CPU can be used to do other
tasks like furher refining the data before they are fed to the wavelet technique. This opens up
possibilities for more advanced uses like High Definition Television (HDTV) denoising and
other exiting applications.

5.2 Future work

Unfortunately, the time allocated for a master thesis is very limited. The following list tries to
summarise some of the ideas that we would like to explore further.

• Improve the backward DWT: As was seen in Table 4.5 the backward DWT used a big
portion of the time. In this thesis, we used quads to do static branch resolution. This
cause us to render each synthesis twice. It might be possible to use the ’stencil test’
instead. This technique have been successfully applied to sorting, [1].

• Integrate the code with JASPER: Wavelets can be used for compression, and the JPEG2000
standard is based on this. JASPER is a open source package that enables reading and
writing of JPEG2000. It should be possible to integrate the wavelet component from this
thesis into JASPER.

• Port more algorithms to the GPU: We have ported the last part of the baking chain of a
ultrasound scanner to the GPU. As shown in the results chapter the GPU still has much
horsepower left for other tasks. It should be possible to add more of the baking chain to
the GPU.

• DirectX10 and CUDA: During the development of this thesis Microsoft released their
new graphics framework called DirectX10. It has many new possibilities that further
generalises the programming on a GPU. This can result in higher performance or easier
programming. NVIDIA also shipped a new framework called CUDA early in 2007. It
is a framework for easy development of GPGPU. Unfortunately it is only for NVIDIA,
but it would be interesting to see how the algorithms could be expressed in the CUDA
framework.

• 3D GPU processing: The algorithms work on 2D data. The latest industry transducers
produce 3D data. The newer GPU has native support for 3D data via 3D textures: and
it would be interesting to transfer the methods described in this thesis to 3D on a GPU
with 3D texturing features.

• HDTV and other applications: Our new methods allows computation in real time of
much more data than previously. Denoising of content from High-definition television
(HDTV) cameras in real time is one exiting possibility.
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Appendix A
Implementation

In this chapter, we will dicuss the programs that were made during this thesis. The code is
split into three main parts. gpuwaveletlib is a C++ library that exposes a library for the filters
and techniques we have presented in chapter 3. It used by the two front end programs. One
command-line (cmdgpuwavelet), and one GUI based (GPUVideoProcessor).

A.1 GPUVideoProcessor

GPUVideoProcessor is a front end for gpuwaveletlib that exposes the different filters and
techniques for a user in an easy to use GUI. The user can select input file(s), a filter to use, pa-
rameters to the filters and desired output. This GUI has made it easier to test and implement
different filters. It should also be useful for other authors of wavelet and spatial based filters.
In the following text, an upper case bold letter (eg A) will refer to a UI element in Figure A.2.

GPUVideoProcessor can process still images, movies and even process input from the we-
bcamera. PNG, Bitmap-files, GIF and JPEG are supported still image formats, and uncom-
pressed AVI, MPEG-1 and WMV (Windows Media Files) are supported video formats. The
input can be chosen from the drop-down box marked B. The drop-down lists all the media
files in the same directory as the program. In addition, there is a option to browse for more
files and a webcamera option if one is available.

The program has two main modes, one for the spatial filters and one for the wavelet filters.
This is almost invisible for the user since it it chosen automatically when the user choses a
filter. But in the wavelet mode there are a couple of more options. The normal spatial filters
include Gaussian filtering (Section 3.3.1), and Sharpening Filtering (3.3.2). In addition, a Pass
Through options is available which just shows the picture without any manipulation. The
wavelet based filters that are available include Soft Thresholding (3.3.3), Hard Thresholding
(3.3.4), Wavelet Shrinkage and HERMAADETSTAANOE. All these filters are chosen from the
drop-down box C. When the user chooses a filter one or more sliders appear (F) which control
the parameters of the filter. One example is the threshold parameter of the Hard Thresholding
filter. Only the sliders for the parameters that the current filter actually support is shown.

When the user choose a wavelet filter two more drop-down boxes appear to let the user choose
visual output format (D) and which wavelet to use (E). The visual output controls which
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part of the wavelet filtering is shown. The user can choose between Synthesis, Analysis and
Filtered Analysis. In Figure A.1, the three options and which part they visualize is shown.
Synthesis shows the final result after analysing, applying the filters and synthesising. This

h[n]

g[n]

  2

  2x[n]

h'[n]

g'[n]

  2

  2 x'[n]

f1[n]

f2[n]

Analysis Filtered Analysis Synthesis

Figure A.1: The different wavelet visual output options

is the real end result. The Analysis option shows the detail and approximation coefficients
layed out in the same fashion as Figure 2.13. The details are usually very close to zero so 0.5
has been added to them to make them more visible in the visualisation. The Filtered Analysis
option shows the coefficients after applying the filters. This is of great use when designing
the filters and especially when debugging them.

The other wavelet specific option is which wavelet to use. The program supports the use of
Daub 9/7 and Daub 5/3.

At the top of the window some diagnostic text is outputted (A). It shows the hardware used
and the size of the picture, but the most interesting part is the Frames Pr Second (FPS) counter.
This can be used to check the speed of different methods.

For demonstration purposes a full screen option has been implemented as well and can be
chosen by pressing button G.

In addition to the options available in the GUI, there are a number of options tunable by
editing a config file settings.txt. The most important one is probably the ability to set
the number of levels of the wavelet analysis. The other options mainly control optimisation
options for benchmarking purposes.

A.2 Cmdgpuwavelet

cmdgpuwavelet is a command line utility that supports all the same options as the GUI
version. There are two main benefits of having a command line utility in addition to the GUI.
The command line utility makes it easy to set up tests for benchmarking and it makes it easy
to set up a chain of filters for the more complex filter setups.
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Figure A.2: Screenshot of image processor
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Appendix B
GPU microprograms

In this section, the most important shader microcode is listed.

B.1 Daubechies 9/7 Mono DWT

float4x4 mvpMatrix : WorldViewProjection;
float texelWidth;
float texelHeight;

// The 9/7 Version
float analysisLowKernel[] = { 0.026748757411f, -0.016864118443f,

-0.078223266529f, 0.266864118443f, 0.602949018236f, 0.266864118443f,
-0.078223266529f, -0.016864118443f, 0.026748757411f };

float analysisHighKernel[] = { 0.0f, 0.091271763114f, -0.057543526229f,
-0.591271763114f, 1.11508705f, -0.591271763114f, -0.057543526229f,

0.091271763114f, 0.0f };
float synthesisLowKernel[] = { 0, -0.091271763114, -0.057543526229,

0.591271763114, 1.11508705, 0.591271763114, -0.057543526229,
0.091271763114f, 0};

float synthesisHighKernel[] = { 0.026748757411f, 0.016864118443f,
-0.078223266529f, -0.266864118443f, 0.602949018236f,-0.266864118443f,
-0.078223266529f, 0.016864118443f, 0.026748757411f };

float evenSynthesisFilter[] = { 0, 0.016864118443,
-0.057543526229,-0.266864118443,1.11508705,-0.266864118443,
-0.057543526229, 0.016864118443,0};

float oddSynthesisFilter[] = { 0.026748757411, -0.091271763114,
-0.078223266529, 0.591271763114,0.602949018236, 0.591271763114,
-0.078223266529, -0.091271763114, 0.026748757411 };

texture SourceTexture;

sampler2D SourceSampler = sampler_state {
Texture = (SourceTexture);
MipFilter = NONE;
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MinFilter = Point;
MagFilter = Point;
AddressU = Mirror;
AddressV = Mirror;
MaxANISOTROPY = 1;

};

struct PS_OUT {
float4 Color : COLOR0;

};

struct TEX_VS_IN {
float4 Position : POSITION;
float2 Tex : TEXCOORD0;

};

TEX_VS_IN NormalVS(TEX_VS_IN input) {
TEX_VS_IN output = (TEX_VS_IN)0;
output.Position = mul(input.Position, mvpMatrix);
output.Tex = input.Tex;
return output;

}

PS_OUT HorisontalAnalysis(TEX_VS_IN input) {
PS_OUT output = (PS_OUT)0;

float3 vals[10];

for(int i=0;i<10;i++) {
vals[i] = tex2D(SourceSampler, float2(input.Tex.x + (i-4) * texelWidth,

input.Tex.y));
}

for(int i=0;i<9;i++) {
output.Color.r += vals[i].r * analysisLowKernel[i];
output.Color.g += vals[i+1].r * analysisHighKernel[i];

}

output.Color.a = 1.0f;
return output;

}

PS_OUT VerticalAnalysis(TEX_VS_IN input) {
PS_OUT output = (PS_OUT)0;

float3 vals[10];

for(int i=0;i<10;i++) {
vals[i] = tex2D(SourceSampler, float2(input.Tex.x, input.Tex.y + (i-4) *

texelHeight));
}

for(int i=0;i<9;i++) {
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output.Color.rg += vals[i].rg * analysisLowKernel[i];
output.Color.ba += vals[i+1].rg * analysisHighKernel[i];

}

return output;
}

technique WaveletAnalysis {
pass P0 {
PixelShader = compile ps_2_0 HorisontalAnalysis();
VertexShader = compile vs_2_0 NormalVS();
AlphaBlendEnable = false;

}
pass P1 {
PixelShader = compile ps_2_0 VerticalAnalysis();
VertexShader = compile vs_2_0 NormalVS();
AlphaBlendEnable = false;

}
}

// The synthesis uses 5 taps
struct SYNTHESIS_TEX {
float4 Position : POSITION;
float2 Tap1 : TEXCOORD0; // Min two texels
float2 Tap2 : TEXCOORD1; // Min one texels
float2 Tap3 : TEXCOORD2; // Base position
float2 Tap4 : TEXCOORD3; // Pluss one texels
float2 Tap5 : TEXCOORD4; // Pluss two texels

};

SYNTHESIS_TEX HorisontalSynthesisVS(TEX_VS_IN input) {
SYNTHESIS_TEX output = (SYNTHESIS_TEX)0;

output.Position = mul(input.Position, mvpMatrix);
output.Tap1 = float2(input.Tex.x - 2 * texelWidth, input.Tex.y);
output.Tap2 = float2(input.Tex.x - texelWidth, input.Tex.y );
output.Tap3 = input.Tex;
output.Tap4 = float2(input.Tex.x + texelWidth, input.Tex.y );
output.Tap5 = float2(input.Tex.x + 2 * texelWidth, input.Tex.y );

return output;
}

SYNTHESIS_TEX VerticalSynthesisVS(TEX_VS_IN input) {
SYNTHESIS_TEX output = (SYNTHESIS_TEX)0;

output.Position = mul(input.Position, mvpMatrix);
output.Tap1 = float2(input.Tex.x, input.Tex.y - 2 * texelHeight);
output.Tap2 = float2(input.Tex.x, input.Tex.y - texelHeight);
output.Tap3 = input.Tex;
output.Tap4 = float2(input.Tex.x, input.Tex.y + texelHeight);
output.Tap5 = float2(input.Tex.x, input.Tex.y + 2 * texelHeight);
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return output;
}

PS_OUT SynthesisEven(SYNTHESIS_TEX input) {
PS_OUT output = (PS_OUT)0;

float4 vals[5];
vals[0] = tex2D(SourceSampler, input.Tap1);
vals[1] = tex2D(SourceSampler, input.Tap2);
vals[2] = tex2D(SourceSampler, input.Tap3);
vals[3] = tex2D(SourceSampler, input.Tap4);
vals[4] = tex2D(SourceSampler, input.Tap5);

// Even starts on low
output.Color.rb = vals[0].rg * evenSynthesisFilter[0]

+ vals[0].ba * evenSynthesisFilter[1]
+ vals[1].rg * evenSynthesisFilter[2]
+ vals[1].ba * evenSynthesisFilter[3]
+ vals[2].rg * evenSynthesisFilter[4]
+ vals[2].ba * evenSynthesisFilter[5]
+ vals[3].rg * evenSynthesisFilter[6]
+ vals[3].ba * evenSynthesisFilter[7]
+ vals[4].rg * evenSynthesisFilter[8];

return output;
}

PS_OUT SynthesisOdd(SYNTHESIS_TEX input) {
PS_OUT output = (PS_OUT)0;

float4 vals[5];
vals[0] = tex2D(SourceSampler, input.Tap1);
vals[1] = tex2D(SourceSampler, input.Tap2);
vals[2] = tex2D(SourceSampler, input.Tap3);
vals[3] = tex2D(SourceSampler, input.Tap4);
vals[4] = tex2D(SourceSampler, input.Tap5);

// Odd starts on high
output.Color.rb = vals[0].ba * oddSynthesisFilter[0]

+ vals[1].rg * oddSynthesisFilter[1]
+ vals[1].ba * oddSynthesisFilter[2]
+ vals[2].rg * oddSynthesisFilter[3]
+ vals[2].ba * oddSynthesisFilter[4]
+ vals[3].rg * oddSynthesisFilter[5]
+ vals[3].ba * oddSynthesisFilter[6]
+ vals[4].rg * oddSynthesisFilter[7]
+ vals[4].ba * oddSynthesisFilter[8];

return output;
}

technique WaveletSynthesis {
pass P0 {
PixelShader = compile ps_2_0 SynthesisEven();
VertexShader = compile vs_2_0 VerticalSynthesisVS();
AlphaBlendEnable = false;
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}
pass P1 {
PixelShader = compile ps_2_0 SynthesisOdd();
VertexShader = compile vs_2_0 VerticalSynthesisVS();
AlphaBlendEnable = false;

}
pass P2 {
PixelShader = compile ps_2_0 SynthesisEven();
VertexShader = compile vs_2_0 HorisontalSynthesisVS();
AlphaBlendEnable = false;

}
pass P3 {
PixelShader = compile ps_2_0 SynthesisOdd();
VertexShader = compile vs_2_0 HorisontalSynthesisVS();
AlphaBlendEnable = false;

}
}

float4 selector;
float addValue; // to visualize high pass we often add 0.5.

PS_OUT DisplayMonoWaveletAnalysisPS(TEX_VS_IN input) {
PS_OUT output = (PS_OUT)0;

// Select which component we want to show this pass
output.Color.rgb = length(tex2D(SourceSampler, input.Tex) * selector);
// And add a value in case we are displaying the high pass
output.Color.rgb += addValue;
output.Color.a = 1.0f;

return output;
}

technique DisplayMonoWaveletAnalysisTechnique {
pass P0 {
PixelShader = compile ps_2_0 DisplayMonoWaveletAnalysisPS();
VertexShader = compile vs_2_0 NormalVS();

}
}

Listing B.1: "Daub 9/7 Mono"

B.2 Daubechies 9/7 Colour DWT

float4x4 mvpMatrix;

float texelWidth;
float texelHeight;

// From wikipedia
// Daubechies 9/7-CDF-wavelet
float analysisLowKernel[] = { 0.026748757411f, -0.016864118443f,

-0.078223266529f, 0.266864118443f, 0.602949018236f, 0.266864118443f,
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-0.078223266529f, -0.016864118443f, 0.026748757411f };
float analysisHighKernel[] = { 0.0f, 0.091271763114f, -0.057543526229f,

-0.591271763114f, 1.11508705f, -0.591271763114f, -0.057543526229f,
0.091271763114f, 0.0f };

// From wikipedia
// NOTE: These are "interleaved".
float evenSynthesisFilter[] = { 0, 0.016864118443,

-0.057543526229,-0.266864118443,1.11508705,-0.266864118443,
-0.057543526229, 0.016864118443,0};

float oddSynthesisFilter[] = { 0.026748757411, -0.091271763114,
-0.078223266529, 0.591271763114,0.602949018236, 0.591271763114,
-0.078223266529, -0.091271763114, 0.026748757411 };

texture SourceTexture;
sampler2D SourceSampler = sampler_state {

Texture = (SourceTexture);
MipFilter = NONE;
MinFilter = Point;

MagFilter = Point;
AddressU = Mirror;
AddressV = Mirror;
MaxANISOTROPY = 1;

};

texture LowPassSourceTexture;
sampler2D LowPassSource = sampler_state {

Texture = (LowPassSourceTexture);
MipFilter = NONE;
MinFilter = Point;

MagFilter = Point;
AddressU = Mirror;
AddressV = Mirror;
MaxANISOTROPY = 1;

};

texture HighPassSourceTexture;
sampler2D HighPassSource = sampler_state {

Texture = (HighPassSourceTexture);
MipFilter = NONE;
MinFilter = Point;

MagFilter = Point;
AddressU = Mirror;
AddressV = Mirror;
MaxANISOTROPY = 1;

};

struct PS_OUT {
float4 Color : COLOR0;

};

struct PS_DUAL_OUT {
float4 Output1 : COLOR0;
float4 Output2 : COLOR1;
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};

struct TEX_VS_IN {
float4 Position : POSITION;
float2 Tex : TEXCOORD0;

};

// The synthesis uses 5 taps
struct SYNTHESIS_TEX {
float4 Position : POSITION;
float2 Tap1 : TEXCOORD0; // Min two texels
float2 Tap2 : TEXCOORD1; // Min one texels
float2 Tap3 : TEXCOORD2; // Base position
float2 Tap4 : TEXCOORD3; // Pluss one texels
float2 Tap5 : TEXCOORD4; // Pluss two texels

};

SYNTHESIS_TEX HorisontalSynthesisVS(TEX_VS_IN input) {
SYNTHESIS_TEX output = (SYNTHESIS_TEX)0;

output.Position = mul(input.Position, mvpMatrix);
output.Tap1 = float2(input.Tex.x - 2 * texelWidth, input.Tex.y);
output.Tap2 = float2(input.Tex.x - texelWidth, input.Tex.y );
output.Tap3 = input.Tex;
output.Tap4 = float2(input.Tex.x + texelWidth, input.Tex.y );
output.Tap5 = float2(input.Tex.x + 2 * texelWidth, input.Tex.y );

return output;
}

SYNTHESIS_TEX VerticalSynthesisVS(TEX_VS_IN input) {
SYNTHESIS_TEX output = (SYNTHESIS_TEX)0;

output.Position = mul(input.Position, mvpMatrix);
output.Tap1 = float2(input.Tex.x, input.Tex.y - 2 * texelHeight);
output.Tap2 = float2(input.Tex.x, input.Tex.y - texelHeight);
output.Tap3 = input.Tex;
output.Tap4 = float2(input.Tex.x, input.Tex.y + texelHeight);
output.Tap5 = float2(input.Tex.x, input.Tex.y + 2 * texelHeight);

return output;
}

TEX_VS_IN NormalVS(TEX_VS_IN input) {
TEX_VS_IN output = (TEX_VS_IN)0;
output.Position = mul(input.Position, mvpMatrix);
output.Tex = input.Tex;
return output;

}

PS_DUAL_OUT HorizontalAnalysis(TEX_VS_IN input) {
PS_DUAL_OUT output = (PS_DUAL_OUT)0;

float3 vals[10];
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for(int i=0;i<10;i++) {
vals[i] = tex2D(SourceSampler, float2(input.Tex.x + (i-4) * texelWidth,

input.Tex.y));
}
for(int i=0;i<9;i++) {
output.Output1.rgb += vals[i] * analysisLowKernel[i];
output.Output2.rgb += (vals[i+1] * analysisHighKernel[i]);

}
output.Output1.a = 1.0f;
output.Output2.a = 1.0f;

return output;
}

PS_DUAL_OUT VerticalAnalysis(TEX_VS_IN input) {
PS_DUAL_OUT output = (PS_DUAL_OUT)0;

float3 vals[10];

for(int i=0;i<10;i++) {
vals[i] = tex2D(SourceSampler, float2(input.Tex.x, input.Tex.y + (i-4) *

texelHeight));
}
for(int i=0;i<9;i++) {
output.Output1.rgb += vals[i] * analysisLowKernel[i];
output.Output2.rgb += (vals[i+1] * analysisHighKernel[i]);

}
output.Output1.a = 1.0f;
output.Output2.a = 1.0f;

return output;
}

// This uses approx 9 texture and 10 arithmetic
PS_OUT SynthesisEven(SYNTHESIS_TEX input) {
PS_OUT output = (PS_OUT)0;

output.Color.rgb = evenSynthesisFilter[0] * tex2D(LowPassSource, input.
Tap1)

+ evenSynthesisFilter[1] * tex2D(HighPassSource, input.Tap1)
+ evenSynthesisFilter[2] * tex2D(LowPassSource, input.Tap2)
+ evenSynthesisFilter[3] * tex2D(HighPassSource, input.Tap2)
+ evenSynthesisFilter[4] * tex2D(LowPassSource, input.Tap3)
+ evenSynthesisFilter[5] * tex2D(HighPassSource, input.Tap3)
+ evenSynthesisFilter[6] * tex2D(LowPassSource, input.Tap4)
+ evenSynthesisFilter[7] * tex2D(HighPassSource, input.Tap4)
+ evenSynthesisFilter[8] * tex2D(LowPassSource, input.Tap5);

output.Color.a = 1;
return output;

}

PS_OUT SynthesisOdd(SYNTHESIS_TEX input) {
PS_OUT output = (PS_OUT)0;
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output.Color.rgb = oddSynthesisFilter[0] * tex2D(HighPassSource, input.
Tap1);

output.Color.rgb += oddSynthesisFilter[1] * tex2D(LowPassSource, input.
Tap2);

output.Color.rgb += oddSynthesisFilter[2] * tex2D(HighPassSource, input.
Tap2);

output.Color.rgb += oddSynthesisFilter[3] * tex2D(LowPassSource, input.
Tap3);

output.Color.rgb += oddSynthesisFilter[4] * tex2D(HighPassSource, input.
Tap3);

output.Color.rgb += oddSynthesisFilter[5] * tex2D(LowPassSource, input.
Tap4);

output.Color.rgb += oddSynthesisFilter[6] * tex2D(HighPassSource, input.
Tap4);

output.Color.rgb += oddSynthesisFilter[7] * tex2D(LowPassSource, input.
Tap5);

output.Color.rgb += oddSynthesisFilter[8] * tex2D(HighPassSource, input.
Tap5);

output.Color.a = 1;
return output;

}

// These methods are used to visualize the result of a wavelet analysis.
PS_OUT WriteHigh(TEX_VS_IN input) {
PS_OUT output = (PS_OUT)0;
output.Color.rgb = tex2D(HighPassSource, input.Tex);
output.Color.a = 1.0f;
return output;

}

PS_OUT WriteLow(TEX_VS_IN input) {
PS_OUT output = (PS_OUT)0;
output.Color.rgb = tex2D(LowPassSource, input.Tex);
output.Color.a = 1.0f;
return output;

}

// Does back and forth but nothing more Can be used for testing speed
technique FastWavelet {
pass P0 {
PixelShader = compile ps_2_0 HorizontalAnalysis();
VertexShader = compile vs_2_0 NormalVS();

}

pass P1 {
PixelShader = compile ps_2_0 VerticalAnalysis();
VertexShader = compile vs_2_0 NormalVS();

}
pass P2 {
PixelShader = compile ps_2_0 VerticalAnalysis();
VertexShader = compile vs_2_0 NormalVS();

}
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pass P3 {
PixelShader = compile ps_2_0 SynthesisEven();
VertexShader = compile vs_2_0 VerticalSynthesisVS();

}

pass P4 {
PixelShader = compile ps_2_0 SynthesisOdd();
VertexShader = compile vs_2_0 VerticalSynthesisVS();

}

pass P5 {
PixelShader = compile ps_2_0 SynthesisEven();
VertexShader = compile vs_2_0 VerticalSynthesisVS();

}

pass P6 {
PixelShader = compile ps_2_0 SynthesisOdd();
VertexShader = compile vs_2_0 VerticalSynthesisVS();

}

pass P7 {
PixelShader = compile ps_2_0 SynthesisEven();
VertexShader = compile vs_2_0 HorisontalSynthesisVS();

}

pass P8 {
PixelShader = compile ps_2_0 SynthesisOdd();
VertexShader = compile vs_2_0 HorisontalSynthesisVS();

}
}

technique FastWaveletAnalysis {
pass P0 {
PixelShader = compile ps_2_0 HorizontalAnalysis();
VertexShader = compile vs_2_0 NormalVS();

}

pass P1 {
PixelShader = compile ps_2_0 VerticalAnalysis();
VertexShader = compile vs_2_0 NormalVS();

}
pass P2 {
PixelShader = compile ps_2_0 VerticalAnalysis();
VertexShader = compile vs_2_0 NormalVS();

}
}

technique FastWaveletSynthesis {
pass P0 {
PixelShader = compile ps_2_0 SynthesisEven();
VertexShader = compile vs_2_0 VerticalSynthesisVS();

}

pass P1 {
PixelShader = compile ps_2_0 SynthesisOdd();
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VertexShader = compile vs_2_0 VerticalSynthesisVS();
}

pass P2 {
PixelShader = compile ps_2_0 SynthesisEven();
VertexShader = compile vs_2_0 VerticalSynthesisVS();

}

pass P3 {
PixelShader = compile ps_2_0 SynthesisOdd();
VertexShader = compile vs_2_0 VerticalSynthesisVS();

}

pass P4 {
PixelShader = compile ps_2_0 SynthesisEven();
VertexShader = compile vs_2_0 HorisontalSynthesisVS();

}

pass P5 {
PixelShader = compile ps_2_0 SynthesisOdd();
VertexShader = compile vs_2_0 HorisontalSynthesisVS();

}
}

PS_OUT VisualizeHighPassPS(TEX_VS_IN input) {
PS_OUT output = (PS_OUT)0;
output.Color.rgb = tex2D(SourceSampler, input.Tex) + 0.5;
output.Color.a = 1.0f;
return output;

}

PS_OUT VisualizeHighLowPS(TEX_VS_IN input) {
PS_OUT output = (PS_OUT)0;
output.Color.rgb = tex2D(SourceSampler, input.Tex);
output.Color.a = 1.0f;
return output;

}

technique VisualizeHighPassTechnique {
pass P0 {
PixelShader = compile ps_2_0 VisualizeHighPassPS();
VertexShader = compile vs_2_0 NormalVS();

}
}

technique VisualizeLowPassTechnique {
pass P0 {
PixelShader = compile ps_2_0 VisualizeHighLowPS();
VertexShader = compile vs_2_0 NormalVS();

}
}

Listing B.2: "Daub 9/7 Colour"
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B.3 Spatial filters

float4x4 mvpMatrix;
float luminance = 0.5;
float epsilon = 0.01;

float sourceWidth = 512;
float sourceHeight = 512;

float texelWidth;
float texelHeight;

float texelWidthOffset;
float texelHeightOffset;

texture SourceTexture;
sampler2D SourceSampler = sampler_state {

Texture = (SourceTexture);
MipFilter = NONE;
MinFilter = Point;

MagFilter = Point;
AddressU = Clamp;
AddressV = Clamp;
MaxANISOTROPY = 1;

};

struct PS_OUT {
float4 Color : COLOR0;

};

struct TEX_VS_IN {
float4 Position : POSITION;
float2 Tex : TEXCOORD0;

};

// A tex structure for 7 on a row. (Used for seperable kernels)
struct TEX_VS_OUT_7x1 {
float4 Position : POSITION;
float2 TapZero : TEXCOORD0;
float2 Tap1 : TEXCOORD1;
float2 TapMin1 : TEXCOORD2;
float2 Tap2 : TEXCOORD3;
float2 TapMin2 : TEXCOORD4;
float2 Tap3 : TEXCOORD5;
float2 TapMin3 : TEXCOORD6;

};

// A tex structure for 3x3 kernels excluding middle tap
// Is nice because it has 8 texcoords which fits fine in Shader model 2.0
// |1 2 3|
// |4 5|
// |6 7 8|
struct TEX_VS_OUT_3x3_NO_MIDDLE {
float4 Position : POSITION;
float2 Tap1 : TEXCOORD0;
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float2 Tap2 : TEXCOORD1;
float2 Tap3 : TEXCOORD2;
float2 Tap4 : TEXCOORD3;
float2 Tap5 : TEXCOORD4;
float2 Tap6 : TEXCOORD5;
float2 Tap7 : TEXCOORD6;
float2 Tap8 : TEXCOORD7;

};

TEX_VS_IN NormalVS(TEX_VS_IN input) {
TEX_VS_IN output = (TEX_VS_IN)0;
output.Position = mul(input.Position, mvpMatrix);
output.Tex = input.Tex;

return output;
}

TEX_VS_OUT_5x1 HorisontalVS(TEX_VS_IN input) {
TEX_VS_OUT_5x1 output = (TEX_VS_OUT_5x1)0;
output.Position = mul(input.Position, mvpMatrix);
output.TapZero = input.Tex + float2(texelHeightOffset, texelWidthOffset);
output.Tap1 = input.Tex + float2(texelHeightOffset, texelWidthOffset +

texelWidth);
output.TapMin1 = input.Tex + float2(texelHeightOffset, texelWidthOffset -

texelWidth);
output.Tap2 = input.Tex + float2(texelHeightOffset, texelWidthOffset + 2

* texelWidth);
output.TapMin2 = input.Tex + float2(texelHeightOffset, texelWidthOffset -

2 *texelWidth);
output.Tap3 = input.Tex + float2(texelHeightOffset, texelWidthOffset + 3

* texelWidth);
output.TapMin3 = input.Tex + float2(texelHeightOffset, texelWidthOffset -

3 * texelWidth);

return output;
}

TEX_VS_OUT_5x1 VerticalVS(TEX_VS_IN input) {
TEX_VS_OUT_5x1 output = (TEX_VS_OUT_5x1)0;
output.Position = mul(input.Position, mvpMatrix);
output.TapZero = input.Tex + float3(texelHeightOffset, texelWidthOffset

, 0.0);
output.Tap1 = input.Tex + float3(texelHeightOffset + texelHeight,

texelWidthOffset, 0.0);
output.TapMin1 = input.Tex + float3(texelHeightOffset - texelHeight,

texelWidthOffset, 0.0);
output.Tap2 = input.Tex + float3(texelHeightOffset + 2 * texelHeight,

texelWidthOffset, 0.0);
output.TapMin2 = input.Tex + float3(texelHeightOffset - 2 * texelHeight,

texelWidthOffset, 0.0);
output.Tap3 = input.Tex + float3(texelHeightOffset + 3 * texelHeight,

texelWidthOffset, 0.0);
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output.TapMin3 = input.Tex + float3(texelHeightOffset - 3 * texelHeight,
texelWidthOffset, 0.0);

return output;
}

TEX_VS_OUT_3x3_NO_MIDDLE ThreeXThreeNoMiddleVS(TEX_VS_IN input) {
TEX_VS_OUT_3x3_NO_MIDDLE output = (TEX_VS_OUT_3x3_NO_MIDDLE)0;

output.Position = mul(input.Position, mvpMatrix);
output.Tap1 = input.Tex + float2(texelHeightOffset - texelHeight,

texelWidthOffset - texelWidth);
output.Tap2 = input.Tex + float2(texelHeightOffset - texelHeight,

texelWidthOffset);
output.Tap3 = input.Tex + float2(texelHeightOffset - texelHeight,

texelWidthOffset + texelWidth);
output.Tap4 = input.Tex + float2(texelHeightOffset, texelWidthOffset -

texelWidth);
output.Tap5 = input.Tex + float2(texelHeightOffset, texelWidthOffset +

texelWidth);
output.Tap6 = input.Tex + float2(texelHeightOffset + texelHeight,

texelWidthOffset - texelWidth);
output.Tap7 = input.Tex + float2(texelHeightOffset + texelHeight,

texelWidthOffset);
output.Tap8 = input.Tex + float2(texelHeightOffset + texelHeight,

texelWidthOffset + texelWidth);
return output;

}

float blurWeight[] = {0.006, 0.061, 0.242, 0.383, 0.242, 0.061, 0.006 };

// Separated gaussian blur
PS_OUT GaussianBlurPS(TEX_VS_OUT_5x1 input) {
PS_OUT output = (PS_OUT)0;

float3 val = float3(0,0,0);
val += tex2D(SourceSampler, input.TapMin3) * blurWeight[0];
val += tex2D(SourceSampler, input.TapMin2) * blurWeight[1];
val += tex2D(SourceSampler, input.TapMin1) * blurWeight[2];
val += tex2D(SourceSampler, input.TapZero) * blurWeight[3];
val += tex2D(SourceSampler, input.Tap1) * blurWeight[4];
val += tex2D(SourceSampler, input.Tap2) * blurWeight[5];
val += tex2D(SourceSampler, input.Tap3) * blurWeight[6];

output.Color.rgb = val;

//output.Color.rgb = float3(1,0,0);

output.Color.a = 1;
return output;

}

technique GaussianBlur {
pass P0 {
PixelShader = compile ps_2_0 GaussianBlurPS();
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VertexShader = compile vs_2_0 HorisontalVS();
}
pass P1 {
PixelShader = compile ps_2_0 GaussianBlurPS();
VertexShader = compile vs_2_0 VerticalVS();

}
pass P2 {
PixelShader = compile ps_2_0 GaussianBlurPS();
VertexShader = compile vs_2_0 VerticalVS();

}
pass P3 {
PixelShader = compile ps_2_0 GaussianBlurPS();
VertexShader = compile vs_2_0 VerticalVS();

}
pass P4 {
PixelShader = compile ps_2_0 GaussianBlurPS();
VertexShader = compile vs_2_0 VerticalVS();

}
}

texture LowPassSourceTexture;
sampler2D LowPassSampler = sampler_state {

Texture = (LowPassSourceTexture);
MipFilter = NONE;
MinFilter = Point;

MagFilter = Point;
AddressU = Mirror;
AddressV = Mirror;
MaxANISOTROPY = 1;

};

texture HighPassSourceTexture;
sampler2D HighPassSampler = sampler_state {

Texture = (HighPassSourceTexture);
MipFilter = NONE;
MinFilter = Point;

MagFilter = Point;
AddressU = Mirror;
AddressV = Mirror;
MaxANISOTROPY = 1;

};

PS_OUT CollectHighAndLow(TEX_VS_IN input) {
PS_OUT output = (PS_OUT)0;
output.Color.r = tex2D(LowPassSampler, input.Tex).r;
output.Color.gba = tex2D(HighPassSampler, input.Tex).gba;
return output;

}

technique Passthrough {
pass P0 {
PixelShader = compile ps_2_0 CollectHighAndLow();
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VertexShader = compile vs_2_0 NormalVS();
AlphaBlendEnable = false;

}
}

float threshold;
float thresholdLevelWeight;

PS_OUT SoftThresholdingPS(TEX_VS_IN input) {
PS_OUT output = (PS_OUT)0;
// Low pass is not affected
output.Color.r = tex2D(LowPassSampler, input.Tex).r;
// Threshold high pass
float3 val = tex2D(HighPassSampler, input.Tex).gba;
output.Color.gba = sign(val) * max(abs(val)-threshold, 0);

return output;
}

float3 hardThreshold(float3 input, float threshold) {
// s will be 0 if we are within the threshold value, else 1
float3 s = sign(max(abs(input)-threshold, 0));
return input * s;

}

PS_OUT HardThresholdingPS(TEX_VS_IN input) {
PS_OUT output = (PS_OUT)0;
// Low pass is not affected
output.Color.r = tex2D(LowPassSampler, input.Tex).r;
// Hard threshold on the high pass
float3 val = tex2D(HighPassSampler, input.Tex).gba;
output.Color.gba = hardThreshold(val, threshold);
return output;

}

technique SoftThreshold {
pass P0 {
PixelShader = compile ps_2_0 SoftThresholdingPS();
VertexShader = compile vs_2_0 NormalVS();

}
}

technique HardThreshold {
pass P0 {
PixelShader = compile ps_2_0 HardThresholdingPS();
VertexShader = compile vs_2_0 NormalVS();

}
}

Listing B.3: "Spatial filters"
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