
T
D

T
4
5
9
0

C
o
m

p
le

x
 C

o
m

p
u
te

r
S

y
s
te

m
s
,

S
p
e
c
ia

liz
a
ti
o
n
 P

ro
je

c
t

N
T

N
U

N
o

rw
e

g
ia

n
 U

n
iv

e
rs

it
y
 o

f
S

c
ie

n
c
e

 a
n
d

 T
e

c
h

n
o

lo
g
y

F
a

c
u

lt
y

o
f
In

fo
rm

a
ti
o

n
 T

e
c
h

n
o

lo
g
y
,

M
a
th

e
m

a
ti
c
s
 a

n
d

 E
le

c
tr

ic
a

l
E

n
g
in

e
e

ri
n
g

D
e

p
a
rt

m
e

n
t
o

f
C

o
m

p
u
te

r
a

n
d
 I

n
fo

rm
a

ti
o

n
 S

c
ie

n
c
e

Joel Chelliah

The NTNU HPC Snow Simulator

on the Fermi GPU

Advisor: Dr. Anne C. Elster

Trondheim, Norway, December 21, 2010

Problem Description

Earlier master students at NTNU have implemented and continued work on a snow
simulator, which is capable of rendering up to two millions snowflakes in real-time,
as part of their Master’s thesis or specialization projects. Each snowflake is a par-
ticle that follows its own independent path, affected by a wind field approximated
using either an SOR solver or an LBM solver, and contributes to snow build-up on
the ground. The current implementation is a parallel solution that utilizes the GPU
for all highly intensive and parallel computations, achieving a considerably extensive
and realistic simulation.

This project builds upon the work done previously by Gjermundsen [1] where an
LBM fluid solver was introduced to the NTNU snow simulator. In this project,
possibilities for optimizing the snow simulator, as well as the LBM solver, for the
NVIDIA Fermi GPU architecture will be investigated. Results will be compared
with the current version of the snow simulator to measure the performance gain
that is achieved from the various optimizations performed on different parts of the
code.

i

ii

Abstract

The NTNU Snow Simulator utilizes the parallel computing powers offered by mod-
ern GPUs. The latest version looks at both SOR and LBM solvers for calculating
the wind field and was implemented on the NVIDIA GT200 series using CUDA.
The snow simulator consists of many intense and highly parallel calculations. This
makes the choice of upgrading to the NVIDIA Fermi architecture very attractive as
it would provide a lot more compute power for its massively parallel computations,
as well as open up new possibilities for expanding the simulation.

In this project we optimize the NTNU Snow Simulator for the NVIDIA Fermi ar-
chitecture and provide some general optimizations based on best practice methods
to maximize performance. We focus only on optimizing the version that uses the
LBM solver implemented by Aleksander Gjermundsen, which has been shown to be
useful in many applications such as for seismic processing.

Various optimization strategies and techniques on how to best exploit the new fea-
tures available in Fermi are investigated. Several optimizations based on these are
then performed through a number of experiments on both Fermi based GPUs and
older GPUs. The results are documented, compared and discussed to evaluate the
strength and weaknesses of each optimization. The ideas and techniques that are
performed include Fermi-specific optimizations and CUDA best practice methods
suggested by NVIDIA, and some general code optimizations suggested by various
sources.

We are able to achieve a considerable speedup for the most compute intensive ker-
nels; specifically the collision kernel of the LBM solver achieves a 20%-25% speedup
for large problem sizes (256x32x256). The overall performance gain for both single
and double precision are close to 40% on small problem sizes (32x4x32) but converge
towards 0 as the problem size increases. For the default problem size (128x16x128)
the single precision run achieves a performance boost of 18% and we obtain roughly
8.5% for the double precision simulation.The simulation does however gain a huge
performance gain from just running on a Fermi device compared to an older device
even before any optimizations are done, which shows that it greatly benefits from
the increased compute power the new generation has to offer. Taking advantage of
the new Fermi specific features that are not available on older GPUs we are able to
further optimize the code even after such a large performance gain is achieved.

iii

iv

Acknowledgements

This report is the result of the specialization project done as part of the course
TDT4595 - Complex Computer Systems. It was written at the Department of Com-
puter and Information Science at the Norwegian University of Science and Technol-
ogy.

I would like to thank Dr. Anne C. Elster for providing the idea for this project
and her invaluable assistance throughout the project by providing relevant reading
material, moral support and helpful guidelines in the structuring of this report. Sec-
ondly, I would also like to thank Alexander Gjermundsen for taking the time to help
me get familiar with the code of the previous snow simulator and the LBM solver.
I would also like to thank NVIDIA for providing several GPUs to Dr. Anne Elster
and her HPC-lab through her membership in the NVIDIA’s professor partnership
program. Last but not least, I would like to thank my fellow students at the HPC
lab for many interesting and entertaining discussions of technical topics and moti-
vation throughout the semester.

Trondheim, Norway, December 21 2010

Joel Chelliah

v

vi

Contents

Problem Description i

Abstract iii

Acknowledgements v

Table of Contents vii

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Outline . 2

2 Background 5
2.1 The GPU . 5

2.1.1 General Purpose GPU (GPGPU) 6
2.2 CUDA . 6

2.2.1 Kernel Functions . 7
2.2.2 Thread Hierarchy . 7
2.2.3 Memory Hierarchy . 7

2.3 NVIDIA Fermi Architecture . 10
2.3.1 The Streaming Multiprocessor 10
2.3.2 Fermi Memory Hierarchy . 12
2.3.3 Concurrent Kernel Execution 12

3 Current Snow Simulator 13
3.1 Application Overview . 13

3.1.1 Breif History . 14
3.1.2 Additional Functionalities . 14

3.2 The Main Code Overview . 16
3.2.1 Setup and Initialization . 16
3.2.2 The Main Loop . 16

3.3 Fluid Simulation . 18
3.3.1 Overview of the LBM Solver 18
3.3.2 Fluid Simulation with the LBM Solver 19

vii

4 Optimization 21
4.1 Overview of the Kernel Functions . 21

4.1.1 Particle Simulation Kernels 21
4.1.2 LBM Kernels . 22
4.1.3 Other Kernels . 22

4.2 Profiling . 23
4.3 General Optimizations . 23

4.3.1 Maximizing Warp Occupancy 24
4.3.2 Minimizing Branching . 25

4.4 Optimizing for Fermi . 25
4.4.1 Multiple Concurrent Kernel Launches 26
4.4.2 L1 Cache and Shared Memory 26
4.4.3 Global Memory Access . 26
4.4.4 32-Bit Integer Multiplication 27
4.4.5 Reduced Precision . 27

5 Results and Discussion 29
5.1 The Test Environment . 29
5.2 Running the Old Code on Fermi . 30
5.3 Testing the Fermi-Optimized Version 32

5.3.1 Routines for Testing . 32
5.3.2 LBM Kernels . 32
5.3.3 Particle Simulation Kernels 36
5.3.4 Overall Performance . 37

6 Conclusions and Future Work 39
6.1 Conclusions . 39
6.2 Future work . 40

6.2.1 More realistic LBM simulation 40
6.2.2 Optimizing the SOR-solver for Fermi 40
6.2.3 Research Topics on New and Existing Solvers 41

A Super Computing ‘10 Poster 45

viii

List of Figures

2.1 The GPU devotes more transistors to processing data, taken from [6] with

permission from NVIDIA. 6
2.2 CUDA thread hierarchy, taken from [5] with permission from NVIDIA. . . 8
2.3 CUDA memory hierarchy, taken from (cite here) with permission fron

NVIDIA. 9
2.4 Fermi Architecture, taken from [5] with permission from NVIDIA. 10
2.5 Fermi streaming multiprocessor, taken from [5] with permission from NVIDIA. 11
2.6 Serial and concurrent execution of the same kernels, taken from [5] with

permission from NVIDIA. 12

3.1 Screenshot of the snow simulator right after starting the application. . . . 14
3.2 Screenshot of the snow simulator, after 5 minutes of snowfall. 14
3.3 Screenshot of the snow simulator with the three debug rendering modes

enabled. 1) Wind velocity vectors, 2) Pressure field, 3) Obstacle field. . . 15
3.4 The main loop of the snow simulator. 17
3.5 The phases of the LBM fluid solver. 19
3.6 The steps of the LBM fluid solver. 20

4.1 Screenshot of Cuda occupancy calculator. 1) Shows warp occupancy for

different groupings of threads per block. 2) Shows Warp occupancy in

relation to registers per thread. 25

5.1 The GPU time distribution of the old code run on a Tesla C1060. 30
5.2 The GPU time distribution of the old code run on a Tesla C2070. 31
5.3 Execution times of the old and optimized collision kernels for different

domain sizes. 33
5.4 Execution times of the old and optimized streaming kernel for different

domain sizes (for both single and double precision). 35
5.5 Frame rate comparison of old and optimized snow simulation for different

domain sizes (for both single and double precision). 37

ix

x

List of Tables

4.1 Profiling results of the current snow simulator 23

5.1 Specifications of benchmarking systems 30
5.2 Comparing the execution time of the old snow simulator code on Tesla

C1060 on the Tesla C2070 . 31
5.3 Execution times of the old and optimized collision kernels for different

domain sizes. 34
5.4 Execution times of the old and optimized streaming kernel for different

domain sizes (for both single and double precision). 35
5.5 Execution times of the old and optimized smooth ground kernel for differ-

ent terrain dimensions. 36
5.6 Frame rate comparison of old and optimized snow simulation for different

domain sizes (for both single and double precision). 37

xi

xii

CHAPTER 1

Introduction

The NVIDIA Fermi GPU architecture introduces a wide range of new possibilities
for parallel computing that was earlier not present on modern GPUs, while still
providing good means of portability from prior generation GPUs. This makes the
Fermi GPUs very attractive for massively parallel applications that require a large
amount of computation.

When a GPU based solution for the NTNU snow simulator was first created by
Eidissen [3] it was using the NVIDIA GT200 series. It consisted of many intense
computations that need to be run in parallel to achieve realistic and real-time re-
sults. The LBM solver which was added to the simulator by Gjermundsen [1] in a
later project, also contained many highly parallel functions that required utilizing
the GPU. This makes the Fermi architecture a very important next step for the
NTNU snow simulator as well as the LBM solver, to be able to do more intense
calculations, explore more advanced methods and achieve a much more precise and
realistic simulation.

In this chapter we describe the main motivations behind this project, state the
goals that we want to achieve and how we wish to approach them, and provide a
short outline of the structure of this report.

1.1 Motivation

The choice of optimizing the NTNU snow simulator for Fermi GPUs, and focusing
mainly on the LBM solver, stems from two main motivations. Firstly, the snow sim-
ulator is a massively parallel application that will greatly benefit from the increased
raw horsepower as well as the newly available features of the Fermi architecture.
Should there occur an interest in using this simulator in any future applications
(e.g. prediction of snowfall and build-up) it is important that it is adapted to uti-
lize and the increased capabilities provided by newer generations of GPUs to their

1

CHAPTER 1. INTRODUCTION

full potential. Secondly, the Lattice Boltzmann Method is a powerful technique for
the computational modeling and simulation of a wide variety of complex fluid flow
problems and is useful in many applications such as seismic processing. The LBM
solver, which was originally implemented by Aksnes in his Master’s thesis [2], and
introduced to snow simulator by Gjermundsen [1], also shows to have a lot of po-
tential on the GPU. The research done on optimizing the LBM solver for the Fermi
Architecture in this project can open up new possibilities for further development
and more advanced work using this solver in both the NTNU snow simulator as well
as other applications.

1.2 Goals

This project focuses on optimizing the NTNU Snow Simulator and the LBM fluid
solver for the NVIDIA Fermi GPU Architecture as well as providing general opti-
mization based on best practice methods to maximize performance. Research will
be done on the current NTNU snow simulator as well as GPGPU programming and
the Fermi GPU architecture to find out what possibilities there are for optimization.
A number of experiments will then be performed on various parts of the code, and
the results will be documented and compared to evaluate the strengths and weak-
nesses of the different optimizations.

1.3 Outline

The rest of the report is structured as follows:

Chapter 2: Background provides background information on GPUs, a short
history on general purpose GPU programming, the NVIDIA CUDA framework and
programming model, and finally the Fermi GPU architecture and its new features
that are relevant to this project.

Chapter 3: Current Snow Simulator presents an overview of the current snow
simulator, including a short history, a description of the functionalities, the main
steps of the simulation, and finally the LBM fluid solver.

Chapter 4: Optimization describes the different kernel functions that will be
optimized and provides a detailed list of both general and Fermi specific optimiza-
tions that are performed.

Chapter 4: Results and Discussion contains benchmarks of the old and op-
timized versions of the snow simulator, and provides discussion of the obtained
results and an evaluation of the different optimizations that were performed on the
most relevant kernels as well as the entire snow simulator.

Chapter 5: Conclusions and further work summarizes what was achieved

2

1.3. OUTLINE

during this project and draws conclusions based on the results that were achieved
during the final benchmarking phase; followed by some thoughts on possible future
work regarding the snow simulator and the LBM solver.

3

CHAPTER 1. INTRODUCTION

4

CHAPTER 2

Background

This chapter provides background information on various subjects within GPUs
that are relevant to this project, NVIDIA’s CUDA framework and the Fermi GPU
architecture.

First, Section 2.1 gives an introduction to modern GPUs including some history
of their evolution and their use in general purpose programming today. Then, Sec-
tion 2.2 presents the CUDA framework and programming model from NVIDIA.
Finally, Section 2.3 provides a description of the new NVIDIA Fermi architecture
and some of the new features that it provides.

2.1 The GPU

The Graphics Processing Unit (GPU) is a specialized processing unit that acceler-
ates the rendering of 2D and 3D graphics. As the task of graphics processing is
often a very compute-intensive and parallel problem, this is what GPUs are mainly
specialized for and they are designed such that more transistors are devoted to pro-
cessing the data rather than caching and flow control such as it is on the CPU. This
is depicted in Figure 2.1. The design of the CPU has to account for many different
things, such as branching, performing memory accesses and extracting instruction
level parallelism. The GPU however has a very coherent memory access pattern, a
simple flow control and is focused around processing large groups of data in parallel.
The primary focus around the development of GPUs has mostly been about achiev-
ing improved performance and realistic graphics for both computer and console
games. It also has a highly parallel structure meaning that it is capable of perform-
ing several instructions at the same time. This makes the GPUs very useful not only
in the fields of computer graphics rendering but also for general purpose programs,
specifically within the areas of High Performance Computing (HPC). Modern GPUs
are now starting to focus on this new branch of applicability so that their power can
more easily be exploited for highly intense and parallel computations.

5

CHAPTER 2. BACKGROUND

Figure 2.1: The GPU devotes more transistors to processing data, taken from [6] with
permission from NVIDIA.

2.1.1 General Purpose GPU (GPGPU)

In the recent years, the development of GPUs has become influenced by the idea of
using them for general purpose programming. In the early days of GPGPU doing
general purpose programming on a GPU was regarded as a very difficult task with
a very steep learning curve; the main reason being that programmers had to write
their programs using graphics APIs. For this they needed to first master the graph-
ical languages and then figure out a way to write their general purpose programs
using the tools and limitations set by the graphical APIs.

Writing such programs using the graphics API included using shaders. Shaders are
the programmable parts of the graphics pipeline that perform specific tasks such as
generating vertices, drawing lines between these vertices, creating polygons and then
coloring them. These tasks are done by the vertex-, pixel-, and geometry-shaders;
and together with of the rest of the elements of the pipeline 3D images are created
from the input data. Creating general purpose programs using these shaders was
quite a challenge.

In the beginning, languages that were used to program these shaders were mostly
High Level Shader Language (HLSL) or OpenGL Shading Language (GLSL), or an
extension to these like NVIDIA Cg. As the GPGPU trend slowly grew, improve-
ments were made to the GPUs to expand the programmability beyond these shaders
and new programming models were created to simplify the task of such program-
ming and hide the overheads from graphical APIs. In DirectX 10 unified shaders
were introduced allowing all three shaders mentioned above to share the same type
of operations. This resulted in further developments that favored general purpose
programming, which lead to the creation of a more GPGPU friendly frameworks.
On such framework is the NVIDIA’s CUDA framework.

2.2 CUDA

Compute Unified Device Architecture (CUDA) is a general purpose parallel comput-
ing architecture introduced by NVIDIA. The purpose of CUDA is to let programmers
be able to write programs in languages such as C, Fortran and OpenCL and have

6

2.2. CUDA

the code translated into bytecode that can be run on NVIDIA GPUs. This is to
relieve the burden of having to write general programs using graphical APIs, which
was the case for most traditional shader languages as their main purpose was to
render graphics.

Typically a CUDA application will consist of some sequential code that is to be
run on the CPU, which we call host code, and some code that is to be run in paral-
lel on the GPU. The language used for writing CUDA is called CUDA C, which is
an extension of the programming language C. This extension allows the programmer
to write code that is run in parallel across a large number of threads on the GPU.
During the call to a kernel, which is a function run on the GPU, the programmer can
set up a hierarchical ordering of how the kernel should be executed across several
groups of threads.

2.2.1 Kernel Functions

Kernels are data-parallel functions that run in parallel on many threads on the GPU.
The kernel is defined using special syntax that denotes the hierarchy of threads it
will be running on. The programmer will also need to specify a special classifier
that indicates how the kernel is called and where it is supposed to execute, e.g using
a global declaration specifier, means that this kernel is run on the GPU and can
only be called from host functions. There are also other such classifiers as, device
, for code that is run on the GPU and can only be invoked by other kernels, and

host defines functions that can only be executed on the host. This is also the
default classifier and can be omitted in most cases.

2.2.2 Thread Hierarchy

The concept of threads on the GPU is quite similar to threads on the CPU. A
thread is the most basic unit that executes on the GPU and it can have its own
variables and control flow independent from all other threads. Threads are grouped
into a hierarchy of thread blocks which contain several threads, and grids which are
arrays of several thread blocks. This three level hierarchy is illustrated in Figure
2.2. When a kernel function is called, it executes as a grid of thread blocks, where
each grid can be a one- or two dimensional array, and each thread block can have
up to three dimensions. The threads within each thread block have several built-in
identification variables that can be used to determine their unique locations at both
the grid and thread block level. When a kernel is finished executing there is an
implicit synchronization of all the threads, however threads within a thread block
can synchronize during a kernel execution by calling the syncthreads() function.

2.2.3 Memory Hierarchy

As mentioned above, kernels are executed in parallel across multiple threads on the
GPU. These threads have several memory spaces to access data from during their
execution.

7

CHAPTER 2. BACKGROUND

Figure 2.2: CUDA thread hierarchy, taken from [5] with permission from NVIDIA.

Registers and Local Memory

Each thread has its own private local memory and also a set of registers. The
registers are naturally the fastest data storage but the total amount of registers
available to each thread block is limited. The local memory for each thread is
actually stored on the global memory meaning that it has high latency and registers
should be used instead whenever possible. If a kernel uses more registers than there
are available, register spilling occurs. This means that the data gets put into local
memory instead.

Shared Memory

Each thread block has a shared memory portion that all the threads within can use
to share data. The lifetime of shared memory variables are the same as the thread
block’s. Access to shared memory has higher latency than for registers but is still a
lot faster than global memory accesses.

Global Memory

All threads can access the global memory which is very large but has high access
latency. When memory transfer is taking place to and from the GPU, memory is
moved in and out of global memory using different CUDA API calls. It’s impor-

8

2.2. CUDA

Figure 2.3: CUDA memory hierarchy, taken from (cite here) with permission fron
NVIDIA.

tant that memory that is read and written from and to global memory should be
coalesced. This means that each thread in a warp accesses the corresponding word
segment (i.e. thread k accesses the k-th word in a segment). Threads can addition-
ally also access two other memory spaces which also reside in global memory, but
can be accessed a lot faster under certain conditions. These are texture memory
and constant memory.

Constant and Texture Memory

These are read-only, which means that they cannot be altered from inside the kernels.
Any variables that are to be placed in texture or constant memory must be defined
in the host and copied over to the GPU before the kernel is called. They are both
cached on the SMs and repeated lookups can be much faster than accessing regular
global memory. Constant memory is specifically used for storing constants and
texture memory is used to bind a section of memory as a cached texture.

9

CHAPTER 2. BACKGROUND

2.3 NVIDIA Fermi Architecture

This section will give a brief overview of the NVIDIA Fermi GPU and also cover the
various changes and additional features in the new architecture that are the most
relevant to this project. Features that are considered not to be so relevant will be
skipped. The information provided in this section is based on NVIDIA’s Fermi white
paper [5]. We refer to this if there is any interest in reading about all the available
features and detailed specifications of Fermi. The latest generations of NVIDIA’s

Figure 2.4: Fermi Architecture, taken from [5] with permission from NVIDIA.

GPUs are based on the NVIDIA Fermi architecture. It consists of 16 streaming
multiprocessors (SM) that contain 32 CUDA cores each, and each core is able to
execute a floating point or integer instruction per clock for a thread. As we can
see in Figure 2.4, the 16 SMs, which are depicted as rectangular blocks, are placed
around a common L2 cache. Each SM consists of a thread scheduler, execution
units and L1 cache, denoted by the orange, green and blue portions respectively.
The GigaThread global scheduler is responsible for distribution of thread blocks to
each SM’s thread scheduler; the Host Interface manages the connection between the
GPU and the CPU, and the remaining space is dedicated to DRAM memory.

2.3.1 The Streaming Multiprocessor

Each SM on the Fermi GPU features four times as many CUDA cores as the previ-
ous generation, each of them consisting of a pipelined arithmetic logic unit (ALU)
and floating point unit (FPU) as we can see in Figure 2.5. The SMs also provide

10

2.3. NVIDIA FERMI ARCHITECTURE

Figure 2.5: Fermi streaming multiprocessor, taken from [5] with permission from NVIDIA.

fused-multiply-add (FMA) instructions, which are floating point multiply and add
operations performed in a single step, for both single and double precision. Another
improvement that’s worth noting is that the ALU now supports 32-bit precision for
all instructions, while in prior designs the ALU was limited to only 24-bit precision
multiply operations. In addition to the 32 CUDA cores, each SM also has 16 load/s-
tore units for calculating the addresses for load or store operations of 16 threads per
clock cycle. It also has four special function units (SFU) to handle transcendental
instructions, such as taking the square root or finding the reciprocal.

Threads are scheduled in groups of 32 called warps. As we can also see in Fig-
ure 2.5, each SM has 2 warp schedulers and instruction dispatch units, making it
possible for two warps to be executed concurrently. This was not possible in previ-
ous generations as they only featured one warp scheduler. The dual warp scheduler
in Fermi simultaneously issues instructions from two warps to the CUDA cores, the
load/store units or the SFUs. Most instructions, apart from double precision ones,
can be dispatched this way.

11

CHAPTER 2. BACKGROUND

2.3.2 Fermi Memory Hierarchy

The new architecture takes into consideration that some algorithms work well with a
lot of shared memory while others are more dependent on having a lot of cache to get
good performance. To be able to adapt to both situations, the Fermi architecture
is designed so that each SM has a 64KB memory on which can be configured to
be either 48KB of shared memory and 16KB of L1 cache, or 46KB of L1 cache
and 16KB of shared memory. There is also an additional unified L2 cache that is
common for all SMs. This differs from the previous generation where the memory
architecture consisted of a fixed shared memory for each SM and no explicit cache.

2.3.3 Concurrent Kernel Execution

Fermi supports running several small kernels concurrently as long as there are enough
thread blocks available. Earlier generation devices ran all kernels in a serialized
order, which meant that a kernel that only needed a few number of threads would
occupy the entire device while the other kernels had to wait their turn. The only
way to utilize all multiprocessors in earlier devices was to launch a single kernel with
as many thread blocks as there were multiprocessors available. This is displayed on
the left part of Figure 2.6. The image of the concurrent kernel execution on the
right side shows how these kernels would run on a Fermi device assuming that they
are all independent kernels that do not need to be executed in any particular order.

Figure 2.6: Serial and concurrent execution of the same kernels, taken from [5] with
permission from NVIDIA.

12

CHAPTER 3

Current Snow Simulator

This Chapter provides a detailed overview of the current NTNU Snow Simulator
and the LBM fluid solver.

We start by providing some history and functional overview in Section 3.1. Then
we move on to a step by step description of the main loop in Section 3.2.2. Finally
we take a look at the algorithm behind the LBM fluid solver, as well as a step by
step walkthrough of how this solver is used in the simulation, in Section 3.3.

3.1 Application Overview

The NTNU Snow Simulator is an application that renders realistic simulation of
snowfall in 3D graphics. Up to two million snow particles can be simulated in real-
time on modern GPUs, and each particle follows its own independent path in a
slight spiral curve, but is also affected by a number of outside forces such as gravity,
wind and pressure. The realistic simulation of the wind field can be achieved using
two different fluid solvers; the SOR solver and the LBM solver. The resolutions
of the wind field can be adjusted to find a good tradeoff between performance and
realistic motion. As we run the simulation, the scene starts off with a bird’s-eye-
view of a mountainous, green terrain as snowflakes slowly fall from the sky. Over
time, the snow gradually builds up on the ground covering the entire area with
a steadily rising blanket of snow. Naturally, the wind will affect which areas get
covered first and how the snow build-up is distributed across the terrain. Each time
a snow particle reaches the ground, a new one is spawned at a random position in
the sky. In Figures 3.1 and 3.2 we can see how the scene looks at the very beginning
compared to 5 minutes into the simulation. Here we are only looking at a small part
of the terrain.

13

CHAPTER 3. CURRENT SNOW SIMULATOR

Figure 3.1: Screenshot of the snow simulator right after starting the application.

Figure 3.2: Screenshot of the snow simulator, after 5 minutes of snowfall.

3.1.1 Breif History

The snow simulator was first created by Ingar Saltvik for his Master’s thesis in 2006
[4]. His thesis focused on achieving near real-time realistic simulation of snow by
optimizing and parallelizing a solver for the Navier-Stokes equations, on a dual-
core processor. Since then, two other students have worked on this application
providing various enhancements. The first was Robin Eidissen [3] who developed a
GPU-based solution to achieve a more realistic and large-scale simulation, and then
Aleksander Gjermundsen [1] who introduced an LBM solver for the wind simulation
and compared it to the previously used SOR solver.

3.1.2 Additional Functionalities

In addition to being able to simulate a large amount of particles the application
also provides some other functionality for the purpose of debugging and enhancing

14

3.1. APPLICATION OVERVIEW

Figure 3.3: Screenshot of the snow simulator with the three debug rendering modes
enabled. 1) Wind velocity vectors, 2) Pressure field, 3) Obstacle field.

the visual experience. While the simulation is running, the user is able to navigate
around the scene using the arrow keys and the mouse and observe the snowfall from
all directions and angles.

The application also features several debug rendering modes which the user can
switch between during the simulation. These are displayed in Figure 3.3. The first
one draws the wind velocity vectors that show the direction the wind is blowing,

15

CHAPTER 3. CURRENT SNOW SIMULATOR

the second one draws the pressure field and the last one displays the obstacle field
for the wind. There are also several keyboard shortcuts for enabling and disabling
parts of the simulation, like the snowfall, snow build-up, wind and terrain.

Additionally, it is possible to view the entire simulation in quad-buffered stereo-
scopic 3D. This makes it possible to view the simulation in 3D on monitors that
have 120Hz refresh rate using LCD shutter glasses, but this is only supported by a
few graphic cards like the NVIDIA Quadro cards. However it’s also possible to view
the simulation on regular screens using passive glasses.

3.2 The Main Code Overview

The code for the NTNU Snow Simulator is mostly written in C++ and CUDA C and
it uses OpenGL for rendering. Additionally some open-source libraries are used for
window handling, uploading textures and some various OpenGL operations. These
are, among others, GLFW, GLEW and SOIL. In addition to these there are also a
bunch of CUDA libraries provided by the CUDA SDK that are used.

3.2.1 Setup and Initialization

The main code starts by loading some configuration settings from a text file. In
the configuration file it’s possible to specify certain options such as the number of
particles, snow build-up rate, which solver to use and the resolution of the wind field.
Then some window handling is done before initializing the rendering and initializing
CUDA on the device. Thereafter the terrain is initialized by loading the height map
and normal map according to the dimensions specified in the configuration file. Then
the wind simulation is initialized using either the SOR solver or the LBM solver,
finally followed by the initialization of the snow particles. All these initialization
methods mostly consist of allocating memory in the CPU and GPU for the oncoming
simulation. Then the actual simulation can commence as the program enters the
main loop.

3.2.2 The Main Loop

For each frame the application runs through a loop performing a set of computations
and updates. The steps of this loop are displayed in Figure 3.4 and explained in the
following list.

1. Update counters for maintaining the time and number of frames that have
passed, and calculate the current fps (frames per second) rate and print this
to the console.

2. Update the obstacle field based on the number of new particles that have
landed on the terrain. Areas that have been hit by snow particles need to be
heightened. The obstacle field is updated on the CPU and the result is then
sent to the GPU to be used in the wind simulation.

16

3.2. THE MAIN CODE OVERVIEW

3. Check for keyboard input to see if the user has moved the camera or changed
any of the settings that are configurable during runtime.

4. Simulate the wind field. Computations are done based on which solver that
is currently enabled and the current state of the obstacle field. The updated
wind field is then kept in a 3D texture so that it can easily be looked up by
the particles.

5. Update all the snow particles. Their new positions are calculated based on all
the forces that affect them, including the newly updated wind field. This is
also the step where any particle that hits the terrain respawns at a random
location in the sky.

6. Render the scene. This is done using OpenGL, with most of the rendering
done using shader programs. If stereoscopic rendering is enabled, two frames
with different camera positions will be rendered for each frame.

The application jumps out of the main loop and terminates when given an exit
command or if it has passed a certain time or frame limit that was set prior to
execution. During the termination phase allocated memory is freed from the CPU
and GPU.

Figure 3.4: The main loop of the snow simulator.

17

CHAPTER 3. CURRENT SNOW SIMULATOR

3.3 Fluid Simulation

The application can be run using two different fluid solvers for the wind field. One is
the Successive Over-Relaxation (SOR) solver that is based on iteratively solving the
Navier-Stokes equations, and the other is based on the Lattice Boltzmann Methods
(LBM). A short overview of the LBM solver will be given in the following sections,
but we will not be covering the SOR solver as it is not relevant to this project. There
is extensive information regarding the Navier-Stokes equations and the details of the
fluid simulation using the SOR solver in the reports of Saltvik [4], Eidissen [3] and
Gjermundsen [1].

3.3.1 Overview of the LBM Solver

The LBM implementation that is used in the snow simulator is based on the one
made by Aksnes for his Master’s thesis on fluid flow through porous rocks[2]. It was
then introduced to the snow simulator by Gjermundsen [1] who adapted the solver
so that it could be used for the wind simulation.

Lattice Boltzmann Methods

The Lattice Boltzmann methods is based on partitioning the domain into discrete
lattice nodes, with each node having a set of directions. Each direction has a cor-
responding distribution function that describes the probability of particles moving
along this direction. The combined result of all the nodes simulates a fluid. We de-
scribe the lattice of the nodes by the form DxQy. In the previous project involving
the snow simulator [1], Gjermundsen used D3Q19 lattices to represent the domain.
This means that each lattice node is a 3 dimensional cuboid with 19 directions (par-
ticle distribution functions); 18 of them pointing to other nodes and one pointing to
itself.

The LBM Algorithm

The idea behind the LBM algorithm is that fluid flow is simulated by interacting
particles within a lattice. These particles stream from one lattice node to another at
each discrete time step where they collide with other arriving particles. This affects
the evolution of the particle distribution functions, and the fluid flow is described
by how these distribution functions evolve throughout each time step.

Solving a fluid system can be broken down to four main steps as shown in Fig-
ure 3.5:

1. Initialization phase. The particle distribution functions and various prop-
erties of the fluid are initialized.

2. Collision phase. The local particle distributions are updated based on the
surrounding distributions.

3. Streaming phase. The updated local distributions are sent to the surround-
ing lattice nodes.

18

3.3. FLUID SIMULATION

Figure 3.5: The phases of the LBM fluid solver.

4. Boundary conditions. Apply boundary values to solid-fluid interfaces to
account for particles reaching the solid boundaries.

3.3.2 Fluid Simulation with the LBM Solver

Step four of the main loop calls a number of functions that are responsible for
simulating the wind field. The main steps of the LBM fluid simulation routine are
displayed in Figure 3.6 and explained in the following list.

1. Calculate the new velocities of the domain boundaries and scale the values
relatively to the lattice dimensions.

2. Perform the collision step to calculate new local values of the particle distri-
bution functions.

3. Perform the streaming step to distribute the new vales to the neighboring
lattice nodes.

4. Apply new velocities to the outer boundary cells. This has to be done for all
six planes of the cuboid shaped domain.

5. Create a velocity field that contains the macroscopic velocity vectors of all
lattice nodes.

6. Map the velocity field to a texture array.

Each of these steps except for steps one, four and six corresponds to a kernel function.
Step four is performed by three kernels, where each kernel applies velocities to
different outer boundary cells. Once all these steps have been executed, the main
loop moves on to the next step where it applies the new velocities calculated here
to update the particle positions.

19

CHAPTER 3. CURRENT SNOW SIMULATOR

Figure 3.6: The steps of the LBM fluid solver.

20

CHAPTER 4

Optimization

Prior to doing any kinds of optimizations it’s important to first get a good grasp
of the different optimization techniques, why they are relevant for the given task,
and in which ways they would provide increased performance. This chapter gives
a description of all optimizations which are investigated, considered and performed
on the snow simulator.

Firstly, Section 4.1 gives a brief overview of the different kernel functions that will be
optimized. Secondly, Section 4.2 displays kernel profiling results of the current code
to establish a starting point for the optimizations. Thirdly, Section 4.3 investigates
possibilities for general optimization of these kernels. Finally Section 4.4 look into
Fermi-specific optimization strategies.

All the ideas listed in the sections below are tried out on the current snow sim-
ulator throughout several experiments. The results are documented and provided
in Chapter 5 followed by some analysis and discussion. Note that this chapter does
not go deeply into any implementation details regarding the various optimization
strategies. Instead, an overall idea of each strategy is provided here with some ex-
planation to how it is relevant. As the results of the experiments are discussed in
Chapter 5, more in-depth explanations of the implementation are revealed wherever
they are deemed necessary for clarification.

4.1 Overview of the Kernel Functions

In the following sections we look at the kernels responsible for the various parts of
the snow simulator and the LBM solver.

4.1.1 Particle Simulation Kernels

These kernels are responsible for updating the snow particles and the terrain.

21

CHAPTER 4. OPTIMIZATION

• part update<<< ... >>> (...)

• smooth ground<<< ... >>> (...)

The part update kernel has the task of calculating the new positions of the snow
particles based on the various forces the particles are subject to. The smooth ground
kernel smoothes the terrain as the snow builds up on top of it.

4.1.2 LBM Kernels

These kernels are responsible for calculating and updating the wind field.

• collideAndSwapGPU RegularBad<<< ... >>> (...)

• collideAndSwapGPU kernelShared3<<< ... >>> (...)

• collideAndSwapGPU kernelPrecise2<<< ... >>> (...)

• collideAndSwapGPU kernel5Double<<< ... >>> (...)

• streamAndSwapGPU kernel<<< ... >>> (...)

• applyOuterBoundariesGPU kernelYZ<<< ... >>> (...)

• applyOuterBoundariesGPU kernelXY<<< ... >>> (...)

• applyOuterBoundariesGPU kernelXZ<<< ... >>> (...)

• createVelocityField kernel2<<< ... >>> (...)

The kernels listed here are called during the different phases of the fluid simulation
loop described in Section 3.3.2. The collideAndSwap kernel performs the collision
phase. Four different variants of this kernel exist: Regular, shared, precise and dou-
ble. They all perform the same task but are implemented with regards to different
levels precision, use of shared memory and caching. The streamAndSwap kernel
executes the streaming phase, followed by three applyOuterBoundariesGPU kernels
that apply the new outer boundary values to all 6 planes enclosing the fluid domain.
The createVelocityField kernel is responsible for copying the wind field to a texture.

4.1.3 Other Kernels

The remaining kernels which have not been mentioned yet are mostly initialization
functions for allocating memory on the GPU for the particles, terrain and wind field.
These kernels are not investigated any further as they are only called once and their
individual performance rates quickly become irrelevant after just a few frames into
the simulation. The kernels responsible for the different debug rendering modes
mentioned in 3.1.2 are also not investigated any further.

22

4.2. PROFILING

4.2 Profiling

To gain a more detailed overview of each kernel’s execution and resource usage, the
simulator is run through the NVIDIA Compute Visual Profiler. Once the simulation
is executed for a given number of frames the profiler outputs a range of information
for each kernel, such as grid size, block size, shared memory, registers per thread,
and occupancy. Additionally the profiler is also capable of creating different plots
based on the execution time of kernels and memory transfer operations.

Profiling the current version of the snow simulator, with a wind resoltion of 192x24x192
and 262144 snow particles, the Compute Visual Profiler gives the following output
listed in table 4.1. The table shows warp occupancy, block dimensions, dynamic
shared memory and registers per thread for the kernels we will be focusing on.

Kernel Occupancy Block size Shared Reg./thread

collideAndSwap (Regualar) 0.75 [192 1 1] 0 26
collideAndSwap (Shared) 0.167 [192 1 1] 1824 63
collideAndSwap (Precise) 0.875 [192 1 1] 0 21
collideAndSwap (Double) 0.375 [192 1 1] 0 48

streamAndSwap 1 [192 1 1] 0 15
applyBoundaries (YZ) 0.167 [24 1 1] 0 23
applyBoundaries (XY) 0.875 [192 1 1] 0 23
applyBoundaries (XZ) 0.875 [192 1 1] 0 23

createVelocityField 0.875 [192 1 1] 0 23
part update 1 [256 1 1] 0 20

smooth ground 0.5 [16 16 1] 5184 16

Table 4.1: Profiling results of the current snow simulator

These profiler results are used as a starting point for the optimization strategies
considered in the following sections. The profiler also outputs the execution time of
each kernel. These will be used to determine whether the optimization results in a
performance gain or not.

4.3 General Optimizations

Before considering Fermi-specific optimization ideas, the existing code is inspected
to see if any general optimizations are possible in the form of restructuring the code.
This is to make sure that the control flow is designed to allow parallel execution of
data whenever possible, and that thread scheduling and memory management are
handled in a correct and most desirable way. This is done by first checking if the
code follows the basic programming guidelines provided in the CUDA Best Practice
Guide [7], and then fixing code that seems to deviate from these guidelines. The
high priority points given in the guide are:

• Find ways to parallelize sequential code.

• Minimize data transfer between host memory and device memory.

23

CHAPTER 4. OPTIMIZATION

• Select appropriate launch configurations to maximize device utilization.

• Make sure that all global memory accesses are coalesced.

• Use shared memory whenever possible.

• Avoid branching within the same warp.

Most of these points were of course taken into account by the Master students who
previously worked on the snow simulator, so naturally the code is in fairly good con-
dition and already follows most of the points listed above. However, after a thorough
inspection of the code it shows that there is room for a bit more optimization in
the areas of maximizing warp occupancy, and avoiding branching within warps for
some kernels.

4.3.1 Maximizing Warp Occupancy

Maintaining high warp occupancy is essential for good kernel code performance.
When a kernel has high warp occupancy, this means that there will always be warps
available for execution and an SP will never have to waste time waiting to receive a
warp. According to [10] there are three basic ways to accomplish this:

• By having sequences of independent instructions within a warp so that it can
always make forward progress.

• By placing many threads per thread block so that at least one warp can execute
while others are stalled on long latency operations.

• The hardware can assign up to eight independent thread blocks to an SM.

Although these points provide valuable information on maximizing occupancy, we
are bound by the limitations of the kernel we are trying to optimize. For example,
if the number of threads per block is dependent on several other factors, we cannot
simply increase this number to gain higher occupancy. It should also be noted that
optimization affects several aspects, so following one of the points above does not
guarantee a performance increase. An optimization may increase instruction count
or resource usage, making it not much of an optimization after all. So it is crucial
to be aware this tradeoff when considering such strategies.

The CUDA occupancy calculator is an xls sheet that lets you easily figure out which
configurations of thread count, registers and shared memory should be used to get
high occupancy. Two of the graphs that it provides can be seen in Figure 4.1. On
the figure to the left we see that the current per-block thread count that the kernel
uses is displayed as a red triangle on the graph, and we can see for which values it is
possible to achieve maximum occupancy. The figure to the right shows how many
registers can be used by each thread before it will start having any negative impact
on the warp occupancy given the current settings. The NVIDIA Compute Visual
Profiler is also used in this area as it can easily output the warp occupancy and
other essential information of all the kernels in the application. This tool is very
useful to quickly determine the outcome of optimization experiments and, together
with the occupancy calculator, is used as a starting point to finding the optimal
settings for maximizing occupancy for each kernel.

24

4.4. OPTIMIZING FOR FERMI

Figure 4.1: Screenshot of Cuda occupancy calculator. 1) Shows warp occupancy for
different groupings of threads per block. 2) Shows Warp occupancy in relation to registers
per thread.

4.3.2 Minimizing Branching

Divergent execution paths within the same warp can lead to these paths being se-
rialized and run sequentially. This can occur as a result of branching (e.g. flow
instructions such as if or switch within a kernel that tell some threads to do one
thing and others to do something else). If this happens to threads within the same
warp we end up with two diverging paths. After both paths have been executed
in a serialized fashion, the threads will converge back to the same execution path.
There are basically two ways to avoid divergence of execution paths: Try to avoid
branching that depends on the id of the threads, or make sure that the branching
does not split up the 32 threads within the same warp.

The kernels we will specifically be looking at regarding this issue are the three
applyOuterBoundariesGPU kernels. Each of them updates the boundary values of
two of the bounding planes of the cuboid shaped fluid domain. This is done by
splitting the threads into two groups so that each group can calculate boundary
values for each of the two planes. Such a strategy may work perfectly for a given set
of wind resolutions, but it is obvious that we cannot guarantee that the execution
path will not diverge for any wind resolution. Experiments will be done on rewriting
the branching conditions to minimize divergent paths, or removing them completely
to avoid divergent paths.

4.4 Optimizing for Fermi

Prior to looking at Fermi based optimization strategies, it’s necessary to ensure that
the snow simulator is compatible with Fermi. The main points in enabling Fermi
support is to build the application using Cuda Toolkit version 3.0 or later, and mak-
ing sure that the nvcc compiler creates code that targets the Fermi architecture by
setting some additional flags . The details of this process are given in the NVIDIA
Fermi Compatibility Guide [8].

The majority of Fermi-specific optimization ideas and possibilities were taken from

25

CHAPTER 4. OPTIMIZATION

the NVIDIA Fermi Tuning Guide [9]. The following sections will give a brief expla-
nation of these techniques and look at how they are relevant to optimizing the snow
simulator.

4.4.1 Multiple Concurrent Kernel Launches

In Section 2.3.3 we saw that Fermi devices are capable of executing multiple kernels
concurrently. For the snow simulator this opens possibilities for running the three
applyOuterBoundariesGPU kernels at the same time. As these kernels are indepen-
dent of each other, the application can be asked to fill the device with these kernels
instead of running them one by one. This is done by placing each of the kernels in
a separate stream by using CUDA streams. The application will try to run these
streams as concurrently as possible based on the availability of the multiprocessors.

4.4.2 L1 Cache and Shared Memory

On Fermi devices the same on-chip memory is used for both L1 and shared mem-
ory, and it is possible to specify for each kernel whether it should dedicate more
memory to L1 caching or shared memory. This feature is discussed in more detail
in Section 2.3.2. Most of the current kernels don’t utilize any shared memory, so for
these we would naturally want to set the preference to L1 cache. Two of the kernels
use shared memory. These are the smooth ground kernel and the shared memory
version of the collideAndSwap kernel. For the collideAndSwap kernel the choice is
not clear whether to set preference for L1 or shared memory, since it depends on the
resolution of the fluid domain which governs the amount of dynamic shared memory
used by the kernel. This choice is made based on experiments. The smooth ground
uses a lot of shared memory so the memory configuration for this kernel is obvious.

There are also some other possibilities for controlling the L1 cache. Global memory
caching in L1 can be disabled at compile time so that only the L2 cache is used
for this. This has to be done using a flag for the nvcc compiler so it will affect all
kernels. Local memory caching cannot be disabled; however it can be controlled
by limiting the number of registers (using the -maxrregcount compiler flag), thus
increasing the likelihood of register spilling.

4.4.3 Global Memory Access

Global memory accesses are processed per warp on Fermi devices. It is therefore
recommended in [9] that kernel launch settings should be adjusted to account for
this, by making sure that two-dimensional thread blocks have their x-dimension be a
multiple of the warp size. The current smooth ground kernel is launched with thread
blocks of 16x16 threads, so changing this to 32x32 might lead to a performance
increase. However this is not guaranteed as this kernel does use a lot of shared
memory to avoid expensive global memory access.

26

4.4. OPTIMIZING FOR FERMI

4.4.4 32-Bit Integer Multiplication

On GPUs prior to Fermi, 32-bit integer multiplication is not natively supported and
it is more common to use the mul24 intrinsic for better performance. On Fermi, 32-
bit integer multiplication is natively supported while 24-bit is not, therefore mul24
should not be used. In the current code all integer multiplication are done using
the mul24 intrinsic. Changing this to 32-bit is expected provide a small overall
performance gain.

4.4.5 Reduced Precision

Fermi devices perform calculations that are close to the IEEE floating point standard
than previous generations (e.g. addition and multiply are combined into FFMA in-
structions instead of FMAD). This ensures more accurate results for single precision
floating point than in older devices but may affect performance. There are some
nvcc compiler options which can be set to make the compiler generate code that is
closer to the ones generated by devices of the previous generation. More information
on these options can be found in [6].

27

CHAPTER 4. OPTIMIZATION

28

CHAPTER 5

Results and Discussion

In this chapter, the various experiments done in the previous chapter are reviewed
and their effects on the different kernels as well as the overall performance are dis-
cussed.

In Section 5.1 the test environments used throughout the project are described.
Section 5.2 looks at the performance gain that was achieved by running the old code
on Fermi without any optimizations. Finally Section 5.3 evaluates the results of all
the optimizations done on the individual kernels as well as the overall performance.

5.1 The Test Environment

In his report, Gjermundssen [1] mentions that he used a Tesla C1060 to run bench-
marks on the snow simulator and both fluid solvers. He also states that the he tested
that his algorithms work correctly on other GPUs. These include the GTX280 and
the Quadro FX 5800. These three cards are all based on the GT200 series and have
approximately the same number of CUDA cores. Their main differences lie in some
additional features and the total amount of global memory.

During this project, the snow simulator has been tested on a range of Fermi-based
GPUs, including the GTX460, TeslaC2070 and the Quadro 5000. Similarly to the
ones in the GT200 series, the main differences between these new cards are the
size of the memory, clock frequencies and some additional features (e.g. only the
Quadro 5000 supported quad-buffered stereoscopic rendering). Two different ma-
chines were mainly used throughout the project. Their specifications can be seen in
Table 5.1. The system housing the GTX460 was used mostly during the different
stages of implementation, while the TeslaC2070 was not used until the final stages
of benchmarking.

29

CHAPTER 5. RESULTS AND DISCUSSION

Hardware (system 1)
CPU Intel Core i7-950
CPU clockspeed 3.06 GHz
Memory size 6 GB
Graphics card #1 NVIDIA Tesla C1060
Graphics card #1 memory 4 GB
Graphics card #2 NVIDIA GeForce GTX460
Graphics card #2 memory 2 GB

Hardware (system 2)
CPU Intel Core i7-970
CPU clockspeed 3.20 GHz
Memory size 24 GB
Graphics card NVIDIA Tesla C2070
Graphics card memory 6 GB

Software (same for both systems)
OS Windows 7
Visual Studio ver. 2008, with SP1
NVIDIA graphics driver ver. 263.06
CUDA toolkit ver. 3.2 RC

Table 5.1: Specifications of benchmarking systems

5.2 Running the Old Code on Fermi

Prior to testing the optimized version, benchmarks were performed on the old snow
simulator code on a Fermi device. This was to measure the amount of performance
gain achieved without any optimizations at all. The performance increase was quite
large which we can see in Figures 5.1 and 5.2. These charts display the total GPU
execution time distribution of the different kernels when run on a Tesla C1060 and
a Tesla C2070. The Tesla C1060 has the same device used by Gjermundsen for

Figure 5.1: The GPU time distribution of the old code run on a Tesla C1060.

benchmarking the LBM simulation in [1], and Figure 5.1 uses the exact same con-
figurations and setting for the snow simulator that Gjermundsen used to achieve
the results he displayed in his report. The Tesla C2070 is the Fermi based device
used for benchmarking in this project and is also running the snow simulation with
exactly the same configurations and with no changes to the code to achieve the

30

5.2. RUNNING THE OLD CODE ON FERMI

Figure 5.2: The GPU time distribution of the old code run on a Tesla C2070.

results in 5.2. These results are obtained by running the first 1000 frames of the
simulation through the Compute Visual Profiler. The simulation was run using a
wind resolution of 128x16x128 and 131072 snow particles.

Note that while these charts only show the percentage of time spent on each kernel
compared to the total GPU time, the difference between the average execution time
of the memcpyDtoA operations is very small (647.92µs and 611.28µs on the C1060
and C2070 respectively). Taking this into account we see that the measured time
differences of all other kernels are a lot bigger. On the Tesla C1060 the memcpy-
DtoA operation only makes up 15%-16% of the total GPU time which is far below
the time spent by the collision and streaming kernels of the LBM solver, but on the
Tesla C2070 this has suddenly become the bottleneck. We see that on the Fermi
device memcpyDtoA makes up almost a third of the total run time (29.55%). This
entails that all the kernels, especially the LBM streaming and collision kernels have
benefitted from a fairly large performance gain by simply running the simulation
on a Fermi device. For the purpose of a more in-depth comparison, the average
execution times of these kernels run on both devices are listed in Table 5.2. We see
that the “precise” collision kernel has 3x speedup while most other kernels take at
most only half the time when running on the Fermi device.

Tesla C1060 Tesla C2070
collideAndSwap (Precise) 1143.59µs 383.07µs

streamAndSwap 781.917µs 353.697µs
part update 518.537µs 259.897µs

createVelocityField 405.017µs 197.657µs
smooth ground 188.527µs 69.27µs

applyBoundaries (YZ) 50.487µs 53.317µs
applyBoundaries (XZ) 82.637µs 22.957µs
applyBoundaries (XY) 9.317µs 5.827µs

applyInitialValues 626.627µs 176.167µs

Table 5.2: Comparing the execution time of the old snow simulator code on Tesla C1060
on the Tesla C2070

31

CHAPTER 5. RESULTS AND DISCUSSION

5.3 Testing the Fermi-Optimized Version

Several optimization ideas that seemed relevant for the LBM kernels as well as the
particle simulation kernels were stated and discussed in the previous chapter. Ex-
periments were done based on these ideas and the resulting code was tested with
several varying parameters. Some of these proved effective and lead to a perfor-
mance gain, others showed no effects at all while a few of these techniques even lead
to a slight decrease in performance.

The results of these experiments are displayed in the following sections followed
by some discussion about the different outcomes.

5.3.1 Routines for Testing

The benchmarking procedure used throughout this phase consisted of running the
old code and the Fermi-optimized code for different fluid domain sizes and comparing
the outcomes. The number of particles remain the same (262144) throughout all of
the tests and the dimensions of the terrain is always 256x256 unless stated otherwise.

For benchmarking the individual kernels, both the old and optimized simulations will
be run through the Compute Visual Profiler, for a duration of 10000 frames, and the
average GPU execution times will be compared with each other. For benchmarking
the overall performance, the same procedure will be applied but the applications will
be run for 300 seconds instead, and the frame rate achieved over various resolutions
will then be compared. This is to prevent simulations that run at lower domain
sizes (which give them a tremendous frame rate) from terminating quickly before
a stable frame rate is achieved. The general optimizations mentioned in Chapter 4
are also regarded as a part of the Fermi optimized code.

5.3.2 LBM Kernels

The most relevant kernels to individually test are the collision kernels and the
streaming kernel. These two kernels together make up over one third of the to-
tal execution time used by the GPU. The collision kernels have also been tested by
Gjermundsen in [1] so we refer to these results if there is any interest in comparing
these results with results obtained on pre-Fermi devices.

Collission Kernels

As described earlier in Section 4.1.2 there are four variants of the collision kernel.
The “regular” kernel seemed to have the same performance as the “precise” ker-
nel and all optimizations performed on these two kernels seemed to also give very
similar results. Because of this the “regular” kernel has been excluded from further
experiments. The benchmarks of the remaining three kernels can be seen in Table
5.3 and Figure 5.3

Both the “precise” and “double” kernels benefitted from many of the optimiza-
tion techniques. The biggest performance gain was achieved by setting the memory
preference to L1 cache. Some changes were made to the code to make the kernels use

32

5.3. TESTING THE FERMI-OPTIMIZED VERSION

Figure 5.3: Execution times of the old and optimized collision kernels for different domain
sizes.

fewer registers but the performance gain from this was very small for most domain
sizes. The “double” kernel uses a lot of registers compared to the “precise” kernel;
mainly because it needs twice as many registers to store all the double precision
data. Experiments were performed on trying to limit the number of available regis-
ters of the “double” kernel through compiler options. Although this increased the
occupancy it did not lead to any speedup.

The “precise” kernel seemed to show a stable speedup of 20%-25% once we ex-
ceed a certain domain size. The results of the “double” kernel indicate varying
speedups for the different domain sizes and it was difficult to make up any notion
of a general speedup from these results. The “shared” kernel didn’t achieve any
performance gain from any of the experiments. Even giving it more shared memory
had no effect. The execution times of the “shared” kernels can be seen in Table5.3
but they are not included in Figure5.3 as both graphs would just completely overlap.
No strong conclusions are made on why it did not respond well to any of the opti-
mizations, although it should be noted that this kernel is also the most unstable of
collision kernel. This can be a possible reason why no positive results were achieved.

Streaming Kernel

The streaming kernel was also benchmarked in the same fashion. Like the collision
kernels, the execution time of the streaming kernel is also mainly dependent on the
domain size; however the calculations performed by this kernel are a lot simpler and
mostly consists of swapping some pre-calculated data. The results of the benchmarks
can be found in Table 5.4 and Figure 5.4.

33

CHAPTER 5. RESULTS AND DISCUSSION

P
re

cise
P

re
cise

O
p
t.

D
o
u
b
le

D
o
u
b
le

O
p
t.

S
h
a
re

d
S
h
a
re

d
O

p
t.

32x
4x

32
21.28µ

s
8.83µ

s
26.05µ

s
25.95µ

s
11.91µ

s
11.74µ

s
64x

8x
64

55.91µ
s

46.19µ
s

146.29µ
s

144.58µ
s

48.42µ
s

48.31µ
s

96x
12x

96
161.66µ

s
145.82µ

s
438.62µ

s
432.95µ

s
113.66µ

s
113.27µ

s
128x

16x
128

386.49µ
s

367.44µ
s

1138.81µ
s

950.70µ
s

206.93µ
s

206.53µ
s

192x
24x

192
1678.48µ

s
1378.41µ

s
4505.42µ

s
3657.49µ

s
445.61µ

s
444.02µ

s
256x

32x
256

4100.97µ
s

3292.56µ
s

10195.11µ
s

9097.92µ
s

843.21µ
s

841.42µ
s

384x
48x

384
13712.20µ

s
10928.20µ

s
37422.10µ

s
33426.60µ

s
2759.49µ

s
2742.39µ

s

T
ab

le
5.3:

E
x
ecu

tion
tim

es
of

th
e

old
an

d
op

tim
ized

collision
k
ern

els
for

d
iff

eren
t

d
om

ain
sizes.

34

5.3. TESTING THE FERMI-OPTIMIZED VERSION

Stream Stream Opt. Stream(D) Stream(D) Opt.
32x4x32 28.9619µs 15.0342µs 16.2473µs 15.3969µs
64x8x64 68.0791µs 63.7176µs 75.6419µs 71.8232µs
96x12x96 170.121µs 138.533µs 260.668µs 209.252µs

128x16x128 348.158µs 223.532µs 597.797µs 399.783µs
192x24x192 1122.35µs 922.39µs 2372.03µs 1885.18µs
256x32x256 2661.97µs 2330.07µs 5554.95µs 4561.67µs
384x48x384 9099.27µs 8088.14µs 18117.3µs 150082.5µs

Table 5.4: Execution times of the old and optimized streaming kernel for different domain
sizes (for both single and double precision).

Figure 5.4: Execution times of the old and optimized streaming kernel for different domain
sizes (for both single and double precision).

Here the streaming kernel was benchmarked both for single and double precision.
Increased L1 cache configuration, showed positive results on this kernel, but most
other optimization strategies that were specific for this kernel gave no performance
gain at all. Increasing warp occupancy only lead to a slow down, most likely due to
increased resource usage.

35

CHAPTER 5. RESULTS AND DISCUSSION

Remaining LBM Kernels

The remaining LBM kernels, which are the createVelocityField kernel and the three
applyOuterBoundaries kernels were not benchmarked individually. One of the rea-
sons being that there were very little optimization possibilities available for the
createVelocityField kernel since its task was very short and simple. The kernels re-
sponsible for the boundary conditions did have several experiments performed upon
however they made up such a small part of the GPU total execution time that look-
ing at the result of each individual boundary kernel would not be very insightful.
Another reason is that one of the most rewarding optimization was placing the three
boundary kernels into streams so that they could be executed concurrently. This
performance gain was not visible when looking at the individual kernel times, and
can only be seen when looking at the overall performance, which is done later in
Section 5.3.4. Other experiments performed on the applyOuterBoundaries kernels
included maximizing warp occupancy and trying to avoid branching by splitting up
the three kernels into six kernels that applied boundary conditions to only on plane
each. These experiments did not result in any performance gain.

5.3.3 Particle Simulation Kernels

The kernels that we classified as particle simulation kernels in Section 4.1 were the
part update kernel for updating the snow particles and the smooth ground kernel for
updating the terrain.

Particle Update Kernel

For the part update kernel there were not so many optimizations possible. It was
one of the few kernels that already had full warp occupancy and it’s also mentioned
in the reports of Gjermundsen [1] and Eidissen [3] that this kernel has been very
finely optimized. Setting the memory configurations to prefer L1 cache provided a
small boost to the performance but this gain was barely noticeable.

Smooth Ground Kernel

The smooth ground kernel used a lot of dynamic shared memory. So setting the
memory configurations to prefer shared memory over L1 provided a reasonable per-
formance gain. Having more shared memory available also lead to the kernel having
full warp occupancy while previously the occupancy was at 50%. The results of
these optimizations can be seen in Table 5.5. This kernel was benchmarked by

smooth ground smooth ground Opt.
256x256 69.242µs 55.956µs
512x512 244.722µs 201.301µs

1024x1024 932.94µs 760.195µs

Table 5.5: Execution times of the old and optimized smooth ground kernel for different
terrain dimensions.

running the simulation with a fixed fluid domain and particle count, but varying

36

5.3. TESTING THE FERMI-OPTIMIZED VERSION

the dimensions of the terrain. Only three maps (of dimensions 256x256, 512x512
and 1024x1024) were available for testing. Each simulation was run for 10000 frames.

Experiments based on adjusting the kernel launch configurations to assume per-
warp accesses did not give any positive results for the smooth ground kernel. This
may be due to the fact that the kernel uses a lot of shared memory and does not ac-
cess global memory that often. It could also be due to some errors in the optimized
version as not much time was spent on this particular experiment in comparison to
others.

5.3.4 Overall Performance

To measure the overall performance, the entire snow simulator was run over differ-
ent domain sizes. The average frame rates over the length of 5 minute simulations
were recorded for both the old and the optimized versions, for both single and dou-
ble precision. These measurements can be seen in Table 5.6 and Figure 5.5.

Figure 5.5: Frame rate comparison of old and optimized snow simulation for different
domain sizes (for both single and double precision).

Precise Double Precise Opt. Double Opt.
32x4x32 910.23µs 887.44µs 1206.15µs 1180.52µs
64x8x64 765.53µs 711.56µs 1078.39µs 972.96µs
96x12x96 672.78µs 462.85µs 846.56µs 705.71µs

128x16x128 484.70µs 337.98µs 572.07µs 366.73µs
192x24x192 230.36µs 124.11µs 247.63µs 149.68µs
256x32x256 113.76µs 55.77µs 115.45µs 66.00µs
384x48x384 34.96µs 14.86µs 36.15µs 14.99µs

Table 5.6: Frame rate comparison of old and optimized snow simulation for different
domain sizes (for both single and double precision).

The rendering was disabled during the benchmarking phase to be able to measure

37

CHAPTER 5. RESULTS AND DISCUSSION

the average frame rate with regards to the optimizations that were performed. As
we saw earlier in Figure 5.2, the biggest bottleneck by far was the memcpyDtoA.
However, no Fermi-based optimization techniques were found that could provide
any improvements to this operation. The rendering was therefore disabled during
benchmarking to avoid having the performance of this operation dominate the out-
come of the overall results. This would have made it impossible to compare the
optimizations that were actually performed on the snow simulator.

In addition to the individual speedups achieved by the largest kernels, the increased
overall performance was also due to some more general optimizations that affected
all parts of the code. These include the use of 32-bit integer multiplication instead
of 24-bit, using compiler options to generate code using some less precise but faster
operation and running multiple kernels concurrently. Exactly how much perfor-
mance gain was achieved by each of these optimizations is hard to put into words
and numbers as it depends on many different factors. But we did confirm that they
all contributed to a speedup, whether big or small, during the testing phase.

The optimized code has a very high performance gain at lower fluid resolutions,
but as the domain size increases we see that it converges towards the frame rate of
the old code. The speedup at a domain size of 32x4x32 was around 40% for both
single and double precision, but for more relevant domain sizes (128x16x128) the
single precision performance gain was 18% while the double precision runachieved
roughly 8.5% speedup. This is most likely due to the fact that we are reaching the
limits of the device at such large numbers. The largest domain size available to run
the simulation on without running out of memory (with the current settings), was
384x48x384. So given the fact that we are at the limit of what can be run on the
device, we conclude that this is the main reason our optimizations do not provide
any performance gain for large domain sizes.

38

CHAPTER 6

Conclusions and Future Work

The introduction of the NVIDIA Fermi architecture made way for new possibili-
ties and ideas within the fields of GPGPU. The NTNU Snow Simulator which was
previously designed for the earlier generation GPUs, is a highly parallel application
that performs many intense computations. This makes the idea of upgrading to the
Fermi architecture very attractive, as this can open up several potential paths for
expansion of the snow simulator.

6.1 Conclusions

The goal of this project was to optimize the snow simulator and the LBM solver
for the NVIDIA Fermi GPU architecture. This included a study of the new Fermi
architecture, followed by research on different techniques and ideas on how to take
advantage of the higher compute capability as well as exploiting the new features
available on Fermi devices. Various experiments were then performed under varying
parameters and levels of details to test which of these optimizations proved benefi-
cial and under which conditions. The results of the experiments were documented,
compared and discussed to understand the effects they had on individual kernel
runtimes as well as the overall performance.

Based on the outcome of the different experiments we conclude that there were many
optimizations that gave positive results for snow simulator. These also provided a
reasonable amount of speedup to the overall performance. However, compared to
the speedup gained from running the old code on a Fermi device straight away, this
is only a tiny fraction. One reason for this is that the most time consuming opera-
tion when running on a Fermi device was the memcpyDtoA operation. This makes
the application memory bound and difficult to optimize further. Another possible
reason for this is that the previous snow simulator code was already in relatively
good condition and coded according to good practice. This enabled the code to
take advantage of most of the higher horsepower and improved compute capabilities
provided by Fermi even before any optimizations were applied. The optimizations

39

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

that were added as a part of this project focused mostly Fermi-specific features. As
these features weren’t available on previous generation GPUs, the performance gain
they provide, can only be achieved by explicitly enabling them. This is the reason
it was possible to further optimize the code even after the huge performance gain
obtained by running the previous code on a Fermi device.

6.2 Future work

Several advances are frequently being made in the fields of parallel computing and
GPGPU programming, as well as improvements to current fluid solvers and research
on new ones. Some of these may be suitable as upcoming projects for the NTNU
snow simulator. This section will list some of these ideas for possible future work
on the snow simulator and the SOR and LBM fluid solvers.

6.2.1 More realistic LBM simulation

The wind simulation currently done by the LBM solver is far from realistic. It
gives the snow a very pleasing visual appearance and adds a lot of variation in the
falling pattern which at first glance makes the scene looks very natural. However
the wind simulation is not physically correct, as simulating the wind field with low
enough density to achieve realism using the LBM solver is not a simple task. First
of all, this would require a lot more compute power with the way the current solver
is implemented; and in the results of the overall performance in Section 5.3.4 we
saw that the frame rate drops rapidly as we increase the fluid resolution. Although
the performance gain from using a Fermi device was quite large it is not enough
to achieve real-time on large enough fluid resolutions that might provide a realistic
simulation.

In addition, it should be noted that several tweaks are done in the existing LBM
solver by [1] to maintain stability in the wind simulation and give visually appealing
results. If the snow simulation is to be used in possible future applications for any
kind of prediction of snow fall and build up, then we cannot rely on simplifications
such as these as they could lead to unrealistic results.

The existing LBM solver either needs a lot more compute power to be able to
run on larger domains, or designed differently to provide more accurate results even
with across smaller domain sizes. Some possibilities that are worth looking into are:
Executing the solver on multiple GPUs, allowing for a larger range of parameters
and allowing for more complex flows. There are several active research topics within
these fields and they are discussed in more detail in the “future work” chapter of
Gjermundsen’s report[1].

6.2.2 Optimizing the SOR-solver for Fermi

This project only focused on optimizing the LBM fluid solver for the new GPU
architecture. So, it is still unknown how much improvement it is possible to gain from
optimizing the SOR-solver, or even by simply running the current SOR solver on a

40

6.2. FUTURE WORK

Fermi device. According to [1] SOR solver was also found to have more turbulent
wind flow than the LBM solver and it also had a slightly better performance for
larger domain sizes. This makes Fermi an attractive choice for this solver as well.
A possible idea for a future project is to also optimize the SOR solver and compare
the performance results to the ones obtained in this project.

6.2.3 Research Topics on New and Existing Solvers

The performance of a multigrid pressure Poisson equation solver running on a GPU
cluster is investigated in [12]. This solver was written for 3D incompressible Navier-
Stokes flow solver and may be of interest to the snow simulator in regards to running
the SOR solver over multiple GPUs.

Cyclic reduction tridiagonal solvers on GPUs are investigated in [13]. The paper
presents a method that applies this solver on a mixed precision multigrid. They
claim that geometric multigrid solvers are in general the most efficient method for
solving finely discretized partial differential equations, and evaluate the mixed preci-
sion solver with regards to iteratively solving sparse linear equations. The methods
mentioned here may also be of interest to SOR solver of the snow simulator, with
regards to a possible multigrid solution.

A GPU implementation of PETSc is presented in [14]. PETSc is a scalable solver
library for various algebraic equations, specifically those arising from discretization
of partial differential equations. It would be interesting to find out what possibilities
are there for using the solvers from the PETSc library for the fluid simulation of the
snow simulator.

41

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

42

Bibliography

[1] Alexander Gjermundsen. LBM vs SOR solvers on GPUs for real-time snow
simulations. Specialization project, Norwegian University of Science and Tech-
nology, 2009.

[2] Eirik Ola Aksnes. Simulation of fluid flow through porous rocks on modern
GPUs. Master’s thesis, Norwegian University of Science and Technology, 2009.

[3] Robin Eidissen. Utilizing GPUs for real-time visualization of snow. Master’s
thesis, Norwegian University of Science and Technology, 2009.

[4] Ingar Saltvik. Parallel methods for real-time visualization of snow. Master’s
thesis, Norwegian University of Science and Technology, 2006.

[5] NVIDIA’s next generation Cuda compute architecture: Fermi. White pa-
per, NVIDIA, 2009. http://www.nvidia.com/content/PDF/fermi_white_

papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

[6] NVIDIA Cuda programming guide, version 3.2. Guide, NVIDIA, 2010.
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/

docs/CUDA_C_Programming_Guide.pdf

[7] NVIDIA Cuda C best practices guide, version 3.1. Guide, NVIDIA, 2010.
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/

docs/NVIDIA_CUDA_C_BestPracticesGuide_3.1.pdf

[8] Fermi compatibility guide for Cuda applications, version 1.3. Guide,
NVIDIA, 2010. http://developer.download.nvidia.com/compute/cuda/3_
2/toolkit/docs/Fermi_Tuning_Guide.pdf

[9] Tuning Cuda applications for Fermi, version 1.3. Guide, NVIDIA, 2010.
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/

docs/Fermi_Tuning_Guide.pdf

[10] Shane Ryoo, et al. Program Optimization Space Pruning for a Multithreaded
GPU. Published in CGO‘08, 2008. http://www.gpucomputing.net/?q=node/
921

[11] Rajib Nath, Stanimire Tomov and Jack Dongarra. An improved MAG-
MAGEMM for Fermi GPUs. Technical report, University of Tennessee, 2010.
http://www.netlib.org/lapack/lawnspdf/lawn227.pdf

43

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_BestPracticesGuide_3.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_BestPracticesGuide_3.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/Fermi_Tuning_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/Fermi_Tuning_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/Fermi_Tuning_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/Fermi_Tuning_Guide.pdf
http://www.gpucomputing.net/?q=node/921
http://www.gpucomputing.net/?q=node/921
http://www.netlib.org/lapack/lawnspdf/lawn227.pdf

BIBLIOGRAPHY

[12] Dana Jacobsen and Inanc Senocak. Parallel 3D Geometric
Multigrid solver on GPU clusters. Poster, Boise State Univer-
sity, 2010. http://www.nvidia.com/content/GTC/posters/2010/

D02-Parallel-3D-Geometric-Multigrid-Solver-on-GPU-Clusters.pdf

[13] Dominik Goddeke and Robert Strzodka. Cyclic reduction tridiagonal
solvers on GPUs applied to mixed precision multigrid. Technical re-
port, 2010. http://www.mathematik.uni-dortmund.de/~goeddeke/pubs/

pdf/Goeddeke_2010_CRT.pdf

[14] Victor Minden, Barry Smith and Matthew G. Knepley. Preliminary implemen-
tation of PETSc using GPUs. Technical report, 2010 International workshop
of GPU solutions to multiscale problems, 2010. http://www.mcs.anl.gov/

petsc/petsc-2/features/gpus.pdf

44

http://www.nvidia.com/content/GTC/posters/2010/D02-Parallel-3D-Geometric-Multigrid-Solver-on-GPU-Clusters.pdf
http://www.nvidia.com/content/GTC/posters/2010/D02-Parallel-3D-Geometric-Multigrid-Solver-on-GPU-Clusters.pdf
http://www.mathematik.uni-dortmund.de/~goeddeke/pubs/pdf/Goeddeke_2010_CRT.pdf
http://www.mathematik.uni-dortmund.de/~goeddeke/pubs/pdf/Goeddeke_2010_CRT.pdf
http://www.mcs.anl.gov/petsc/petsc-2/features/gpus.pdf
http://www.mcs.anl.gov/petsc/petsc-2/features/gpus.pdf

APPENDIX A

Super Computing ‘10 Poster

45

APPENDIX A. SUPER COMPUTING ‘10 POSTER

46

Real-time Snow Simulation on GPU:

Current and future work

SOR solver
Navier-Stokes Equations:

LBM solver
1. Initialization phase - initialize constants

and macroscopic properties

2. Collision phase - check surrounding

particles and compute new local distribution

3. Streaming phase - distribute new local

distribution

Ackknowledgements: We would like to thank Ingar Saltvik, Robin Eidissen and Aleksander

Gjermundsen for their previous work on the snow simulator. We would also like to thank

NVIDIA for providing graphics cards used through Dr. Elster's membership in their Professor

Afiliates Program.

Joel Chelliah and Jarle Erdal Steinsland, Master Student Advisor: Anne C. Elster
Department of Computer and Information Science

• Simulates up to 2 million snow particles in real-time on the GPU

• Combined work of several M.Sc. student projects and thesis work

• Approximates the windfield using an SOR-solver or an LBM-solver

• Simulates particle movement, snow build-up and the wind field

• Supports (quad-buffered) stereoscopic 3D rendering

• Implemented in CUDA and C++, and uses OpenGL for rendering

• Current work being done on the simulator:

• Optimization for the NVIDIA Fermi GPU architecture

• Porting to OpenCL

Debug rendering which

shows the obstacles for

the wind field

Debug rendering

which shows the wind

velocity vectors

Porting to OpenCL

OpenCL have greater initialization overhead than

CUDA. Program source must be loaded and compiled.

CUDA and OpenCL are conceptually similar and a large

part of porting kernels is keyword exchange.

OpenCL does not support loading data into constant

memory at runtime. Must use global memory or load

into shared memory instead in OpenCL.

No support for OpenCL images on ATI cards in Mac OS

X means you have to use global memory instead.

Optimizing for Fermi

To improve performance of the simulator on Fermi GPUs we

will be doing research on and taking advantage of what's

new and what's different in the Fermi architecture.

One of the main goals will be on the vast memory

improvements, such as the increased number of registers,

shared memory and CUDA cores per SM. Secondly, we will

also be looking at some of the new features that are

introduced in the Fermi architecture, such as the added

control over L1 and L2 caching and configurable partitioning

of shared memory. Thirdly, we will also ensure that the code

is accounting for several changes in the architecture, such

as the global memory access now being performed per

warp.

APPENDIX A. SUPER COMPUTING ‘10 POSTER

48

	Problem Description
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Goals
	Outline

	Background
	The GPU
	General Purpose GPU (GPGPU)

	CUDA
	Kernel Functions
	Thread Hierarchy
	Memory Hierarchy

	NVIDIA Fermi Architecture
	The Streaming Multiprocessor
	Fermi Memory Hierarchy
	Concurrent Kernel Execution

	Current Snow Simulator
	Application Overview
	Breif History
	Additional Functionalities

	The Main Code Overview
	Setup and Initialization
	The Main Loop

	Fluid Simulation
	Overview of the LBM Solver
	Fluid Simulation with the LBM Solver

	Optimization
	Overview of the Kernel Functions
	Particle Simulation Kernels
	LBM Kernels
	Other Kernels

	Profiling
	General Optimizations
	Maximizing Warp Occupancy
	Minimizing Branching

	Optimizing for Fermi
	Multiple Concurrent Kernel Launches
	L1 Cache and Shared Memory
	Global Memory Access
	32-Bit Integer Multiplication
	Reduced Precision

	Results and Discussion
	The Test Environment
	Running the Old Code on Fermi
	Testing the Fermi-Optimized Version
	Routines for Testing
	 LBM Kernels
	 Particle Simulation Kernels
	 Overall Performance

	Conclusions and Future Work
	Conclusions
	Future work
	More realistic LBM simulation
	Optimizing the SOR-solver for Fermi
	Research Topics on New and Existing Solvers

	Super Computing `10 Poster

