
GPU-Enabled Interactive Pore
Detection for 3D Rock Visualization

Henrik Falch Hesland

Norges teknisk-naturvitenskapelige universitet
Institutt for datateknikk og informasjonsvitenskap

Master i datateknikk
Oppgaven levert:
Hovedveileder:

Juni 2009
Anne Cathrine Elster, IDI





Oppgavetekst
This project evaluates how Graphical Processing Units (GPUs) may be utilized to offload seismic
computations in either multi-core and/or clustered environments. In particular, algorithms for
analyzing seismic data will be parallelized using the GPU's processing power and taking
advantage of the CUDA environment. Testing will be done on the HPC-LABs new NVIDIA Quadro
FX 5800 and/or other appropriate systems.

Oppgaven gitt: 26. januar 2009
Hovedveileder: Anne Cathrine Elster, IDI





 

  

 

 

 

 

 

 

 

  

 

 

Trondheim, Norway, June 12, 2009 

By: Henrik Hesland 

GPU-Enabled Interactive Pore 
Detection for 3D Rock Visualization 

Supervisor: Dr. Anne C. Elster 
Co-supervisor: Thorvald Natvig 

T
D

T
49

00
 

C
om

pl
ex

 C
om

pu
te

r 
Sy

st
em

s,
 

M
as

te
r 

Pr
oj

ec
t 

 

N
T

N
U

 
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f 

Sc
ie

nc
e 

an
d 

T
ec

hn
ol

og
y 

Fa
cu

lty
 o

f 
In

fo
rm

at
io

n 
T

ec
hn

ol
og

y,
 M

at
he

m
at

ic
s 

an
d 

E
le

ct
ri

ca
l E

ng
in

ee
ri

ng
 

D
ep

ar
tm

en
t o

f 
C

om
pu

te
r 

an
d 

In
fo

rm
at

io
n 

Sc
ie

nc
e 





Abstract

Visualization of porous media is of great importance to several scientific
fields, including the petroleum technology. The topic of this thesis arises
from our collaborations with The Center for Integrated Operations in the
Petroleum Industry. By being able to quickly analyze properties of porous
rocks, they can get a better understanding of how to efficiently harvest oil
since oil is typically held and stored within rock pores.

The petroleum industry typically uses Computed Tomography (CT) tech-
nology to scan rock samples for their internal structures. The resulting data
is loaded into a computer program that generates 3D models of the rocks de-
scribing the 3D nature of its’ internal structure. The scan data created from
these scans will in most cases contain inaccuracies due to artifacts created
while scanning.

In this thesis, we develop an application that interactively helps the user
localizes the rock and pores in the CT scan data, allowing the user to create
an image with a more accurate representation of the pores. We use digital
image processing techniques to do an initial localization of the elements in
the scan. The artifacts are then reduced by allowing the user to drag and
pull on the line-data specifying the pores. Our implementation then uses
this new representation to construct a 3D volume image that can be used in
geophysical applications, like Schlumberger Petrel, for further analysis and
simulation. The volume rendering part of our implementations builds directly
on the authors project work with Eirik Ola Aksnes on GPU Techniques for
Porous Rock Visualization completed last fall (2008).

i





Acknowledgements

The work on this Master Thesis has been carried out at the Department of
Computer and Information Science in collaboration with the Center for In-
tegrated Operations in the Petroleum Industry, at the Norwegian University
of Science and Technology.

This Thesis would not have been possible without the support of sev-
eral people. I wish particularly to express the gratitude to our supervisor
Dr. Anne C. Elster who was incredibly helpful and offered invaluable as-
sistance and guidance with her extensive understanding of the field. She
has been a source of great inspiration, with her always encouraging attitude
and generosity through providing resources needed for this project from her
own income. I also wish to convey our deepest gratitude to PhD candidate
Thorvald Natvig for his idea of the project; in addition without his techni-
cal knowledge and support this project would not have been successful. I
wish to thank Schlumberger for providing us with Petrel and Ocean, and
I wish to express our gratitude to Dr. Wolfgang Hochweller for helping us
obtaining the Petrel and Ocean licenses. I wish to thank NVIDIA both for
providing several GPUs to Dr. Anne C. Elster and her HPC-lab through her
membership in the NVIDIA’s Professor Partnership Program, and giving me
the permission to use figures from NVIDIA Cuda Compute Unified Device
Architecture Programming guide [10] in this thesis. Finally, I wish to thank
Dark CodeX for giving me permission to use any screens from their 3D demos
in this thesis [8].

Henrik Falch Hesland
Trondheim, Norway, June 13, 2009

iii





Table of Contents

1 Introduction 1
1.1 Project Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Related Implementations and Techniques . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Parallel Computing and GPUs 7
2.1 Forms of Parallelism . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Graphics Processing Units . . . . . . . . . . . . . . . . . . . . 10

2.2.1 The Evolution of GPUs . . . . . . . . . . . . . . . . . 12
2.2.2 The Graphics Pipeline . . . . . . . . . . . . . . . . . . 13

2.3 GPGPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 NVIDIA CUDA . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Graphics Programming . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1 Buffer Objects . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 OpenGL . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.3 Microsoft Direct3D . . . . . . . . . . . . . . . . . . . . 24

3 Porous Rock Structures and Volume Rendering 27
3.1 Core Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Computed Tomography . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Typical Artifacts in CT-scans . . . . . . . . . . . . . . 30
3.3 Volume Rendering . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Digital Image Processing 35
4.1 Logical Image Operators . . . . . . . . . . . . . . . . . . . . . 38
4.2 Spatial Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.1 Sobel filter . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.2 Canny edge . . . . . . . . . . . . . . . . . . . . . . . . 46

v



5 Implementation and Guidelines 49
5.1 Platform and Hardware Specification . . . . . . . . . . . . . . 49
5.2 Optimization Guidelines . . . . . . . . . . . . . . . . . . . . . 50
5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 The Graphical Display . . . . . . . . . . . . . . . . . . 52
5.3.2 Image Operations . . . . . . . . . . . . . . . . . . . . . 53
5.3.3 Volume Rendering . . . . . . . . . . . . . . . . . . . . 63
5.3.4 Exporting 3D Volume to Petrel . . . . . . . . . . . . . 65

5.4 Memory Allocation . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4.1 Memory Allocated for Digital Image Processing . . . . 67
5.4.2 Memory Allocated for Volume Rendering . . . . . . . . 68
5.4.3 Implemented Memory Allocation . . . . . . . . . . . . 70

6 Benchmarks and Results 71
6.1 Test Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Memory Restrictions . . . . . . . . . . . . . . . . . . . . . . . 73

6.3.1 Memory used for Digital Image Processing . . . . . . . 74
6.3.2 Memory used for Volume Rendering . . . . . . . . . . . 74

6.4 Performance Results . . . . . . . . . . . . . . . . . . . . . . . 75
6.4.1 Frame Updates . . . . . . . . . . . . . . . . . . . . . . 76
6.4.2 Volume Rendering . . . . . . . . . . . . . . . . . . . . 77

6.5 Visual Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.5.1 Comparing 2D Thresholding . . . . . . . . . . . . . . . 79
6.5.2 Comparing 3D Volume . . . . . . . . . . . . . . . . . . 83

7 Conclusions and Future Work 87
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Bibliography 91

A Source Code Overview 97
A.1 File Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.2 Main Functionality Flow . . . . . . . . . . . . . . . . . . . . . 98
A.3 Further Details . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B Software User’s Guide 103
B.1 Hardware and Software Requirements . . . . . . . . . . . . . . 103
B.2 User’s Program Flow . . . . . . . . . . . . . . . . . . . . . . . 104



B.2.1 Loading Dataset . . . . . . . . . . . . . . . . . . . . . 104
B.2.2 Adjusting Threshold . . . . . . . . . . . . . . . . . . . 106
B.2.3 Volume Rendering . . . . . . . . . . . . . . . . . . . . 110
B.2.4 Export 3D . . . . . . . . . . . . . . . . . . . . . . . . . 112





List of Figures

2.1 SPMD support control flow, SIMD does not. . . . . . . . . . . 9
2.2 CPU and GPU transistor usage . . . . . . . . . . . . . . . . . 11
2.3 The graphics pipeline SM5. . . . . . . . . . . . . . . . . . . . 14
2.4 Vertex shaded water movement. . . . . . . . . . . . . . . . . . 15
2.5 A complex 3D volume. . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Pixel Shader blurring techniques. . . . . . . . . . . . . . . . . 18
2.7 The NVIDIA Tesla architecture. . . . . . . . . . . . . . . . . . 20
2.8 The NVIDIA CUDA thread hierarchy. . . . . . . . . . . . . . 21
2.9 The NVIDIA CUDA memory hierarchy. . . . . . . . . . . . . 22

3.1 X-ray attenuation measurement process. . . . . . . . . . . . . 29
3.2 CT scan process with rotating core sample. . . . . . . . . . . . 29
3.3 Cupping artifact. . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Partial volume artifact. . . . . . . . . . . . . . . . . . . . . . . 31

4.1 The RGB 3D space. . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Digital image processing categories. . . . . . . . . . . . . . . . 36
4.3 The electromagnetic spectrum. . . . . . . . . . . . . . . . . . . 37
4.4 Frequency image. . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Mathematic operator on images. . . . . . . . . . . . . . . . . . 38
4.6 Mask operations by using Equation 4.2. . . . . . . . . . . . . . 39
4.7 Gaussian blur mask operation. . . . . . . . . . . . . . . . . . . 40
4.8 High and low thresholding. . . . . . . . . . . . . . . . . . . . . 41
4.9 Histogram of Figure 4.7b. . . . . . . . . . . . . . . . . . . . . 41
4.10 Edge detection. . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.11 The laplacian filter mask. . . . . . . . . . . . . . . . . . . . . 43
4.12 Ramp edge in 1. and 2. order derivative. . . . . . . . . . . . . 44
4.13 The Sobel filter masks. . . . . . . . . . . . . . . . . . . . . . . 44
4.14 Edge direction adjustment. . . . . . . . . . . . . . . . . . . . . 47
4.15 Sobel edge detection VS. Canny edge detection. . . . . . . . . 48

5.1 Our Graphical User Interface (GUI). . . . . . . . . . . . . . . 51

ix



5.2 Comparing central pore and outer rock densities. . . . . . . . 52
5.3 The Canny algorithm used directly on the scan-slice. . . . . . 53
5.4 Dataset loading flow. . . . . . . . . . . . . . . . . . . . . . . . 55
5.5 Threshold change flow. . . . . . . . . . . . . . . . . . . . . . . 56
5.6 Dataset rock slice in both gray-scale and colorized mode. . . . 57
5.7 Image graph regions. . . . . . . . . . . . . . . . . . . . . . . . 58
5.8 Thresholding graphs; x-axis: distance, y-axis: threshold value 59
5.9 Pixel thresholding flow. . . . . . . . . . . . . . . . . . . . . . . 60
5.10 Interpolating pixel between populated regions. . . . . . . . . . 61
5.11 Calculation of center-point. . . . . . . . . . . . . . . . . . . . 63
5.12 Marching Cubes, per cube flow. . . . . . . . . . . . . . . . . . 64
5.13 Organization of a Zmap+ file. . . . . . . . . . . . . . . . . . . 65
5.14 Our 3D volume loaded in Schlumberger Petrel. . . . . . . . . . 66

6.1 Dataset 1: Scan slice of an oil rock. . . . . . . . . . . . . . . . 73
6.2 Dataset 2: Scan slice of a sugar cube. . . . . . . . . . . . . . . 73
6.3 Thresholding results. . . . . . . . . . . . . . . . . . . . . . . . 80
6.4 Global Thresholding VS. Variable Thresholding. . . . . . . . . 81
6.5 Variable Thresholding VS. Variable Regional Thresholding. . . 81
6.6 Variable Thresholding VS. Variable Regional Thresholding. . . 82
6.7 3D volumes of the 3 thresholding methods. . . . . . . . . . . . 82
6.8 3D volume using 1 image slice, shown from different directions. 84
6.9 3D volume using 10 image slice, shown from different directions. 84
6.10 Image #50 thresholded with 1 and 10 slices. . . . . . . . . . . 85
6.11 Image #50 thresholded with 1 and 10 slices - differences. . . . 85

A.1 Dataset loading flow sequence. . . . . . . . . . . . . . . . . . . 99
A.2 Threshold change flow sequence. . . . . . . . . . . . . . . . . . 100
A.3 Volume rendering flow sequence. . . . . . . . . . . . . . . . . . 101

B.1 Program startup screen. . . . . . . . . . . . . . . . . . . . . . 104
B.2 Loading dataset - screen flow. . . . . . . . . . . . . . . . . . . 105
B.3 Threshold adjustment screen flow. . . . . . . . . . . . . . . . . 107
B.4 Threshold adjustment - zooming. . . . . . . . . . . . . . . . . 108
B.5 Threshold adjustment - density colors. . . . . . . . . . . . . . 109
B.6 Volume rendering screen flow. . . . . . . . . . . . . . . . . . . 111
B.7 Volume rendering - compress. . . . . . . . . . . . . . . . . . . 112
B.8 Export 3D screen flow. . . . . . . . . . . . . . . . . . . . . . . 113



List of Tables

6.1 Machine 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Machine 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Test 1: Loading data . . . . . . . . . . . . . . . . . . . . . . . 76
6.4 Test 2: Frame update thresholding . . . . . . . . . . . . . . . 76
6.5 Test 3: Volume rendering computation . . . . . . . . . . . . . 78

xi





List of Abbreviations

NVIDIA CUDA NVIDIA Compute Unified Device Architecture
OpenGL Open Graphics Library
OpenCL Open Compute Language
GLSL OpenGL Shading Language
HLSL High Level Shader Language
GPU Graphics Processing Unit
GPGPU General-Purpose computations on GPU
CPU Central Processing Unit
UMA Uniform Memory Access
NUMA Non-Uniform Memory Access
MIMD Multiple-Instructions Multiple-Data
SIMD Single-Instruction Multiple-Data
SPMD Single-Program Multiple-Data
ILP Instruction Level Parallelism
SM# Shader Model #
AMD CTM AMD Close To the Metal
API Application Programming Interface
SDK Software Development Kit
CT Computed Tomography
μCT Microcomputed Tomography
VS Vertex Shader
HS Hull Shader
DS Domain Shader
GS Geometry Shader
PS Pixel Shader
VBO Vertex Buffer Object
PBO Pixel Buffer Object
FBO Frame Buffer Object

xiii



FPS Frames Per Second
SGI Silicon Graphics Inc
SM Streaming Multiprocessor
SP Stream Processor
SFU Special Functional Unit
DRAM Dynamic Random Access Memory
NTNU Norwegian University of Science and Technology
MC Marching Cubes
MT Marching Tetrahedron
RGB Red Green Blue (color channels)
RGBA RGB Alpha (color channels)
DIP Digital Image Processing
LoG Laplacian of Gaussian
ASCII American Standard Code for Information Interchange
MB Mega Bytes
GB Giga Bytes
GT Regional Threshold
VT Variable Threshold
VRT Variable Regional Threshold
OS Operating System

xiv



Chapter 1

Introduction

Traditionally, personal computers (PCs) used the central processing unit
(CPU) for all general purpose computations. Most programs were executed
serially, which made computations that required a lot of calculations – even
if they all were the same – time consuming. Highly parallel problems like
digital image processing, where each pixel in an image is manipulated, would
often lead to millions of computations and several seconds of execution time.
This made these algorithms unavailable for frame-based applications.

Today, 3D graphics accelerators have become powerful computational de-
vices common in home computers. These accelerators, often called graphics
processing units (GPU), are designed especially for computing the 3D graph-
ics pipeline, which handles the different stages needed for translating a 3D
representation to an image on the screen. 3D graphics is a highly paral-
lelizable class of problems, which is handled by today’s GPUs by computing
hundreds of instructions simultaneously.

Since the GPU is such a powerful parallel computational device, it can
not only be used for 3D graphics calculations, but also for general purpose
programs which requires a high level of parallelism. A general purpose com-
putation on a GPU (GPGPU) refers to applications traditionally computed
on the CPU. GPGPU programming has the potential to give a huge speedup
on suitable applications. However, it is more challenging to take advantage
of the GPU this way since it requires parallel programming including efficient
usage of several memory types.

One of the most popular GPGPU application programming interfaces
(API) is NVIDIA CUDA (Compute Unified Device Architecture). NVIDIA
CUDA has a syntacs similar to the C programming language and is a pro-

1



gramming model that focuses on low learning curve for developing appli-
cations that are scalable with the increase number of processor cores. To
program NVIDIA CUDA efficiently, the programmer does not need to be
familiar to the graphics pipeline, but needs to know the memory hierarchy
of the NVIDIA Tesla architecture.

By the usage of GPGPU, several applications types get a significant
speedup, including tasks such as fluid flow simulation, digital image pro-
cessing and volume rendering.

1.1 Project Goals
It is important for the oil industry to analyze properties of rocks, so that a
better understanding of conditions that affect oil production can be achieved
[21]. With the use of non-destructive microcomputer tomography (CT scans)
it is possible to make digital 3D representations of the internal pore struc-
ture of rocks. In order to get useful digital representations, detailed scans
are needed, producing large volumetric data sets. Combined with real-time
requirements for fast analysis and estimations of rock properties, there is an
ever increasing demand for processing power.

When using a microcomputer tomography (μCT) scanner, the output
will be a 3D representation of the densities of the rock and its pores. The
representation will be slightly different from the real rock, called artifacts,
because of both physical and scanner based inaccuracies. These artifacts will
then also lead to inexact simulations of fluid or other calculations through
the pores.

The main objective of this thesis is to find an improved algorithm for
differentiating between the rock and the pores in a CT scan giving a density-
representation of a core sample of the rock. The focus will be on providing
the user with an interactive tool to enhance rock/pore detection.

In this thesis, we develop a visualization application that uses digital
image processing requiring per-frame calculations to receive feedback. The
types of digital image processing most suited for our approach is various
types of segmentation techniques, where thresholding and edge detection is
central. These techniques are highly parallelizable, so using the GPU for the
computations is hence a natural choice. The user should also be able to use
the segmented images to create a 3D volume of a CT scan, which is based

2



on previous work, explained further in Section 1.2.

1.2 Related Work

This thesis builds on this author’s Master report done in collaboration with
Eirik Ola Aksnes Fall 2008, entitled "GPU Techniques for Porous Rock Vi-
sualization" [1]. Some background material for this project is also added to
this thesis. Our project [1], involved developing a GPU implementation of
the Marching Cubes algorithm, for improved performance on large datasets.
The algorithm takes a dataset of BMP-images as input, calculate the border-
values between rock and pores, and use them to create a 3D volume. The
border value is user-specified by a global integer value. In this thesis, we are
going to improve the calculation of a border value, where the user will be
able to observe the borders, and not think about actual values.

1.2.1 Related Implementations and Techniques

Image Processing and Artifact Removal

• [18, 36] contains detailed explanation of all the basic image process-
ing techniques we have implemented, including basic thresholding, the
Sobel Edge filter and Canny Edge detection. The books is used as cur-
riculum in the subjects TDT4195 - Image Techniques and TDT4265 -
Computer Vision at NTNU.

• [4] contains a good overview of the typical artifacts that can be gener-
ated by CT-scanning. It also contains short examples of how to avoid
these artifacts. We did not use any of the techniques directly, but the
explanation of why the artifacts appeared was a good overview.

• [37] explains a method to reduce non-linear artifacts in CT. It contains
an approach to be done by the CT software vendors, and a similar
method is probably used by the SkyScan software.

• [27] describes a way to threshold images by region based multi level
thresholding, where the algorithm is able to find several regions in a
color image. Can be used to solve similar types of problems, but is a
different approach than we used.

3



Volume Rendering

• [16] contains the volume rendering method Marching Cubes, close to
the previous implementation in [1]. It uses geometry shaders to com-
pute the volume, where we are using NVIDIA CUDA.

• [33] is a PhD thesis using the volume rendering method Shear-Warp,
which is a direct volume rendering method. It is a different approach
than ours. Can in some cases reduce the memory used for the volume
data, but requires per frame computations, instead of saving the tri-
angles. The thesis also includes a good overview of different volume
rendering methods.

• Algorithms which use different approaches to improve the Marching
Cubes algorithm, in either performance or accuracy, and is potential
future work: [41, 12]

1.3 Outline
This thesis is structured in the following manner:

In Chapter 2 - Parallel Computing and GPUs, we will explain
some benefits of parallel computing and GPUs. In Section 2.1 we will ex-
plain some aspects of parallelism, and Section 2.2 will follow with an overview
of what a GPU is. A history of the evolution of the GPU will follow, before
explaining the graphics pipeline, GPGPU programming and graphics pro-
gramming. Some parts of Sections 2.1, 2.2 and 2.3 are picked up from Eirik
Ola Aksnes’ and Henrik Hesland’s paper GPU Techniques for Porous Rock
Visualization [1].

In Chapter 3 - Porous Rock Structures and Volume Rendering
we will first explain how porous rocks are related to the oil business in Section
3.1. Section 3.2 includes a short background on computer tomography (CT)
scanning and an overview of the most important artifacts received from these
scans. Then in Section 3.3 there is a quick overview of volume rendering
techniques. Some of the parts of this chapter are also picked up from Eirik
Ola Aksnes’ and Henrik Hesland’s paper GPU Techniques for Porous Rock
Visualization [1].

In Chapter 4 - Digital Image Processing, a short overview of the
field of digital image processing will be introduced. There will be found a
short explanation of digital image processing basics in Sections 4.1 and 4.2,
then following in Sections 4.3 and 4.4 a few more advanced techniques.

4



In Chapter 5 - Implementations, we will explain some thoughts
around our implementation, the reasons of some of the algorithmic choices
and some guidelines to follow when programming NVIDIA CUDA.

In Chapter 6 - Benchmarks and Results, we will first take a look
at the performance of some different parts of our application. Then an eval-
uation of the visual results, where we compare the graphical output from
several different threshold methods.

In Chapter 7 - Conclusions and Future Work, we will hold the
conclusion of our work and a discussion of future work.

5





Chapter 2

Parallel Computing and GPUs

As stated by Eirik Ola Aksnes and Henrik Hesland in [1]: Moore’s law pre-
dicts that the speed of computers would double about every two years. To-
day’s computers have a high number of transistors inexpensively placed on
an integrated circuit, but achieving this is getting harder. In fact, we have
already hit the Power and Frequency Walls, which means that a processor
cannot use a higher frequency without increasing the power. And increasing
the power will also increase the heat generated when the aircooling is capped
at 150W. Whatever the peak performance of today’s processors, there will al-
ways be some problems that require or benefits from better processor speed.
As explained in [2], there is a recent renaissance in parallel computing de-
velopment. Due to the Power Wall, increasing clock frequency is not the
primary method of improving processor performance anymore, parallelism
is thou the future. Both modern GPUs and CPUs are concerned with the
increasing power dissipation, and want to increase absolute performance but
also improve efficiency through architectural improvements by means of par-
allelism.

Parallel computing often permit a larger problem or a more precise so-
lution of a problem to be found within a practical time. Parallel computing
is the concepts of breaking up a larger problem into smaller units of tasks
that can be solved concurrently in parallel. However, problems often cannot
be broken up perfectly into autonomous parts, so interactions are needed
among the parts, both for data transfer and synchronization. The problem
to be solved affects how easy it is to parallelize. If possible, there would be
no interaction between the separate processes, each process requiring differ-
ent data and productive results from its input data without need for result
from other processes. However many problems are to be found in the middle,
neither fully autonomous nor synchronized [44].

7



There are two basic types of parallel computers, if categorized based on
their memory architecture [44]:

• Shared memory systems that have a single address space, which means
that all processing elements can access the same global memory. It can
be very hard to implement the hardware to achieve uniform memory
access (UMA) by all the processors with a larger number of processors,
and therefore many systems have non uniform memory access (NUMA).

• Distributed memory systems that are created by connecting computers
together through an interconnection network, where each computer has
its own local memory that cannot be accessed by the other processors.
The access time to the local memory is usually faster than access time
to the non-local memory.

Distributed memory will physically scale more easily than shared mem-
ory, as its memory is scalable with increase number of processors.

Today, parallelism have become the standard way of increase overall per-
formance for both the CPU and GPU. Need appropriate forms of doing
parallelism, which exploits the different architectures.

2.1 Forms of Parallelism
There are several forms of doing parallel computing. To frequently used are
task parallelism and data parallelism.

Task parallelisms, also calledMultiple-Instruction Multiple-Data (MIMD),
focus on distribute separate tasks across different parallel computing nodes
that operate on separate data streams in parallel. It can typically be difficult
to find autonomously tasks in a program and therefore task parallelism can
have limited scaling ability. The interaction between different tasks occurs
through either message passing or shared memory regions. Communication
through shared memory region poses the problem with maintaining memory
cache coherency with increased number of cores, as most modern multicore
CPUs use caches for memory latency hiding. Ordinary sequential execu-
tion of a single thread is deterministic, making it understandable. Task
parallelism on the other hand even if the program is correct is not. Task
parallelism is subject to faults such as race conditions and deadlock, as cor-
rect synchronization is difficult. Those faults are difficult to identify, which

8



can make development time overwhelming. Multicore CPUs are capable of
running entirely independent threads of control, and are therefore great for
task parallelism [25].

Data parallelism is a form of computation that implicitly has synchro-
nization requirements. In a data parallel computation, the same operation is
performed on different data elements concurrently. Data parallel program-
ming is very convenient for two reasons. It is easy to program and it can
scale easily to large problems. The Single-Instruction Multiple-Data (SIMD)
is the simplest type of data parallelism. It operates by having the same in-
struction execute in parallel on different data elements concurrently. It is
convenient from hardware standpoint since it gives an efficient hardware im-
plementation, because it only needs to replicate the data path. However, it
has difficulty of avoiding variable work load since it does not support efficient
control flow. The SIMD models have been generalized to the Single-Program
Multiple-Data (SPMD), which include some control flow. Making it possible
to avoid and adjust work load if there are variable amounts of computation
in different parts of a program [25], as illustrated in Figure 2.1.

SIMD Kernel SPMD Kernel

Figure 2.1: SPMD support control flow, SIMD does not.

Data parallelism is essential for the modern GPU as a parallel processor,

9



as they are optimized to carry out the same operations on a lot of data in
parallel.

2.2 Graphics Processing Units
The Graphics Processing Unit (GPU) is a special-purpose processor dedi-
cated for rendering computer graphics for a variety of tasks, ranging from
three-dimensional (3D) visualization in games to drawing text in internet
web browsers. Over the past 40 years, GPUs have made their way from re-
search labs and flight simulators to commercial personal computers and other
entertainment systems; a section including the evolution of the GPU follows
in Section 2.2.1. The GPU’s computational units and memory bandwidth
has become quite computational powerful. The GPUs now is much more
computational powerful than the CPUs on parallelizable calculations.

The CPU is designed to maximize the execution speed of a single thread
of sequential instructions. It operates on different data types (floating-point
and integers), performs random memory accesses and branching. Instruction
level parallelism (ILP) allows the CPU to overlap execution of multiple in-
structions or even change the order in which the instructions are executed.
The goal is to identify and take advantage of as much ILP as possible [42]. To
increase performance the CPU uses much of its transistors to avoid memory
latency with data caching, sophisticated flow control and to extract as much
ILP as possible. There is a limited amount of parallelism that is possible to
get out of a sequential stream of instructions, also known as the ILP Wall,
and ILP causes a super linear increase in execution unit complexity and asso-
ciated power consumption without linear speedup in application performance
[24].

The GPU is dedicated for rendering computer graphics, and the primi-
tives, pixel fragments and pixels can largely be processed independently and
therefore in parallel (the fragment stage is typically the most computation-
ally demanding stage [28]). The GPU differ from the CPU in the memory
access pattern, as the memory access in the GPU are very coherent, when a
pixel is read or write a few cycles later the neighboring pixel will be read or
write. By organizing memory intelligently and hide memory access latency
by doing calculations instead, there is no need for big data caches. The GPU
are designed such that the same instruction operates on collections of data
and therefore only need simple flow control. The GPU dedicate much more
of its transistors for data processing than the CPU, as illustrated in Figure

10



2.2.

Figure 2.2: CPU and GPU transistor usage. Figure is taken with permission
from [10].

The modern GPU is a mixture of programmable and fixed function units,
allowing programmers to write vertex, fragment and geometry programs for
more sophisticated surface shading, and lighting effects, this will be explained
further in Section 2.2.2. The instruction set to the vertex and fragment
programs has converged, in which all programmable units in the graphics
pipeline share a single programmable hardware unit. To the unified shader
architecture, where the programmable units share their time among vertex
work, fragment work, and geometry work [28].

The GPU differentiate themselves from traditional CPU designs by pri-
oritizing high-throughput processing of many parallel operations over the
low-latency execution of a single thread. Quite often in scientific and mul-
timedia applications there is a need to do the same operation on a lot of
different data elements. GPUs support a massive number of threads, typi-
cally 61440 on a NVIDIA GeForce GTX 295, running concurrently and sup-
port the Single-Program Multiple-Data (SPMD) model to be able to sus-
pend threads to hide the latency with uneven workloads in the programs.
The combination of high performance, low-cost, and programmability has
made the modern GPU attractive for applications traditionally executed by
the CPU, for General-Purpose computation on GPUs (GPGPU). With the
unified shader architecture, the GPGPU programmers can now target the
programmable units directly, rather than split up task to different hardware
units. To harvest the computational capability and at the same time allow

11



programmers to be productive, we need programming models that strike the
right balance between low-level access to hardware resources for performance
and high-level abstraction of programming languages for productivity.

2.2.1 The Evolution of GPUs
In the 1960s, the earliest applications with computer graphics were devel-
oped. In these years, the application types were mostly computer-aided
design and flight simulators, followed shortly by entertainment applications,
like computer games. The graphics processing were focused on controlling
vector displays, which could represent objects by lines and wire frames [5].
These technologies lead to research of algorithms for projecting 3D-object
representation on 2D display planes.

Later in the 70s, semiconductor memory was introduced, which gave a
way to raster techniques using pixel representations of images, which lead
the way from wire frame images to solid images. This got even further in the
80s, when the personal computer marked became commercial. IBM started
producing 2D raster graphics cards, which met the demanding document
processing applications. Then later in the 80s, hardware accelerations of
fixed pipeline operations like geometry operations, with simplified polygonal
representation, depth buffering, light models and some more [5].

3D acceleration add-in cards became available for personal computers in
the early 90s. These graphics cards included functionality as texture map-
ping and a 3D graphics pipeline. The commercialization of the graphics cards
lead to the standardization of graphics APIs, where OpenGL and Direct3D
was the most commercially used, and is explained further in Section 2.4.

By the end of the 90s, the largest graphics card providers: NVIDIA
and ATI produced cards with acceleration for functionality including fixed-
function geometry processing, rasterization, texture-mapped fragment pro-
cessing and depth-buffer pixel processing. The new graphics processors were
started to be referred as graphics processing units (GPU), and became a
major step in fields like medical imaging, visual simulation and the enter-
tainment industry. The first programmable GPU was NVIDIA GeForce 3,
released in 2001. To program this GPU, Microsoft Direct3D 8.0 with Shader
Model 1.1 was the first commercial tool, which was based on small Assembly
code-programs [29]. The graphics pipeline was also upgraded in the next few
years, to Shader Model 3 (SM3), giving functionality to manipulate vertices
and pixel fragments. To use these manipulation techniques, the user had

12



to program small manipulation programs called shaders, which will be ex-
plained further in Section 2.2.2 [5].

The introduction of the unified shader processors late in 2006, released
with NVIDIA’s graphics card GeForce 8800. NVIDIA GeForce 8800 enabled
the possibility of Shader Model 4 (SM4), where the same graphics proces-
sors were used for both pixel and vertex shaders, and also the new geometry
shader, explained further in Section 2.2.2. This also opened for new type of
General Purpose GPU (GPGPU) programming. Earlier the GPGPU appli-
cations were programmed by using the vertex and pixel shaders, which then
made it hard to program. The SM4 graphics cards opened up for GPGPU
languages like NVIDIA CUDA and AMD CTM. The GPU then became fully
programmable thanks to the new unified shader architecture, which also are
using the same processors for all the programmable stages in the graphics
pipeline. These new languages had a syntacs close to C/C++ and made it
much easier and more effective to accelerate general purpose programs on
the GPU.

In late 2008 the Shader Model 5 (SM5) were introduced in Microsoft
DirectX 11, with its compatible hardware released in the middle of 2009. In
this hardware, the hardware tessalators were introduced, with shaders added
in the graphics pipeline for manipulating the tessellation hardware. Some
details about the tessellation stage of the pipeline will follow in Section 2.2.2.

2.2.2 The Graphics Pipeline
An image on a screen can be synthesized from a 3D scene consisting a ge-
ometric shape and appearance descriptions, such as colors and textures for
each object in the scene. In addition, there are environment descriptions
such as lighting, atmosphere and etc. The result from the synthesizes is a 2D
array, where each value represent a pixel, which can be shown on the screen.
To synthesize the image, each object is rendered using the graphics pipeline.
The new SM5 pipeline uses the step process shown in the Figure 2.3 [15].
Where the input to the pipeline is a representation of a 3D scene, and the
output is either drawn directly on the monitor or written to a framebuffer.
The SM4 programmable stages is marked as red, the fixed function parts of
the pipeline blue and the features from SM5 green.

The graphics pipeline now contains 5 programmable shader-types. A
shader is a kernel function, being computed in parallel on the GPU. A shader
can manipulate the relevant data at a current part of the pipeline, a more

13



Input Assembler

Vertex Shader
Hull shaderll h d
Tessellatorll

Output Merger

Pixel Shader
Rasterizer

Geometry Shader

Domain Shader

Figure 2.3: The graphics pipeline SM5.

detailed description of each of the shaders will be explained underneath. Ma-
nipulation of data, through shaders usually uses OpenGL’s GLSL (OpenGL
Shading Language) or DirectX’s HLSL (High Level Shader Language) as the
program language. They both are very similar to C/C++ syntacs.

Vertex Shader

A Vertex Shader (VS) is a special program with functionality for manipulat-
ing vertex data by using mathematical functions. The VS is taking a vertex
as input, where the vertex contains information of position and color. The
VS will then work on all the vertices in the scene independently and in paral-
lel using one vertex per thread. A shader program can change the position of
a vertex, or how it is seen (color), and sends the manipulated vertex further
through the pipeline as the shaders output.

VS can be used to various types of different scene manipulations. Exam-
ples of this are: By changing positions of the vertices, there will be possible
to simulate a fluid, like in Figure 2.4, which also includes some other shader
effects. Another way to use the VS is simulating fog, by manipulating the
color. Other types of practical usage are interpolation of primitives and
transformation between coordinate-systems.

14



Figure 2.4: Vertex shaded water movement. The screen is taken with per-
mission from [8].

Tessellation Process

Tessellation is the new feature for SM5, introduced in Microsoft Direct3D
11; it contains three parts: the Hull Shader (HS), the tessalators and the
Domain Shader (DS), where the first and third part is fully programmable,
while the tessellator stage is configurable.

After the VS are done with the vertex manipulation, the HS receives
surface patches, where a HS is called for each patch. In the HS, first an op-
tionally functionality is executed. This first functionality can convert control
points from the input patch to another representation. An example of this
is approximating Catmull-Clark subdivision surfaces with bicubic patches,
which you can read more about in [31]. After the conversion, the new con-
trol points will be sent directly to the DS. The second functionality of the
HS is the computation of the tessellation factors, which are conceded to the
tessellation stage. There is a tessellation factor for each edge of the patch,
where the factor decides how many pieces the edge will be split into.

The tessellator is a fixed-function stage. In the tessellation stage, it di-

15



vides the patches into multiple triangles or quads relative to the tessellation
factor and the configurations of the tessalator. The output from the tessel-
lator is the new vertices created, where they is passed directly into the DS.

The DS finally gets the vertices from the tessellator in patch parameter-
ization coordinates. The DS operates on the vertices separately, where the
functionality specializes on completion of the vertex data, before the vertices
are sent further through the pipeline.

By the use of the tessellation process, there are several techniques that
can be accelerated. They vary from rendering complex 2D curved shapes.
The GPUs can render simple polygons, but when it comes to concave or self
intersecting polygons, they need to be handled in a way to be able to give
the right output to the display. Another technique which will be acceler-
ated significantly with the tessellation is terrain rendering, where terrains
can be represented geometrically, and by using Bezier surfaces transformed
into triangles. The tessellation enables the use of sophisticated algorithms to
evaluate level of refinement of terrain patches. To read about more examples
of tessellation usage, take a look at [7].

Geometry Shader

As explained in [1], the Geometry Shader (GS) was introduced in SM4, which
requires a GPU with unified shader support. The GS can be programmed
to generate new graphics primitives, such as points, lines and triangles [29].
Input to the geometry shader is the primitives after they have been through
the vertex shader and the tessellation process. When operating on the tri-
angles, the GS’s input will be the three vertices. For storage of the output,
the geometry shader then uses a vertex buffer, or the data is sent directly
further through the graphics pipeline, starting with the rasterization.

GS, are designed to efficient create geometry. An example of a geometry
creation program is using the Marching Cubes algorithm, which can create a
3D model from a cloud of points, where the result can be as shown in Figure
2.5. Marching Cubes is explained further in [1].

16



Figure 2.5: A complex 3D volume.

Rasterization

The rasterization part of the rendering pipeline has fixed-function hardware,
meaning it is not programmable. This part of the pipeline basically trans-
forms the 3D space into a 2D frame, by using 3 steps. The first step is the
transformation of coordinate systems, placing all the vertices at the right
places in the 3D world and transforms the objects to 2D screen coordinates
by multiplying it to the transformation matrix. Then the next step is the
clipping stage. The clipping is basically just fitting the triangles in the scene
inside the frame, by clipping and removing information outside the screen.
A common technique to do the clipping is Sutherland-Hodgeman, which is
explained further in [20]. The final step of the rasterization is the scan-
conversion, which is a method for filling the triangles that now are in 2D
space. The scanline algorithm is the most common for this approach, decid-
ing the inside and outsides of the triangles in the scene. For more information
of the rasterization stage of the graphics pipeline, take a look at [20].

17



Pixel Shader

The Pixel Shader (PS) is used for manipulation of individual pixels, and
allow the programmer to manipulate the part of the graphics pipeline con-
cerning shading and texturing. The input to a PS is a multisampled pixel
that contains information of color, z-value and texture data. In addition the
PS can receive other values from earlier in the pipeline, like the normals. The
PS-programs runs on all pixel fragments independently and in parallel using
the unified shader processors on the GPU.

A PS can be used to manipulate lighting in each pixel, where an example
is by manipulating the normals with a bump map or a parallax map. In that
way the objects on the screen can look much more detailed than without,
where effects like human skin can get pores, a chair can get the leather seat
look, etc. can be made. A PS can also use the frame buffer to do different
digital image processing functionality, explained further in Chapter 4. Typ-
ical digital image processing manipulations can be gaussian blur, explained
in Section 4.2.

Figure 2.6: Pixel Shader blurring techniques. The screen is taken with per-
mission from [8].

18



2.3 GPGPU
There are a few difficulties with the traditional way of doing GPGPU. With
the graphics API overhead that are making unnecessary high learning curve
and making it difficult to debugging. In NVIDIA CUDA (Compute Unified
Device Architecture) and Microsoft DirectX Compute Shaders, programmers
have direct access to the hardware for better control. A programmer also does
not need to use the graphics API. These GPGPU specialized programming
languages focuses on a low learning curve for developing applications that
are scalable with the increase number of processor cores.

Further in section 2.3.1 we will give a summary of the hardware depen-
dent NVIDIA CUDA programming model, which are picked up from Eirik
Ola Aksnes’ and Henrik Hesland’s paper GPU Techniques for Porous Rock
Visualization [1].

2.3.1 NVIDIA CUDA
The latest generations of NVIDIA GPUs are based on the NVIDIA Tesla
architecture that supports the NVIDIA CUDA programming model. The
NVIDIA Tesla architecture is built around a scalable array of Streaming
Multiprocessors (SMs). Each SM consist of several Stream Processors (SPs),
that have two Special Function Units (SFU) for trigonometry (sine, cosine
and square root), a multithreaded instruction unit, and on-chip shared mem-
ory [10], as illustrated in Figure 2.7.

To a programmer, a system in the NVIDIA CUDA programming model
consists of a host that is a traditional CPU and one or more computes devices
that are massively data-parallel coprocessors. Each device is equipped with
a large number of arithmetic execution units, has its own DRAM and runs
many threads in parallel. The NVIDIA CUDA devices support the SPMD
model where all threads execute the same program although they don’t need
to follow the same path of execution. In NVIDIA CUDA, programming is
done with extension ANSI C, allowing the programmer to define data-parallel
functions, called a kernel that runs in parallel on many threads [32]. Parts of
programs that have little parallelism executes on the CPU, while parts that
have rich parallelism executes on the GPU.

19



Figure 2.7: The NVIDIA Tesla architecture. Figure is taken with permission
from [10].

20



GPU threads have very little creation overhead and it is possible to switch
between threads that execute with near zero cost. The key to performance in
NVIDIA CUDA is to utilize massive multithreading, a hardware technique
which run thousands of threads simultaneously to utilize the large number of
cores and to overlap computation with latency [39]. Under execution threads
are grouped into a three level hierarchy, as illustrated in Figure 2.8. Every
kernel executes as a grid of thread blocks, where each thread block is an array
of threads that has a unique coordinate in the kernel grid. The individual
threads have a unique coordinate in the thread block. Threads within the
same thread block can perform synchronizing.

Figure 2.8: The NVIDIA CUDA thread hierarchy. Figure is taken with
permission from [10].

21



All threads in NVIDIA CUDA can access data from diverse places dur-
ing execution, as illustrated in Figure 2.9. Each thread has its private local
memory and the architecture allows effective sharing of data between threads
inside a thread block, by using the low latency shared memory. Finally, all
threads have access to the same global memory. There are also two addi-
tional read-only memory spaces accessible by all threads, the texture and
constant memory spaces. Those memory spaces are optimized for various
memory accesses patterns [10]. The CPU can transfer memory to and from
the GPUs global memory using API calls.

Figure 2.9: The NVIDIA CUDA memory hierarchy. Figure is taken with
permission from [10].

22



Each SM can execute eight thread blocks at the same time. There is
however a limit on how many thread blocks a SM can process at once, one
need to find the right balance between how many registers per thread, how
much shared memory per thread block and the number of simultaneously
active threads that are required for a given kernel [32].

When a kernel is invoked, thread blocks from the kernel grid are dis-
tributed to SM with available execution capacity. As one block terminate,
new blocks are lunched on the SM [10].

Under execution threads within a thread block grouped into warps. Warps
are 32 threads from continuous sections of a thread block. Even though warps
are not explicit declared in NVIDIA CUDA, knowledge of them may improve
performance. The SM executes the same instruction for every thread in a
warp, so only threads that follow the same execution path can be executed
in parallel. If none of the threads in a warp have the same execution path,
all of them must be executed sequential [32].

2.4 Graphics Programming
In an implementation of a 3D computer graphics program, there is needed
a lot of functionality. Everything from calculating the colors of vertices,
dependent on their normals, material type and light-positions, to calculations
of how the representation will be shown on the screen in proportion to "eye"-
coordinates (the location of camera in the scene) and what kinds of view
(if the viewer has eyes like a fish, looking almost 360 degrees, or a camera,
looking about 90 degrees). All this functionality is normally computed each
frame, where a good frame rate is at least 30 frames per second (FPS).
Most of these computations takes place in the graphics pipeline, and the
programmer do not need to know how everything in the pipeline works,
to implement a good solution. To use this pipeline efficiently, we need an
Application Programming Interface (API), where the two most common is
OpenGL and Microsoft DirectX, which will be explained further in Sections
2.4.2 and 2.4.3.

2.4.1 Buffer Objects
In graphics programming we often use buffer objects as a way to store data on
the GPU global memory. There are three main types of these buffer objects;

23



Vertex Buffer Objects (VBO), Pixel Buffer Objects (PBO) and Frame Buffer
Objects (FBO). These are basically arrays for storing data on the GPU to
make it easy to use and easy communicate through.

When we are computing image processing techniques, we can use PBO
or FBO for storing the image. In our case the image is stored by creating a
PBO in OpenGL, then use NVIDIA CUDA functionality to map the PBO
back and forth between OpenGL-code and NVIDIA CUDA-code. The PBO
will then be made available for manipulation on each pixel when computing
NVIDIA CUDA code on the GPU, and then later be available for rendering in
the OpenGL code. The precise same method can be used for the other types
of buffer objects, and is the main communication source between NVIDIA
CUDA and OpenGL or Microsoft DirectX, without letting the information
back and forth to the CPU.

2.4.2 OpenGL

OpenGL (Open Graphics Library) is a cross-platform and hardware indepen-
dent graphics API, developed by Silicon Graphics Inc (SGI) in 1992, and can
be used both for 2D and 3D graphics applications [20]. OpenGL contains
a large set of commands, where some are doing things like drawing simple
objects, like points of triangles and others are doing light calculations or sim-
ply opening a window. A typical OpenGL program begins with opening a
window in the framebuffer. To use the full graphics pipeline, with all the
shader-stages, OpenGL needs the add-on GLSL. GLSL 1.30 supports pixel
and vertex shaders. And with another add-on, the geometry shaders are also
supported, thou OpenGL are designed to be a 3D rendering system with the
purpose of being accelerated by the hardware.

Some advantages with OpenGL are the communication with other APIs,
like OpenCL (Open Compute Language) which is becoming very important
for performance based applications. The OpenCL support was implemented
in OpenGL 3.1 released 24. March 2009. OpenGL can also be programmed
in most programming languages, and is a very flexible API.

2.4.3 Microsoft Direct3D

Microsoft Direct3D is a graphics API, which is a part of Microsoft’s Di-
rectX API. Direct3D is designed to be a 3D hardware interface, which is
communicating directly with the hardware. The API is available only on

24



Microsoft Windows operating systems and the gaming consoles from Mi-
crosoft (Xbox and Xbox360). Included in Direct3D, is all functionality in
the graphics pipeline and all SM5 was introduced in DirectX 11, using HLSL
for programming the shader stages. For a computer running a Direct3D ap-
plication with functionality the GPU do not support, these functions will be
emulated with software rendering. An example of this if an application using
the tessellation stage of the pipeline is run on an older GPU, the CPU will
compute those results, and the framerate will sink dramatically.

DirectX 11 also includes functionality for rendering multithreaded, mean-
ing threads on a multicore CPU can render to the same Direct3D device.
Another functionality included in DirectX 11 is the compute shaders, which
is much of the same as NVIDIA CUDA. NVIDIA CUDA is explained further
in Section 2.3.1.

25





Chapter 3

Porous Rock Structures and
Volume Rendering

The word petroleum, meaning rock oil, refers to the naturally occurring hy-
drocarbons that are found in porous rock formations beneath the surface of
the earth. Petroleum is the result of millions of years of heat and pressure
to microscopic plants and animals. Oil does not typically lie in huge pools,
but rather within rocks or sandy mud. A petroleum reservoir or an oil and
gas reservoir is typically an underground accumulation of oil and gas that
are held and stored within porous rock formations [13].

The challenge is how to get the oil out. The recovery of oil involves
pumping water (and sometimes other chemicals) to force the oil out and the
bigger the pores of the rocks are the easier it is. Not just all rocks are capable
of holding oil and gas. A reservoir rock is characterized by having enough
porosity and permeability, meaning that it has sufficient storage capacity for
oil and ability to transmit fluids. It is vital for the oil industry to analyze such
petrophysical properties of reservoirs rocks, to gain improved understanding
of oil production.

3.1 Core Analysis
Information gained through core analysis is probably the most important
basic technique available for petroleum physicists to understand more of the
conditions that affect production [21]. Through core analysis the fluid char-
acteristic of the reservoir can be determined. While traditional core analysis
returns valuable data, it is more or less restricted to 2D description in form
of slices, and does not directly and accurately describe the 3D nature of rocks

27



properties [22]. With the use of microcomputed tomography geoscientist can
produce high-resolution 3D representations of the internal pore structures of
reservoir rocks. It is a nondestructive method to determine petrophysical
properties such as porosity and permeability [21]. Properties used further
as inputs into reservoir models, for numerical simulations to estimate the
recovery factor.

3.2 Computed Tomography
Computed Tomography (CT) is a non-destructive imaging-method partic-
ularly used in medical imaging, where it is used to examine the internal
structures within a human body. The first prototype of the CT-scanner was
made by Hounsfield in 1967, and over the years the technology has advanced
rapidly, where resolution and speed has been the most important improve-
ments. In addition to the CT-scanners importance in the medical field, geo-
scientists started using them in the mid 1980s, which gave the geology-field
a nondestructive evaluation method of core samples [21, 1]. The technol-
ogy used today in the geologic field is called Microcomputed Tomography
(μCT), which is a small CT-scanner with higher resolution than the normal
CT-scanners. The high resolution of μCT makes a highly detailed volume
of the samples, and will make it possible to observe even smaller pores than
before.

A CT-scanner is a special type of X-ray machine, with the same compo-
nents: an X-ray source/tube, the object to be scanned and a detector array,
as in Figure 3.1 [9]. In addition, the CT-scanner has a way to rotate the sam-
ple (in scanners for core-samples) or the X-ray source and the detector (in
medical imaging). The X-rays are being emitted in a fan-shaped beam, where
the rays are being absorbed differential through the material [14]. Since rays
are absorbed differently in proportion to the material densities, there will be
possible to observe the differences between pores and rock in the resulting
image.

28



X-ray source

X-rays

Core sample

Detector-
array

Figure 3.1: X-ray attenuation measurement process.

Since either the object to be scanned or the X-ray source and the detector
can rotate, a CT-scan will generate several X-ray images 360 degrees around
the object, as in Figure 3.2, which can be processed to make a digital 3D
representation of the scanned object [21, 1, 9]. In the volume procession,
there will first be generated image slices of the volume (as illustrated in Fig-
ure 3.2), which resulting can generate a 3D-model of the sample.

X-ray source

Core sample

Detector-
array

Stack of scan-slices

Figure 3.2: CT scan process with rotating core sample.

In this thesis, all scan data is created from a SkyScan 1137 μCT scan-
ner in the Department of Petroleum Technology, NTNU. The scanner uses a
computer cluster to reconstruct the scan dataset in less time than the scan
duration. And the resolution of a dataset created can be up to 8000 x 8000
pixels per image, extremely detailed, but taking a huge amount of storage
space.

29



A problem with a CT-scan is that it produces various types of artifacts,
which will be explained further in Section 3.2.1.

3.2.1 Typical Artifacts in CT-scans
An artifact in CT is the difference between the reconstructed image and the
true attenuation coefficient of the object. Artifacts can therefore significantly
reduce the quality of CT-images, sometimes as much that the image gets un-
usable for medical purposes or fluid simulation, and can often be mistaken
for a disease in the medical field. There are mainly two classes of artifacts in
CT-images, which can occur in the scanning of core samples. The classes are
physics-based and scanner-based artifacts. In addition to these two classes,
medical imaging meets a big challenge in patient-based artifacts, which can
occur by factors as patient movement, and helical and multisection technique
artifacts, which come from the reconstruction process of the slices. Some of
the artifacts are minimized by modern CT-scanners and their scanner soft-
ware. To reduce these artifacts and optimize the image quality, there is
important to understand why and how these artifacts occur [4]. Further is
an overview of the most important artifacts for scanning of core-samples.

Physics-based artifacts

Physics-based artifacts are a result from the physical process involved in the
acquisition of CT data [4]. In an X-ray beam, there are many individual
photons, where each have their own energy. The energy level can vary a lot
from photon to photon. When the beam is omitted through an object, the
lower energized photons will be absorbed as the material gets harder (the
density gets higher); this technique is called beam hardening.

When an X-ray passes through the middle of a circular shaped object,
it passes through more material, than the other rays. Therefore in the mid-
dle, the beam becomes harder. More attenuation occurs in the center of the
object, than around the edge, and the resulting density will increase in the
middle, even if there is the same material around the edges, as illustrated in
Figure 3.3. This artifact is called a cupping artifact [4].

A way to reduce the beam hardening artifacts is to place a filter, usually
a flat piece of some metallic material, which the beam has to pass through
before the object to be scanned. This will filter out the lower energy photons,
and is called "pre-hardening". In addition, CT-scanner manufacturers often

30



Figure 3.3: Cupping artifact.

deliver a beam hardening correction in their software [4].

Another type of physics-based artifact is the partial volume artifact.
These occurs when an off center dense part of the scan is partially scanned
by the beam, like in Figure 3.4 [4]. Since the X-ray beam is fan shaped, the
beam can miss a hard part of the rock when scanning on one side, but find
the same part when the beam is sent 180 degrees of the missing position. By
doing this, the artifacts will appear as a shading in the image, like Figure
3.4. This effect can easily be avoided by putting the object to be scanned far
enough away from the X-ray source, which the object will be fully inside the
beam, the whole rotation process.

Figure 3.4: Partial volume artifact.

31



Scanner-based artifacts

CT-scanners are very sensitive to the position of the X-ray tube and the
detector array. Due to defective detector elements or shifts in the output
from individual detector elements ring artifacts can occur, which is both
complete and incomplete circles, in part of or all over the scandata image.
Illustrations of ring artifacts can be seen in [4]. Ring artifacts can also oc-
cur from imperfections or variations in the incoming beam, or from variations
in the beam together with the point-spread function of the detector elements.

A common method to reduce the ring artifacts is flat-field correction,
which is a method who uses an image without the sample and an image
without the beam, to generate the real image [3]. Even thou the rings are
reduced, they will not completely disappear from flat-field correction. An-
other method to reduce the rings, is by filtering methods before the image
reconstruction, which is further explained in [30], or after the reconstruction
[3, 35]. In practice, no scanner is completely free of geometric misalignments,
where the X-ray source, the turn table for the object to be scanned and the
detectors all have some misalignments compared to each other. A technique
to reduce the effect by the misalignment is by calculating the perfect posi-
tions of these elements, which is explained in [38].

Most Micro-CT systems, like the SkyScan 1076 system, are highly sensi-
tive to slight difference in the sensitivity of adjacent detector elements. For
scans that need high contrasts, the resolution is turned up, and the ring
artifacts will increase [35].

3.3 Volume Rendering

As explained in [1], volume representation techniques are being used in a
variety of areas, ranging from medical modeling of organs and bone struc-
ture to seismic and geological representations of pore-geometry, and many
other areas where representation of Magnetic Resonance Imaging (MRI)/CT
scan data or deformation of 3D objects is needed. Traditionally these tech-
niques used sequential calculations on a CPU, or parallel computations on
CPU clusters, before rendering on the GPU. The generation of volume mod-
els with a high level of complexity is a highly parallel task, where lots of
independent vertices can be generated simultaneously.

Scan data from CT or MRI is often represented as a stack of 2D images,

32



where each image represents one slice of the volume. The volume can be
computed by extracting the equal values from the scan data, and rendering
them as polygonal isosurfaces or directly as a data block.

A volume can be completely described by a density function, where every
point in the 3d-space is represented by a single scalar-value. Typically the
values higher than a threshold-value is hard rock and the points having a
value under the threshold are fluids like oil, gas or other materials with a
lower density than the material we want to find. In the 3D model, there is
placed a boundary straightly at the threshold, to separate rock from fluid.

The most common algorithms for computing the isosurface is The March-
ing Cubes (MC) and Marching Tetrahedron (MT). These two algorithms are
almost the same, where both of them are using voxels, where each corner
gets a binary, if it is inside or outside the threshold. By using these binaries
as a sequence, we can look up in a precalculated table, which tells us how
to generate polygons in that voxel. The difference between the two is how a
voxel is represented, where MC is using 8 points at a time, forming a cube,
and MT is using 4 points forming a tetrahedron. A more detailed explana-
tion of these is explained in [1].

There also exist some other techniques for computing a volume repre-
sentation. To mention some of them, volume ray casting, splatting, shear
warp, texture-mapping and hardware accelerated volume rendering. They
all require color and opacity for each sample value. If you want an overview
of what each of them are, take a look at [43, 33].

33





Chapter 4

Digital Image Processing

Today’s technology makes it possible to manipulate images with digital tech-
niques. A digital image can be viewed as a two-dimensional function f(x, y),
where x and y are coordinates in the spatial plane (image plane) for a given
pixel and f represents the intensity of the pixels color values. A pixel’s given
color can be represented by one digit if the image is a grayscale image and 3
or 4 digits if the image has full colors. A typical 4 digit image representation
is 32 bit, using 8 bits pr color channel, which is red, green, blue and alpha
(RGBA). Each of the color channels in 32 bit RGBA-images use a value be-
tween 0 and 255 for each color. The first three channels (RGB) represent
the color of the pixel, where the three values corresponds to a position in
the color space, like illustrated in Figure 4.1 (the white corner is 255 in all
3 color values and the black corner has the same values at 0). The alpha
channel represents the opacity of the pixel (which can be handy for a texture
in a 3D scene for showing transparent materials).

Figure 4.1: The RGB 3D space.

35



The area of digital image manipulation is called Digital Image Process-
ing (DIP), and is divided in three main categories [18]. The first category is
called image processing, where some manipulations are done on an image and
sends the result image as an output, like Figure 4.2b. The second category
is image analysis, which extracts information out of the image, an example
of information is segments or edges, like illustrated in Figure 4.2c. The last
category is image understanding/computer vision, where the input image is
analyzed and returns a high level of description. In an image analysis, there
is important to distinguish between the objects of interest and the rest, the
techniques for finding the objects are often referred to as segmentation, where
two of the most important techniques is thresholding (Section 4.3 for more
details) and edge detection (Section 4.4 for more details). An important thing
to understand when working with image segmentation is that there are no
universal techniques that will work on all images and no techniques is perfect.

        a) Original image                         b) Manipulated image                c) Edge detected image

Figure 4.2: Digital image processing categories.

DIP can not only work on images able to be seen by human eyes, but also
images from almost the entire electromagnetic spectrum (illustrated in Figure
4.3), ranging from gamma to radio waves [18]. Therefore DIP is important in
many areas, from medical or geological CT-scans to noise reduction in radio
waves.

By doing DIP, there is several different start approaches, the manipu-
lation can be done in the spatial domain, which is working with the pixels
as they are. Another approach by is using the images frequency domain

36



              -14                                 -12                               -10                                   -8                                -6                               -4                                   -2                                                                      2                                   4             10               10             10               10              10             10               10             1                 10              10 

gamma
rays

X-rays UV-rays infrared rays radar radio and shortwaves

Visible Light

Wavelength (in meters)

400 500 600  700
Wavelength in nanometers

Figure 4.3: The electromagnetic spectrum.

(Fourier domain), where high frequencies (sharp edges) from the original im-
age is concentrated in the middle, and lower frequencies (colored surfaces)
are represented longer out from the middle of the frequency image, which are
illustrated in Figure 4.4. By using the frequency domain, lots of manipula-
tions is opened in addition to the ones in the spatial domain, an example of
such a manipulation is filtering methods for filtering out lower frequencies,
which will result in an edge sharpening method. You can read more about
the frequency domain in [18].

Figure 4.4: Frequency image.

37



4.1 Logical Image Operators
All DIP algorithms need to involve logical functions operating on vectors of
logical variables [40]. Logical Image Operators works just like other math-
ematical functions, where an example is that sometimes we need to divide
two images together to create one new image. The images then have to be
the same size, or where a corner of the smallest image starts in the other
image needs to be specified. Then the pixels with the same reference in both
pictures can be used in a logical operation. Dividing the two of them and
creating the image c = a - b, where an example of this is shown in Figure
4.5. In the same way we can use most other logical operators too.

       a)                                 -                              b)                            =                           c)

Figure 4.5: Mathematic operator on images.

4.2 Spatial Filters
A spatial filter is a filter/mask doing operations on an image, by working in
neighborhoods of pixels. These techniques are highly parallelizable, where
they operate with an input image and a mask, and every computation out-
puts a pixel value for the output image. A spatial filter can be defined by:

g(x, y) = T [f(x, y)] (4.1)

Where g(x, y) is the resulting image, f(x, y) is the input image and T is
the operator operating on f and the neighborhood defined around the point

38



(x, y) [18]. A mask defines both the size of the neighborhood and the opera-
tions to do, and is in most cases much smaller than the image. The operation
is done in the whole neighborhood of the input image, and results one pixel
in the output image.

   a            a            a             a             a

   a            a            a             a             a

   a            a            a             a             a

   a            a            a             a             a

   a            a            a             a             a

 11                         12                       13                          14                          15

 21                         22                       23                          24                          25

 31                         32                       33                          34                          35

 41                         42                       43                          44                          45

 51                         52                       53                          54                          55

  b            b            b             b             b

  b            b            b             b             b

  b            b            b             b             b

  b            b            b             b             b

  b            b            b             b             b

 11                         12                       13                          14                          15

 21                         22                       23                          24                          25

 31                         32                       33                          34                          35

 41                         42                       43                          44                          45

 51                         52                       53                          54                          55

 m           m          m             

 m           m          m             

 m           m          m             

 11                         12                       13                          

 21                         22                       23                        

 31                         32                       33                        

Input image               +            Mask            =              Output image

Figure 4.6: Mask operations by using Equation 4.2.

b22 =
(a11 ∗m11) + (a12 ∗m12) + (a13 ∗m13)+
(a21 ∗m21) + (a22 ∗m22) + (a23 ∗m23)+
(a31 ∗m31) + (a32 ∗m32) + (a33 ∗m33)

(4.2)

An example of a mask is a Gaussian blur mask. Where the mask illus-
trated in Figure 4.7 is moved over and computed for each pixel-location it fits
in the input image, to create the output image, as illustrated in Figure 4.7,
where we can observe a smoothing compared to the original image. Another
example of a filter is the Sobel edge detector, which finds edge information
in the image. Sobel is explained further in Section 4.4.1.

4.3 Thresholding
Thresholding is a simple and computationally inexpensive segmentation method.
Thresholding uses a threshold-value (border-value) to decide the inside and
outside of an object in the image, or in some cases differentiate between
foreground and background. The threshold value is then compared to each

39



  1            4            7             4             1

  4           16          26          16            4

  1            4             7            4             1

  4            16          26          16            4

  7            26          41          26           7  1
273

          a) Gaussian blur mask                    b) Input image                                c) Output image

Figure 4.7: Gaussian blur mask operation.

pixels intensity value, where a simple global threshold works this way:

To get a good segmented image from using a threshold, the threshold
value is really important. There are mainly two different methods of choos-
ing the threshold value: manually chosen by the user or automatic algorithm
for computing the value (called automatic thresholding). In some images a
threshold value can be chosen by making an intensity histogram, the images
which then are easy to segment will return a histogram with the objects of
interest in one end of the intensity scale and the background at the other
end, with a valley between, illustrated in Figure 4.9.

There exist some different types of thresholding, where a variable thresh-
old is a threshold which changes through the image. Another type is adaptive
threshold, which uses local thresholds for different regions in the image.

40



a) High threshold b) Low threshold

Figure 4.8: High and low thresholding.

0

2

4

6

8

10

12

14

x 10
4

0 50 100 150 200 250

Figure 4.9: Histogram of Figure 4.7b.

4.4 Edge Detection
Important objects or events in an image are often represented by a sharp
change in intensity values. In Figure 4.10a we can observe a large intensity
change between the sky and the palm trees, we also can observe intensity
changes in the sky itself. In image processing, edge detection is a class of
algorithms which can find the edges between these intensity changes, and ide-
ally lead to connected boundaries of objects and most of the less important
information filtered off. Real life images, like Figure 4.10 is in most cases
too complex to get a perfect result from these edge detection algorithms.
Real life images can also contain artifacts, which make it even harder to get
perfect edge detection. The artifacts of the images can be ring artifacts or
image hardening by using a CT scanner (Section 3.2.1 for more information)

41



or reflection and shadows and many other types of challenges, which make
DIP even harder [18].

                  a) Original image                                         b) Edge detected image

Figure 4.10: Edge detection.

To capture the intensity changes in an image, the edge detection algo-
rithms mainly uses two different methods; first order derivatives of the image,
finding maximum and minimum points in the derivate image. The other ap-
proach is by finding the zero-crossings in the second order derivatives. By
derivation of an image, the edge detection algorithms use one or several filters.

First order derivative methods detect the edges by measuring the strength
of the gradient, which is called edge strength. This is normally done by us-
ing two filters, finding the derivatives of the gradients in two directions 90
degrees on each other. First order derivative can be given by:

df

dx
= f(x+ 1)− f(x) (4.3)

Where f(x) is the intensity of a pixel number x in the given direction.
One of the most used first order derivative methods is the Sobel filer, which
is explained further in Section 4.4.1.

The zero-crossing-based methods normally need one filter to find the sec-
ond order derivative in all directions. The second order derivative is given by:

42



d2f

d2x
= f(x+ 1) + f(x− 1)− 2f(x) (4.4)

Where at least 3 pixel-values is needed to find an edge. One of the basic
zero-crossing based methods, which many other methods is based on is the
Laplacian filter, illustrated in Figure 4.11. These second order derivative
methods can also mark the zero-crossings differently, where edges from high
to low intensity and the edges from low to high intensity can be differentiated.

  -1           -1          -1           -1           -1

  -1           -1          -1           -1           -1

  -1           -1          -1           -1           -1

  -1           -1          -1           -1           -1

  -1           -1          24           -1           -1

Figure 4.11: The laplacian filter mask.

The main difference between first and second order derivatives is that
second order derivatives will find more details in the image, and therefore
also will be more sensible to noise. A way to deal with the noise sensitivity
is by using a Gaussian blur first, or combined called Laplacian of Gaussian
(LoG). A problem with this approach is that it will have problems finding
curved edges [18]. Another difference between the two types of approaches
is when dealing with ramp edges, like the one illustrated in Figure 4.12 [18].
The first order derivatives will in this case draw a broad edge as seen in the
image. With the second order derivative we will be able to find the centre
between the two crossing points, since it can differentiate between the ones
going from high to low intensity and the ones going from low to high intensity.

43



a) 1D ramp edge

b) First derivative

c) Second derivative

Zero-crossing

Figure 4.12: Ramp edge in 1. and 2. order derivative.

4.4.1 Sobel filter
The Sobel filter is the most used edge detection technique [18], which is
based on first order derivate using two Sobel masks. The masks (given in
Figure 4.13) is computed one by one in each direction, creating two gradient
images, one for x-direction and one for y-direction. The masks can also be
drawn diagonally, which will improve the diagonal edges a little, but make
the straight edges slightly more inexact. As we can observe in the masks in
Figure 4.13, each of them has a total weight of zero, which is required for a
derivative operator. Another thing to observe is that the weight across the
center of the derivative direction is two. The higher weight across the center
of the mask provides an image smoothing, which will make the filter slightly
more resistant versus noise [18].

-1             0             1             

-2             0             2             

-1             0             1             

-1            -2            -1             

  0             0            0             

  1             2             1             

        a) x-direction                        b) y-direction

Figure 4.13: The Sobel filter masks.

To compute the partial derivatives, we use normal mask calculation given,

44



by using the Sobel masks separately over an image a, as done in Equation 4.2:

gx =
df

dx
= (a13 + 2a23 + a33)− (a11 + 2a21 + a31) (4.5)

gy =
df

dy
= (a31 + 2a32 + a33)− (a11 + 2a12 + a13) (4.6)

Where gx and gy is the partial derivatives and axx represents pixels in the
image, using the intensity values. After calculating the partial derivatives,
the edge strength can be computed. This is normally done with one of the
two methods given:

g =
√
g2x + g2y (4.7)

g ≈ |gx|+ |gy| (4.8)

Equation 4.7 gives the most precise edge strength, but square roots are
computationally expensive, and therefore in Equation 4.8 is often used in
performance based applications. By using Sobel on an image, it will look
like Figure 4.10b, with contour around the objects found.

Masks like Sobel, which are symmetric about a center point is excellent
for computing edge directions. After the mask operations, we got two pic-
tures of the original size, one with gradients in the x-direction and one with
gradients in the y-direction. By using Equation 4.9 we can decide the di-
rection of the edge. Normally the angle is being round off to the nearest 45
degrees, since there is only 8 pixels around a pixel, connected in 8-adjacent,
which means the pixels can be connected corner to corner or side to side.
More about the round-off of the angle will be explained in section 4.4.2.

Θ = arctan gy
gx

(4.9)

45



Where Θ is the orientation angle of the edge, and gx and gy is the partial
derivatives in the given directions.

4.4.2 Canny edge

Using the Sobel edge detector by itself on real world images will give a noisy
resulting image. This is because of three main problems [18, 36]:

• Some important edges will get low edge strength; this will cause missing
edges when using a threshold on the edge strength image. The balance
by using a lower threshold will cause edges which are not true edges to
appear as noise.

• Often there will be found multiple responses to a true edge, this will
cause thick edges and in detailed images will make the result inexact.

• Noisy single pixels can be found at the edge border, which will cause
missing pixels in the resulting edges.

The Canny edge detector, developed by John F. Canny in 1986 [6], is
known as a superior edge detector [18]. It is based on a five-step algorithm,
which takes the three problems described over into consideration. Each step
will now be explained:

Step 1: Gaussian blur

First we want to remove some noise from the image. By using a Gaussian
blur mask, as explained in Section 4.2, the third problem described above
will be reduced, and the noisy pixels will have lesser effect on the resulting
image.

Step 2: Sobel edge detection

By using the Sobel edge detector, explained in Section 4.4.1, will give the
gradients in x- and y-direction in addition to the edge strengths. Totally the
first two steps will be a first order derivative of a Gaussian.

46



Step 3: Edge direction

To find the edge directions, Equations 4.5 and 4.6, then 4.9 will be used.
The edge directions will get Θ-values between 0 and 180 degrees. As seen
on in Figure 4.14a, a pixel ’a’ has eight neighbors, the edge direction then
can be in four directions only, because it can only be a straight line in a
pixel. Therefore the use of adjusted directional angles is needed, where edge
directions between 0 and 22.5 and between 157.5 and 180 degrees, will be set
to 0 degrees, and so on. Each of the four new directions is adjusted by the
areas shown in the harmonic circle in Figure 4.14b [19]. The new directions
are then 0, 45, 90 and 135 degrees.

x    x    x    x    x
x    x    x    x    x
x    x    a    x    x
x    x    x    x    x
x    x    x    x    x

135

0

90
45

0O

O

O

O

O

           a) Pixel neighbors                                   b) Adjusted edge directions

Figure 4.14: Edge direction adjustment.

Step 4: Non-maximum suppression

For the second problem described above, where more than one pixel rep-
resents one true edge, the use of non-maximum suppression is important.
Non-maximum suppression is first considering each pixel in the image, com-
paring them to the two pixels 90 degrees on the pixels edge direction. If one
of the two neighbor compared with has a larger edge strength, the current
pixels edge strength is set to zero. This will lead to thin edges, or at least a
reduced thickness of the edges.

Step 5: Hysteresis thresholding

To get a usable image after edge detection, thresholding is needed. For the
first problem described above, where a global threshold value would cause
either real edges to disappear or noisy pixels to appear, hysteresis threshold-
ing is a good solution. The concept is using a higher and a lower threshold

47



value, where each pixel is compared to the higher threshold. For each pixel
which has an edge strength higher than the higher threshold is presumed to
be an edge pixel. Then, for each pixel connected to the edge pixels, using
the edge directions and following the edge, which have edge strength greater
than the lower threshold, is also marked as an edge pixel.

After using the five steps of the Canny edge detector, the three problems
of using only the Sobel edge detector, as described above, is reduced signifi-
cantly. In Figure 4.15 we can observe the difference between the Sobel Edge
with global threshold and Canny Edge.

           a) Original                                 b) Sobel edge detected               c) Canny edge detected

Figure 4.15: Sobel edge detection VS. Canny edge detection.

48



Chapter 5

Implementation and Guidelines

In this chapter, we will explain some thoughts around the implementation,
the reasons of some of the algorithmic choices and some guidelines to follow
when programming NVIDIA CUDA.

5.1 Platform and Hardware Specification
Our application is targeted towards graphics enabled desktop computers and
workstations. Since it is a highly parallelizable application requiring a high
framerate, the computations is needed to be calculated on a GPU. The GPU
computations is implemented with NVIDIA CUDA 2.1, because of a low
learning curve and further development of the volume rendering project done
by Eirik Ola Aksnes and Henrik Hesland in the project GPU Techniques for
Porous Rock Visualization [1]. At the moment NVIDIA CUDA is supported
only by NVIDIA GPUs with SM4 support. Therefore the implementation
also needs a NVIDIA GeForce 8800 GPU or newer.

For the graphical visualization the usage of OpenGL 3.1 is chosen, where
the programming language is C/C++. C/C++ is chosen because of the
importance of high framerate and easy communication with both OpenGL
and NVIDIA CUDA. The compiler used for the implementation is Microsoft
Visual Studio 2005.

The application is meant to prepare 3D models for reservoir applications
such as Schlumberger Petrel. Schlumberger Petrel is a Microsoft Windows
software application; therefore our application’s file-functionality is specific
for Microsoft Windows 32-bit systems, implemented by using the Win32
library.

49



5.2 Optimization Guidelines
As said in [1], to program efficiently on a GPU using NVIDIA CUDA, the
knowledge of the hardware-architecture is important, that is explained fur-
ther in the Section 2.3.1.

The primary performance element of the GPU, which really should be ex-
ploited by a NVIDIA CUDA programmer, is the large number of computation
cores. To do this, there should be implemented a massive multithreaded pro-
gram.

One of the problems with a GPU implementation is the communication
latency. For computations, there should be as little communication as pos-
sible between the CPU and GPU, and often some time can be spared by
doing the same computation several times, than load the answers between
the CPU and GPU. The massive parallelization of threads is also important
for hiding the latency.

A modern GPU contains several types of memory, where the latency of
these is different. To reduce the used bandwidth, it is recommended to use
the shared memory where it is possible. The shared device memory is divided
into banks, where access to the same bank only can be done sequentially, but
access to different banks can be done in parallel. Therefore the threads should
be grouped to avoid this memory conflict.

Another function that should be used as little as possible is synchroniza-
tion. This can cause many threads to wait a long time for another thread to
finish up, and can slow the computation significantly.

The number of thread-blocks used simultaneously on a Streaming Mul-
tiprocessor (SM) is restricted by the number of registers, shared memory,
maximum number of active threads per SM and number of thread-blocks
pr SM at a time. Therefore the number of threads, memory used and total
bandwidth should be configured carefully in proportion to each other.

5.3 Implementation
This section will describe the parts of our implementation. The programs
functionality is meant firstly to load a selected dataset of bmp-grayscale im-

50



ages. After the loading, the user should be able to choose how many images
to work with, up to maximum 20 images. The first image of the ones calcu-
lated for the user to work with will then show to the left of the screen. If one
image were chosen, the middle image of the dataset will be used. The user
should then be able by using the mouse pointer on the image, to localize
the rock and the pores. We chose to let the user to be able to click on a
predicted edge between the two different identifiers. It will not only be able
for clicking, but also moving the mouse while holding the left mouse button,
calculating the edges per frame. While moving, the resulting edge-image will
not directly be saved, but the user will be able to move around until he or she
is satisfied, and the new edges will be saved by unclicking the mouse button.
When the user then is satisfied with the feedback of the edges, the user can
click the next button, which replaces the current image with the next image
to work with. Once the user is satisfied with all the images, the next thing
to do is to create a 3D model with the thresholds chosen. The 3D model will
then be shown on the right of the window, and the total graphical design
will be as seen in Figure 5.1. When the 3D model is created, the user should
also be able to export the 3D model as a file, and the file-type is importable
in Schlumberger Petrel.

Figure 5.1: Our Graphical User Interface (GUI).

51



The threshold in the image has to be variable and different over different
parts of the image. This is because the density values for pores in the center
of the image are in some cases higher than the rock-densities in the outer
parts of the image, as seen in Figure 5.2. From the image we can observe
that there are 3 harder centers in the rock, with higher pore-densities around,
than on the softer places of the scan. The pore shown has a maximum den-
sity of 72 and the rock shown has a minimum density of 64. The densities
can also be different on different sides of the image; therefore we will have a
look at a variable regional thresholding.

Pore
Density:
max 72

Rock
Density: 
min 64

Figure 5.2: Comparing central pore and outer rock densities.

All the parallel algorithms for image processing and volume rendering is
implemented in NVIDIA CUDA, and is executed on the GPU. The image
processing parts could have been implemented in the pixel shader stage of
the pipeline, handling a frame buffer object [26]. In addition our volume
rendering algorithm Marching Cubes, could both have been implemented
in the vertex shader [17] or the geometry shader stage [12]. The reason of
why we chose to use NVIDIA CUDA on all these algorithms is the easier
programming by using a GPGPU programming language.

5.3.1 The Graphical Display
The application needs two types of graphical rendering. 2D orthogonal ren-
dering for the image display on the left and 3D rendering for the 3D volume
rendering on the right. For the calculations of all graphics pipeline function-
ality, we used OpenGL.

52



For the 2D display we implemented texture support, since the images to
work with is to be shown on the screen as a texture. By using the image as a
texture, there also is implemented a way to zoom in on the images, for more
accurate thresholding. To turn on 2D rendering, there is used an orthogonal
viewport. In the 2D display we are also rendering the buttons, which are just
2D textures. For the events of the buttons, there is an invisible bounding
box over the button texture, which reacts on mouse clicks.

The 3D display uses light calculations and depth tests, therefore it is
important that either each polygon or each vertex has a normal vector. For
rotating and moving the 3D volume around on the display, we are using the
OpenGL matrix functionalities for rotation and translation.

5.3.2 Image Operations
Because of the scan data images uses 256 different grayscale values to repre-
sent the densities, some grayscale values can be difficult to differentiate for
human eyes. This will be improved by a functionality explained in the Col-
orize image Section underneath. In addition, if the user prefers the grayscale
image, or wonders how it looks like, we also have functionality for the user
to make the choice.

For the approach of finding the edges in the image, there are two main
methods we chose to implement:

a) b)

Figure 5.3: The Canny algorithm used directly on the scan-slice.

The first approach is by Canny Edge, explained in Section 4.4.2. Canny

53



is a method which will find edges in the center of the dataset, even if the
pores in the center have a higher density than the rock on the outer parts
of the dataset. This is because in the center, we will also get sharp edges
between pores and rock. The negative about Canny is that it will be noisy
(even if it is less noisy than Sobel Edge), because of sharpness differences in
rock-density. The edges found will also, in some cases be incomplete regions,
as seen in Figure 5.3b. By using a lower second threshold than used in Figure
5.3, the region could be closed, but the image will also be even more noisy.
This approach is also hard to implement with the Marching Cubes algorithm,
which we are using from [1].

The second approach is by using segmented regions by thresholding. This
implementation needs two different flows. The first flow is when the user
loads a dataset, and is illustrated in Figure 5.4. The other flow is when
the user clicks or moves the mouse pointer in the image, where the flow is
illustrated in Figure 5.5. Each step of the approach is explained further in
the following sections. All image operations is implemented with NVIDIA
CUDA, and the calculations is run by the GPU. In the entire image oper-
ations implemented, each pixels resulting color is calculated from an input
image. The calculations are then independent of each others, and are then
done in parallel. In an image with the width and height of 1000 pixels, there
will then be launched 1 million threads to be calculated in parallel. Because
of the parallelism of the image operations, the more processors on the GPU,
the faster the algorithms will perform.

54



Load dataset

Calculating centerpoint

Load image

Colorize image

Global threshold

Detecting edges

Loading a gray-scale image on the GPU 
for further image-computations.

Densities use more of the color-specter.

Threshold the image with a code specified 
global threshold.

Using Sobel edge detection on the thresh-
old image, and add the edge- and the 
colorized-image together.

Using a boundary box around the detected 
rock in the threshold image to find the 
center point of interest.

Figure 5.4: Dataset loading flow.

55



no

Finding the images pixel-coordi-
nates for the mouse pointer position.

Calculating distance, angle and 
image density at the pixel to save in 
the threshold-graph.

Thresholding the image by using the 
threshold-graph.

Using Sobel edge detection on the 
threshold image, and add the edge- 
and the colorized-image together.

Drawing the edge-detected image 
on the screen.

Mouse button clicked

Adding point to threshold-graph

Reading mouse coordinates

Threshold image

Detect edges

Frame update

Mouse button up?

Finish loop

yes

Figure 5.5: Threshold change flow.

56



Colorize image

It is important for the human eye to differentiate between as many densities
as possible in the 2D scan data, because the user will at the end decide which
parts that is rock and which parts that is pores. Then since the gray tone
values can be hard to differentiate, we chose to implement a version of the
image, which is using a broader part of the color specter as seen in Figure 5.6.

Figure 5.6: Dataset rock slice in both gray-scale and colorized mode.

To make more of the color specter available, we have used the code
shown beneath. We chose to leave density values at and beneath 7 white
(255,255,255). The reason of letting the lowest values be white, is because
in most cases we can be sure that these values is not rock, in addition it is
easier to observe the rock when the lowest values is filtered out.

57



Thresholding

We are using a regional variable thresholding technique for segmentation of
the image. The threshold technique is dividing the image in two component-
types; what is rock and what is not rock. The two components are decided
by a threshold value, which vary for each pixel and are read from a graph,
which is generated from the user’s mouse-clicks in the image. In our imple-
mentation, the image is divided in 8 regions as seen in Figure 5.7. For each
region there will be saved a point list located in the middle of the region,
which represents a graph for the threshold value. Then when the user clicks
in the image with the mouse pointer, a point will be generated in the cur-
rent region, and will be placed on the point list on the middle of the region.
The data saved for each point is the distance from the center of the region
of interest and the pixel clicked on, and the threshold value at that pixel
(where the pixel will be the lowest value which is rock in that distance from
the center). It is then important that the user clicks on the edges between
rock and pores, on the rocks side of the edge, to get a good result.

0

4590135

180

225 270 315

o o
o

o

oo

o

o

Figure 5.7: Image graph regions.

The graph made from a point list is either a straight line, with the same
threshold value independent of the distance, if the point list only contains
one point, as seen to in Figure 5.8a. If the point list contains two points, the
graphs will be a straight line between those two, and flat before and after
the two, as seen in Figure 5.8b. In a graph with more than two points, we
got two possibilities; the first is by straight lines between each point, as seen
in Figure 5.8c. The other method is by using a Catmul-Rom curve, which is
an interpolating curve, with a smoother graph than the first possibility, as

58



shown in Figure 5.8d, for more information, take a look at [20]. The Catmul-
Rom version requires a little more computation than the straight lines, but
will generate a smoother graph.

a) One control point b) Two control points

c) Four control points - 
    straight curves

d) Four control points - 
    Catmul Rom curves

Figure 5.8: Thresholding graphs; x-axis: distance, y-axis: threshold value

59



Our algorithm is using the flow described in Figure 5.9 for each pixel in
the current image, where each part will be described further underneath.

Calculating the distance between the 
current pixel and the center-point.

Calculating the angle, for which region 
the pixel is inside.

Using the two closest threshold graphs 
to decide the threshold value in the 
current point.

Compare the pixel value with the 
threshold value, and decide if the pixel 
is inside or outside the rock surface.

Angle calculation

Distance calculation

Threshold lookup

Rock or not rock?next pixel

Figure 5.9: Pixel thresholding flow.

First for the current pixel, we will calculate the distance from the center
point and the angle in the harmonic circle. To calculate the distance we use
Pythagoras shown in Equation 4.7 and for the angle we use arctangent shown
in Equation 4.9.

To look-up the threshold-values from the graphs, we are not only using
the graph in the pixels region, but we are first finding the closest two point
graphs with at least one point saved, as in Figure 5.10a. If no points in any of
the graphs are placed yet, we will use a global threshold value. If the case is at
least one point saved, the algorithm will find the closest point-graph in each
direction from the current pixel. In some cases there will be only one point-
graph that is populated, and the look-up will then be done in that graph. In
cases where the algorithm finds different graphs in both directions, it will do
a look-up in both of them. Further the algorithm will calculate the angle dif-
ference between the current pixel and each of the graphs, to use these angles
to calculate an interpolation between each populated point-graph, where an
example of the total graph over the whole image will look like in Figure 5.10b.

60



0

135

315
270

o

o

o

o

Current 
pixel

The closest populated region 
going against the clock

The closest populated 
region going with the 
clock

a)

-500

0

500

-500 -400 -300 -200 -100 0 100 200 300 400 500

0

50

100

150

200

250

Imag
e y-c

oord
inate

s

X: 100
Y: -170
ThreshVal: 52

Image x-coordinates

Threshold graphs

Th
res

ho
ld v

alu
eb)

Figure 5.10: Interpolating pixel between populated regions.

Finally in the thresholding, we have calculated a threshold value, this
value will then be compared against the current pixel’s density value. If the
pixel value is higher or equal to the threshold, the current pixel is denoted as
rock, and the value is set to 255. If the case is a lower pixel value, the pixel
is then not rock, and the value is set to 0.

Totally this method will be sure of getting a closed region, which is im-
portant for the 3D model and fluid simulation in it.

61



Detecting Edges

In this part of the algorithm, we are using the finished threshold-image to
mark the edges which divides rock and pores/air. We have two different ways
of marking the edges:

The first method is by using the Sobel mask over the image, for more
information, take a look at Section 4.4.1. This method is a fast calculation,
but will leave a thick edge around the regions.

The second method is also here by using Canny edge detection for more
information, take a look at Section 4.4.2. Since there now is no noise in the
image to be used, this method will give a good result, leaving a thin line
around the regions. But the Canny edge algorithm is much slower than by
only using Sobel.

After the edge-strength is computed by either Sobel or Canny, the edge-
strengths will be compared to a threshold-value, deciding if an edge-pixel will
be drawn on the screen or not. If not the pixel is an edge-pixel, it will use
the colorized density-value, which will mix the most important information
in both the edge-image and the density-image to a final image which the user
can work with. The result of this part of the algorithm will not have any
effect on the generation of the 3D volume. The algorithm is also calculated
per frame when the mouse pointer is moved over the image. Therefore we
chose to use the Sobel mask in this part of the algorithm.

Finding Center-Point

The center-point of the region of interest is not necessarily the center pixel
of the image. In our algorithm we are interested in finding the center of the
rock, and then make the regions for the threshold point-graphs in proportion
to the center of the rock.

To find the center-point, we are using the global-threshold image, gener-
ated when a dataset is loaded. The first thing to do is building a bounding
box around the rock in the threshold image, by finding the lowest and highest
both x- and y-value for the rock in the image. After the bounding box is
completed, our implementation calculates the center-point of it, as can be
seen in Figure 5.11. The coordinates saved for the center-point will then be
used for further calculations.

62



Figure 5.11: Calculation of center-point.

From the technique described over, we will not find the optimal center-
point, but in most cases a center-point which is good enough for our compu-
tations to divide the rock in regions. In addition, when working with more
than one image, the same center-point will be used for all the images. The
reason of using the same center-point for all the images is because of only
needing one distance and angle calculation per voxel in the volume rendering.
The center-point will give us the ability to create good graphs in all images
in the dataset.

5.3.3 Volume Rendering
For the volume rendering part of our implementation, we are using almost
the same method as used in [1], but the threshold-value is calculated at the
exact same method as the one shown in Section 5.3.2. While the 2D images
interpolate the threshold-values from graph to graph, the volume rendering
do the interpolation also in the 3rd dimention. The calculation in the 3rd
dimension first finds the threshold-image which are closest to the current
voxel (pixel in 3D space) in each direction. Some voxels does only have one
threshold-image to calculate the threshold value from (the ones on each end of
the dataset in the z-direction), and will use the same threshold lookup as the
2D images. In a voxel which are between two threshold-images, the lookup
will be done on each of the images, then a calculation of the distances from the
current voxel to each of the threshold-images. The closer a threshold-image is
to the current voxel, the closer to the image’s lookup-value the current value
will be. After calculating the threshold-value, the normal Marching Cubes
algorithm continues. The flow of the algorithm is shown in Figure 5.12.
The 3D volume is divided in cubes, where each cube contains 8 neighbor-
values in the volume and each thread operates on a different cube. For more
information of the code and algorithm for marching cubes, take a look at [1].

63



Calculating the distance between the current cube 
and the two threshold images found. Also calculating 
a weight for each of them.

Using the two closest threshold graphs in each of 
the threshold images to decide the threshold value 
in the current cube.

Comparing each of the 8 corners of the cube to 
the threshold value, then making a 8-bit index for 
the cube.

Calculating the interpolation points on edges 
which is having one vertex inside and one vertex 
outside of the volume.

Using the 8-bit index to lookup how many vertices 
to store. Can be up to 5 triangles (15 vertices) per 
cube.

Threshold image on both sides?

Threshold lookup

Calculate 3D distances

Create 8-bit index

Calculate interpolation points

Vertice table lookup

Trangle table lookup

Calculate normals

Store trangles and normals

Using the 8-bit index to decide which edges are 
connected to make  the triangles.

Calculating the vertex normals.

Storing the triangles and normals in two global 
vertex buffer objects (VBO),

Calculating the angle, with same conditions as 
the distance calculations.

Finding the closest threshold images in each 
direction in z-direction. These two 2D graphs 
will be used further.

Calculate distance

Locating closest thresholds

Calculate angle

Calculating distance between centerpoint and the 
center of current cube, in image coordinates. (does 
not compare the lenght in z-driection)

yes

no

Figure 5.12: Marching Cubes, per cube flow.

64



5.3.4 Exporting 3D Volume to Petrel
We decided that the need of a way to save data is important in our implemen-
tation. Another important aspect is to communicate with other programs,
which can use the 3D volume further for simulations or other geophysical
approaches. We therefore chose to export the volume as a 3D object, which
can be imported by Schlumberger Petrel.

Schlumberger Petrel supports importation of various 3D model file-formats.
For our implementation, we needed a file-format which easily could be saved
from the VBOs. None of the formats which saved vertices close to the same
way as the VBO supported the saving of normal vectors. In addition, all of
the relevant formats saved the files as ASCII.

The file format used in our implementation is the Zmap+ format for lines
and points, which is saved in the way illustrated in Figure 5.13.

Figure 5.13: Organization of a Zmap+ file.

A Zmap+ file contains 4 columns and a row for each vertex in the 3D
model. The first 2 values and the 4th in each row represent x-, y-, and z-
coordinates. The 3rd column contains the polygon number, which means all
vertices with the same polygon number are drawn as one polygon. Because
of the file-format only save the vertices, and not their normal vectors, the
inside and the outside of the rock is not differentiated in the model, as illus-
trated in Figure 5.14. The lack of normal vectors will also make the pores
hard/impossible to observe and there is not a 3D feeling. When using full
datasets, the rock will be closed, and there will be no problem doing the

65



simulations on the right side of the borders.

Figure 5.14: Our 3D volume loaded in Schlumberger Petrel.

Since the file-format is in ASCII, it means that the values are saved as
characters, where each sign uses one byte of memory space. To save our 3D
volume, there is needed to save at least 8 bytes per coordinate (float with 6
decimals) and there is 3 coordinates per vertex. In addition the polygon ID,
3 spaces and the line shift is saved per row. Totally they will use at least 30
bytes per row.

For a 3D model with 10 million vertices there is a need of at least 286.10
MB (300 000 000 bytes) memory space for storage. But for exactly that
amount, every vertex has to belong to the same polygon (or up to 10 dif-
ferent polygons) and all coordinates has to be values between 9.999999 and
-9.999999.

In our case, each dataset builds the 3D model by triangles, storing three
vertices per polygon. For a dataset with 10 million vertices in our implemen-
tation, it uses about 350 MB memory space, which is not too much to save

66



on today’s hard disks. The memory space required would be much less if we
could use a binary polygon file-type instead, but the support would also have
to be implemented in Schlumberger Petrel.

Our algorithm first copies the VBO from the GPU to the CPU-memory.
Because of both the copying of the VBO and the preparation of each vertex
for saving, the saving phase is time consuming, taking several seconds.

5.4 Memory Allocation

In our application, there is two main parts which is using the GPU’s global
memory. The first is digital image processing, which uses the global mem-
ory for storing images to do the computations on. The second part which
uses global memory is the volume rendering part, which is very memory de-
pendent. In addition there is used some memory on the global memory by
textures and some polygons for the user interface.

5.4.1 Memory Allocated for Digital Image Processing

The digital image processing part of our implementation is not very mem-
ory dependent, compared to the volume rendering part. At all times, the
original image in grayscale values and the colorized image is stored at the
GPU global memory as two byte arrays. The grayscale image requires
width ∗ height ∗ sizeof(byte) bytes for storage. For the colorized image, it
stores the same as the grayscale image, but 3 bytes per pixel, instead of 1. In
addition to these two, there is required a PBO (Pixel Buffer Object) for saving
the output, which requires a storage of 4 values per pixel. For the threshold-
ing point graph, which also is stored in the global GPU memory, we save up
to 10 reference points per graph. Having 8 graphs of 10 values in addition to
a list, containing a counter pr graph; 8∗ ((10∗ sizeof(uint2))+ sizeof(int)),
we are using 336 bytes per threshold image. In the application, we can
use up to 20 threshold-images. The only extra memory an extra threshold-
images uses is the memory of a point-graph. For the per frame update we are
also using an extra graph, which copies the values after the mouse button is
clicked. The additional memory usage when operating with image processing
techniques is a 1 byte/pixel array used for thresholding. The total memory
usage of the digital image processing techniques, while computing is shown
in Equation 5.1, and all time total usage is shown in Equation 5.2.

67



spaceallocated =
(width ∗ height ∗ (8 + sizeof(byte)))+
(20thresholdImg ∗ 2copies ∗ 8graphs∗
((10 ∗ sizeof(uint2)) + sizeof(int)))

(5.1)

spaceallocated =
(width ∗ height ∗ (9 ∗ sizeof(byte)))+
(20thresholdImg ∗ 2copies ∗ 8graphs∗
((10 ∗ sizeof(uint2)) + sizeof(int)))

(5.2)

5.4.2 Memory Allocated for Volume Rendering
The volume rendering is very memory dependant. To control the memory, we
implemented functionality that uses percentages of the total global memory
on the GPU. There are created two variables to control the memory alloca-
tion. The first of these variables are verticeCount, which control how many
vertices the device should maximally be able to draw. The second variable
is bitmapsPrTime, where the digit represents the number of bitmaps to load
to the device memory at a time.

The variable verticeCount are controlling the size to allocate for the
two VBOs: posVBO and normalVBO. Each entry in each of these lists
contains 4 float values, and will therefore use the allocated memory size
sizeof(float4) = 16bytes (pr entry in each list). The VBO posVBO is stor-
ing a vertex per entry, and normalVBO is storing each vertex’s normal vector.
The space allocated by the variable verticeCount is shown in Equation 5.3.
For a full dataset without any compression added, the algorithm needs to
store about 100 million vertices, which each has their own normal vector.
For storage of 100 million vertices, we have used Equation 5.3, which will
lead to: 2 ∗ 100000000 ∗ sizeof(float4) = 2.98 GB. Therefore for construct-
ing the whole data model, sometimes a compression is needed.

spaceallocated = verticeCount ∗ sizeof(float4) ∗ 2lists (5.3)

68



A typical dataset has a size between 500 MB and 10 GB, if a user should
be able both to do calculations and to save the results on the GPU, the cal-
culations needs to be divided in some parts. The bitmapsPrTime variable
controls the three main device-lists needed for computation of the Marching
Cubes algorithm. The first of the device-lists is the raw data, which is stored
as a byte array. The two other device-lists controls the storage-locations in
the VBOs (voxel positions), where each thread in the marching cube kernel
should start saving the computed vertices and normals. The size of the raw
data array is pixelsPrBitmap∗ bitmapsPrT ime∗1byte, and each of the two
lists which are controlling the voxel positions is using double the size of the
raw data, as each value is stored as a integer. Equation 5.4 shows the total
space allocated by the bitmapsPrTime variable when not using compression.
Equation 5.5 shows the same as Equation 5.4, but with compression.

spaceallocated =
width ∗ height∗
((bitmapsPrT ime ∗ (sizeof(char) + (2 ∗ sizeof(int))))+
sizeof(char))

(5.4)

spaceallocated =

[width2 ∗ height2 ∗

((bitmapsPrT ime2 ∗ (sizeof(char) + (2 ∗ sizeof(int))))+
sizeof(char))]+
(width ∗ height ∗ bitmapsPrT ime ∗ sizeof(char))

(5.5)

There are two differences between the Equation 5.5, which is using com-
pression and Equation 5.4, which is uncompressed. The first of the differences
are the halving of width, height and bitmapsPrTime. This is because the
compression algorithm uses 8 points, forming a cube, at a time in the 3D

69



dataset, which it averages, and saves one value. The second difference is for
the compression, a temporary volume of raw data is saved in full size, for
doing the compression in parallel on the GPU. For an array-size, we define:
arraySize = height ∗ width ∗ (bitmapsPrT ime + 1). Totally the uncom-
pressed volume uses about 5 array-sizes for storing raw data and doing the
computations with it. The first part of Equation 5.5 (the part inside the
[]) uses about 5

8 array-sizes, while the second part of the equation uses one
array-size. The total device memory used for the compressed dataset is about
13
8 array-sizes.

5.4.3 Implemented Memory Allocation
In our implementation, we are using some new equations, based on the equa-
tions in Section 5.4.2. For calculating the variables bitmapsPrTime and
verticeCount, we are using Equation 5.6 and Equation 5.7. Our goal was by
using 75% of the total global memory on the GPU; we should be able to get
a balance between the 3D volume and the performance, and in addition have
enough memory to run the graphics and the digital image processing compu-
tations. We used 50% of the memory for storing the VBO, as it is important
to be able to draw as many triangles as possible for storing the volume. We
also use the global GPU memory size for computing both variables. The
compress variable is 1 for the compressed set and 0 for the uncompressed.

verticeCount = (globalMemSize ∗ (0.50 + (compress ∗ 0.10))32bytes/element ) (5.6)

bitmapsPrT ime =
globalMemSize∗(0.25−(0.10∗compress)

width∗height∗5
4 ∗ 4 (5.7)

The variable bitmapsPrTime needs to be dividable by 4, because of the
compression (uses an integer). In addition we uses 60% of the memory for
storing the VBO while the compression is turned on. That is because of
the each time looping through the raw data, the compressed algorithm uses
double the quantity of bitmaps per time. We could improve the number of
vertices to be drawn by dropping the normal vectors, but the visual rendering
of our application will lose a lot of its meaning if the user is unable to observe
any pores and the appearance of the rock.

70



Chapter 6

Benchmarks and Results

In this chapter, we will look at the performance and evaluate the visual
results of our application. The first test will test the frame update rate of
the image processing part. The next will compare the volume rendering part
of our new threshold lookup versus the old global threshold. For evaluation
of the visual results, we compare the graphical output from several different
threshold methods.

6.1 Test Hardware
We are using two test-machines to be able to compare the performance on
two different platforms. Therefore we have chosen to use two very different
machines, performance vice. Where the NVIDIA GeForce 8800 GTS is the
first cards released by NVIDIA, which has NVIDIA CUDA support. On the
other computer, we have the NVIDIA Quadro FX 5800 which is a stereo
rendering enabled GPU with a global memory of 4GB. Description of the
two machines is seen in the Tables 6.1 and 6.2.

Table 6.1: Machine 1
CPU Intel Core 2 Duo CPU E6600, 2.4 GHz
Memory Corsair TWIN2X 6400 DDR2, 2 GB CL5
GPU NVIDIA GeForce 8800 GTS

No. of processor cores: 96
Processor Clock Freq: 500 MHz
Memory size: 640 MB DDR3 SDRAM
Memory bandwidth: 64 GB/s

71



Table 6.2: Machine 2
CPU Intel Core 2 Quad CPU Q9550, 2.83 GHz
Memory Corsair XMS3 DDR3, 8 GB
GPU NVIDIA Quadro FX 5800

No. of processor cores: 240
Processor Clock Freq: 400 MHz
Memory size: 2048 MB GDDR3 SDRAM
Memory bandwidth: 102 GB/s

6.2 Test Data
For the tests, we are using two different datasets. The two datasets has both
different size in x- and y-direction (image size), and in z-direction (numbers
of images). The file types used in both datasets is 8bit BMP, containing
256 different grayscale values for density representation. These test-datasets
does not contain the data of a whole scan when dealing with the performance
tests. This is because of the memory restrictions of the smaller GPU, when
dealing with uncompressed datasets.

The test data is generated with help from Thorvald Natvig, by a SkyScan
1137 μCT scanner in Department of Petroleum Technology, NTNU.

Dataset 1:

Dataset 1 is a scan of a porous oil rock. Where the middle image of our
test-set can be seen in Figure 6.1. The middle image is the one used for the
image processing functionality, when using one threshold-image. Each image
in the dataset is 1000*1000 pixels, where the dataset is containing 64 images
in the performance tests. For the second visual test, we are using the whole
dataset, containing 570 images.

72



Figure 6.1: Dataset 1: Scan slice of an oil rock.

Dataset 2:

Dataset 2 is a scan of a sugar cube. Where the middle image can be seen in
Figure 6.2, which also in this dataset is the one used in the image processing
part of our application, when choosing one threshold-image. Each image has
1680*1680 pixels, which means almost 3 times the memory requirement as
the Dataset 1’s images. This test-set contains 70 images.

Figure 6.2: Dataset 2: Scan slice of a sugar cube.

6.3 Memory Restrictions
The detailed CT scans of the reservoir rocks used in this project generated
large data sets which required a lot of memory, even when using the smaller
test sets. This made it extremely important that the memory usage in our
implementations was optimal, which permitted the maximum quantity of

73



data to be used at the same time, without running out of memory.

6.3.1 Memory used for Digital Image Processing
The image processing part is not that memory dependent. The original im-
age in grayscale values and the colorized image are stored at the GPU global
memory as two byte arrays. The grayscale image requires 1680 ∗ 1680 ∗
sizeof(byte) bytes for Dataset 2, which is about 2.69 MB. Computing the
total memory restricted for the image processing part, can be done by using
Equation 5.1, where the largest dataset and 20 threshold-images will be used:

spaceallocated

= (1680 ∗ 1680 ∗ (8 + 1)) + (20 ∗ 2 ∗ 8 ∗ ((10 ∗ 4) + 2))
= 25401600bytes+ 13440bytes
≈ 24.24MB

(6.1)

Total restricted memory for the digital image processing part is 24.24
MB. When using Machine 1, the GPUs memory is 640 MB, and the memory
used for image-data will be just about 3.8%.

6.3.2 Memory used for Volume Rendering
The most memory demanding part of the implementation is the volume ren-
dering part, which stores the vertices and normals needed for drawing the
3D volume. In addition for calculating the 3D volume, as much as possible
raw data should be uploaded at a time to work with. How much data to be
consumed by the volume rendering part, depends on how large 3D model we
will be able to draw and how fast we will do it. The more raw data stored
at a time, the faster the computations will complete.

The number of vertices to draw from a dataset is controlled by the size
and the thresholding of the dataset, which is user defined. For very high
or very low threshold values, either a smaller rock or fewer pores is to be
drawn. In the cases of low and high thresholds, the number of vertices to be
computed is reduced significantly, compared to the optimal pore models (at

74



least in our datasets).

For the volume rendering part of the program, the program first computes
how much memory to be used for both storing raw data and for drawing the
3D volume. The amount of memory used is controlled by the variables ver-
ticeCount and bitmapsPrTime, which is explained further in Section 5.4.3.
In the performance tests in this chapter, we are computing the 3D volumes
without any compression. By using Equation 5.6 and Equation 5.7, we can
calculate the variables, by using Dataset 2 on Machine 1:

verticeCount

= (671088640bytes ∗ (0.50 + (0 ∗ 0.10))32bytes/element )

= 10485760elements

(6.2)

bitmapsPrT ime

=
671088640bytes∗(0.25−(0.10∗0)

1680∗1680∗5bytes/element
4 ∗ 4

= 8elements

(6.3)

The total memory used for the volume rendering part is 75% of the total
global memory. In the full dataset of Dataset 2, there is 1158 image slices,
then for storing the whole dataset on the GPU, requires about 15.22 GB.
Therefore the algorithm needs to calculate the volume in portions. And
for the volume rendering part it is important to be aware of the memory
management for both GPUs. Since the NVIDIA GeForce 8800 GTS card
does only use 8 slices of raw data at a time for calculations, a dataset with
1158 slices will take a long time to calculate.

6.4 Performance Results
For the benchmarks, we are doing tests: The first test is a frame update
test, comparing both datasets and machines. And the second is a volume
rendering test, comparing our solution to the one implemented earlier in [1].
For all the performance results, we compare the two machines by the speedup
factors received for Machine 2, which in all tests is faster than Machine 1.

75



6.4.1 Frame Updates
In this test we are comparing the FPS (Frames Per Second) gain for each of
the data-sets and each of the machines.

Test description

We implemented a timer, calculating the time from one image is updated on
the screen, until next image is updated on the screen. By using this time,
we are also calculating the number of updates on the screen per second.

The first test is the frame update time when loading a dataset; it will
also use a global threshold on the image. For more details of the flow, take
a look at Section 5.3.2. The second test will compare the FPS both when
placing the 1st and 10th threshold point, moving the mouse pointer for new
control point calculations per frame. Each of the values is an average of 10
runs.

Results

Table 6.3: Test 1: Loading data
Dataset Time in sec - Machine 1 Time in sec - Machine 2 Speedup
1 0.0645 0.0537 1.2011
2 0.1457 0.1323 1.1012

Table 6.4: Test 2: Frame update thresholding
Dataset Control point # FPS Machine 1 FPS Machine 2 Speedup
1 1 40.6100 101.8892 2.5090
1 10 27.2701 92.2034 3.3811
2 1 14.7383 54.0845 3.6697
2 10 12.4442 36.5149 2.9343

Discussion

For a visual application, at least 30 FPS is ideal for the eye to not be able to
observe that a frame will stay on the screen too long, when testing different
threshold values. We can observe that the NVIDIA GeForce 8800 GTS card
receives close to optimal on Dataset 1, but is slowed dramatically on Dataset

76



2. To calculate the tenth point take more time than calculating the first.
The reason of more calculation time on the 10th point, is that the algorithm
has more values to compare at a time.

We can also observe that the application works ideally on the NVIDIA
Quadro FX 5800, where all computations is over 30 FPS. The difference be-
tween the two GPUs is really big, where all calculations is done about 3 times
as fast on the NVIDIA Quadro FX 5800. This is because it has 240 proces-
sors vs. 96 in the oldest card. There is a slower processor clock frequency
on the NVIDIA Quadro FX 5800, but the global memory bandwidth is al-
most double the size of the NVIDIA GeForce 8800 GTS’. The global memory
bandwidth is giving such a big part of the speedup because of each thread
is operating with its own pixel, and each pixel value in the output image in
some cases are computed from up to 25 pixels in the input image. The need
of using the global memory is then a large part of each thread’s computation
time.

6.4.2 Volume Rendering
In this test we are comparing the old versus the new version of the volume
rendering algorithm.

Test description

As mentioned before, we implemented the Marching Cubes algorithm in [1],
which was accelerated for GPU calculations. Our implementation is based
on that earlier approach. The main difference between our old and new al-
gorithm is how we do the threshold value lookup. In this test we compare
the calculation time of the old Global Threshold (GT) functionality versus
the new Variable Regional Threshold (VRT). The test is to be done on each
of the datasets on each of the computers. We will also test the difference
of computation time between a threshold with one region populated and a
threshold with all eight regions populated.

In addition, all the VRT tests also will be tested with both a dataset with
one threshold-image and a dataset with 10 threshold-images.

77



Results

Table 6.5: Test 3: Volume rendering computation
Dataset Threshold

type
Regions Threshold

images
Time in sec
Machine 1

Time in sec
Machine 2

Speedup

1 VRT 1 1 1.6772 0.4240 3.9557
1 VRT 8 1 2.1544 0.4651 4.6321
1 VRT 1 10 2.4287 0.9280 2.6171
1 VRT 8 10 2.8939 0.9595 3.0159
1 GT N/A N/A 0.6968 0.1573 4.4298
2 VRT 1 1 4.7581 1.2213 3.8959
2 VRT 8 1 5.8968 1.2820 4.5997
2 VRT 1 10 7.4276 2.5891 2.8688
2 VRT 8 10 9.3919 2.7232 3.4488
2 GT N/A N/A 2.4777 0.7275 3.4058

Discussion

In the volume rendering part of the implementation, we are doing some of
the same computations two times per pixel. First we are running half of the
marching cubes algorithm (doing the first 7 and the 9th step in Figure 5.12),
to calculate where in the VBOs to save the different cubes’ vertices and nor-
mals. Then the whole flow seen in Figure 5.12 is done. In both of these parts,
the new code from this thesis is executed for finding each cube’s threshold
value. We can observe that the threshold lookups is time-consuming in pro-
portion to the rest of the algorithm, which is the difference between GT and
VRT.

We can also observe that the more regions populated, will receive larger
computation time. This is because the region lookup calculation is done only
once for each pixel in the one regioned computation. In the computations us-
ing one threshold-image, there is one image threshold lookup on every voxel
in the volume. When using ten threshold-images, the most of the voxels
will need two lookups for deciding the threshold value. This is because our
implementation interpolates between the threshold-images, and will result in
a higher computation time for using ten threshold-images.

The speedup on the volume rendering test is even greater for the NVIDIA
Quadro FX 5800 in some of the cases, than the speedup in the image op-

78



erational test. In addition to the elements like number of processors and
memory bandwidth, the NVIDIA Quadro FX 5800 card has a 4GB global
memory, which means that much more raw data can be uploaded at a time
than on the NVIDIA GeForce 8800 GTS with 640MB global memory. This
also means that each computation in the flow can be done a higher number
of times, before another computation is calculating further.

The speedup gained when using one threshold-image is greater than when
using ten. The main difference between one and ten threshold-images compu-
tationally, is that the regional lookup is being done two times for most threads
instead of one. Therefore there more computations is executed per thread
when using the ten threshold-images. The NVIDIA GeForce 8800 GTS’ pro-
cessors is using a higher frequency for computations, which means more com-
putations per thread will speedup the thread in proportion to the NVIDIA
Quadro FX 5800 (more computations per thread, the lesser speedup). Using
eight populated regions gets more speedup than when using one populated
region. When using eight regions, there is used much more global memory
lookups than when using one region. Since the NVIDIA Quadro FX 5800
has a higher memory bandwidth than the NVIDIA GeForce 8800 GTS, it
receives a higher speedup by using 8 populated regions.

6.5 Visual Results

In this thesis, the main focus is on the visual results. In this section we are
comparing the visual results gain from our implementation.

6.5.1 Comparing 2D Thresholding

In this test we are comparing the 2D digital image processing results.

Test description

We have implemented some different ways to differentiate the rock and pores
via thresholding. In this test we will compare the results from a Global
Threshold (GT), a Variable Threshold (VT) and a Variable Regional Thresh-
old (VRT). This test will be done on Dataset 1, since the sugar cube is
relatively uniform, and will give a good result even with a global threshold.

79



Results

First we will show the results of the three different thresholding techniques
in Figure 6.3. Then in Figures 6.4, 6.5, and 6.6 there will be some zoomed
images, for easier observation of the differences. And finally in Figure 6.7 we
will compare the 3D models from each of the results.

a) Original b) Global Threshold

c) Variable Threshold d) Variable Regional Threshold

Figure 6.3: Thresholding results.

80



a) Original b) Global Threshold c) Variable Threshold

Figure 6.4: Global Thresholding VS. Variable Thresholding.

a) Original b) Variable Threshold c) Variable Regional Threshold

Figure 6.5: Variable Thresholding VS. Variable Regional Thresholding.

81



a) Original b) Variable Threshold c) Variable Regional Threshold

Figure 6.6: Variable Thresholding VS. Variable Regional Thresholding.

a) Global Threshold b) Variable Threshold c) Variable Regional Threshold

Figure 6.7: 3D volumes of the 3 thresholding methods.

82



Discussion

In Figure 6.3, the different results are presented. From these images we
can observe that the more complicate functionality in our implementation is
closer to finding the edges in the original than the simpler methods.

A comparison between GT and VT can be seen in Figure 6.4. We can
observe that the GT finds the rock some places, but both miss some rock and
some pores, which means that a GT will not give an optimal result. On VT,
we have marked some of the rock which GT did not find, but as a result some
parts of the pores which the global threshold found were not found by the VT.

In Figures 6.5, and 6.6, we are comparing VT and VRT. In both figures
we can observe some pores VRT found, which VT didn’t. The reason why
VRT is closer to the original rock, is that the user is able to adjust the borders
on all sides of the image.

6.5.2 Comparing 3D Volume
In this test we are comparing the 3D volume results gained from using 1 and
10 threshold-images.

Test description

In our implementation, we can choose to operate on between one to ten im-
ages in the scan data. By operating with more than one image, the program
will interpolate the threshold values between the threshold images. In this
test, we will compare the 3D volumes generated from using one and ten
threshold-images. This test will be done on the full Dataset 1, with 570 scan
data slices. By using one threshold-image, the 285th image will be up for our
digital image processing techniques. Therefore we will compare how image
no. 50 will be thresholded, when adjusting the edges to the 285th image, vs.
how it will be when using a much closer adjusted threshold.

83



Results

Figure 6.8: 3D volume using 1 image slice, shown from different directions.

Figure 6.9: 3D volume using 10 image slice, shown from different directions.

84



a) Thresholded by using 1 slice. b) Thresholded by using 10 slices.

Figure 6.10: Image #50 thresholded with 1 and 10 slices.

a) Thresholded by using 1 slice. b) Thresholded by using 10 slices.

Figure 6.11: Image #50 thresholded with 1 and 10 slices - differences.

85



Discussion

In Figures 6.10 and 6.11, we can observe the threshold generated in image
#50 in the dataset by using both one and ten image slices, and that there
is some differences in the threshold adjusted for the middle image and the
50th image. When doing the operations on the middle image of the dataset
only, the distance between the image operated on and image #50 is 235 im-
ages. Over 235 images, the variation in the image can be the same as the
difference in 235 pixels in an image, but the hardening artifact will not be
as significant in the z-direction as in the two other directions. Therefore the
threshold-graph generated by the middle image, will often not suit the im-
ages on the top or bottom of the dataset.

As was seen in Section 6.4.2, the volume uses much more computation
time when interpolating threshold-images, than using the one in the middle.
In this visual test, we can conclude that the visual result of using interpo-
lating threshold-images will create a 3D volume closer to the real rock. The
visual results are also the main focus in our thesis, which is the reason why
we chose to be able to use several slices in the final version.

86



Chapter 7

Conclusions and Future Work

Today’s GPUs (Graphical Processing Units) are not only used for doing the
graphics rendering in computer games, but can with their several hundred
computational cores also be attractive computational platforms for paral-
lelized applications which earlier needed the computational power of large
CPU clusters. GPUs also open up for many real-time applications that pre-
viously were considered too computationally intensive to do.

7.1 Conclusion
In the oil business, it is important to get as detailed and realistic 3D models
of porous rocks as possible to be able to predict the flow of fluids through
the rocks. Unfortunately, different artifacts, especially hardening artifacts,
makes the CT scan data inexact. Earlier methods used the scan data di-
rectly to make a 3D model based on a global threshold (border between rock
and pores). Because of artifacts in the CT scan, the earlier 3D models also
became inexact. In this thesis, we showed how the computational power of
the GPU could be used to develop a tool for interactively enhancing the CT
scan data of porous rocks.

The application we developed included image processing techniques for
differentiating between rock and pores in the scan-data of core samples. The
results of these techniques are further used to generate 3D models based on
the CT scans of core samples. Our implementation can handle large datasets
of at least 1000 x 1000 x 570, in order to generate detailed and realistic
models. We achieved this by letting the bulk of the calculations be handled
by GPUs. Our approach gave the user the ability to interactively improve
core-sample data by letting the user move estimated pore outlines, in order

87



to make a better 3D model than earlier approaches.

We tested our application on both an older GPU and a newer high-end
graphics card. On the latter, our implementation performed very well achiev-
ing frame updates over the ideal 30 FPS allowing the user to fully interac-
tively control the pore borders.

We also implemented a method to export the 3D models made in our
implementation to the Schlumberger Petrel framework. This export of the
3D models opens the possibility to use our implementation for further use in
a geophysical application.

Other applications relying on scanned data that wishes to differentiate
between to materials or a material and a void, could also benefit from our
approach (e.g. in medical imaging). However, this was not explored in this
thesis.

7.2 Future work
There are a number of ways that our implementation could be improved, but
in most cases with a tradeoff.

2D image operations

The edge detection algorithm used in our final implementation, to show the
border between rock and pores in the 2D image display, draws a rather thick
contour. The real computations executed while generating the 3D volume
use no more than 1 pixel thick edges. Since the thick contour is drawn on the
2D display, the user can be confused and choose a slightly wrong value for
the edges. This can be the reason why the 3D volume gets a little inexact.
We also implemented the Canny edge detector for drawing the edges, but
since the program requires a good frame rate, we discarded Canny in the
final version. A way to resolve this is by using a edge thinning algorithm on
our solution. The edge thinning will decrease the performance, but on the
newer and future GPUs it could be a function to turn on.

A way to increase the accuracy of the edge finding is by region-based seg-
mentation techniques, like region growing or watershed. These techniques
can find the image centers affected by the hardening artifacts. After the cen-

88



ters and the pixels are sorted in regions by which center they are attached
o, the use our thresholding technique in each of the regions can be done.
This technique will open a possibility to more accuracy in the images the
technique operates, but will require more computations.

When doing image operations on the GPU, the image-data is read from
the global memory. Since the images are stored in the memory as byte ar-
rays, we are using 1 byte transfers. The GPU’s bandwidth is specialized for
transfers of float values, which is 4 bytes. Therefore we can receive a speedup
by reading 4 bytes at a time, and then store the values which are to be used
by more than one thread in the thread-group in the shared memory. By
saving the values on the shared memory, the image mask computations, like
sobel will receive a speedup.

3D volume rendering

The volume rendering algorithm, Marching Cubes (MC) , is slowed down
dramatically by using the threshold lookup up to four times per cube (both
when counting and saving the vertices, and for each of the nearby threshold
images). In our preliminary work [1], we introduced a way to implement
histopyramids, which is a reduction algorithm, to accelerate our MC algo-
rithm.

Another way to do the 3D rendering is by using a direct approach, like
shear-warp. This then will calculate the outside of the volume per frame,
instead of creating a polygon structure. A direct rendering algorithm also
opens a possibility to threshold the whole volume, slice by slice, saving the
rock and pores as boolean data. The dataset can then use full resolution,
without using too much storage space. The drawback with using a direct
rendering technique is the required computations per frame.

File support

The implementation currently supports only datasets of 8 bit BMP files for
input and Zmap+ as output. For making the application more useable with
support for more geophysicists, there should also be implemented support
for various types of other file formats.

One of the file formats that should be implemented as output is VTK,
which is supported by Eirik Ola Aksnes’ lattice Boltzmann GPU implemen-

89



tation. The 3D models can then be used further for simulations of fluid.

90



Bibliography

[1] Eirik Ola Aksnes and Henrik Hesland. Gpu techniques for porous
rock visualization, 2008. Project work in TDT4590 Complex Com-
puter Systems, Specialization Project in Norwegian University of Science
and Technology. http://www.idi.ntnu.no/ elster/master-studs/aksnes-
hesland-MSproj.pdf.

[2] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro,
Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A.
Patterson, William Lester Plishker, John Shalf, Samuel Webb
Williams, and Katherine A. Yelick. The landscape of parallel
computing research: A view from berkeley, 2006. Electrical Engi-
neering and Computer Sciences University of California at Berkeley.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-
183.pdf.

[3] Maria Axelsson, Stina Svesson, and Gunilla Bergfors. Reduction of
ring artifacts in high resolution x-ray microtomography images, 2006.
Centre for Image Analysis, Swedish University of Agricultural Sciences.
http://www.springerlink.com/content/dk42mr42337381j6/fulltext.pdf.

[4] Julia F. Barrett and Nicholas Keat. Artifacts in ct: Recognition and
avoidance, 2003. http://www.labmeeting.com/paper/25821798/barrett
-keat-2004-artifacts-in-ct-recognition-and-avoidance.

[5] David Blythe. Rise of the graphics processor. Proceedings of the IEEE,
96(5), 2008.

[6] John F. Canny. A computational approach to edge detection. IEEE
Trans. Pattern Analysis and Machine Intelligence, 1986.

[7] Ignacio Castaño. 10 fun things to do with tessellation, 2009.
http://castano.ludicon.com/blog/2009/01/10/10-fun-things-to-do-
with-tessellation/.

91



[8] Dark CodeX. Amplexus primordia, 2009.
http://pouet.net/prod.php?which=52934.

[9] M. E. Coles, E. L. Muegge, and E. S. Sprunt. Applications of cat scan-
ning for oil and gas production research. IEEE Transactions on nuclear
science, 38(2), 1991.

[10] NVIDIA corporation. NVIDIA Cuda Compute Unified Device Archi-
tecture Programming guide. NVIDIA corporation, 2.0 edition, 2008.
available from http://developer.download.nvidia.com/compute/cuda/2
0/docs/NVIDIA CUDA Programming Guide 2.0.pdf.

[11] Ian A. Cunningham and Philip F. Judy. Com-
puted tomography, 2000. CRC Press LLC.
http://www.sovem.org.ve/biblioteca/Computed%20Tomography.pdf.

[12] Christopher Dyken and Gernot Ziegler. High-speed marching cubes
using histogram pyramids. EUROGRAPHICS 2007, 26(3), 2005.
http://www.mpi-inf.mpg.de/g̃ziegler/hpmarcher/hpmarcher.pdf.

[13] E. Elsen, M. Houston V. Vishal, P. Hanrahan V. Pande, and
E. Darve (Stanford University). N-body simulations on gpus. Avail-
able: http://www.arxiv.org/abs/0706.3060.

[14] Laura A. Freberg. Discovering biological psychology. Houghton Mifflin,
2006.

[15] Kevin Gee. Introducing directx 11, 2008.
http://www.gamasutra.com/view/feature/3759/sponsored feature
introducing .php?print=1.

[16] Ryan Geiss. Generating complex procedural terrains using the gpu.
GPU GEMS 3, 2007.

[17] Frank Goetz, Theodor Junklewitz, and Gitta Domik.
Real-time marching cubes on the vertex shader. EU-
ROGRAPHICS 2005, 2005. http://www.cs.uni-
paderborn.de/fileadmin/Informatik/AG-Domik/medicine/ Real-
Time_Marching_Cubes_on_the_Vertex_Shader__EG_2005_.pdf.

[18] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing.
Pearson Prentice Hall, 3rd edition, 2008.

[19] Bill Green. Canny edge detection tutorial, 2002.
http://www.pages.drexel.edu/w̃eg22/can tut.html.

92



[20] Donald Hearn and M. Pauline Baker. Computer graphics with OpenGL.
Pearson Prentice Hall, 3rd edition, 2004.

[21] Andreas Kayser, Mark Knackstedt, and Murtaza Ziauddin. A
closer look at pore geometry, 2006. Schlumberger Oilfield Re-
view. http://www.slb.com/media/services/resources/oilfieldreview
/ors06/spr06/01_pore_geometry.pdf.

[22] Andreas Kayser, Andrew Curtis Rutger Gras, and
Rachel Wood. Visualizing internal rock structures, 2004.
http://www.slb.com/media/services/resources/articles/software/offshore
_introckstruct.pdf.

[23] Leif Christian Larsen. Framework for polygonal structures, compu-
tations on clusters. Master’s thesis, Norwegian University of Sci-
ence and Technology, 2007. http://daim.idi.ntnu.no/masteroppgaver
/IME/IDI/2007/3499/masteroppgave.pdf.

[24] John L. Manferdelli, Naga K. Govindaraju, and Chris Crall. Challenges
and opportunities in many-core computing. Proceedings of the IEEE,
96(5), 2008.

[25] Michael D. McCool. Scalable programming models for massively multi-
core processors. Proceedings of the IEEE, 96(5), 2008.

[26] Jason L. Mitchell, Marwan Y. Ansari, and Evan Hart. Ad-
vanced image processing with directx 9 pixel shaders. ShaderX 2,
2003. http://ati.amd.com/developer/shaderx/ShaderX2 _AdvancedIm-
ageProcessing.pdf.

[27] Jun-Taek Oh and Wook-Hyun Kim. Ewfcm algorithm and
region-based multi-level thresholding. School of EECS, 2006.
http://www.springerlink.com/content/c56027561h2up130/fulltext.pdf.

[28] John D. Owens, Mike Houston, David Luebke, Simon Green, John E.
Stone, James, and C. Phillips. Gpu computing. Proceedings of the IEEE,
96(5), 2008.

[29] Suryakant Patidar, Shiben Bhattacharjee, Jag Mohan Singh, and
P. J. Narayanan. Exploiting the shader model 4.0 architec-
ture, 2004. Center for Visual Information Technology, IIIT Hy-
derabad. http://research.iiit.ac.in/s̃hiben/docs/SM4_Skp-Shiben-Jag-
PJN_draft.pdf.

93



[30] C. Raven. Numerical removal of ring artifacts in microtomography, 1998.
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id
=RSINAK000069000008002978000001&idtype=cvips&gifs=yes.

[31] Charles Loop (Microsoft Research) and Scott Schaefer (Texas A&M
University). Approximating catmull-clark subdivision surfaces
with bicubic patches, 2007. http://research.microsoft.com/en-
us/um/people/cloop/acctog.pdf.

[32] Christopher I. Rodrigues, David B. Kirk, Sam S. Stone, Sara S.
Baghsorkhi, Shane Ryoo, and Wen mei W. Hwu. Optimization
principles and application performance evaluation of a multithreaded
gpu using cuda. Proceedings of the 13th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, 2008.
http://grothoff.org/christian/teaching/2008/4704/p73-ryoo.pdf.

[33] Jürgen Peter Schulze-Döbold. Interactive volume rendering in vir-
tual environments. Master’s thesis, Universität Stuttgart, 2003.
http://elib.uni-stuttgart.de/opus/volltexte/2003/1466/pdf/schulze.pdf.

[34] Mark Segal and Kurt Akeley. The OpenGL Graphics Sys-
tem: A Specification. Silicon Graphics, Inc, 2.0 edition, 2009.
http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf.

[35] Jan Sijbers and Andrei Postnov. Reduction of ring artifacts in high
resolution micro-ct reconstructions. Phys. Med. Biol., 49, 2004.

[36] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image Processing, Anal-
ysis, and Machine Vision. Thomason, 3rd edition, 2008.

[37] Haining Sun, Shaokun Qiu, Shanshan Lou, Jinjun Liu, Changjun Li,
and Genmiao Jiang. A correction method for nonlinear artifacts in ct
imaging. Proceedings of the 2004 IEEE, 2004.

[38] Yi Sun, Ying Hou, and Jiasheng Hu. Reduction of artifacts induced by
misaligned geometry in cone-beam ct. IEEE Transactions on biomedical
engeneering, 54(1), 2007.

[39] David Tarjan and Kevin Skadron. Mul-
tithreading vs. streaming. MSPC08, 2008.
http://www.cs.virginia.edu/s̃kadron/Papers/mspc08_final_tarjan
_skadron.pdf.

94



[40] Edward R. Dougherty (Texas AM University) and Junior Barrera (Uni-
versity of Sao Paulo). Logical image operators. In Nonlinear Filters for
Image Processing, 1999.

[41] Kezhou Wang, Thomas s. Denney Jr., Edward E. Morrison, and Vi-
taly J. Vodyanoy. Construction of volume meshes from computed to-
mography data. Proceedings of the 2005 IEEE, 2005.

[42] Wikipedia. Instruction level parallelism, March 2009. Available:
http://en.wikipedia.org/wiki/Instruction level parallelism.

[43] Wikipedia. Volume rendering, March 2009. Available:
http://en.wikipedia.org/wiki/Volume rendering.

[44] Barry Wilkinson and Michael Allen. Parallel Programming Techniques
and Applications Using Networked Workstations and Parallel Comput-
ers. Pearson Prentice Hall, 2nd edition, 2005.

95





Appendix A

Source Code Overview

In this appendix, we give an overview of the architectural structure of our
implementation.

A.1 File Overview
The program is written in C/C++ in a Visual Studio 2005 project. For
the computational part, there is used NVIDIA CUDA, and for the graphical
functionality OpenGL is used. The individual functions in the source files are
commented, so in this appendix we will only give a file overview. The cpp files
does not include any of the GPU functions, they do call them from the cu file.

Our implementation consists the following files:

• main.cpp: Contains all the functionality for initiation and rendering
of the OpenGL (except for the volume rendering), button and mouse
events, binding of thresholded images to textures, zooming on the 2D
image, adding of points to the point graph (reading mouse coordinates
and calling a function from the CUDA-file), memory allocation calcu-
lations, and functionality for the timers.

• bmpload.cpp: Handles loading of a dataset as a set of 8bit BMP-files.
It includes functions for finding the number of files in the folder and
calculating the size of the images. In addition, it also includes the
functionality for loading the bitmap to work on with the digital image
processing functionality. The last main functionality is for loading a
part of the dataset up to the GPU, needed for the marching cubes
computations.

97



• imageTech.cpp: Handles all the functionality for the digital image pro-
cessing. It includes functionality for making the colorized image of the
original, in addition to two large functions. The first of the two large
functions is the one for thresholding the bitmap, which includes the
last 3 steps of Figure 5.4, and is explained further in Section 5.3.2.
The other large function is the Canny Edge algorithm which is not
used in the final release, but is there in case of further development,
and is explained further in Section 4.4.2.

• marchingCubes.cpp: Contains all the volume rendering functionality,
included creating and deleting VBOs, calculating and rendering the
3D volume and exporting the volume to a file.

• marchingCubes_kernel.cu: Contains all the GPU computations, where
there is mainly 3 parts of the file; the volume rendering part (the same
as in [1]), the image processing part, and the threshold lookup part,
which is used by both of the two other parts.

A.2 Main Functionality Flow
In this section, we will show the function’s dataflow between the source files.
Only the most important variables is described in the diagrams.

98



m
ai

n.
cp

p
im

ag
eT

ec
h.

cp
p

bm
pl

oa
d.

cp
p

m
ar

ch
in

gC
ub

es
_k

er
ne

l.c
u

ca
lcB

itm
ap

s(
di

re
ct

or
y)

nr
O

fB
itm

ap
s

ca
lcB

itS
ize

(d
ire

ct
or

y)
w

id
th

, h
ei

gh
t

lo
ad

Bi
tm

ap
(im

ag
eN

o,
di

re
ct

or
y)

bi
tm

ap
da

ta
co

lo
riz

e(
im

ag
ed

at
a)

la
un

ch
_c

ol
or

iz
e(

im
ag

eD
at

a)

co
lo

riz
ed

Im
ag

e
co

lo
riz

ed
Im

ag
e

th
re

sh
ol

dB
itm

ap
(im

ag
eD

at
a)

la
un

ch
_t

hr
es

ho
ld

(im
ag

eD
at

a)

th
re

sh
ol

de
dI

m
ag

e
la

un
ch

_f
in

dI
m

ag
eC

en
te

r(
th

re
sh

ol
dI

m
ag

e)
im

ag
eC

en
te

rP
oi

nt
la

un
ch

_s
ob

el
E

dg
e(

th
re

sh
ol

dI
m

ag
e)

ed
ge

D
et

ec
te

dI
m

ag
e

ed
ge

D
et

ec
te

dI
m

ag
e

Receiving info
Loading data

Colorizing image Finding edges

Figure A.1: Dataset loading flow sequence.

99



ma
in.

cp
p

im
ag

eT
ec

h.c
pp

ma
rch

ing
Cu

be
s_

ke
rne

l.c
u

thr
es

ho
ldB

itm
ap

(im
ag

eD
ata

)

ed
ge

De
tec

ted
Im

ag
e

ed
ge

De
tec

ted
Im

ag
elau

nc
h_

co
py

Po
int

Gr
ap

hs
()

lau
nc

h_
ad

dP
oin

t(p
ixe

lVa
lue

Un
de

rM
ou

se
)

lau
nc

h_
so

be
lEd

ge
(th

res
ho

lde
dIm

ag
e)

im
ag

eC
en

ter
Po

int
lau

nc
h_

fin
dIm

ag
eC

en
ter

(th
res

ho
lde

dIm
ag

e)
thr

es
ho

lde
dIm

ag
e

lau
nc

h_
Th

res
ho

ld(
im

ag
eD

ata
)

Point graph functions Finding edges

Figure A.2: Threshold change flow sequence.

100



m
ai

n.
cp

p
im

ag
eT

ec
h.

cp
p

bm
pl

oa
d.

cp
p

m
ar

ch
in

gC
ub

es
_k

er
ne

l.c
u

ca
lcB

itm
ap

s(
di

re
ct

or
y)

nr
O

fB
itm

ap
s

ca
lcB

itS
ize

(d
ire

ct
or

y)
w

id
th

, h
ei

gh
t

lo
ad

Bi
tm

ap
(im

ag
eN

o,
di

re
ct

or
y)

bi
tm

ap
da

ta
co

lo
riz

e(
im

ag
ed

at
a)

la
un

ch
_c

ol
or

iz
e(

im
ag

eD
at

a)

co
lo

riz
ed

Im
ag

e
co

lo
riz

ed
Im

ag
e

th
re

sh
ol

dB
itm

ap
(im

ag
eD

at
a)

la
un

ch
_t

hr
es

ho
ld

(im
ag

eD
at

a)

th
re

sh
ol

de
dI

m
ag

e
la

un
ch

_f
in

dI
m

ag
eC

en
te

r(
th

re
sh

ol
dI

m
ag

e)
im

ag
eC

en
te

rP
oi

nt
la

un
ch

_s
ob

el
E

dg
e(

th
re

sh
ol

dI
m

ag
e)

ed
ge

D
et

ec
te

dI
m

ag
e

ed
ge

D
et

ec
te

dI
m

ag
e

Receiving info
Loading data

Colorizing image Finding edges

Figure A.3: Volume rendering flow sequence.

101



A.3 Further Details
For further details, we recommend to take a look at the source code, which is
commented in functionality detail. More details is also explained in Chapter
5.

102



Appendix B

Software User’s Guide

This appendix contains a short guide of how to use our program. Included
in the guide is system requirements and a frame by frame program flow.

B.1 Hardware and Software Requirements
To run our program, the following hardware and software is needed:

• NVIDIA GeForce 8800 or newer GPU from NVIDIA with SM4 support
• 32bit Microsoft Windows OS (XP, Vista or 7)
• NVIDIA CUDA 2.1 Driver or newer
• (For using the exported data): Schlumberger Petrel 2008 or similar.
In addition for further development, there are additional software require-

ments:

• Microsoft Visual Studio 2005 or 2008
• CUDA SDK 2.1 or newer
• NVIDIA OpenGL SDK 10.5

103



B.2 User’s Program Flow
In this section, we provide a screen flow of how to use the program. When
the program starts up, the first screen loaded is the one in Figure B.1. For
using any of the functionality implemented, a dataset needs to be loaded.
In the further sections, we will explain the screen flow of each of the main
functions.

Figure B.1: Program startup screen.

B.2.1 Loading Dataset
To use any of the image processing or volume rendering techniques, a dataset
needs to be opened. The first thing to do when starting a program, or starting
working with a new dataset, is to press the button <Load Dataset>. The
screen flow for loading a dataset is shown i Figure B.2. If the user should
choose to load a folder without 8bit BMP images, the loading sequence will
stop. When loading a dataset, the program automatically uses a global
threshold, which will be reset after the first threshold adjustment.

104



a) Pressing <Load Dataset>. b) Choosing dataset folder.

c) Typing no of images to work on,
    between 1-20, and press enter.

d) Dataset loaded and a default 
     threshold used.

Figure B.2: Loading dataset - screen flow.

105



B.2.2 Adjusting Threshold
The dataset can be thresholded/segmented by using the mouse-pointer in-
side the 2D image loaded. By pressing the mouse-button, with the pointer
inside the image, the thresholding-algorithms start running. When the user
moves the mouse-pointer around the image, the thresholds will update with
the image pixel under the mouse-pointer’s density in a threshold-graph. The
threshold calculations will happen per frame, while the mouse-pointer moves,
until the mouse-button is unclicked. By unclicking the mouse button, the
current threshold-state (graph) will be saved. These steps is illustrated in
Figure B.3. By clicking the mouse button again, a second threshold reference
point will be started, and added when the mouse button is unclicked again.
When the user is satisfied with the current image, the next or previous image
should be clicked (the buttons highlighted in Figure B.3c), and worked with
the same way.

There are also some extra functionality for helping the user to make a
good thresholding of the scan data images.

106



a) Start threshold adjustment. b) First graph-point added.

c) Thresholding complete. Clicking 
    next image slice.

d) Next image slice loaded, and 
     ready for thresholding.

Figure B.3: Threshold adjustment screen flow.

107



Zooming

In images with high resolution, there can be hard to identify the pore/rock
edges. Therefore by using the mouse-wheel, the user is able to zoom in an
out on the current image, like illustrated in Figure B.4. The user is also able
to move over the image while zoomed in by pressing the mouse-wheel and
moving the mouse while holding. While zoomed in, the threshold adjustment
works the same way as before.

a) Zoomed in. b) Zoomed in even more.

Figure B.4: Threshold adjustment - zooming.

108



Density colors

Scans of different rock samples can often have a different average density.
Therefore there also can be harder to observe the pores in the colorized image
in some cases, than in the raw data. By pressing the button highlighted in
Figure B.5, the user is able to change between grayscale and colorized mode
of the images, without having any effect on the threshold-graphs.

a) Colorized mode on. Click the 
    button changes mode.

b) Grayscale mode on. Click the 
    button changes mode.

Figure B.5: Threshold adjustment - density colors.

Reset graphs

If the user is not satisfied with the thresholding-graphs he or she created,
the <Reset Graphs> button can be pressed. The button will then reset the
graphs for all the images.

109



B.2.3 Volume Rendering
When the user is satisfied with the threshold-graphs of all the images, the
<Update 3D> button is the next to press. There will first be a little loading
time, before the 3D model will show to the right of the screen. The user can
also use the mouse to rotate the model. The steps for the volume rendering
is illustrated in Figure B.6. The volume will be calculated for each time the
user presses the <Update 3D> button, and therefore it is available to take
a look at the model while working with it.

110



a) <Update 3D> pressed, and volume loaded.

b) Volume rotated.

Figure B.6: Volume rendering screen flow.

111



Compress

The 3D volume rendering requires a lot of GPU global memory. Therefore
several GPUs can get a problem drawing the whole model, at least when
using a large dataset. By pressing the <Compress 3D> button, the compress
toggle turns on and off. Pressing <Update 3D> when the compress toggle
is turned on, makes the dataset 1

8th of the original size, and therefore is able
to draw 8 times more of the current 3D model, as illustrated in Figure B.7.

<Compress 3D> turned on, then <Update 3D> to draw more of the model.

Figure B.7: Volume rendering - compress.

B.2.4 Export 3D
When the user is satisfied with the 3D model, the model can be exported to
a file by pressing the <Export 3D-model> button. The user will then get
a choice where to save, as illustrated in the screen flow in Figure B.8. The
saving process uses several seconds, since all the data is first transferred from
the GPU to the RAM, then further to the hard disk.

112



a) Export 3D-model pressed. Filename and location chosen.

b) Saving data will take several seconds.

Figure B.8: Export 3D screen flow.

113


	Tittelside
	Oppgavetekst
	Document1
	MasterProject.pdf

