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Abstract

A fluid simulation using Smoothed Particle Hydrodynamics on CUDA GPUs
was developed by a former Master student. However, this simulation exhibits
less than realistic results when simulating fluids like water. It does not, for
example, capture their pronounced splashing behaviour.

In this project this simulation is extended to improve upon this behaviour. A
surface tension force is implemented into the simulation. This force was chosen
for how it largely affects the behaviour of water. Efforts are made in order to
improve both the performance and behaviour of this force.

We show how this extension greatly affects the behaviour of the fluid by causing
drop formations, and enhancing splash effects. While suffering a performance
hit, the simulation still retains reasonable performance, reaching around 70 %
of the original simulation.

Surface detection used during the surface tension calculation could also be used
if trying to extract a mesh surface from the particle simulation, a possible future
work.
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Chapter 1

Introduction

Simulating realistic fluids is typically a computationally costly operation. Tradi-
tionally it has not been something that one could hope to simulate in real time
on an average workstation. However, with the emergence of more and more
powerful graphics accelerators, combined with new frameworks for program-
mers to program these devices, real time simulation of realistic fluids is quickly
becoming reality. Technologies such as CUDA from NVIDIA has opened up
many new possibilities for practical and affordable parallel computing.

A very highly performing fluid simulator using Smoothed Particle Hydrody-
namics was developed for CUDA by former master student at the HPC-group
at NTNU, Øystein E. Krog, capable of simulating both simple fluids and more
complex snow avalanches. However, the simple fluid suffers from less than real-
istic behaviour in many instances, especially in water-like fluids, where it does
not exhibit enough of a “splashing” effect.

The goal of this project is to improve the realism of the simple fluid simulator
such that it can produce more realistic simulations of water-like fluids. At the
same time it is important to maintain reasonable performance in the simulation.
We have chosen to do this by implementing surface tension into the simulation,
a property which greatly affects the behaviour of fluids such as water, and is
very important for them to behave correctly.
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Chapter 2

Surface Tension

2.1 Introduction

Surface tension is a property of the surface of a liquid. It allows the surface
to resist an external force and the effects can be easily be seen every day in
the behavior of water. Surface tension holds the fluid together, causing the
formation of drops. It is also what allows certain insects to walk on the surface
of water, and makes it possible for small objects such as a paper clip to float on
the surface of water, even though the density of the object is greater than the
water itself.

Surface tension is caused by cohesive forces between the liquid’s molecules. In-
side the liquid each molecule is pushed and pulled equally in every direction
by nearby molecules. The net force acting on these molecules is zero. The
molecules at the surface however, do not have molecules on all sides. This re-
sults in a net force pointing inwards into the liquid. An illustration of this is
provided in figure 2.1.

Figure 2.1: Illustration of the forces acting on two molecules in a liquid. One
molecule is inside the liquid, while another is located on the surface.

This creates internal pressure and forces the liquid surface to contract to the
smallest possible area. This is what makes liquid droplets take a spherical shape.
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2.2 The Continuum Surface Force Method

The Continuum Surface Force (CSF) Method was developed by Brackbill et al.
[2] in 1990. Processes that are localized to a fluid’s interface are modeled in
the CSF method by applying them to fluid elements in the transition region of
the interface. Phenomena in the interface of a fluid, such as surface tension, is
translated into a volume process with a net effect that emulates the physical
behaviour of the phenomenon. [12]

In the CSF model, surface tension is represented by a force per volume Fs,
which is given by the following equation:

Fs = fsδs (2.1)

where δs is a normalized function, known as the surface delta function, which
has its peak value at the interface of the fluid, and fs is the force per area, which
is given by

fs = σκn̂ +∇sσ (2.2)

where σ is the surface tension coefficient, a constant which varies from fluid to
fluid, n̂ is the unit normal to the interface, κ is the curvature of the interface
and ∇s is the surface gradient.

The first term in equation (2.2) is a force which acts along the interface normal,
and is the surface tension force due to local curvature. This force smooths
regions with high curvature, and works to reduce the total surface area. An
illustration of how this force is affected by curvature can be seen in figure 2.2.

Figure 2.2: Surface tension force at points with varying curvature

The second term is a force which acts along a tangent of the interface. This
force works to move fluid from regions of low surface tension to higher surface
tension.
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Chapter 3

Parallel computing and
GPU programming

3.1 Parallel Computing

Parallel computing is a form of computation in which calculations are performed
“in parallel”. This is based on the principle that large problems can often be
divided into smaller problems, which can be solved concurrently, opposed to
sequentially like traditional non-parallel computing.

The main driving force between the recent development into parallel computing
comes from the stagnation of the frequency of modern processors. The power
density in modern processors are approaching the limit of what silicon can han-
dle with current cooling techniques. This is known as the power wall.

Parallel computing can be embodied in many different forms, many of which
do not exclude each other. The following are some of the layers of parallelism
exposed by modern hardware [3]:

Multi-chip parallelism This means having several physical processor chips
in a single computer. These chips share resources such as system memory
through which the chips can relatively inexpensively communicate.

Multi-core parallelism This is similiar to multi-chip parallelism, with the
distinction that the cores are all contained in a single chip. This lets
the cores share resources like on-chip cache, allowing for less expensive
communication.

Multi-context (thread) parallelism This is when a single core can switch
between multiple execution contexts with little or no overhead.

Instruction parallelism This is when a single processor can execute more
than one instruction simultaneously.

Traditionally, floating-point operations were considered expensive, while mem-
ory accesses were considered cheap. These roles have since been reversed, and
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memory has become the limiting factor in most applications. Data has to be
transferred through a limited number of pins at a limited frequency, causing
what is known as the von Neumann bottleneck.

3.1.1 Flynn’s Taxonomy

Michael J. Flynn proposed the following four classifications of parallelism in
1966:

SISD: Single Instruction, Single Data No parallelism.

SIMD: Single Instruction, Multiple Data Performing identical instructions
on different data streams in parallel.

MISD: Multiple Instruction, Single Data Performing different instructions
on a single data stream. Uncommon architecture.

MIMD: Multiple Instruction, Multiple Data Performing different instruc-
tions on different data streams.

In addition, MIMD is further divided into two different types.

SPMD: Single Program, Multiple Data When the different instructions
actually stem from an identical program where branching has altered the
control flow.

MPMD: Multiple Program, Multiple Data When the different instruc-
tions stem from different programs.

As we will see in section 3.3 modern GPUs expose a SPMD programming model
on SIMD hardware.

3.1.2 Heterogeneous Computing

Recent developments are also showing rising interests in heterogeneous com-
puting. Heterogeneous computing refers to systems that use a combination of
different types of computational units.

The motivation for using heterogeneous systems is that although problems can
be divided into smaller problems, all these smaller problems might not be of the
same nature, and might benefit from different hardware architectures.

In the past, advances in technology and frequency scaling allowed most appli-
cations to increase in performance without structural changes. However, today,
the effect of these advances are less dramatic since new obstacles such as the
von Neumann bottleneck and the power wall have been introduced. Brodtkorb
et al. [3] mentions the combination of a Central Processing Unit (CPU) and
a Graphics Processing Unit (GPU) as one of the most interesting examples of
heterogeneous systems for node level heterogeneous computing.

While neither the CPU or the GPU are heterogenous systems by themselves,
they form a heterogeneous system when they are used together.
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3.2 GPGPU

Using the GPU for computations traditionally handled by the CPU is known as
General Purpose computing on Graphics Processing Units (GPGPU). The GPU
is a specialized accelerator, designed for the acceleration of graphics computa-
tions. Their parallel nature allows them to efficiently perform large numbers of
floating-point operations.

In terms of Floating Point Operations per Second (FLOPS), the GPU has has
far surpassed the CPU, as can be seen in figure 3.1.

Figure 3.1: Development of Floating Point Operations per Second (FLOPS) in
NVIDIA GPUs and Intel CPUs. [14]

The reason for this huge discrepancy in floating-point capability is that the GPU
is specialized for intensive, highly parallel computation, and is designed such
that more transistors are devoted to data processing rather than flow control
and data caching.

An illustration of the distribution of transistors in a CPU and a GPU can be
seen in figure 3.2.

The GPU also has much higher memory bandwidth than the CPU, which can
be seen in figure 3.3.

These two factors make the GPU a very interesting platform for computationally
intense applications. A GPU can almost be seen as a small supercomputer,
allowing a single computer to perform simulations that previously belonged to
the domain of larger clusters of computers.

This has created ample new possibilities for the scientific community. Problems
such as fluid simulation, molecular dynamics, medical imaging and many more
are experiencing drastic performance improvements. This can often mean the
difference between seeing the results of an operation almost immediately, as
opposed to waiting for hours or even days.

However, a downside to using GPUs is that they typically use a PCI express bus,
which can become a very serious bottleneck in cases where the entire problem
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Figure 3.2: Distribution of transistors in a CPU and a GPU [14].

Figure 3.3: Development of Memory Bandwidth for NVIDIA GPUs and Intel
CPUs. [14]

does not fit in the GPUs memory. A second generation PCI express x16 bus
allows a theoretical maximum of 8 GB/s of data transfer between CPU and
GPU memory.

Initially, GPUs were not designed for GPGPU. GPUs were programmed using
shaders, a set of software instructions performed on the GPU. These shaders
are tightly knit to graphical concepts such as vertices and pixels. In order to
perform operations that were not related to graphics, the problem had to be
transformed so that the GPU could solve it as if it were graphics-related. This
was often not only difficult, but also very limited, since a problem could not
always be solved efficiently with the limitations of the shaders.

Since then, more sophisticated frameworks for programming GPUs have been
developed, the most mature of which is the Compute Unified Device Architecture
(CUDA).
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3.3 CUDA

CUDA is a parallel computing architechture developed by NVIDIA, and can
be found in all newer NVIDIA GPUs. CUDA includes a software environment
that allows developers to use a high-level programming language based on C
called CUDA C. Other languages such as CUDA FORTRAN, OpenCL and Di-
rectCompute are also supported. This makes programming for a CUDA device
much easier than by using the old paradigm of shaders, and also gives the pro-
grammer more possibilities.

To describe the CUDA architecture we will first go through the older GT200 ar-
chitecture and then look at some of the improvements that have been introduced
with the new GT100 architecture, which was codenamed “Fermi”. [3]

3.3.1 CUDA Hardware Model

Figure 3.4: CUDA Hardware Model [14].
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In the CUDA hardware model the device contains a number of multiprocessors,
which in turn contain a number of processors. An illustration can be seen in
figure 3.4.

Each processor is a fully pipelined ALU capable of integer or single precision
floating point operations. Each multiprocessor has eight of these processors. In
addition, each multiprocessor also has a double precision unit, and two special
function units which are used to accelerate certain mathematical functions.

A large number of threads are organized into blocks, which in turn make up
a grid. All blocks run the same program, which is known as the kernel, and
threads within the same block can communicate and synchronize using a kind of
local store memory called shared memory. However, there is no communication
between blocks, except for the ability to perform atomic operations on global
memory. The connection between threads, blocks and grid can be seen in figure
3.5.

Figure 3.5: CUDA hierarchy of grid, blocks and threads [14].

The blocks are automatically divided into warps, which are groups of 32 threads.
These warps are then scheduled to the Multiprocessors at runtime. In the GT200
architecture each Multiprocessor has eight Processors, and each warp is executed
in a SIMD fashion by issuing the same instruction through four runs on these
eight processors.

If a branch diverges within a warp, all non-diverging threads are masked out-
until the threads reconverge. A high amount of divergence will therefore make
the threads execute in a serial fashion. Divergence inside warps thus degrades
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performance. Divergence between warps, however, does not have any impact on
performance.

The multiprocessors can switch between warps without any overhead. By keep-
ing many active warps ready, they can be switched between, in order to hide
latencies. A block is always designated to a single multiprocessor, however, a
multiprocessor can have more than one block designated to it. The number of
blocks each multiprocessor can run is limited by the amount of registers and
shared memory used by the warps.

3.3.2 CUDA Programming Model

A core concept in CUDA is the kernel, mentioned earlier, which is a function that
is executed on the GPU by many threads concurrently. The threads are grouped
in thread blocks, and when launching a CUDA kernel one has to specity both
the number of thread blocks (grid size) and the number of threads per thread
block (block size).

Threads within a block can communicate through the shared memory, as men-
tioned in section 3.3.1. This memory is much faster than the device memory,
and managing this memory well is key to achieving good performance in ap-
plications that use a lot of memory. Also important is to make the memory
requests coalesced, in other words that all simultaneous memory requests within
a warp access the same segment in memory.

The ratio of active warps to the maximum number of supported warps is known
as the occupancy, and can be used as an indication of how well latencies are
hidden by the multiprocessors. As long as an application is bound by memory
bandwidth, improving the occupancy will generally lead to improved perfor-
mance.

3.3.3 Fermi

Fermi is based on the same concepts as the older architecture, however it im-
plements several major improvements. Firstly, the number of processors has
more than doubled, from 240 to 512. Secondly, double precision performance
has been improved greatly, from being 1/8 of the floating point performance in
the old architecture, to now being 1/2. A new cache hierarchy allows redesigned
algorithms to achieve even greater performance. All vital parts of memory are
now protected by ECC, and the memory space has also been unified, allowing
C++ code to be run directly on the GPU.

The new architecture also allows up to 16 kernels to execute simultaneously, as
opposed to the old architecture which only allowed a single kernel at a time.
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Chapter 4

Smoothed Particle
Hydrodynamics

4.1 Fluid representations

There are two conceptually different types of methods that can be used to
represent fluid dynamics. They are Eulerian methods and Lagrangian methods
[16]. In the Eulerian methods the movement of the fluid is observed by the
velocity of the fluid in fixed points which do not move. In Lagrangian methods,
however, the movement is instead observed through the position of points that
move with the fluid.

Besides being either Eulerian or Lagrangian, methods are also distinguished as
being either mesh-based or mesh-less. The difference between the two is that
mesh-based methods contain explicit information about connections between
points. While Eulerian methods are normally mesh-based, both mesh-based
and mesh-less Lagrangian methods are common. However, since the points in
Lagrangian methods are moving, unless special measures are taken, the mesh
can become deformed causing bad conditioning of the simulated problem [15].

4.2 Smoothed Particle Hydrodynamics

The Smoothed Particle Hydrodamics method (SPH) was first developed in 1977
by Bob Gingold and Joe Monaghan [5], and independently by Leon Lucy [8]. It
was originally intended to simulate the flow of gas clouds in astrophysics, but
has since been extended to simulate various other physical phenomena, including
but not limited to lava flow, snow avalanches and computational fluid dynamics.

SPH is a mesh-less Lagrangian method for approximating numerical solutions
to the equations of fluid dynamics. To do this, the fluid is divided into a set of
particles. Each of these can be viewed as a material particle, representing a small
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part of the fluid itself. However, these particles also function as interpolation
points, which can be used to calculate various properties of the fluid [11].

Since it is a Lagrangian method, SPH has many advantages over Eulerian meth-
ods which makes it well suited for real time simulations [6].

• Computation is only performed where it is necessary.

• Less storage and bandwidth is required because the fluid properties is only
stored at the particle positions and not at every point in space.

• The fluid is not necessarily constrained to a finite box.

• Ensuring conservation of mass is trivial, since each particle represents a
fixed amount of mass.

A main disadvantage of Lagrangian methods is that they can require a large
number of particles to produce realistic results. However, Lagrangian methods
can more than make up for this by being very highly parallelizable.

SPH is based on the following integral interpolant [11]:

AI(r) =

∫
A(r′)W (r− r′, h)dr′ (4.1)

where A is an arbitrary quantity, r is any position in space, W is a smoothing
kernel and h is known as the smoothing length. The smoothing length ma-
nipulates the shape of the smoothing kernel W , which guarantees that for any
h < r− r′ the smoothing kernel will be 0.

Equation (4.1) above can be approximated by the following sum:

AS(r) =
∑
j

VjAjW (r− rj, h) (4.2)

The summing of contributions to the attribute of a particle is illustrated in
figure 4.1.

In SPH we use the particles as summation points. However, particles do not
have any explicit volume. The volume is therefore replaced with the mass and
density to find the volume which is implicitly represented by the particle. The
resulting equation is the basis formulation of SPH.

AS(r) =
∑
j

mj
Aj

ρj
W (r− rj, h) (4.3)

This equation can be used to approximate a new value for a property A at any
position r. However, it requires that the values for mass and density are known
in all surrounding positions. The usual approach is to let all particles have an
identical constant mass. This also has the advantage of making conservation of
mass in the system trivial, as mentioned earlier. The density ρj can then be
calculated using equation (4.3) by inserting density ρ for A:
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Figure 4.1: An attribute in the center particle is found by summing the contri-
butions from the particles within the smoothing length h. The particles that
contribute are colored yellow.

ρS(r) =
∑
j

mj
ρj
ρj
W (r− rj, h)

=
∑
j

mjW (r− rj, h) (4.4)

However, if we are simulating an incompressible fluid, we can not use SPH to
calculate the pressure, since SPH is inherently compressible [17]. In this case
there are essentially two options. One is to find the pressure by solving the
Poisson equation directly:

∇2P = ρ
∇v
∆t

(4.5)

Unfortunately this is computationally expensive. Another approach is to use
an equation of state. An equation of state provides a mathematical relation
between two or more state variables.

A commonly used equation of state is the ideal gas state equation:

P = kρ (4.6)

However, it is often modified by adding a rest density ρ0 and a rest pressure P0

to the system.
P = P0 + k(ρ− ρ0) (4.7)
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4.3 Smoothing Kernel

The function W (r− rj, h) is known as the smoothing kernel. The smoothing
kernel is a scalar weight function, and its behaviour is modified by the smooth-
ing length h. The smoothing length works as a cutoff value and directly affects
how many particles are considered in the sum in equation (4.3). The choice of
smoothing kernels is significantly important, and largely effects the behaviour
and accuracy of a simulation. Different kernels may also be better suited for
smoothing the various different quantities that are in play. The choice of smooth-
ing kernel also largely affects the performance of the simulation. The smoothing
kernel and smoothing length should be chosen with this in mind, since an overly
accurate smoothing kernel will needlessly degrade performance.

For a smoothing kernel there are several properties that must hold [7]:

1. The normalization condition:

∫
r

W (r, h)dr = 1 (4.8)

This condition ensures that the maximum and minimum values of a quani-
tity are not enhanced after being smoothed by the kernel.

2. The kernel must be positive:

W (r, h) > 0 (4.9)

3. The delta function property:

lim
h→0

W (r− rj, h) = δ(r− rj) (4.10)

where δ is Dirac’s delta function:

δ(r) =

{
∞ |r| = 0,

0 otherwise
(4.11)

4. The compact condition:

W (r− rj, h) = 0, |r− rj| > h (4.12)

which guarantees that the contribution from any particle outside of the
smoothing length is 0.

If the normalization condition holds, and the kernel is even (W (r, h) = W (−r, h))
then the kernel is of second order accuracy [10]. This means that when approx-
imating (4.1) by (4.3) the error is O(h2) or better.

26



4.3.1 Derivatives

One of the main features of SPH is that when finding the derivative of an
attribute A, only the derived smoothing kernel is needed, since all the other
variables can be considered constant [15]. The gradient is as follows:

∇AS(r) = ∇
∑
j

mj
Aj

ρj
W (r− rj, h)

=
∑
j

mj
Aj

ρj
∇W (r− rj, h) (4.13)

and similiarly, the Laplacian is:

∇2AS(r) = ∇2
∑
j

mj
Aj

ρj
W (r− rj, h)

=
∑
j

mj
Aj

ρj
∇2W (r− rj, h) (4.14)

However, using the gradient and laplacian in this form may in some cases pro-
duce undesirable results. An example are cases where the calculated attribute
should be symmetric, such as forces. Forces should adhere to Newton’s third
law, stating that for any force F there exists an equal, opposite and collinear
force −F .

A suggested symmetrized version of the gradient was developed by Monaghan
[9], and is known as the Symmetric Gradient Approximation Formula (SGAF).

∇As(r) = ρ
∑
j

mj(
A

ρ2
+
Aj

ρ2j
)∇W (r− rj, h) (4.15)

This gradient conserves linear and angular momentum, and is commonly used
for the pressure gradient.

An alternative, and simple, pressure gradient was suggested by Müller et al.
[13], which focuses on speed and stability.

∇As(r) =
∑
j

mj
A−Aj

2ρj
∇W (r− rj, h) (4.16)
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4.4 Existing SPH implementation

In this work we extend an existing SPH implementation developed by Øystein E.
Krog [17]. The simulation is implemented in CUDA, and includes two different
SPH models.

The first is a “simple” SPH model, based on the work of Müller et al. [13].
This model simulates an incompressible Newtonian fluid. It is designed for
interactivity and trades accuracy for performance.

The second model is a more complex model which uses more accurate smoothing
kernels and supports a range of rheological models which enables the simulatino
of Non-Newtonian fluids. In Krog’s work, this model is used to simulate snow
avalanches.

Since this project is about simulating water-like liquids in real time, rather than
snow avalanches, focus has been given to the simple SPH model. However, the
modifications made could easily be applied to the complex model as well.

Both models is built around the same framework. Only the calculation of the
forces on the SPH particles is different. The simulation uses a data structure
which stores particles in a grid, based on their position in the domain. Each cell
in the grid is set to be equal to the smoothing length h. This allows the search
for nearby particles to be accelerated greatly. Only the cell of the particle, and
the 26 surrounding cells have to be searched, since particles in any other cells
would be outside of the smoothing length and their contribution zero.

An 2D example of this is shown in figure 4.2. In 2D there are only 8 surrounding
cells. In 3D, an additional 9 surrounding cells would be added on each side of
the 2D cell “plane”.

Figure 4.2: Particle grid. When checking for particles near the orange particle,
only the surrounding yellow grid cells could possibly contain particles that lie
within the smoothing length, illustrated with a black circle.

The implementation of this is based on NVIDIA’s implementation in their
CUDA Particles Demo [6].
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This grid has to be updated at the beginning of every iteration.

Then the forces of each particle is calculated according to the SPH equations of
the chosen model. After that, external forces are added. The external forces,
come from gravity and the boundaries, or walls, of the simulation. The gravity
is easily added by adding accelerating each particle by the gravitational constant
g.

The boundary forces exist in order to keep the particles within a cube shaped
domain. Recall from chapter 4.2 that particles in a lagrangian simulation did
not necessarily have to be constrained in a finite box. However, it is still done
in this simulation for several reasons. The boundaries function as a container
which the fluid can fill up. Constraining the fluid to a cube shaped domain
is also vital for the grid data structure described earlier to function properly.
Particles outside the grid would not be able to take advantage of the faster
neighbor search.

Finally, the new acceleration, velocity and position of each particle is calculated,
and optionally, each particle is given a color based on an attribute. In most
images in this report, the particles are colored based on their velocity, where
blue represents the slowest velocity, and red the fastest.

4.4.1 Simple SPH model

The simple model simulates an incompressible fluid by calculating the forces on
the particles by approximating the Navier-Stokes equations with SPH.

The Lagrangian formulations of the Navier-Stokes equations for simulating an
imcompressible fluid are as follows [17]:

1. Conservation of mass:
dρ

dt
= −ρ∇ · v (4.17)

2. Conservation of momentum:

dv

dt
= −1

ρ
∇P +

µ

ρ
∇2v + f (4.18)

where P is pressure, µ is the dynamic viscosity which is a constant in a
Newtonian fluid, and f is external force.

The mass in the system is considered constant which, as mentioned earlier, is
trivial in SPH by keeping particle mass constant and the number of particles
constant. This allows the first Navier-Stokes equation, the conservation of mass,
to the ignored. What remains to be calculated is then only the equation of
conservation of momentum.

The simple SPH model first calculates the density as follows:

ρi =
∑
j

mjWpoly6(r− rj, h) (4.19)

where Wpoly6 is a smoothing kernel developed by Müller et al. [13], which
provides a good compromise between performance and accuracy.
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Wpoly6(r− rj, h) =
315

64πh9

{
(h2 − |r− rj|2)3 0 ≤ |r− rj| ≤ h
0 otherwise

(4.20)

Then, the pressure is calculated using the ideal gas equation of state, equation
(4.7).

Once the pressure is calculated, the terms in equation (4.18) can be approxi-
mated with SPH. The first term, or the pressure force, is calculated using SGAF
from equation (4.15), in combination with a special kernel Wspiky developed by
Desbrun and Gaschuel [4].

−1

ρ
∇P = −

∑
j

mj(
P

ρ2
+
Pj

ρ2j
)∇Wspiky(r− rj, h) (4.21)

Wspiky(r− rj, h) =
15

πh6

{
(h− |r− rj|)3 0 ≤ |r− rj| ≤ h
0 otherwise

(4.22)

The second term in equation (4.18), the viscosity force is calculated using a
special smoothed version of the SPH laplacian and a smoothing kernel Wviscosity

both developed by Müller et al. [13].

µ

ρ
∇2v =

µ

ρ

∑
j

vj − v

ρj
∇2Wviscosity(r− rj, h) (4.23)

Wviscosity(r− rj, h) =
15

2πh3

{
− |r−rj|

3

2h3 +
|r−rj|2

h2 + h
2|r−rj| − 1 0 ≤ |r− rj| ≤ h

0 otherwise

(4.24)

The calculations described in this subsection are are implemented in CUDA
kernels that spawn one thread for each particle. For each iteration the density
has to be calculated first since it is a dependency for the next operations. Density
calculation is therefore performed in its own kernel. The pressure force and
viscosity force is then calculated simultaneously by a single kernel, since there
are no dependencies between them. A graph showing the calculation of forces
in the simple SPH model can be seen in figure 4.3.
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Figure 4.3: Graph showing the calculation of forces in the simple SPH model
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Chapter 5

Implementation

5.1 Surface Tension in SPH

To add surface tension to the simulation we use SPH to implement the Con-
tinuum Surface Force method (CSF) described in chapter 2.2. We use methods
based on the work of J. P. Morris [12], and Müller et al. [13].

Recall from chapter 2.2 that the surface tension was given by a force per volume,
equation (2.1),

Fs = fsδs

where fs is a force per unit area defined by equation (2.2),

fs = σκn̂ +∇sσ

We assume that the surface tension is constant throughout the fluid, therefore
the second term, the force which worked to move the fluid from areas with low
surface tension to areas with higher surface tension, can be ignored.

The force density to be calculated then reduces to:

Fs = σκn̂δs (5.1)

The first thing to consider is how to find the unit normal to the surface of the
fluid, n̂.

To find this normal, we use a new field quantity which is 1 at particle locations
and 0 anywhere else. This field is called a color field.

We use SPH to get the smoothed color field by inserting Aj = 1 into the SPH
equation (4.3),

cs(r) =
∑
j

mj
1

ρj
W (r− rj, h) (5.2)
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For a smoothing kernel we chose the Wpoly6 smoothing kernel mentioned in chap-
ter 4.4.1, because it provides good performance, while still offering acceptable
stability and accuracy.

The gradient of the smoothed color field yields a surface normal pointing into
the surface.

n = ∇cs (5.3)

This normal is not a unit normal, however, the unit normal is easily found by
dividing by the length of the normal.

n̂ =
n

|n|
(5.4)

Next, we consider the kurvature κ. The curvature can be calculated using
[12, 13]

κ = −∇ · n̂ =
−∇2cs
|n|

(5.5)

The only part missing from equation (5.1) is now the surface delta function δs.
Recall that the surface delta function was supposed to be a normalized function
that peaked at the interface, i.e. the surface, of the fluid.

It turns out we already have such a function available: |n|. This function
clearly peaks at the surface, and is normalized given that the smoothing kernel
is normalized as well, which was one of the properties that had to hold for
smoothing kernels, from chapter 4.3.

Putting it all together we end up with the following expression for the surface
tension:

Fs = σ
−∇2cs
|n|

n

|n|
|n| = −σ∇2cs

n

|n|
(5.6)

However, evaluating n
|n| at positions where |n| is a small number would cause

numerical problems. We therefore only calculate the surface tension if |n| is
larger than a certain value. Changing this value would change the thickness of
the “surface layer” of particles that were affected by surface tension. We exper-
imented with different values and a value of 20 seemed to create a reasonably
thick layer. By changing the colors of the particles based on whether their value
of |n| were larger than 20 or not, we could get a visual representation of which
particles were considered surface particles. A screenshot of this can be seen in
image 5.1

5.2 Initial approach

We approximated the gradient and laplacian of the color field by using the
straight forward SPH gradient and laplacian.
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Figure 5.1: Particles colored based on whether they are considered surface par-
ticles or not. Surface particles are white, rest are black.

∇cs =
∑
j

mj
1

ρj
∇W (r− rj, h) (5.7)

∇2cs =
∑
j

mj
1

ρj
∇2W (r− rj, h) (5.8)

We created a kernel that would compute these SPH sums and calculate the
surface tension by spawning a thread for each particle, the same way the other
SPH sums were calculated in the simulation. We made these calculations happen
after the calculation of the pressure force and the viscosity force. The updated
graph of the force calculations can be seen in figure 5.2.

Figure 5.2: Calculation of forces in initial approach

5.3 Improvement efforts

Although the initial approach successfully applied surface tension to the simu-
lation, some efforts were made to improve upon it.
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We tried using more advanced and symmetrized versions of the SPH gradient
and laplacian for calculating the color field gradient and laplacian, such as the
SGAF. However, this yielded no perceivable change in behaviour for the simula-
tion, so it was scrapped in favor of the simple straight forward approach which
was initially used, because of its smaller computational cost.

We then made some efforts to improve performance. There were no computa-
tional dependencies between second and the third summing kernels, that is, the
values for pressure force and viscosity force are not needed in order to compute
surface tension. The calculation of surface tension could therefore be included
in the second kernel, without having to execute its own. The resulting graph of
force calculation can be seen in figure 5.3.

Figure 5.3: Surface tension included into second kernel

This resulted in a decent performance boost, the details of which can be seen
in chapter 6.2.

For testing the surface tension in our simulation, we deactivated gravity and
studied the behaviour of a cube shaped body of fluid. This is a classic testing
case for surface tension that has been frequently used [1]. Ideally, the cube
should morph into a sphere. However, a problem was discovered during this
test, which was that close to the boundary of where surface tension was applied,
the particles had an erratic movement. In order to remedy this, a smoothing
procedure inspired by [1] was applied after the calculation of the surface tension.

Fsmooth =

∑
j F

s
jW (r− rj, h)∑

j W (r− rj, h)
(5.9)

The calculation of this new surface tension was dependent on the calculation of
the original surface tension, and therefore had to be executed by a new kernel
after the second kernel. The final graph of calculation of forces can be seen in
figure 5.4.

A problem which arose from this was that the original surface tension force had
to be stored in memory. Before, this force was simply added to a total force
in combination with the pressure and viscosity forces, with no way of knowing
afterwards how much of this force was provided by the surface tension.
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Figure 5.4: Smoothing of surface tension in new kernel

In order to avoid a needless increase in memory use, we chose to store the
surface tension force in the particles’ color values. This color value was always
recalculated at the end of every iteration anyway, and was not dependent on its
previous value.
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Chapter 6

Results and Discussion

6.1 Behaviour

Results from the surface tension test described in chapter 5.3, where a cube of
fluid is released in zero gravity, can be seen in figures 6.1, 6.2 and 6.3.

For reference purposes, the results of the test when there is no surface tension
present at all can be seen in figure 6.1. Since there are no forces holding the
fluid together, the cube simply explodes.

Figure 6.1: Cube of fluid in zero gravity with no surface tension

The results of the test when surface tension is implemented, but not smoothed,
is shown in figure 6.2. The problem of erratic movement of particles at the
boundary of the surface particles can be seen in the colors. The particle colors
are based on particle velocity, and ideally all particles should be calm, and thus
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be colored blue. However, the particles just inside the surface are turquoise,
and some even yellow or orange, indicating movement.

Figure 6.2: Cube of fluid in zero gravity with non-smoothed surface tension

Finally, the results of the zero gravity cube test when surface tension is im-
plemented and smoothed is seen in figure 6.3. The problem with the erratic
particle movement is gone.

Figure 6.3: Cube of fluid in zero gravity with smoothed surface tension

With the new surface tension implemented the behaviour of the simulation is
very visibly altered. The surface tension not only causes the fluid to form
droplets, it also increases the effect of splashing in the fluid. This greatly in-
creases the realism of what happens when a drop falls into a body of fluid, as
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can be seen in figure 6.4.

The surface tension also alleviates a problem with SPH. SPH only works prop-
erly when there are many particles together. When a single or couple of particles
become isolated, their behavior becomes unpredictable, and erroneous. In the
old simulation isolated particles could often be seen floating around in mid-air.
Since there were no forces keeping the particles together, other than gravity and
walls, particles could easily become isolated. While surface tension does not fix
the behavior of isolated particles, it does however provide a force that holds
particles together, and thereby reduces the likelyhood of particles becoming
isolated in the first place.

As can be seen from the screenshots the fluid does not obtain a perfect spherical
shape. The reason behind this is not clear. It might be a problem with the
surface tension force itself, however it might also be due to the other forces
working within the fluid. In either case, it is quite likely that the current state
should be good enough for simulations where very high accuracy is not required,
which is the case for most interactive real time simulations.
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Figure 6.4: A drop of fluid falling into a pool. Simulation on the left has no
surface tension, while simulation on the right does.
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Figure 6.5: Dam break test scenario

Parameter Value
Timestep 0.002

Grid World Size 1024
Simulation Scale 0.0005

Rest Density 1000
Rest Pressure 100

Ideal Gas Constant 1.5
Viscosity 1.2

Boundary Stiffness 30000
Boundary Dampening 256
Static Friction Limit 0

Kinetic Friction 0
Surface Tension Coefficient 0.07

Table 6.1: Performance test simulation parameters

6.2 Performance

To test the performance of the simulation, a dam break scenario was used. The
fluid was positioned in a box shape in one corner of the domain, after which it
was allowed to flow freely. A visual example of the dam break scenario can be
seen in figure 6.5.

The parameters used in the test can be seen in table 6.1. These parameters
create a very stable and realistic fluid.

The test was performed on two different systems. One had a NVIDIA GTX260
graphics card, an Intel Core 2 Quad Q9550 CPU running at 2.83 GHz and 4
GB RAM. This graphics card uses the old NVIDIA GT200 architecture.

The second machine had a NVIDIA GTX460 graphics card, an Intel i7 CPU
running at 3.07 GHz and 6 GB RAM. This graphics card uses the newer GF100
“Fermi” architecture.

The interesting part is the performance difference between the two graphics
cards, and it therefore would have been best to test the two cards on an oth-
erwise identical system. Unfortunately we did not have the opportunity to do
so. However, the result would most likely have been very similiar, since the
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system specifications beyond the graphics card should have very little impact
on performance.

The average frames per second (FPS) when running the test cases with the SPH
model and various variations of surface tension can be seen in figures 6.6 and
6.7.

Figure 6.6 shows the performance on the system with the older GTX260 graph-
ics card, while figure 6.7. The interesting part of these results are how the SPH
model performs after surface tension has been implemented, compared to how
it performed before. Krog [17] has already explored in detail how his implemen-
tation of the simple SPH model compares to other known implementations of
SPH.

The performance of the initial approach of implementing surface tension can be
seen in figure 6.6. It reaches around 60 % of the performance of the original
simple model. The faster surface tension, where calculation was combined in
the second kernel, but not smoothed, reaches almost 80 %, while the smoothed
surface tension reaches around 70 %.

While this is a considerable slowdown from the original model, the performance
is still quite high considering that the original SPH model was very fast.

It is interesting to note that the smoothed surface tension performs better than
the initial approach, even though they both require three kernel executions.
This is most likely caused by a memory bottleneck in the initial approach. The
calculation of surface tension requires many values that are also used by pressure
and viscosity force calculation, such as mass and pressure, resulting in better
memory efficiency when these calculations are combined.

The smoothing of the surface tension by comparison does not use as much
memory. It only requires the stored surface tension force. This makes the
penalty of executing a separate kernel for this calculation less than that for the
calculation of the surface tension force.

Figure 6.7 shows the performance when running the test on a GTX460 Fermi
card. The initial approach of surface tension was omitted in this test. The
other versions perform better in all cases, making the initial approach rather
uninteresting, since it would never be beneficial to use it.
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Figure 6.6: Performance of dam break simulation on a GTX260

Figure 6.7: Performance of dam break simulation on a GTX460
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Chapter 7

Conclusions and Future
Work

In this project a fluid simulator using Smoothed Particle Hydrodynamics (SPH)
was extended to improve the realism of water-like fluid simulation.

A description of SPH as well as the original fluid simulation was presented, along
with CUDA, a GPGPU architecture for which the simulation was created.

Surface tension was implemented into the simulation, and it was shown how
this greatly enhanced the behaviour of the fluid, and made it look more water-
like. Efforts were made to improve both performance and quality of the surface
tension.

The new fluid simulation, while suffering a performance hit, still retained reason-
able performance with the final version having around 70 % of the performance
of the original.

7.1 Future Work

A potentially interesting future work could be to extract a mesh surface out of
the fluid particles, which would improve the visual quality of the fluid drasti-
cally. The surface particle detection mentioned in chapter 5.1 and illustrated in
figure5.1could be used to greatly lower the computational cost of this, since it
would allow for focusing only the surface particles which will be visible, while
ignoring the hidden inner particles.

A downside of using the CUDA to implement the simulation is that it can
only be run on machines with an NVIDIA graphics card. Reimplementing the
simulation in OpenCL would enable support for graphics cards by other vendors.
It could also be interesting to implement a more lightweight graphics application
to render the simulation. Currently, the application uses the open source OGRE
3D engine, which is a bit overkill for the simple visualization needed for this
simulation.
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Beyond this, there are still other improvements that can be made to the original
simulation, and the suggestions for future work that Krog mentioned in his thesis
[17] still apply. These include using more advanced SPH models to get more
physically accurate results, although this would kill any real-time interactivity
of the simulation, and also plenty of work related to the snow avalanche part of
the simulation, which has been largely untouched by this project.
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Appendix A

Poster displayed during
SC10

At the SC10 supercomputing convention in New Orleans in November 2010, the
following poster was displayed at the NTNU HPC-group booth. The poster was
created in cooperation with fellow master student Yngve S. Lindal.
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Figure 1. The boundary particles suffers from having 
too few neighbors, which results in a density far 

below ~1000, which is the ideal value in this case.

State-of-the-art SPH solver
We are also parallelizing a state-of-the-art SPH solver developed at the department of 
marine technology at NTNU and Sintef Marintek. The solver is implemented in Fortran 
and our work will include porting the code to the CUDA platform, verifying correctness 
and optimizing it.

From the definition of the SPH formula, a derivation of the smoothed density for each 
particle would be

However, this gives a faulty picture of the density for boundary particles, see figure 1.

which achieves a correct density distribution for the entire field.

This is just one example of the physical modifications implemented in the solver. Other 
calculations include artifical viscousity, repulsive forces to prevent unphysical particle 
«clumping» and reinitialization of the particle density each 20th time step to minimize 
numerical errors. Also, the fluid is treated as slightly compressible, to allow for a so-
called «equation of state», i.e. An equation that describes the relation between density 
and pressure for each particle. 

To achieve high accuracy and allow for large time steps, the Runge-Kutta 4 integrator is 
used, demanding more memory and computation power than typical interactive SPH 
formulations. 

The solver is developed by Dr. Csaba Pakozdi, the author of [3], and has been shown to 
produce results very near analytical solutions of well known fluid modeling problems 
(drop case, dam break etc.). This is particularly true for large n, and therefore a fast, 
parallelized implementation is needed. We're still early in our implementation phase, so 
no work has been done on profiling and optimization yet.

The SPH solver uses a modified version of the continuity equation, making the density 
calculation dependent of the velocity field,

Smoothed Particle Hydrodynamics (SPH) on GPUs

Smoothed Particle Hydrodynamics
The SPH method is a Lagrangian interpolation method for approximating a solution to 
the Navier-Stokes equations. It works by dividing the fluid into a set of particles. A 
particle's properties are “smoothed” over a distance h (known as the smoothing length) 
by a kernel function. This means that any physical quantity, such as density, pressure, 
temperature etc., of a particle can be obtained by summing the relevant quantity from 
particles within the smoothing length. The contributions from each particle is weighted by 
their mass, density and distance.

Assigning the particles to a grid, and setting the grid cell size equal to the smoothing length in 
all dimensions allows us to save computation time. Since we only have to check the 
neighboring cells for particles within the smoothing distance, the cost of searching for 
neighboring particles is significantly lowered. This is well worth the small cost of updating the 
grid at the beginning of each iteration.

A high performing implementation of SPH on GPU using CUDA was implemented by former 
HPC-Lab student Øystein E. Krog with the aim to simulate snow avalanches [1]. This 
implementation also included a simpler SPH model for simulating fluids [2].

Surface Tension
With the goal of increasing realism, we have added surface tension to the previous simple SPH 
implementation. Surface tension is a property of liquid surfaces caused by cohesion of the 
liquid's molecules. Surface tension is what makes liquid form into spherical drops, and is also 
what allows certain insects to run on top of water. Surface tension is very important for realistic 
free surface flow simulations. It increases realism of splash effects and drop formation in the 
fluid.

Surface tension in the simulation on the right creates a clearly visible splash effect.

Where A = arbitrary property
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