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Abstract 
 

 

Visualization of porous media is of importance to several scientific fields, including 
petroleum technology. Since oil is held and stored within pores of rocks, The Center for 
Integrated Operations in the Petroleum Industry at the Norwegian University of Science and 
Technology was looking for an application capable of quickly analyzing properties of porous 
rocks. This application gives a better understanding of how to harvest the oil, which is of 
great interest to the petroleum industry. 

The petroleum industry typically use Computed Tomography (CT) technology, where rock 
samples are scanned and loaded into a computer program that generates 3D models of the 
rocks describing the 3D nature of the rocks' internal structure. 

In this project, we present an approach that generates 3D models of rocks from CT scans, by 
using the Marching Cubes algorithm on the graphics processing unit (GPU). In order to 
handle the large amount of data generated from the detailed CT scans, we adapted and 
tweaked an already GPU-based Marching Cubes algorithm using NVIDIA CUDA. For 
evaluation of the GPU-based version, a sequential CPU-based version was prepared. The 
GPU version achieves a total speedup of 16 compared to the CPU version. 
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Chapter 1- Introduction 
 

 

 

Today, powerful 3D graphic accelerators are available for the mass marked as low-cost off-
the-shelf products. With their potential for computing several hundred instructions 
simultaneously1, these accelerators are becoming very interesting architectures, not only for 
graphics, but also for High Performance Computing (HPC) in general. A graphics processing 
unit (GPU) is a typically dedicated processor for rendering computer graphics. More or less 
every new computer gets shipped with a GPU, with a diverse range of capabilities. As the 
GPU is designed for rendering computer graphics, most of the development in programming 
models and APIs (application programming interfaces) has been so far targeted at graphics 
applications for game consoles, personal computers and workstations.  

Over the last 40 years the GPU has undergone changes in its functionality and capability, 
driven primarily as a result of an ever increasing demand for more realistic graphics in 
computer games. The modern GPU has evolved from a fixed processor only capable of doing 
restricted graphics rendering, into a powerful programmable processor. Compared with an up 
to date central processing unit (CPU), the GPU utilizes a larger portion of its transistors for 
floating-point arithmetic and has higher memory bandwidth. The GPU has huge performances 
capability, which can be used to accelerate compute-intensive problems. Both CPUs and 
GPUs relay nowadays on architectural improvement through parallelism, which often enables 
a larger problem or more precise solution to be found within a practical time [17]. Parallelism 
also makes programming more difficult, as several parameters must be taken into 
consideration. With the high performance capability and the recent development in 
programmability, attention has focused on applying computationally demanding non-graphics 
tasks to the GPU as a high-end computational resource [10].  

General-Purpose computation on GPUs (GPGPU) refers to the use of GPUs for performing 
computation in applications that are traditionally handled by the CPUs, for more than just 
graphics rendering. Since GPUs are first and foremost made for graphics rendering, it is 
naturally that the first attempts of programming GPUs for non-graphics where through 
graphics APIs. This makes it tougher to use as a HPC platform since programmers have to 
master the graphics APIs and languages. To simplify this programming task and to hide the 
graphics APIs overhead, several programming models have recently been created. The latest 
release from the leading GPU supplier NVIDIA is NVIDIA CUDA (Compute Unified Device 

                                                 
1 The new NVIDIA Tesla s1070 provides parallelism of total 960 streaming processor cores across 4 GPUs.  
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Architecture), initial released in 15th February 2007. In NVIDIA CUDA, programmers do not 
need to think in terms of the graphics APIs for developing applications to run on the GPU. It 
also reveals the hardware functions of the GPUs directly, giving the programmer better 
control. NVIDIA CUDA is a programming model that focuses on low learning curve for 
developing applications that are scalable with the increase number of processor cores. It is 
based on a small extension to the C programming language, making it easier to get started 
with for developers that are familiar with the C language. Since there currently are millions of 
PCs and workstations with NVIDIA CUDA enabled GPUs, developing techniques to harvest 
the GPUs power make it feasible to accelerate applications for a broad range of people.  

Researchers have demonstrated several orders of magnitude speedup by implementing tasks 
to be executed on the GPU, such as n-body simulation [4], molecular dynamics [5], weather 
prediction [6], transform algorithms for data compression [44] and real-time wavelet filtering 
[45].  

 

1.1 Project goals 
 

For the oil industry it is important to analyze properties of rocks, to achieve a better 
understanding of conditions that affect oil production [1]. With the use of nondestructive 
microcomputer tomography it is possible to make highly digital 3D representations of the 
internal pore structure of rocks. For useful digital representations detailed scans are needed, 
producing large volumetric data sets. Combined with real time requirements for fast analysis 
and estimations of rock properties, there is an ever increasing demand for processing power.  

The main objective in this project is to investigate the use of the graphics processing unit for 
3D visualization of internal pore structures of Microcomputer Tomography scanned rocks. 
The focus is on visualizing large data sets generated from detailed scans.  

In this project, we have chosen to look at the Marching Cubes algorithm, which are capable of 
building up 3D models from volumetric data sets. The GPU is a naturally choice for the 
visualization part of the algorithm. Instead of letting the CPU do all the numerical calculations 
with building up the 3D models as is most usual, we show that it can be useful to offload 
portion or all of the numerical processing that needs to be done to the GPU.  

 

1.2 Outline  
 

This report is structured in the following manner:  

In Chapter 2 - Parallel Computing and GPUs, we will enlighten a number of benefits with 
parallel computing and explain different forms of doing parallelism. We will explain the 
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modern GPUs, what tasks they are suited for and try to motivate for why one should use 
GPUs instead of CPUs for some computationally intensive tasks.  

In Chapter 3 - Porous Rock Structures and Volume Rendering, we will give a brief 
description of reservoir rocks and core analysis. We will explain Computed Tomography 
technology, and try to motivate for why one should use this type of technology for core 
analysis instead of the traditional method. Volume visualization methods and techniques used 
for rendering of porous rock structures are described. 

In Chapter 3 – Implementations, we will describe how the Marching Cubes algorithm 
described in the previous chapter has been implemented. We will describe two different 
implementations, a CPU-based and GPU-based version, where we will present optimization 
guidelines for both. 

In Chapter 4 – Benchmarks, we will describe benchmarks of our implementations and 
discusses the results. We will mention some concerns regarding memory restriction that we 
experienced. We will compare and evaluate the difference in running the GPU version on two 
different GPUs and compare and evaluate the CPU version against the GPU version. Visual 
results of porous rock structures are shown.   

In Chapter 5 – Conclusions and Future Works, we will hold the conclusion and concluding 
remarks, and discussion on future work. 
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Chapter 2 - Parallel Computing and GPUs 
 

 

 

Moore’s law predicts that the speed of computers would double about every two years. If you 
look at computers today when you look at the number of transistors that can be inexpensively 
placed on an integrated circuit, archiving this every second year it is getting harder. In fact, 
we have already hit the Power and Frequency Walls. Whatever the peak performance of 
today’s processors, there will always be some problems that require or benefits from better 
processor speed. As explained in [16], there is a recent renaissance in parallel computing 
development. Due to the Power Wall, increasing clock frequency is not the primary method of 
improving processor performance anymore, parallelism is thou the future. Both modern GPUs 
and CPUs are concerned with the increasing power dissipation, and want to increase absolute 
performance but also improve efficiency through architectural improvements by means of 
parallelism.  

Parallel computing often permit a larger problem or a more precise solution of a problem to 
be found within a practical time. Parallel computing is the concepts of breaking up a larger 
problem into smaller units of tasks that can be solved concurrently in parallel. However, 
problems often cannot be broken up perfectly into autonomous parts, so interactions are 
needed among the parts, both for data transfer and synchronization. The problem to be solved 
affects how easy it is to parallelize. If possible, there would be no interaction between the 
separate processes, each process requiring different data and productive results from its input 
data without need for result from other processes. However many problems are to be found in 
the middle, neither fully autonomous nor synchronized [17].  

There are two basic types of parallel computers, if categorized based on their memory 
architecture [17]:  

 Shared memory systems that have a single address space, which means that all 
processing elements can access the same global memory. It can be very hard to 
implement the hardware to achieve uniform memory access (UMA) by all the 
processors with a larger number of processors, and therefore many systems have non 
uniform memory access (NUMA).  

 Distributed memory systems that are created by connecting computers together 
through an interconnection network, where each computer has its own local memory 
that cannot be accessed by the other processors. The access time to the local memory 
is usually faster than access time to the non-local memory.  
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Distributed memory will physically scale more easily than shared memory, as its memory is 
scalable with increase number of processors.  

Today, parallelism have become the standard way of increase overall performance for both 
the CPU and GPU. Need appropriate forms of doing parallelism, which exploits the different 
architectures.  

 

2.1 Forms of parallelism 
 

There are several forms of doing parallel computing. To frequently used are task parallelism 
and data parallelism. 

Task parallelisms, also called Multiple-Instruction Multiple-Data (MIMD), focus on distribute 
separate tasks across different parallel computing nodes that operate on separate data streams 
in parallel. It can typically be difficult to find autonomously tasks in a program and therefore 
task parallelism can have limited scaling ability. The interaction between different tasks occur 
trough either message passing or shared memory regions. Communication through shared 
memory region poses the problem with maintaining memory cache coherency with increased 
number of cores, as most modern multicore CPUs use caches for memory latency hiding. 
Ordinary sequential execution of a single thread is deterministic, making it understandable. 
Task parallelism on the other hand even if the program is correct is not. Task parallelism is 
subject to faults such as race conditions and deadlock, as correct synchronization is difficult. 
Those faults are difficult to identify, which can make development time overwhelming. 
Multicore CPUs are capable of running entirely independent threads of control, and are 
therefore great for task parallelism [18]. 

Data parallelism is a form of computation that implicitly has synchronization requirements. In 
a data parallel computation, the same operation is performed on different data elements 
concurrently. Data parallel programming is very convenient for two reasons. It is easy to 
program and it can scale easily to large problems. The Single-Instruction Multiple-Data 
(SIMD) is the simplest type of data parallelism. It operates by having the same instruction 
execute in parallel on different data elements concurrently. It is convenient from hardware 
standpoint since it gives an efficient hardware implementation, because it only needs to 
replicate the data path. However, it has difficulty of avoiding variable work load since it does 
not support efficient control flow. The SIMD models have been generalized to the Single-
Program Multiple-Data (SPMD), which include some control flow. Making it possible to 
avoid and adjust work load if there are variable amounts of computation in different parts of a 
program [18], as illustrated in Figure 1.  
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Figure 1: SPMD support control flow, SIMD does not. Figure is from [18]. 

Data parallelism is essential for the modern GPU as a parallel processor, as they are optimized 
to carry out the same operations on a lot of data in parallel.  

 

2.2 Graphics Processing Units  
 

The Graphics Processing Unit (GPU) is a special-purpose processor dedicated for rendering 
computer graphics. In the pursuit for advance computer graphics over the last 40 years, the 
GPU has become quite computational powerful and with very high memory bandwidth, as 
illustrated in Figure 2 and Figure 3 it can be even higher than a modern CPU. 

 

Figure 2: Floating-point operations per second for the GPU and CPU. Figure is from [8]. 
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Figure 3: Memory bandwidth for the GPU and CPU. Figure is from [8]. 

The CPU is designed to maximize the execution speed of a single thread of sequential 
instructions. It operates on different data types (floating-point and integers), performs random 
memory accesses and branching. Instruction level parallelism (ILP) allows the CPU to 
overlap execution of multiple instructions or even change the order in which the instructions 
are executed. The goal is to identify and take advantage of as much ILP as possible [9]. To 
increase performance the CPU uses much of its transistors to avoid memory latency with data 
caching, sophisticated flow control and to extract as much ILP as possible. There is a limit 
amount of parallelism that is possible to get out of a sequential stream of instructions, also 
known as the ILP Wall, and ILP causes a super linear increase in execution unit complexity 
and associated power consumption without linear speedup in application performance [11]. 

The GPU is dedicated for rendering computer graphics, and the primitives, pixel fragments 
and pixels can largely be processed independently and therefore in parallel (the fragment 
stage is typically the most computationally demanding stage [13]). The GPU differ from the 
CPU in the memory access pattern, as the memory access in the GPU are very coherent, when 
a pixel is read or write a few cycles later the neighboring pixel will be read or write. By 
organizing memory intelligently and hide memory access latency by doing calculations 
instead, there is no need for big data caches. The GPU are designed such that the same 
instruction operates on collections of data and therefore only need simple flow control. The 
GPU dedicate much more of its transistors for data processing than the CPU, as illustrated in 
Figure 4. 



9 
 

 

Figure 4: Transistors used for data processing for the CPU and GPU. Figure is from [8]. 

The modern GPU is a mixture of programmable and fixed function units, allowing 
programmers to write vertex, fragment and geometry programs for more sophisticated surface 
shading, and lighting effects. The instruction set to the vertex and fragment programs has 
converged, in which all programmable units in the graphics pipeline share a single 
programmable hardware unit. To the unified shader architecture, where the programmable 
units share their time among vertex work, fragment work, and geometry work [13].  

The GPU differentiate themselves from traditional CPU designs by prioritizing high-
throughput processing of many parallel operations over the low-latency execution of a single 
thread. Quite often in scientific and multimedia applications there is a need to do the same 
operation on a lot of different data elements. GPUs support a massive number of threads, 
typically 61440 on a NVIDIA GeForce GTX 295, running concurrently and support the 
Single-Program Multiple-Data (SPMD) model to be able to suspend threads to hide the 
latency with uneven workloads in the programs. The combination of high performance, low-
cost, and programmability has made the modern GPU attractive for applications traditionally 
executed by the CPU, for General-Purpose computation on GPUs (GPGPU). With the unified 
shader architecture, the GPGPU programmers can now target the programmable units 
directly, rather than split up task to different hardware units. To harvest the computational 
capability and at the same time allow programmers to be productive, need programming 
models that strike the right balance between low-level access to hardware resources for 
performance and high-level abstraction of programming languages for productivity. 

 

2.2.1 Geometry Shaders 
 

The GPUs graphics pipeline has in the later years gotten more programmable parts. It started 
with the vertex shader, where a shader program could do calculations on the input from this 
part of the pipeline. Later the fragment shader arrived, where shader programs could 
manipulate pixel-values before they were drawn on the screen. The 3rd, and  latest of the 
shaders for the graphics pipeline, introduced  in the Shader Model 4.0 is geometry shader 
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(GS), and requires a NVIDIA GeForce 8800 card released November 8th, 2006 [30], or newer 
to be computed. 

The geometry shaders can be programmed to generate new graphics primitives, such as 
points, lines and triangles [19, 20]. Input to the geometry shader is the primitives after they 
have been through the vertex shader. Typically when operating on the triangles, the geometry 
shader’s input will be the three vertices. For storage of the output, the geometry shader then 
uses a vertex buffer, or the data is sent directly further through the graphics pipeline, starting 
with the rasterization.  

 

Figure 5: The Shader Model 4.0 graphics pipeline. 

Geometry shader, are designed to efficient create geometry. An example of a geometry 
creation program is using the Marching Cubes algorithm. This will be explained further in 
Section 3.3.4. A geometry shader can be programmed in OpenGL’s GLSL (OpenGL Shading 
Language), DirectX’s HLSL (High Level Shader Language) and some more languages.  

 

2.3 The NVIDIA CUDA Programming Model 
 

Most of the information found in this section is based on NVIDIA’s programming guide, 
located at [8]. 

There are a few difficulties with the traditional way of doing GPGPU. With the graphics API 
overhead that are making unnecessary high learning curve and making it difficult to 
debugging. In NVIDIA CUDA (Compute Unified Device Architecture), programmers have 
direct access to the hardware for better control. A programmer also does not need to use the 
graphics API. NVIDIA CUDA focuses on low learning curve for developing applications that 
are scalable with the increase number of processor cores.  

The latest generations of NVIDIA GPUs are based on the NVIDIA Tesla architecture that 
supports the NVIDIA CUDA programming model. The NVIDIA Tesla architecture is built 
around a scalable array of Streaming Multiprocessors (SMs) and each SM consist of several 
Stream Processors (SPs), that have two Special Function Units (SFU) for trigonometry (sine, 

Input Assembler Vertex Shader Geometry 
Shader

Rasterizer Fragment 
Shader Output
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cosine and square root), a multithreaded instruction unit, and on-chip shared memory [8], as 
illustrated in Figure 6. 

 

 

Figure 6: Overview over the NVIDIA Tesla architecture. Figure is from [8]. 

To a programmer, a system in the NVIDIA CUDA programming model consists of a host that 
is a traditional CPU and one or more computes devices that are massively data-parallel 
coprocessors. Each device is equipped with a large number of arithmetic execution units, has 
its own DRAM and runs many threads in parallel. The NVIDIA CUDA devices support the 
SPMD model where all threads execute the same program although they don’t need to follow 
the same path of execution. In NVIDIA CUDA, programming is done with extension ANSI 
C, allowing the programmer to define data-parallel functions, called a kernel that runs in 
parallel on many threads [12]. Parts of programs that have little parallelism executes on the 
CPU, while parts that have rich parallelism executes on the GPU.  

GPU threads have very little creation overhead and it is possible to switch between threads 
that execute with near zero cost. The key to performance in NVIDIA CUDA is to utilize 
massive multithreading, a hardware technique which run thousands of threads simultaneously 
to utilize the large number of cores and to overlap computation with latency [15]. Under 
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execution threads are grouped into a three level hierarchy, as illustrated in Figure 7. Every 
kernel executes as a grid of thread blocks, where each thread block is an array of threads that 
has a unique coordinate in the kernel grid. The individual threads have a unique coordinate in 
the thread block. Threads within the same thread block can perform synchronizing.   

1  

Figure 7: The NVIDIA CUDA thread hierarchy. Figure is from [8]. 

All threads in NVIDIA CUDA can access data from diverse places during execution, as 
illustrated in Figure 8. Each thread has its private local memory and the architecture allows 
effective sharing of data between threads inside a thread block, by using the low latency 
shared memory. Finally, all threads have access to the same global memory. There are also 
two additional read-only memory spaces accessible by all threads, the texture and constant 
memory spaces. Those memory spaces are optimized for various memory accesses patterns 
[8]. The CPU can transfer memory to and from the GPUs global memory using API calls. 

Each SM can execute eight thread blocks at the same time. There is however a limit on how 
many thread blocks a SM can process at once, one need to find the right balance between how 
many registers per thread, how much shared memory per thread block and the number of 
simultaneously active threads that are required for a given kernel [12].  
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When a kernel is invoked, thread blocks from the kernel grid are distributed to SM with 
available execution capacity. As one block terminate, new blocks are lunched on the SM [8].  

Under execution threads within a thread block grouped into warps. Warps are 32 threads from 
continuous sections of a thread block. Even though warps are not explicit declared in NVIDIA 
CUDA, knowledge of them may improve performance. The SM executes the same instruction 
for every thread in a warp, so only threads that follow the same execution path can be 
executed in parallel. If none of the threads in a warp have the same execution path, all of them 
must be executed sequential [12]. 

 

Figure 8: The NVIDIA CUDA memory hierarchy. Figure is from [8]. 
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Chapter 3 - Porous Rock Structures and 
Volume Rendering 
 

 

 

The word petroleum, meaning rock oil, refers to the naturally occurring hydrocarbons that are 
found in porous rock formations beneath the surface of the earth [3]. Petroleum is the result of 
millions of years of heat and pressure to microscopic plants and animals. Oil does not 
typically lie in huge pools, but rather within rocks or sandy mud. A petroleum reservoir or an 
oil and gas reservoir is typically an underground accumulation of oil and gas that are held and 
stored within porous rock formations.  

The challenge is how to get the oil out. The recovery of oil involves pumping water (and 
sometimes other chemicals) to force the oil out and the bigger the pores of the rocks are the 
easier it is. Not just all rocks are capable of holding oil and gas. A reservoir rock is 
characterized by having enough porosity and permeability, meaning that it has sufficient 
storage capacity for oil and ability to transmit fluids. It is vital for the oil industry to analyze 
such petrophysical properties of reservoirs rocks, to gain improved understanding of oil 
production.  

 

3.1 Core Analysis 
 

Information gained through core analysis is probably the most important basic technique 
available for petroleum physicists to understand more of the conditions that affect production 
[1]. Through core analysis the fluid characteristic of the reservoir can be determined. While 
traditional core analysis returns valuable data, it is more or less restricted to 2D description in 
form of slices, and does not directly and accurately describe the 3D nature of rocks properties 
[14]. With the use of microcomputed tomography geoscientist can produce high-resolution 
3D representations of the internal pore structures of reservoir rocks. It is a nondestructive 
method to determine petrophysical properties such as porosity and permeability [1]. 
Properties used further as inputs into reservoir models, for numerical simulations to estimate 
the recovery factor. 
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3.2 Computed Tomography  
 

Computed Tomography (CT) is a particular type of X-ray machine, originally developed for 
medical use to investigate the internal structures within a human body. With CT it is possible 
to obtain information about solid objects 3D internal structures and properties. Since the first 
prototype made by Hounsfield in 1967 the technology has advanced rapidly, with particular 
improvement in resolution and speed. With the increased availability over the past years, 
geoscientists started using CT by the mid 1980s as a nondestructive evaluation of rock 
samples. Density changes within rocks can be calculated just the same way as within a human 
body.  

The basic components of CT scanners are the same as in regular X-ray imaging, an x-ray 
tube, the object being observed and a detection system. The CT scanner uses a gyratory gantry 
where an X-ray tube is attached and on the opposite side there is a detector array. The objects 
to be scanned are being placed in the center of the gantry. The gantry rotate around with the 
attached x-ray tube and the opposite detector array, making a series of closely spaced scans to 
be obtained from several angles. These scans can be processed to make digital 3D 
representation of the scanned object [1].   

The principle of CT is the attenuation of X-ray beams by absorption and scattering processes 
as the beam goes through the solid object. As explains in [2], the degree of attenuations 
depends on the energy spectrum of the x-rays, the mass density of the object and on the 
average atomic number of the different elements that the X-ray passes. As the term 
tomography denote, the imaging is done in slices. In a CT image slice the gray level 
corresponds to X-ray attenuation, as illustrated in Figure 9.  

z  

Figure 9: Slice from CT scan, illustrating X-ray attenuation. 
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By use of Microcomputed Tomography (µCT), much great resolution can be achieved. The 
machine is much smaller in construction compared to the original version used on humans, 
and therefore used on smaller objects. With its high resolution it is possible to distinguish 
density or porosity contrast within rock samples, used for detailed analysis of pore space and 
connectivity [1]. The highly detailed scans done by µCT producing large data sets, making it 
is vital to have sufficient processing power. 

 

3.3 Volume Rendering  
 

Volume representation techniques are being used in areas from medical modeling of organs to 
pore-geometry for geophysicists and many other areas where deformation of 3D objects or 
representation of scan data is needed. These techniques have traditionally been sequential 
calculations on the CPU, before it was rendered on the GPU. Generation of volume models 
with a high level of complexity is a highly parallel task [21], where lots of independent 
vertices can be generated simultaneously. 

Scan data from CT or Magnetic Resonance Imaging (MRI) is often represented as a stack of 
2D images, where each image represents one slice of the volume. The volume can be 
computed by extracting the equal values from the scan data, and rendering them as polygonal 
isosurfaces or directly as a data block. 

As mention in [21] and [22], a volume can be completely described by a density function, 
where every point in the 3d-space can be represented by a single value. Each scalar-value 
over a threshold-value is inside the volume, while the ones under represents objects and fluids 
with lower density. A boundary is then placed at the threshold-values, giving the 3D model. 

The Marching Cubes algorithm is a common algorithm for rendering isosurfaces, and will be 
explained further in Section 3.3.1. Another way to use the same principle is the algorithm 
Marching Tetrahedron, presented further in Section 3.3.2.  

To represent data with direct volume rendering, there are several methods. To mention some 
of them, volume ray casting, splatting, shear warp, texture-mapping and hardware accelerated 
volume rendering. They all require color and opacity for each sample value. If you want an 
overview of what each of them are see [23]. 

 

3.3.1 Marching Cubes  
 

Marching Cubes (MC) is an algorithm for creating a polygonal isosurface from a 3D scalar-
field. In CT and MRI scanning, each scalar represents a density value.  
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The algorithm, takes 8 points at a time forming a cube from a density field, then producing 
triangles inside of that cube, before it marches to the next cube, and repeating this until the 
whole scalar field is treated this way [21].  

 

3.3.1.1 Generation of polygons from Marching Cubes 
 

The density values of the 8 corners decide how the polygons will be generated. The corners 
are one by one compared to a threshold value (also often called isovalue), where each corner 
makes a bit value representing if it is inside or outside the volume.  From these bit values, it 
will represent an 8 bit integer, like the one in Figure 10, where corner v0, v6 and v7 are inside 
the volume. 

 

Figure 10: A voxel with represented integer value. Figure is from [21]. 

The 8bit integer has 256 different methods the corners can be represented. Where a polygon is 
created by connecting together 3 points that lie somewhere on the 12 edges of the cube. With 
rotations of the 256 different methods, they can be reduced to 15 different cases, as illustrated 
in Figure 11. 

 

Figure 11: The 15 cases of polygon representation. Figure is from [24]. 
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If all the corner-values are either over the threshold or under it, the whole voxel is either 
inside or outside of the solid terrain and no polygons will be generated, like case 1 in Figure 
11. And therefore there will be some empty cubes, which easily can save some computation, 
since they don’t need any further computation. 

When a cube has at least one polygon, an interpolation computation is necessary for each 
vertex placed along an edge. This interpolation is calculating exactly where the density value 
is equal to the threshold value.  

 

3.3.1.2 Lookup tables 
 

Normally two lookup-tables are used, to accelerate Marching Cubes. The first tells how many 
polygons the cube will create, and the second contains an edge-connection list. Each edge in 
the cube has a fixed index, as illustrated in Figure 12. 

 

Figure 12: Edge-connection-table indexing. Figure is from [21]. 

After a cube has calculated the 8bit integer, the algorithm will do a lookup first in the 
polygon-count table. The second lookup will then be done on the bit sequences that returned a 
number greater than 0 on the first lookup. And after the second lookup, the algorithm is ready 
for computing the interpolation.  

By rendering all the cubes’ generated polygons, the volume will be visible. 

 

3.3.2 Marching Tetrahedron/Tetrahedral 
 

Since the Marching Cubes algorithm was patented until June 5, 2005, other versions of the 
algorithm were implemented interim. One of the most important one was the Marching 
Tetrahedron [25].  
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The Marching Tetrahedron (MT) algorithm used a slightly different way to do the isosurfaces 
extraction than the original Marching Cubes algorithm. This method is some kind of way to 
get around the patent of the Marching Cubes algorithm, just with some twists. Instead of 
dividing the data set into cubes, this method rather divides it into tetrahedrons, where each 
cube is being the divided into 6 tetrahedrons by cutting diagonally through the three pairs of 
opposing faces, like Figure 13 [27]. 

 

Figure 13: Dividing the dataset into tetrahedrons. Figure is from [26]. 

A tetrahedron is a 4-corned object, and therefore there are fewer ways the vertices can be 
placed in it. The lookup tables will then be significantly simpler, as this algorithm leads to 16 
cases to consider. With the symmetry it can even be reduced to 3 cases, where one of them 
either all points are inside or all outside of the volume, and there will be generated none 
triangles. Another case is where one point is inside and the rest outside, or the inverse there 
will be generated one triangle. In the last case where 2 points are inside and the 2 others are 
outside, there will be generated 2 triangles making a rectangle, as you can see in Figure 14. 

 

Figure 14: The cases of Marching Tetrahedral. Figure is from [28]. 
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3.3.3 Marching Cubes vs. Marching Tetrahedron 
 

Marching Tetrahedron computes up to 19 edge-instructions pr cube, where Marching Cubes 
requires 12. Because of this, the total memory requirements are much higher, when 
calculating the tetrahedrons [27]. Since there are 6 tetrahedrons per cube, there is going to be 
6 times more lookups than the cubes. The tetrahedrons will also produce more triangles, and 
therefore totally is a much more memory inefficient than the cubes. The tetrahedrons will also 
use 6 times more parallel threads than the cubes, where each thread is doing less computations 
than each thread in the Marching Cubes will do. Therefore, when using small datasets, which 
easily fits in the memory and having the same number of processors as the number of 
tetrahedrons in the computation, Marching Tetrahedron will be a better fit.  

 

3.3.4 Marching Cubes using Geometry Shaders 
 

With techniques such as geometry shading, we can generate volume models with acceleration 
from the GPU. This is a highly parallel task, and therefore a GPU, who typically has 100+ 
processors, is a good computation machine. Earlier the Marching Cubes algorithm was 
programmed on vertex shader and later pixel shader for GPU acceleration of the algorithm. 
To program these on the GPU gave a rather hard implementation. 

When the geometry shader arrived, the Marching Cubes algorithm could be implemented 
much more natural. The geometry shader lies after the vertex shader and before the 
rasterization stage in the graphics pipeline, as explained in 2.2.1. It will receive data in shape 
of primitives (points, lines, triangles) from the vertex buffer, and generate new primitives 
before the data is forwarded to the rasterizer.  

The principle of the algorithm on this shader is that the geometry shader should receive point 
primitives, where each point represents a voxel/cube in the scalar field. For each point, the 
geometry shader will do the Marching Cubes lookup functions, and generate the set of 
triangles needed to make the isosurface. To get the scalar field values, it can be used a 16 bit 
floating point 3D texture, and for the table lookups for the precalculations we can use 2D 
textures [29]. 

A positive matter of using the geometry shader for the acceleration of Marching Cubes is that 
it will become highly parallel, and will get high speed-up compared to a CPU-implemented 
version.  

It is still a part of the graphics pipeline, and therefore needs to be calculated after the vertex 
shader. It also is limited to some primitives as input. 
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3.3.5 Marching Cubes using NVIDIA CUDA 
 

To implement the Marching Cubes algorithm in NVIDIA CUDA, it is done with a directly 
GPGPU approach, where a NVIDIA CUDA kernel is being used for all device-computations. 
This approach is not affected by the graphics pipeline, and therefore is more flexible than the 
geometry shader implementation. 

Basically to make a volume from scan data, the algorithm “marches” through the voxel-field, 
using 8 scalar values, forming a cube in each calculation. Then making an 8 bit integer, where 
each corner is compared if it is inside or outside the volume. This integer is finally used to 
look up the cube’s vertices and polygons from a precalculated list. For a detailed description 
of a NVIDIA CUDA implementation of Marching Cubes, see the section 5.2. 
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Chapter 4 - Petrel 
 

 

 

Petrel® is a Schlumberger® owned software application for subsurface interpretation and 
modeling that indented to aggregate oil reservoir data from multiple sources to improve 
resource team productivity for better reservoir performance. It allows users to perform various 
workflows, from seismic interpretation to reservoir simulation. It unifies geophysics, geology, 
and reservoir engineering domains, reducing the need for multiple highly specialized tools. 
The Figure 15 shows the main modules of Petrel. 

 

Figure 15: Shows the main modules in Petrel. 

The software development of Petrel was started in Norway by a company called Technoguide 
in 1996. In 1998, Petrel became commercially available in 1998, and was developed specially 
for PC- and Windows OS- users with a familiar Windows-like user interface. The familiar 
interfaces lead to a fast learning curve for less experienced users, and more staff without 
specialist training should be able to use 3D geologic modeling tools, than earlier programs 
[39]. After Schlumberger acquired Technoguide in 2002, Petrel has grown significantly, and 
includes today lots of other functionalities, such as seismic interpretation and well planning. 
Petrel has also been built on a software framework called Ocean®, where 3rd party users can 
develop their own modules to run in Petrel.  

Geophysics

Geology

Reservoir 
EngineeringDrilling

Data and Result 
Viewer
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4.1 Ocean 
 

Ocean is an application development framework, which provides services, components and 
graphical user interface for easy integration of applications between data domains. One of the 
applications the developer will be able to interact with is Petrel. The framework is developed 
on Microsoft’s .NET platform, using C# and Visual Studio 2005 or 2008 environment, which 
is easy to learn without being a specialist. Ocean is intended to enable integration of 
application and proprietary workflows into the Petrel software, which makes it possible for 
the developers to add exactly what they require, if there should be acceleration of workflows 
or development of new functionality [41]. The architecture of the Ocean framework is divided 
in three levels: the Core, the Service and the product family, where Petrel is the product 
family for model-centric applications. Ocean modules are managed by the Core layer and 
interact with the framework as shown below: 

 

 

 

 

‘ 

 

 

 

 

 

Figure 16: The Ocean architecture. Figure is reproduced from [40]. 

The Core is the basic infrastructure, which manages Ocean modules and both registers and 
manages the services pre-loaded by Petrel, other product families and the ones added via the 
API. In addition, the Core performs event management and basic message logging. The 
Services are a set of application independent utilities. What kinds of utilities available depend 
on the Ocean Core. An example of a utility can do be tools for conversion of coordinate 
system etc. Petrel and other product families represent the environment the Ocean module 
executes into. These provide the domain objects and their data source, the graphical 
environment and a common user interface and its components. At last the application modules 
connect to the other layers of the software through the .NET framework, where the 
development can be done. Further information about Ocean can be found in [40, 41].  

  

Application Module 

Product Family 

Ocean Services 

Ocean Core 
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Chapter 5 - Implementations 
 

 

 

This chapter describes how the Marching Cubes algorithm presented in the previous chapter 
has been implemented. For this project we implemented two versions of the Marching Cubes 
algorithm. The first implementation is a sequential, using the CPU. That was implemented 
because of need to evaluate the second version, the GPU version, which is tuned for 
parallelization. The CPU version uses only one processor core for execution, even if the 
processor used have more than one processor core (multicore). The implementations support 
volumetric datasets with values ranging from 0 to 255. 

 

5.1 CPU version  
 

This section describes the CPU version of the marching cube algorithm. Before we describe 
the implementation in detail, we will present some optimizations guidelines for maximizing 
the CPU performance.  

 

5.1.1 Optimizations Guidelines 
 

In an ideal world, the modern compilers would completely handle the optimization of our 
program. However, the compiler has too little knowledge of our source code to be able to do 
so. It is possible to choose the degree of optimization that the compilers should do on our 
code, and one should be aware that the highest degree might lead to slower code and not 
faster. So need to try the different optimization options independently. In any case, compilers 
often accelerate performance by selecting the right compiler options. There are also some 
general optimization techniques programmers should be acquainted with for highest possible 
performance.  

A very important technique for high performance is to avoid cache misses, since most modern 
CPUs uses fast cache memory to reduce average time to access main memory. The CPU will 
first check for the data needed in the cache memory, and if the data is not there it must wait 
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for the data to be fetched from the much slower main memory. Many programs are waiting 
for data to be fetched from main memory and therefore waste much of their execution time. It 
is very important that data is present in cache when requested. Caches relay on both spatial 
and temporal locality, items near a used item might be used soon and items used will likely be 
used again in the near feature [34]. Data structures must therefore be set up so that the main 
memory is accessed in contiguous memory segments (as illustrated in Table 1) and data 
elements need to be reused in a loop as frequently as possible [38].  

Table 1: Illustrates effective and ineffective use of cache. 

Effective use of cache Ineffective use of cache 
for i=0…4 
  for j=0…4  
    a[i][j]= … 
 

Memory are continuous: 
        

 

for j=0…4 
  for i=0…4  
    a[i][j]= … 
 

Memory are not continuous: 
        

Loop optimization techniques can have huge effect on cache performance, since most of the 
execution time in scientific applications is used on loops. Matrix multiplication is one 
example that can gain performance if the sequence of how the for loops are correctly 
arranged, by allowing optimal data array access pattern. If the data needed is in continuous 
memory, the next elements needed are more likely to be in the cache. You can improve cache 
locality by dividing the matrix into smaller sub matrixes, and choose optimal block size that 
will fit into cache and reduce execution time. The size of the sub matrix will be system 
depended, since different size of cache for different systems. 

Another feature of today’s processor architectures is the long execution pipelines, which 
offers significant execution speedups if kept full. With pipelining several instructions can be 
overlapped in parallel. Branch predication is used to ensure that the pipeline is kept full, by 
guessing which way the branch is most likely to go. It has significant impact on performance, 
by letting processors fetch and start execute instructions without waiting for the branch to be 
determined. A Conditional branch is a branch instruction that can be either taken or not taken. 
If the processor makes the wrong guess in a conditional branch, the pipelined needs to be 
flushed and all computation before the branch point is unnecessary. It can therefore be 
advantageous to eliminate such conditional branches in performance critical places in the 
code. One technique that can be used to eliminate branches and data dependencies is to unroll 
loops [35], as illustrated in Table 2.  

Table 2: Illustrates Loop Unrolling: 

Regular loop Unrolled loop 
for(int i=1; i<N; i++) 
  if((i mod 2) == 0)  
      a[i] = x; 
  else 
      a[i] = y; 

for(int i=1; i<N; i+=2) 
    a[i] = y; 
    a[i+1] = x; 
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Only should try to reduce the use of if-sentences as much as possible inside the inner loops.  

 

5.1.2 Implementation  
 

This section will describe our CPU implementation of the marching cube algorithm. This 
implementation and this description about it, is build upon two earlier applications gathered 
from [37, 42]. The compiler used for the implementation was Microsoft Visual C++, in the 
operating system Microsoft Windows Vista 32bit. The program has been programmed in C 
and C++. The graphics library used is OpenGL2, with the use of the OpenGL Extension 
Wrangler Library (GLEW)3 for access to Vertex Object Buffers, enabling effective rendering. 
For window management and handling mouse and keyboard user inputs, the Simple 
DirectMedia Layer (SDL)4  is used. SDL is a cross-platform library for access to low level 
access to audio, mouse, keyboard and OpenGL and the frame buffer. To load BMP files, the 
EasyBMP5 library is used. EasyBMP is a simple cross-platform, open source C++ library.  

The CPU algorithm takes 8 points at a time forming a cube that has the following corner 
indexing convention: 

 

Figure 17: The corner indexing convention for the CPU implementation. 

The algorithm uses two lookup tables. The first is the edge table that holds an overview (256 
different combinations) over which of the 12 edges we have to interpolate, that can arise from 
the eight corners status being inside or outside the isosurface. The second is the triangle table 

                                                 
2 http://www.opengl.org/ 
3 http://glew.sourceforge.net/ 
4 http://www.libsdl.org/ 
5 http://easybmp.sourceforge.net/ 
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that determines the quantity (maximum five) and how the triangles inside each cube should be 
drawn, for correct representation of the isosurface.  

Table 3: The pseudo code for the CPU implementation: 

 
Create the edge and triangle lookup tables 
 
Allocate memory for each triangle that will be generated  
 
Allocate memory for edge intersection points 
 
for  z = 0...size_z-1  
  for y = 0...size_y-1 
    for x = 0…size_x-1 
    (1) Find out where in the edge table we should do lookup, by creating an 8 bit    
          index 
    (2) If not all points are on the inside or outside, want to take a closer look   
       (2.1) Find out by doing a lookup into the edge table, where along each cube   
                edge, the isosurface crosses and do linear interpolation to find the   
                intersection points 
       (2.2) Lookup and loop through entries in the triangle lookup table to decide   
               which of the edge intersections points found in (2.1), to draw triangles   
               between  
 
 

Additional explanation to the pseudo code described above, where we also presents some 
sections from the implemented source code: 

(1) Find out where in the edge table we should do lookup, by creating an 8 bit index 
 
An 8 bit index is formed by using the |= operator, where each bit match up to a corner in the 
cube, as illustrated under.  
 

C7 C6 C5 C4 C3 C2 C1 C0 

 
The bitwise OR assignment operator (|=) looks at the binary representation of the value of the 
result and expression and does a bitwise OR operation on them. The result of the OR 
operator behaves like this [34]:  
 
Operand1 Operand2 Operand1 OR Operand2 
0 0 0 
0 1 1 
1 0 1 
1 1 1 
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Listed under is connection between each cube corner, and its binary and decimal number 
representation used to determine the 8 bit index: 
 
Corner Binary Decimal  
C0 1 1 
C1 10 2 
C2 100 4 
C3 1000 8 
C4 10000 16 
C5 100000 32 
C6 1000000 64 
C7 10000000 128 

 
Section from the implemented source code, where we find out where in the edge table we 
should do lookup:  
 
// vertex 0 
if(this->rock->SgVolume(x, (y+1), (z+1)) > this->iso_value) lookup |= 1;   
// vertex 1 
if(this->rock->SgVolume((x+1), (y+1), (z+1)) > this->iso_value) lookup |= 2;   
// vertex 2   
if(this->rock->SgVolume((x+1), (y+1), z) > this->iso_value) lookup |= 4; 
// vertex 3 
if(this->rock->SgVolume(x, (y+1), z) > this->iso_value) lookup |= 8;  
// vertex 4 
if(this->rock->SgVolume(x, y, (z+1)) > this->iso_value) lookup |= 16;  
// vertex 5 
if(this->rock->SgVolume((x+1), y, (z+1)) > this->iso_value ) lookup |= 32;  
// vertex 6 
if(this->rock->SgVolume((x+1), y, z) > this->iso_value)  lookup |= 64;  
// vertex 7 
if(this->rock->SgVolume(x, y, z) > this->iso_value) lookup |= 128; 

 

 

(2) If not all points are on the inside or outside, want to take a closer look   
 
We are not interested in a closer look if the lookup value is 0 or 255, since then the cube does 
not contribute to the isosurface.   
 

(2.1) Find out by doing a lookup into the edge table, where along each cube edge, the    
isosurface crosses and do linear interpolation to find the intersection points 
 
Looking up in the edge table by using the index found in (1) returns a 12 bit number 
representing which edges that are crossed, this number are used with & operator. This will 
find out if one edge are crossed by the isosurface, if it does it needs to be interpolated. All 
interpolated points are put in an array for further use in (2.2). Under is a section from the 
source code that is used to find out if the edge between 0-1 is crossed by the isosurface, this 
is also done between the edges 1-2, 2-3, 3-0, 4-5, 5-6, 6-7, 7-4, 0-4, 1-5, 2-6 and 3-7.  
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if (this->edgeTable[lookup] & 1) // 0 - 1 
{ 
 vertex v0((float) x,(float) (y+1),(float) (z+1));  
 v0.flux = this->rock->SgVolume(v0.x_pos, v0.y_pos, v0.z_pos); 
 vertex v1((float) (x+1),(float) (y+1),(float) (z+1)); 
 v1.flux = this->rock->SgVolume(v1.x_pos, v1.y_pos, v1.z_pos); 
 this->verts[0] = this->rock->interpolate(v0, v1); // interpolate edge 0 to 1  
} 

 
The intersection points are found with linear interpolation, given by: 
 

P ൌ Pୟ  ሺselected_isovalue െ VୟሻሺPୠ െ Pୟሻ/ ሺVୠ െ Vୟሻ 
 
Where ܲ and ܲ are points to a crossed edge by the isosurface and ܸand ܸ are density 
values. 

(2.2) Lookup and loop through entries in the triangle lookup table to decide which of 
the edge intersections points found in (2.1), to draw triangles between  
 
Under is a section from the original and our source code where the edge intersection points 
found in (2.1) are used, to put together one or up to 5 triangles for the isosurfaces. By doing a 
lookup into the triangle table with the same index found in (1), we find out which of the 
intersections points to drawn triangles between. Every triangles normal is determined, and 
stored with its corresponding triangle for further rendering.   
 
The original source code: 
 
for (i = 0; this->triTable[lookup][i] != -1; i+=3) 
{ 
 if (this->wireframe)  
            { 
  glBegin(GL_LINE_LOOP); 
 } else { 
  glBegin(GL_TRIANGLES);  
            } 
 { 
  for (j = i; j < (i+3); j++) 
  { 
                                    glNormal3f((float) this->verts[this->triTable[lookup][j]].normal_x,    
             (float) this->verts[this->triTable[lookup][j]].normal_y,  
                        (float) this->verts[this->triTable[lookup][j]].normal_z); 
 
               glVertex3f((float) this->verts[this->triTable[lookup][j]].x_pos, 
                       (float) this->verts[this->triTable[lookup][j]].y_pos, 
                       (float) this->verts[this->triTable[lookup][j]].z_pos);  
  } 
 } 
 glEnd(); 
} 
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Our source code, where Loop Unrolling is applied:  
 
for (i = 0; this->triTable[lookup][i] != -1; i+=3) 
{ 
 vertex v1 = this->verts[this->triTable[lookup][i]]; 
 vertex v2 = this->verts[this->triTable[lookup][i+1]]; 
 vertex v3 = this->verts[this->triTable[lookup][i+2]]; 
 
 vertex n = CalcNormal(v1,v2,v3); // calculate the vertex normals  
 
 d_pos[v_gen] = make_float4(v1.x_pos,v1.y_pos,v1.z_pos,1.0f); 
 d_normal[v_gen] = make_float4(n.x_pos,n.y_pos,n.z_pos,1.0f); 
 d_pos[v_gen+1] = make_float4(v2.x_pos,v2.y_pos,v2.z_pos,1.0f); 
 d_normal[v_gen+1] = make_float4(n.x_pos,n.y_pos,n.z_pos,1.0f); 
 d_pos[v_gen+2] = make_float4(v3.x_pos,v3.y_pos,v3.z_pos,1.0f); 
 d_normal[v_gen+2] = make_float4(n.x_pos,n.y_pos,n.z_pos,1.0f); 
 
 v_gen += 3; // number of generated vertices and vertex normals 
} 

 
 
In Figure 19, there is an illustration on how our CPU implementation works when the value 
of the corner 3 is above the selected isovalue, as illustrated in Figure 18. 
 
 

 

Figure 18: The value of corner 3 is above the selected isovalue. 
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Figure 19: Illustrates how our CPU implementaion works, when the value of the corner 3 is 
above the selected isovalue. Reproduced from text [37]. 

 

5.2 GPU version 
 

First we will explain some optimization guidelines for NVIDIA CUDA, then an explanation 
of the GPU implementation. 
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5.2.1 Optimizations Guidelines 
 

To program efficiently on a GPU using NVIDIA CUDA, the knowledge of the hardware-
architecture is important, that is explained further in the Section 2.3.  

The primary performance element of the GPU, which really should be exploited by a NVIDIA 
CUDA programmer, is the large number of computation cores. To do this, there should be 
implemented a massive multithreaded program.  

One of the problems with a GPU implementation is the communication latency. For 
computations, there should be as little communication as possible between the CPU and GPU, 
and often some time can be spared by doing the same computation several times, than load the 
answers between the CPU and GPU. The massive parallelization of threads is also important 
for hiding the latency. 

A modern GPU contains several types of memory, where the latency of these is different. To 
reduce the used bandwidth, it is recommended to use the shared memory where it is possible. 
The global device memory is divided into banks, where access to the same bank only can be 
done sequentially, but access to different banks can be done in parallel. Therefore the threads 
should be grouped to avoid this memory conflict. 

Another function that should be used as little as possible is synchronization. This can cause 
many threads to wait a long time for another thread to finish up, and can slow the computation 
significantly.  

When using strategies to reduce the number of computations in an implementation, a 
restriction to another element of the GPU could often be met. Therefore the number of 
threads, memory used and total bandwidth should be configured carefully in proportion to 
each other. 

The number of thread-blocks used simultaneously on a Streaming Multiprocessor (SM) is 
restricted by the number of registers, shared memory, maximum number of active threads per 
SM and number of thread-blocks pr SM at a time. 

 

5.2.2 Implementation 
 

The compiler used for the implementation was Microsoft Visual Studio 2005 in the operating 
system Microsoft Windows Vista 32bit. This implementation is build upon NVIDIA’s 
Marching Cubes example from NVIDIA CUDA beta 2.1 SDK. Most of the program has been 
programmed in NVIDIA CUDA C and C99, with a little hint of C++ for easier array-lookup.  

The GPU implementation contains the following files: 

 tables.h: The Marching Cubes precalculated tables. 
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 cudpp.h: C++ link-file for CUDPP library. 

 marchingCubes_kernel.cu: Device kernel. 

 marchingCubes.cpp: Host control. 

The files will now be explained further. 

 

5.2.2.1 The Marching Cubes precalculated tables: table.h 
 

This file contains two tables for fast lookup. The tables have the needed recalculated values 
for the Marching Cubes algorithm to be accelerated. Both of these tables use the cube index as 
reference for the lookup.  

The first table is the triangle table. In this table, there are 256 different entries, which each 
having a list of 3 and 3 edges that together makes a triangle. The maximum number of 
triangle a cube can produce is 5, and therefore each entry contains a list with 15 edge indices.  

The last one is a vertex count table. A lookup on this table will return the number of vertices 
the current cube index should generate. And this will both decide how much memory to 
allocate and how many times to loop the triangle generation-loop for the current cube. 

 

5.2.2.2 C++ link-file for cudpp library: cudpp.h 
 

Cudpp.h is a simple file, who calls functions from the CUDPP library. This file is basically 
made for communication between C++ files and the library. 

CUDPP (CUDA Data Parallel Primitives) Library is a library of data-parallel algorithm 
primitives such as parallel scan, sort and reduction. The library focuses on performance, 
where NVIDIA says that they aim to provide the best-of-class performance for their 
primitives. Another important aspect of the library is that it should be easy to use in other 
applications. 

In our application, we are using the scan (prefix sum) function to perform stream compaction. 
This is where we scan an array holding the number of vertices to be generated pr voxel, and 
returning an array holding the vertices number each voxel should start with when saving the 
data to the vertex buffer objects. 
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5.2.2.3 Device kernel: marchingCubes_kernel.cu 
 

The file marchingCubes_kernel.cu contains all computations on the device. Most of the 
functions found here are the ones best fitted for parallelization. The other ones are support 
functions for preparing the algorithm and some for doing parts of the calculations. 

In the first of the support categories, we have the function allocateTextures. This function is 
copying the precalculated lookup-tables to the texture cache, for fast lookups.  

All the parallel functions have parameters for both grid and number of threads. These 
numbers decides the size of the parallelization, where the thread number means how many 
threads there should be calculated pr threadblock. 

The main functions will be explained further: 

 

5.2.2.3.1 classifyVoxel 
 

This is where each voxel will be classified, based on the number of vertices it will generate. It 
first gets the voxel by calculating the threads grid position and grabs the sample points (one 
voxel pr thread). Then when the calculation of the cube index is done, the texture lookup is 
launched and the vertices count for the current voxel is saved in an array on the global 
memory. 

 

5.2.2.3.2 compressVolume 
 

Since the datasets we are operating on contains so much data, we decided to compress the 
dataset to 1/8th the size before calculating the Marching Cubes algorithm. This was because 
the number of vertices generated from the raw dataset was about 5-8 times too many to draw 
for the best graphics card available to us at that moment, the NVIDIA GeForce 280 GTX 
card. The function compressVolume is doing the compression and making the scalar-field-
data 1/8 of the original size. 

 

5.2.2.3.3 addVolume 
 

This function should discard the frames around each image from the dataset, and therefore 
save some memory. Most of the frames are 25-40 pixels wide along the edges. With the 
1000*1000 bmp images we used for testing, this could save us up to 153600 8 bit uchar 
values pr image, and could therefore be vital for our algorithm. 



36 
 

But since different data-sets have different layouts, we decided to comment out the frame 
removal for the final version, and the function addVolume is now a simple one, copying the 
image densities to the device. 

 

5.2.2.3.4 generateTriangles2 
 

To generate the triangles after the volume has been classified, it is needed to make a lookup in 
another table than classifyVoxel does. Since throughput is the GPU’s biggest strength and 
latency is a slow matter, we decided to keep NVIDIA’s way to do this algorithm. The 
algorithm is basically doing what classifyVolume did at first, where it finds the grid position, 
collects the sample data and calculates the cube index. Here we also calculate the position in 
the 3 dimensional world for each of the eight corners of the current cube. After this it makes 
an interpolation-table for each edge, which calculates where on the current edge the isovalue 
might be. Finally the function loops through all of the triangles to be generated for the current 
cube, and calculates its vertices coordinate-position and normal vectors. 

 

5.2.2.4 Host control: marchingCubes.cpp 
 

The file marchingCubes.cpp is the main file in the system. We have implemented two 
versions of this file. One of them is for the standalone application using OpenGL to show the 
algorithm. The other version is prepared for ocean-implementation. First we will explain the 
main functions existing in both of the versions, then explain the difference in the 
implementation. 

 

5.2.2.4.1 calcBitmaps 
 

This function is quite simple, where the path for the directory for the scan data are being 
evaluated and determined how many bmp-images the algorithm is going to load. The quantity 
of bitmaps in the directory symbolizes the step size in the z-direction of the final volume. 

 

5.2.2.4.2 calcBitSize 
 

Another help-function for loading the scan data is calcBitSize. In this file, the width and 
height of each image is decided. These values correspond to the step size in the x and y 
directions of the volume. Another value who is determined in this function is the number of 
colors in a bitmap. Since 8bit bmp files contain a palette, who is a lookup table for the colors 
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in the image, this one has to be decided to extract the colors. The scan data we tested with had 
a 256 grayscale colored palette, and each of the lookup indices represented the same 
grayscale-color, and therefore this value is saved for easier use of other datasets. 

 

5.2.2.4.3 loadBMPFiles 
 

This function is the bitmap loader, where a parameter decides how many pictures to load at a 
time. The function is loading one and one image, copying it to the device, and then calling the 
device function addVolume. addVolume will then remove the unwanted parts of the picture, 
and make the density volume ready for further calculations 

 

5.2.2.4.4 initMC 
 

initMC is the function that controlls everything with the calculation of the volume. It first 
initiates all the values for the algorithm, where the values for maximum number of vertices 
and number of loaded pictures at a time decides how the devices global memory is being 
used. The more vertices wanted to be drawn in the final volume model, the fewer bitmaps can 
be calculated at one time, and the throughput is lesser exploided. Therefore it is important to 
adjust these values in propotion to the current device and data set that is being used. For more 
information about this, look at Section 5.2.2.7. 

Given how many bitmaps to load at a time, the function will further loop through the dataset, 
using loadBMPFiles, classifyVoxel, cudppScan and generateTriangles2. For each time this 
loops, the generated triangles and their normal vectors will be saved in two vertex buffer 
objects (VBOs). The VBO is easy and fast to draw with few lines of OpenGL code and will 
be the important link between the Ocean and NVIDIA CUDA-files. 

 

5.2.2.5 Standalone version 
 

In addition to the function the two version share, the standalone version contains function for 
drawing and storing the volume. For the storing is, as explained in Section 5.2.2.4.4, VBOs 
used. There are some standard OpenGL functions, opening a window and setting the light 
adjustments. In addition there are implemented functions for keyboard input and for the 
mouse to spin the volume. The function renderIsosurface is then drawing the VBOs each 
frame. 
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5.2.2.6 Schlumberger Ocean prepared version 
 

In the Schlumberger Ocean prepared version most of the OpenGL, like open window and key 
handlers are removed. The only thing left from the OpenGL libraries is the creation and 
removal of the VBOs. The two VBOs contain all information needed to draw the volume, and 
therefore device addresses to the locations where these is saved, is the only information Ocean 
is getting back from the function call. The function Ocean calls is the main function in 
marchingCubes.cpp, and its needed parameters is the path of the storage location for the data 
set to generate volume from, the isovalue, the maximum number of vertices to be generated 
and the number of bitmaps to load at a time. With this information an Ocean implementation 
of our program can be easily implemented. 

 

5.2.2.7 Memory allocation 
 

Our program is very memory dependant, and to control the memory, you have to know how 
much memory the device contains. There are created two variables to control the memory 
allocation. The first of these variables are maxVerts, which control how many vertices the 
device should maximally be able to draw. And the second variable is bitmapsPrTime, where 
the digit represents the number of bitmaps to load to the device memory at a time.  

The variable maxVerts are controlling the size to allocate for the two device-lists posVBO 
and normalVBO. Each entry in each of these lists contains 4 float values, and will therefore 
use the allocated memory size 4*4 bytes (size of float) = 16 bytes (pr entry in each list). The 
other variable controls the device-lists d_volume, d_voxelVerts and d_voxelVertsScan. The 
size of d_volume, who contains the raw density volume as unsigned character values, is 
pixelsPrBitmap*bitmapsPrTime*1 byte, and the size of the two other lists is for each double 
the size of d_volume, since they contains unsigned integers for storing values. These two 
voxel vertice-lists are for storing the computed data from the functions classifyVolume and 
the scan-data for the CUDPP-scan.  

The big datasets we were doing the tests with all contains bitmaps with 1000x1000 pixels, 
where most of them were drawing between 10 000 000 and 16 000 000 vertices, when we 
compressed the volume to 1/8th the total size, meaning halving the bitmaps to 500x500 pixels. 
When loading bitmaps, we use memory to temporary save in a list, before compressing the 
data and the lists d_voxelVerts and d_voxelVertsScan is allocated on the device after the bmp 
load is finished. Therefore the functions then for storing the data would look like this: 
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 While loading the bitmaps:  
݀݁ݐ݈݈ܽܿܣ݁ܿܽݏ

ൌ ሺ݉ܽݏݐݎܸ݁ݔ ൈ ݏ݁ݐݕܾ 16 ൈ ሻݏݐݏ݈݅ 2

 ቆܾ݅݁݉݅ܶݎܲݏܽ݉ݐ  ൈ
ሺ500 ൈ 500ሻݏ݈݁ݔ݅

ܽ݉ݐܾ݅

ൈ ൰݁ݐݕܾ 1                                ሺ4 ൈ 
ሺ500 ൈ 500ሻݏ݈݁ݔ݅

ܽ݉ݐܾ݅
ൈ ൫ሺܾ݅݁݉݅ܶݎܲݏܽ݉ݐ כ 2ሻ  1൯ሻ 

 While computing the NVIDIA CUDA Marching Cubes: 

݀݁ݐ݈݈ܽܿܣ݁ܿܽݏ
ൌ ሺ݉ܽݏݐݎܸ݁ݔ ൈ ݏ݁ݐݕܾ 16 ൈ ሻݏݐݏ݈݅ 2

 ቆܾ݅݁݉݅ܶݎܲݏܽ݉ݐ  ൈ
ሺ500 ൈ 500ሻݏ݈݁ݔ݅

ܽ݉ݐܾ݅
ൈ    ቇݏ݁ݐݕܾ 5

The loading of bitmaps will take the most memory of these two. If we do not use the image 
compression algorithm, we do not use the big temporary list when loading bitmaps, in this 
case the one while computing the NVIDIA CUDA functions will use the most memory, but it 
will change a little, cause of the original width and height of each image is used: 

While computing the NVIDIA CUDA Marching Cubes:  
݀݁ݐ݈݈ܽܿܣ݁ܿܽݏ

ൌ ሺ݉ܽݏݐݎܸ݁ݔ ൈ ݏ݁ݐݕܾ 16 ൈ ሻݏݐݏ݈݅ 2

 ቆܾ݅݁݉݅ܶݎܲݏܽ݉ݐ  ൈ
ሺ1000 ൈ 1000ሻݏ݈݁ݔ݅

ܽ݉ݐܾ݅
ൈ  ቇ݁ݐݕܾ 5

For testing the datasets we were using the NVIDIA GeForce 280 GTX with 1GB device 
memory. For different datasets this will lead to this allocation conditions: 

 

Figure 20: Relationship between bitmaps loaded at a time and maximum nr of vertices. 
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The precalculated lists are allocated on the device memory, but totally they take 8.5 kb, and 
therefore are not taken in our computation. There are also used some other integer values in 
addition to some memory used for the OpenGL functionality for buffers and lights that is not 
used in these computations. This are because our computations shows the roof of the 
relationship between the numbers of bitmaps loaded at a time and the maximum number of 
vertices to draw on a GPU with 1GB global device memory. 

On Figure 20, we can observe that with the bmp compression, we can load about twice as 
many bitmaps at a time, compared to the one without the compression.  The vertice-count 
when using the compression is also about 1/8th compared to use the raw data to compute the 
vertices. When not using the compression, the vertice count, and therefore the memory 
needed are much greater.  

An average data-set we used for testing required around 12 000 000 vertices with the 
compression algorithm in use, and therefore we could see that we the number of bitmaps to 
load at a time is about 300.  
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Chapter 6 - Benchmarks 
 

 

 

In this chapter, we will look at the performance of our two implementations of the Marching 
Cubes algorithm. The first implementation is a sequential, using the CPU. That was 
implemented because of need to evaluate the second version, the GPU version, which is tuned 
for parallelization.  

For the evaluation of our implementations, we ran two types of tests. The first where we 
compared the performance when running the parallel version on two different GPUs and the 
second where we compared the performance of the sequential version to that of the parallel 
version.  

 

6.1 Memory Restrictions   
 

The detailed Microcomputed Tomography scans of the reservoir rocks used in this project 
generated large data sets which required a lot of memory. This made it extremely important 
that the memory usage in our implementations was optimal, which permitted the maximum 
quantity of data to be used at the same time, without running out of memory. This is 
particularly important on the GPU, where the memory capacity is limited and where memory 
cannot be simply added. Therefore, all the data structures used in both the sequential and 
parallel version uses and stores only the minimum of what is required for generating the 3D 
models of the reservoir rocks.   

In both the implementations the most memory demanding part is the data structures used for 
rendering, which are two vector arrays, one array to hold the vertices positions and the other 
to hold the vertex normals. A position and normal vector holds four float values, which are 
used to describe the surface shape of the object being rendered and for appropriate lightning 
effects. How much memory the data structures consumes, depends on how many triangles that 
are created by the Marching Cubes algorithm. A triangle is formed by putting together three 
vertices, with its corresponding normals. Thus, the total memory requirements are therefore, 
for rendering: 

2 · 16 · ሺ݀݁ݐܽݎ݁݊݁݃ ݏ݈݁݃݊ܽ݅ݎݐ · 3ሻ ܾݏ݁ݐݕ  
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Particularly the size of the input data and also the isovalue had much influence on how many 
triangles that were created. With the huge data sets used in this project, we could easily create 
more triangles than the GPU, with the largest available memory capacity (1 GB), could 
handle. Because of this there were restrictions on how many CT slices that we could use at the 
same time, without running out of memory.    

Both the CPU and GPU version uses Vertex Buffer Objects [36] for rendering, which is an 
OpenGL extension that provides methods for uploading data directly to the GPU, and offer 
significant performance increase since data can be rendered directly from the GPU memory. 
Rather than have to transfer the data from main memory to the GPU for each time wish to 
redraw a scene [43]. 

 

6.2 GPU vs. GPU  
 

In this section we will compare the performance of our parallel GPU implementation, by 
running it on two different GPUs.  

 

6.2.1 Testing Environment  
 

The first GPUs enabled for Shader Model 4.0 and therefore also NVIDIA CUDA was the 
NVIDIA GeForce 8800, where the GTX was the high-end version and GTS the more 
economic one. The NVIDIA GeForce 8800-card was released November 8th, 2006 [30]. At 
the time we were doing the benchmark-tests, NVIDIA’s GeForce GTX 280, who was released 
June 17th, 2008 [31], was the best NVIDIA CUDA enabled card with graphics output on the 
marked. Therefore the parallel version of the program is compared between these two, to see 
how much the computation power has changed in these 18 months for our implementation.  

For the test, we used a setup for number of bitmaps loaded at a time and maximum number of 
vertices for each of the GPUs in proportion to the size of the GPU memories. For more 
detailed explanation, take a look at Section 5.2.2.7. 

The test-machines were having these specifications: 

Machine 1: 

CPU Intel® Core™ 2 Quad CPU Q9550, 2.83 GHz, and 12 MB L2 Advance Smart 
Cache. 

Memory OCZ DDR3 4GB Platinum EB XTC Dual Channel 
GPU NVIDIA GeForce GTX 280  

GPU Engine Specs: 240 Processor Cores, 602 MHz Graphics Clock, and 1296 
MHz Processor Clock.   
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Memory Specs: Memory Clock 1107 MHz, 1 GB DDR3 SDRAM, and Memory 
Bandwidth 141 GB/sec. 

Memory 
setup 

Number of bitmaps at a time: 70 
Maximum vertices: 16 000 000 

 

Machine 2: 

CPU Intel® Core™ 2 Duo CPU E6600, 2.4 GHz. 
Memory Corsair TWIN2X 6400 DDR2, 2GB CL5 
GPU NVIDIA GeForce 8800 GTS 

GPU Engine Specs: 96 Processor Cores, 1200 MHz Processor Clock. 
Memory Specs: 640 MB DDR3 SDRAM, and Memory Bandwidth 64 GB/sec. 

Memory 
setup 

Number of bitmaps at a time: 40 
Maximum vertices: 11 000 000 

 

6.2.2 Benchmarking  
 

In the smallest test we use the algorithm without any volume compression, but the 
compression is needed for the two larger sets, to fit them in the GPU memories, and therefore 
the execution will run faster pr pixel than the one without compression. 

Table 4: Runtime in seconds in our GPU vs. GPU benchmark: 

GPU                                                  N 1000ଶ25 1000ଶ301 1000ଶ570 

NVIDIA GeForce GTX 280 0.0535 0.3005 0.5784 

NVIDIA GeForce 8800 GTS 0.1926 1.0415 2.0322 

Speedup NVIDIA GeForce GTX 280  3.60 3.47 3.51 

 

Table 5: Number of triangles created in our GPU vs. GPU benchmark: 

GPU                                                  N 1000ଶ25 1000ଶ301 1000ଶ570 

NVIDIA GeForce GTX 280 438142 3949822 3893728 

NVIDIA GeForce 8800 GTS 438142 3666666 3666666 

 

6.2.3 Discussion  
 

The test-machines have some big differences in both computation power and memory. Where 
the NVIDIA GeForce GTX 280 card can load about double of what the NVIDIA GeForce 
8800 card can at a time, making the NVIDIA GeForce GTX 280 card to be able to load more 
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bitmaps at a time. Each time the loop is looping, it does a load-operation on a number of 
bitmaps. When the loop loops a second time, the loader will load the last image from the first 
round again, to compute the vertices between the two “stacks”. Therefore, the fewer bitmaps 
loaded at a time, the more times the loop will loop, and there will be more time spent loading 
the same bitmaps two times. In addition to this, the more bitmaps loaded at a time will 
increase the throughput, and therefore the amount of memory will give speedup on large 
datasets. 

The NVIDIA GeForce GTX 280 card has 30 Streaming Multiprocessors (SMs) versus 12 on 
the NVIDIA GeForce 8800 card. This leads to about three times higher amount of 
computations available to be done per clock cycle.  

Another big difference between the two GPUs is the global memory bandwidth. Where the 
NVIDIA GeForce GTX 280 card has 141.7 GB/s versus NVIDIA GeForce 8800 64 GB/s, 
which will make the memory operations on the NVIDIA GeForce GTX 280 over twice as fast 
as the NVIDIA GeForce 8800.  

Since the Marching Cubes algorithm contains a massively parallel amount of computations, 
where each computation uses both lookups and storing on the global memory, both the 
number of SMs and the bandwidth is large factors for the NVIDIA GeForce GTX 280 card’s 
speedup. The memory of the NVIDIA GeForce 8800 card will make restrictions between if it 
could draw all the wanted vertices and how many bitmaps to be loaded at a time. We can also 
observe from the results that the speedup is about the same independent of the dataset size. 
These speedup-factors are then mostly affected by the amounts of computations to be 
performed simultaneously and the global bandwidth. 

 

6.3 CPU vs. GPU  
 

In this section we will compare our CPU and GPU implementation of the Marching Cubes 
algorithm. 

 

6.3.1 Testing Environment  
 

The tests were run in the operating system Microsoft Windows Vista 32-bit. We ran only 32-
bit computations, since 32-bit of precision is most common to the CPU and GPU. The system 
was completely unused when the tests were run. For visual profile generation of memory and 
processing in the parallel version, we used the NVIDIA CUDA Visual profiler (version 1.1.6). 
All the different programs were compiled with Microsoft Visual C++, using Microsoft Visual 
Studio 2005. With the following compile time optimization options tested: Disabled (/Od), 
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minimize size (/O1), maximize speed (/O2), full optimization (/Ox) and whole program 
optimization (/GL).  

We ran the performance tests on the following machine: 

CPU Intel® Core™ 2 Quad CPU Q9550, 2.83 GHz, and 12 MB L2 Advance Smart 
Cache. 

Memory OCZ DDR3 4GB Platinum EB XTC Dual Channel 
GPU NVIDIA GeForce GTX 280  

GPU Engine Specs: 240 Processor Cores, 602 MHz Graphics Clock, and 1296 
MHz Processor Clock.   
Memory Specs: Memory Clock 1107 MHz, 1 GB DDR3 SDRAM, and Memory 
Bandwidth 141 GB/sec. 

 

6.3.2 Benchmarking  
 

All the tests in the CPU vs. GPU benchmark were run with the same data (from the same CT 
scan) and with identical isovalue, for best possible evaluation.  

Our two implementations were tested on the following platforms: 

 A sequential CPU version, running on Intel Core™ 2 Quad CPU Q9550, with the /Ox 
and /GL compile time optimization options enabled for maximum performance.  

 A parallel GPU version, running on NVIDIA GeForce GTX 280, using NVIDIA 
CUDA version 2.1.   

Table 6: Runtime in seconds in our CPU vs. GPU benchmark: 

Platform  N 1000ଶ2 1000ଶ4 1000ଶ8 1000ଶ16 1000ଶ32 1000ଶ64 

GPU 0.0067 0.0118 0.0228 0.0544 0.0778 0.1565 

CPU 0.0405 0.1206 0.2786 0.5764 1.1863 2.4606 



46 
 

 

 

Figure 21: Runtime in seconds in our CPU vs. GPU benchmark. 

The commonly metric used for measuring the parallel performance is the speedup. The 
speedup factor ܵሺሻ is a measure of relative performance, given by: 

ܵሺሻ ൌ  
௦ݐ
ݐ

 

Where ݐ௦ is the execution time of the best sequential algorithm running on a single processor 
and ݐ is the execution time for solving the same problem on a multiprocessor. The maximum 

speedup possible is p with p processors, called linear speedup, given by:  

ܵሺሻ   

௦ݐ
ݐ

ൌ  

However, this is not often achieved because of additional overhead in the parallel version. 
Inactive processors, additional computation and communication time between processes are 
often factors that will limit the possible speedup in the parallel version [17]. 

Table 7: GPU speedup relative to the CPU, in our CPU vs. GPU benchmark: 

Program            N 1000ଶ2 1000ଶ4 1000ଶ8 1000ଶ16 1000ଶ32 1000ଶ64 
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Figure 22: GPU speedup relative to the CPU, in our CPU vs. GPU benchmark: 

Table 8: The time usage in percent, for the most important methods in the GPU version: 

Method               N 1000ଶ2 1000ଶ4 1000ଶ8 1000ଶ16 1000ଶ32 1000ଶ64 

Memory copying 97,67% 95,41% 91,14% 78,97% 72,93% 66,4% 

Generate triangles 1,73% 3, 48% 6,82% 12,04% 21,85% 26,54% 

Classify voxel 0, 4% 0,83% 1,59% 8,22% 3,91% 5,5% 

 

Memory copying percent, relative to the other methods when using 2 and 64 slices:  

 
Figure 23: GPU memory copying % with 2 

CT slices 

 
Figure 24: GPU memory copying % with 64 

CT slices 
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6.3.3 Discussion  
 

As we can see from Figure 22, the GPU version is much faster than the CPU version. The 
GPU version achieves a total speedup of 16 compared to the CPU version. There are several 
interesting discoveries from the tests. First, the parallel speedup increases as we added 
additional CT slices. In the parallel version the data must be transferred to the GPU before the 
Marching Cubes algorithm can begin. As illustrated in Figure 23 and Figure 24, the percent of 
memory copying decrease and other methods increase as more slices where added, which 
result in speedup. As we can see from Table 8, the percent time for memory copying is 
substantial. We can also observe that the percentage of used for memory copying decreases 
while the data-sets grows. This is because the maximum number of vertices is constant for the 
different test, and therefore will the percentage of the time used for the mapping and 
unmapping of VBOs decrease, while the data-sets grows. These mapping functions are for the 
communication between CUDA and OpenGL, and are therefore necessary for rendering the 
volume. For further speedup, need to avoid unnecessary data transfer, and therefore perhaps 
do computations on duplication of data instead.  

The part of the Marching Cubes algorithm that is the most computational demanding and 
most difficult to parallelize is the calculation of the intersections points connecting the 
isosurface and the cube edges. It is particularly difficult to parallelize because of the variable 
output, since not all edges needs to be interpolated. It introduces conditional branches that 
will likely limit the performance, leading to flushed pipelines in the CPU version because of 
wrong guesses and sequential execution of warps in the GPU version since the SM only 
executes threads in parallel that follow the same execution path. It can therefore be 
advantageous to eliminate such conditional branches in the calculation of the intersections 
points. For best performance in NVIDIA CUDA, need also to maximize the computational 
intensity. That is, to maximize the number of computations that is completed for each 
memory transaction. Transfer of data on the GPU takes a lot of the algorithm time, since the 
Marching Cubes algorithm uses lookups rather than calculations. For further speedup, need to 
increase the computational intensity. The data structures should also if possible be set up so 
that the memory is accessed in contiguous memory segments. This is especially difficult in 
the Marching Cubes algorithm since both the construction of the lookup index and the 
interpolation happens in three dimensions (height, width and depth) and every direction has 
unlike memory stride. The GPU then receives the most of the speedup because it is doing 
every voxel computation in parallel. Some more acceleration of our GPU algorithm can be 
received by implementing functions for saving some computations, which will be explained 
further in 7.2. A benefit with the GPU version is that it offloads the CPU, which then can be 
used to do other tasks. 
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6.4 Visual Results 
  

In this section we present visual results from our implementations of the Marching Cubes 
algorithm.  

Figure 26, Figure 27, Figure 28 and Figure 29 presents results from a volume rendering, after 
using our Marching Cubes algorithm on 20 CT image slices from a reservoir rock scan. Those 
20 slices are shown in Figure 25 . Figure 31 presents the result after using additional 280 
slices from the same scan.  

Figure 31 presents another volume rendering result, using 128 CT image slices from a 
different reservoir rock scan.  
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Figure 25: 20 reservoir rock CT slices from a µCT scan. 
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Figure 26: Reservoir rock, made with 20 CT slices. 

 

 

Figure 27: Reservoir rock, made with 20 CT slices. 
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Figure 28: Reservoir rock, made with 20 CT slices. 

 

 

Figure 29: Reservoir rock, made with 20 CT slices. 
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Figure 30: Reservoir rock, made with 300 CT slices. 

 

 

Figure 31: Reservoir rock, made with 128 CT slices.  
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Chapter 7 - Conclusions and Future Works  
 

 

 

Today’s GPUs have much greater parallel computing power, compared to CPUs. Because of 
this, highly parallel problems often can be excellent candidate for GPU acceleration.  

 

7.1 Conclusions 
 

In this project, we accelerated the Marching Cubes algorithm for large datasets off-load 
computations to the Graphical Processing Unit (GPU). Our motivation was the need of a 
faster algorithm for creating 3D models of porous rocks from Microcomputed Tomography 
scan-data, typically needed in the petroleum industry. Earlier CPU versions were very time-
consuming taking several seconds to compute for large data sets. Our GPU implementations 
gained a speedup of up to 16 compared to the CPU version, where even larger dataset of 
several million vertices took less than a second.  

Since the datasets we used were too large for storing the whole set on the GPU, we decided 
that the whole computation should be recalculated when a user changes the density threshold 
value. This is now feasible, since all calculations take less than a second, so updates are now 
more tolerable for the users. The alternative is to visualize a compressed or reduced dataset in 
order for the GPUs to be able to display the dataset. Future GPUs with more memory would 
alleviate this problem. However, current graphics cards have 32-bit addressing indicating that 
to address a lot more memory than we did for this project will require a major architectural 
change for many of today's GPUs. 

We made a version prepared for Schlumberger Ocean. To port this version, there has to be 
implemented a Schlumberger Petrel module in Schlumberger Ocean, then make a 
communication between it and our solution (a C# - C++ connection). The function to be 
loaded is the main-function in the file MarchingCubes.cpp, where the Schlumberger Ocean 
needs to handle the two Vertex Buffer Objects returned.  
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7.2 Future Works 
 

A CT-scan is, as explained earlier, a scan where X-rays are being sent through some material, 
in our case a rock, containing a photo camera observing the rays who passed through. A 
problem with this is that not all the rays can get through typically the middle of the material. 
If there are pores\veins somewhere along these rays, the total result will typically show a 
higher density value in these pores. Therefore, to improve our Marching Cubes-program, 
there could be implemented an algorithm for reducing the density at the exposed locations. 
This algorithm should reduce the density with a function who takes the distance from a given 
point in the center of the rock. The center of the dataset is not always the center of the rock. 

Another problem with the scan, is that along the boundary between the rock and oil/gas, there 
is being an averaged value, making the total model a little different to the real rock. This 
could be improved by making the border function check some more of the densities around 
them self before deciding if the current scalar is inside or outside the volume. 

The scan data was delivered to us as stack of 8-bit bmp-images. These images contained a 
bitmap header, bitmap info header and a color palette each, before the density values were 
given each pixel taking one byte. Since the datasets is quite large, and GPU-memory often is a 
problem for these calculations, the Marching Cubes program could be greatly improved by 
reading raw data. This would both improve the read-time of the files and the size of the 
dataset to be read pr time. This will also make the application closer to NVIDIAs solution, 
included in the NVIDIA CUDA beta 2.1 SDK. 

There is also a little memory adjustment that can increase the speed. Now, we are using the 
texture cache for all lookups from the lookup-tables. The constant cache is faster than the 
texture cache, but is too small for storing all the tables, so a solution could be to save parts of 
the tables there.  

Our algorithm is now computing the triangulation function for every voxel, even if the whole 
voxel already has been classified as inside or outside of the volume. In NVIDIA’s Marching 
Cubes algorithm on the NVIDIA CUDA beta 2.1 SDK, they use a functionality to save the 
occupied voxel (the ones which will create at least one triangle) in the classification stage. 
The occupied voxel array will then be used for the triangulation, instead of the whole dataset. 
This will increase the speed of the algorithm, but use a lot of more memory. A more effective 
way to do this is by computing the occupied voxels with a histopyramid. 

 

7.2.1 Marching Cubes using Histopyramids 
 

A histopyramid is a way to compact and expand data streams on the GPU. This was first 
introduced by Gernot Ziegler in 2006. It is a technique that simulates a geometry shader 
(adding and removing primitives), but shall both be faster than the geometry shaders in a 
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variety of situations and can be implemented on a vertex shader, using SM3 hardware or 
newer [22, 32]. 

One of the drawbacks of the sequential and NVIDIA CUDA implementation we made is that 
it does the whole computation on each cube, even if it not should compute any triangles. To 
implement Marching Cubes by using histopyramids, the algorithm will be divided in two 
stages, one that first creates a histopyramid and a second that extracts the output elements by 
traversing the histopyramid top-down. 

A histopyramid is a stack of 2D textures, where each level is quarter the size of the level 
below, like a mipmap pyramid [33]. The largest level of the pyramid is called the base layer, 
and the size of this tells how many input elements the histopyramid can handle. 

Each texel in the base layer represents a input element, and contains the number of allocated 
output elements. In the base level of Figure 15, we can see the input elements, where each of 
the ones marked zero will be discarded. Another thing to observe is that each texel on the 
higher levels contains the sum of the 4 texels corresponding on the layer below. In this way, 
the top layer will always be one texel, and hold the total number of output elements to allocate 
and calculate. So, to build the pyramid, the base-level has to be mapped first (from a 3D 
volume with Marching Cubes), then sum up 4 elements at a time, until making the next level, 
and loop this functionality with each level, until a level with one element is reached. Since 
each texel only is affected by the values from the texels in the level below, a whole level can 
be computed in parallel when constructing the pyramid. 

 

Figure 32: The bottom-up build process. Figure is from [32]. 

 

The second face of the algorithm is the generation of output steams. To produce the output 
stream, we have to traverse the pyramid starting on the top and going recursively down, for 
each output element. First we have to make an enumeration of the output elements, by giving 
them key indices up to the number in the top level minus one. The traversal starts at the top, 
and when it reaches the level below, a texel pointer p, points to the center of the 2x2 texel 
block. Each of the 4 texels will be enumerated from left to right and top to bottom, as you can 
see in the bottom of Figure 33. Then for each iteration, the pointer will point in the center of a 
2x2 texel block, until a input element in the base level is found. An integer k will tell which 
element to choose while traversing. This number starts with the key index, and for each level, 
it will subtract the number of elements the iteration skips. To do this, as Figure 33 shows, 



58 
 

where we starts with k = 4 on the top level. When reaching level 1, it does a check if 4 are 
bigger than the first number 3, and when this is positive, it subtracts 3 from 4, giving the 
number 1. Then compares k with the next number in level 1, where 1 is smaller than 2, and 
therefore the current texel is chosen. In the base level, the same comparison technique is done 
again, after the comparison with the 2nd  texel the value of k is becoming 0, and the 3rd here is 
chosen. If the base level element chosen has a higher number than 1, the digit in k will tell 
which number in the current input element, the output element represent. 

 

Figure 33: The element extraction in top-down traversal. Figure is from [32]. 

For the output of the histopyramid algorithm, the integer k and the texture coordinates to the 
texel chosen will be saved pr output element. This makes each individual output element to be 
able to be computed in parallel.  

So histopyramids is used to extract a compact set of points from a volumetric data set, and is a 
very fast algorithm when it can discard a lot of input elements. If a whole input element has 
none elements to be allocated, the whole input element is being discarded, and therefore 
removed from the output element-set. But the input elements that should generate triangles 
have to traverse through the histopyramid.  

To implement the histopyramid in out Marching Cubes algorithm, we can generate the 
pyramid after the function classifyVoxel and instead of the cudpp-scan. Doing this, each 
voxel will represent one texel in the base level of the pyramid. Generating this pyramid will 
take slightly more GPU time than the scan. Then the traversal of the pyramid has to be put 
inside the function generateTriangles2. The part where we find the right cube for the current 
thread will use the ID number to traverse through the pyramid instead, and generate one 
vertex pr thread, instead of the up to 15 they do now. The performance of the Marching Cubes 
program will then increase, since a lot of voxels do not draw any triangles, and therefore use 
more threads than necessary. A typical data-set we used for the testing were having 1000 * 
1000 * 570 = 570 000 000 voxels, and therefore needs to call the same amount of threads. 
With the histopyramid, the number of threads will be about 11 500 000, and at the same time 
each thread will do a smaller amount of computation, and therefore this algorithm will be 
much faster. The histopyramid will take more memory-space, but since we can drop the 
cudpp-scan, we also can remove the list which saves the scan-data in the cudpp-scan, where 
the size of this is the same as the number of voxels. Each of those entries in the list takes 2 
byte. With the histopyramid, the memory size of the data will be a little under 1,5 times the 
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scan-data, and therefore we can’t load as many bitmaps at a time as the existing algorithm. 
The number of bitmaps loaded at a time will slow down the algorithm a little, but the 
histopyramids should still be giving increased performance. 
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Appendix - CD-ROM 
 

 

The attached CD-ROM contains the following: 

 Full source code of the CPU version, located in the folder CPU Version. 

 Full source code of the GPU version, located in the folder GPU Version. 

Both the CPU and GPU version are Microsoft Visual C++ projects, using Microsoft Visual 
Studio 2005.  


