©NINU

Innovation and Creativity

\ NTNU. May 31st. 2007

Framework for Polygonal
Structures on Clusters

Leif Christian Larsen (leifchl@idi.ntnu.no)
Anne C. Elster (main supervisor),
Tore Fevang (co-supervisor, Schlumberger)

©NTNU

Innovation and Creativity

Outline

» Motivation:
Pillar Gridding for Seismic Fault Detection

o Main Problem |
Efficient Voxelization

» Main Problem Il
Voxel transfer and caching, load-balancing

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Motivation: Pillar Gridding

L.

(Imége courtesy Schlumberger) E NTNU

Innovation and Creativity

NTNU, May 31st, 2007

vity

—-—
(g}
(b
S

()

=
—
(qe]

ing

s |
- -t &

Pillar Gridd

-
O
o
©
=
d
@
=

NTNU, May 31st, 2007

Motivation: Pillar Gridding

Pillar Gridding Workflow
1. A geologist marks fault pillars or fault sticks

2. Insert additional fault pillars between
interpreted pillars, and connect pillars by a
polygon mesh.

3. Finally, polygon is voxelized to do
computations (e.g. filtering) over voxels

4. Subsequently, pillars/polygon vertices can be
moved

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Motivation: Pillar Gridding

Problem: How can this be done when voxel data

Vol
/[ol
Subgrids assigned , : : -
to each node; 4 Il
A WA MY NRY, SRR

each subgrid contains
(n/2) x (m/2) x k
grid points

grid points

y4
Qy
X

M
IS distributed? n grid points @ NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Motivation: Pillar Gridding

Need efficient interface to:

» Add polygons

» Remove polygons/vertices
» Move vertices

» Create/destroy meshes

9o

Voxelize all faces on all nodes

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Contributions
Contributions:

o New parallel polygon voxelization algorithm

» Introduce efficient cac
for the operations on t

» Introduce three algorit

ning/transfer strategies
ne previous slide

nms for load-balancing

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Problem I: Voxelization
Voxelization of a polygon/triangle

A

Y

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Voxelization — Introduction

o \oxelization is the process of discretizing a
3D object with 3D voxels.

» Rasterization is the same process and is
Implemented in hardware on GPUSs, but
discretizes only to 2D pixels.

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Voxelization — Introduction

» Traditionally, visualization has focused at
going the other direction (from voxels to

polygons) through the Marching Cubes
algorithm

o Therefore: Small research community

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Voxelization — Introduction Il

» \Voxelization has applications in:

» Certain volume-rendering algorithms in
visualization

» 3D screens (which were first suggested in
1912, but are yet to come)

» A few other applications: seismologic
Interpretation for representing faults and
horizons, and medical applications for
representing radiation therapy beam
surfaces intersecting a human body

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Voxelization — Algorithms

» Most voxelization research focuses on
or voxelization of
. Not relevant for our purposes

» Original voxelization algorithm by A.
Kaufman in 1988 is one of the few
voxelization techniques applicable to our
problem

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Kaufman’s Algorithm

A

©NTNU

Innovation and Creativity

Voxelization — Algorithms

» Voxelization Is just an extension of
rasterization. Thus we should be able to
exploit GPU hardware to do voxelization.

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Voxelization — Algorithms

Some previous attempts have been made on
doing voxelization on GPU.

s Previous approaches focus on
visualization apps

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Voxelization — Algorithms

» l|dea: Transform the voxelization problem to a
rasterization problem

Transformations

Y

X
x;

X

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Voxelization — Algorithms

1.
2.

Translate one vertex to the origin.

Rotate vertices such that the longest edge Is
In z = 0 plane.

. Rotate about z-axis such that longest edge is

aligned with x-axis.

Rotate final vertex about x-axis such that it
too Is in the z = 0 plane.

. VS Kaufman: Trade more computation for

less branches

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Voxelization — Algorithms

Three quaternions represent the rotations
(1) qi = (V/S)

Inverse quaternion qi‘l: simply negate v
Quaternions are combined by the formula

(2)11 % g2 = (51V2 + 5pV1 + V1 X V,51S — V] @ V)

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Voxelization — Algorithms

Corresponding 4 x 4 rotation matrix

$% + 02 — 05 — 02 20,0y — 250, 250, + 20,0,
250, + 20,0, S* — Ui+ vi —v: 20,0, — 250, (
20,0, — 250, 250, + 20,0, §*—0v; —U; + 02 (

0 0 0]

(3)

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Voxelization Algorithm

Therefore:
1. Rotate initial polygon vertices. From this we
obtain the combined quaternion g
2. Apply rasterization to the transformed
vertices.

3. For each rasterized coordinate found,
multiply by rotation matrix obtained from g~ 1.

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Voxelization Algorithm

1 if rasterized,
0if not

A

y-coordinate

y 4 of voxel
A
|
—_—
= «x
Step 1 Step 2
Vertices passed to Rasterization and)
vertex processors fragment processor program x-coordinate
execution. Each rasterized coordinate of voxel
is multiplied by the inverse
rotation/translation matrix, 2-coordinate
and the result is written to of voxel
GPU texture memory. Step 3
Entire output texture
downloaded to CPU,

which finds elements

which have alpha component = 1,

and then reads x,y,z coordinate

of voxel from R, G, B-components

The resulting coordinates are put into a

& ®@NTNU

x Innovation and Creativity

NTNU, May 31st, 2007

Preliminary Results
In general: GPU Speedup only when polygons
are about 10°; about 2

» Arithmetic complexity of algorithm is low

» Post-processing which must be done on
CPU ruins GPU speedup.

» Using multple cores gives a slowdown on
Intel systems, but not on Njord (speedup = 2,
max at 8 nodes, decreases for 16/32)

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Now, let’s talk about
something completely
different

©NTNU

Innovation and Creativity

Framework Operations

Need support for the following operations:
o Create/destroy meshes
o Add/remove polygons

» \Voxelize all polygons on all nodes
(Extract-All Operation)

» Move vertices of polygons

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Framework
Decision: Keep polygon model global

1 Voxels stored on node 0 (19)

B Voxels stored on node 1 (n7)

Global polygon model Distribtued/local polygon model
1o ny o n
= O
= O
U O
U O
U O
U O
U O
y Yy

Visible on both ry and 1, Visible on both 1y and n,

------ Visible only on 1,

| - @NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Framework
Use a variant of Baumgart’'s winged-edge model

1
Mesh
1 1
1..% 1.*% 1.*%
1.2 1..% 1..% 2
Face Edge Vertex
1..* 1 4 3

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Framework

o |dea: Defer all communication to when
voxelizing all polygons on all nodes.

o Keeps add/remove/move.. operations quick

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Framework — Definitions

We use some definitions:
o Centroid ¢ of a triangle:

- 1 3 3 3
(4) C = 5 Z i x, Z Oiy» Z Oiz
=1 =1 =1

o Coordinate space C; of a node: Each node :
stores a subset C; of the 3D space
N x M x K. With p = ab processes,

ICi| = |N|/ax |M|/b x |K|.

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Coordinate Spaces

allAy VA
ol :

Subgrids assigned

to each node;

each subgrid contains
(n/2) x (m/2) x k
grid points

k
grid points

n grid points

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Framework — Definitions

» Define the centroid node of a triangle T with
centroid ¢ to be the node i such that ¢ € C,.

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Coordinate Spaces

[J Voxels stored on node 0 (1)

B Voxels stored on node 1 (1)

Mo ny

0 0o 0O o0 iA ®B ® &

i 0] 0] Centroid ¢ of triangle
0] 0]

\
|
|
|
[l
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|

T
T B B B

Since ¢ € C;, node 1 is the
centroid node of the triangle

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Framework — Definitions

9

Let F be a face. Then let V*(F) be the set of
coordinates In F’s voxelization.

Define a function V(p) which associates
which a coordinate p = (x,y,z) a
user-defined, application-dependent value,
typically single 32-bit float

For each face F, all V(p) values for
p € V*(F) must be copied/available to/on a
single node In order to do computations

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Framework — Definitions

» Define the responsible node of a triangle T
the node at which all V(p) for p € V*(T)

values are avallable after doing the
Extract-All operation.

o For now, assume that the responsible node
IS equal to the centroid node for all triangles.

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Coordinate Spaces

[J Voxels stored on node 0 (1)

B Voxels stored on node 1 (1)

Mo ny

0 0o 0O o0 iA ®B ® &

i 0] 0] Centroid ¢ of triangle
0] 0]

\
|
|
|
[l
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|

T
T B B B

Since ¢ € C;, node 1 is the
centroid node of the triangle

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Caching Strategy |

On each node:
1. Voxelize all faces that node Is responsible for.

2. Request missing V(p) values and
surrounding k > 0 V(p) values from other
nodes, receive requests from other nodes.

3. Transfer/receive voxels to/from other nodes,
caching the voxels.

4. Do computation.

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Caching Strategy |

[] Voxels stored on node 0 (1)

B Voxels stored on node 1 (1)

B Voxel copied from ny to 17 and cached on 14

Old vertex location

ny

New vertex location

ni

no

Go

Innovation and Creativity

N~
o
©
(Q\
17
i
(90)
@©
=
)
Z
=
Z

Caching Strategy ||

On each node:

1. For all faces, check if the bounding volume of
the face intersects the coordinate space of
the present node and has a different
responsible node.

2. Transmit those voxels to the other node, If
not already transmitted before.

3. (As nonblocking call in Step 2 proceeds)
Voxelize all polygons node is responsiole for.

4. Do computation when nonblocking call i

complete. E NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Caching Strategy ||

[] Voxels stored on node 0 (1)

B Voxels stored on node 1 (117)

B Voxels in By, and stored on 1,

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Load-Balancing

Question: Should the responsible node =

[] Voxels stored on node 0 (119)

E Voxels stored on node 1 (17)

= =
= =
= =
= =

©NTNU

Innovation and Creativity

y

centriod node? L

NTNU, May 31st, 2007

Load-Balancing

» Let A(F) be the area of a set of faces F, A =

area of all faces/# of nodes, F! = set of faces
node i Is responsible for

o Node i iIs overloaded If
(5) L(i)=A(F)-A

IS > 0. Generally use a threshold 6 > 0 so
that 1 is considered overloaded only if
L(i) > 9.

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Load-Balancing

» All LB algorithms execute w/ no
communication.

» Simplifies, minimizes overhead, and all

nodes know which node Is responsible for all
faces.

» Potential disadvantage when scaling to
10,000+++ processors

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Load-Balancing Strategy I
Global

=

y
I Overloaded node to which a triangle is ad
[The most underloaded node, to which the frc;N I \ J l]
x overloaded node is assigned _ o
Innovation and Creativity
\

NTNU, May 31st, 2007

Load-Balancing Strategy |l: Lo-
cal

Y
Overloaded centroid node E N T N U
The most underloaded node of the nodes
X coordinate space the face intersects, and which is assj . .
be respansibic for the face 165304 tion and Creativity
\

NTNU, May 31st, 2007

Load-Balancing Strategy |lI:
Manhattan

©NTNU

Innovation and Creativity

Summary

o New parallel voxelization algorithm
» Caching/transfer strategies for the optimizing
parallel voxelization operation

s Strategy 1. Extract only required voxels (+
more If using greater block size)

s Strategy 2: Based on bounding volumes,

less data transferred +
voxelization/transfer in parallel

» Load-balancing: global, local, Manhattan

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Future Work — Voxelization

o Compare to Kaufman’s algorithm.

o Extend algorithm to not only voxelize
triangles but entire meshes.

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Future Work — Framework

o Further LB investigation.

s How often should LB be done?

» New LB algorithms which explicitly
consider how many voxels have already
been cached at target node

» Make LB algorithms fully dynamic

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Future Work — Framework

» Investigate parameters and optimal
cache/LB strategies for various:

» data set size, average polygon size,
average distance moved when moving a
vertex, number of nodes, number of
voxelization threads on Njord, different
workloads (we consider
voxelize-move-voxelize-move.....),
different LB thresholds

©NTNU

Innovation and Creativity

NTNU, May 31st, 2007

Thank you for your attention!

©NTNU

Innovation and Creativity

	Outline
	Motivation: Pillar Gridding
	Motivation: Pillar Gridding
	Motivation: Pillar Gridding
	Motivation: Pillar Gridding
	Motivation: Pillar Gridding
	Contributions
	Problem I: Voxelization
	Voxelization --- Introduction
	Voxelization --- Introduction
	Voxelization --- Introduction II
	Voxelization --- Algorithms
	Kaufman's Algorithm
	Voxelization --- Algorithms
	Voxelization --- Algorithms
	Voxelization --- Algorithms
	Voxelization --- Algorithms
	Voxelization --- Algorithms
	Voxelization --- Algorithms
	Voxelization Algorithm
	Voxelization Algorithm
	Preliminary Results
	Framework Operations
	Framework
	Framework
	Framework
	Framework --- Definitions
	Coordinate Spaces
	Framework --- Definitions
	Coordinate Spaces
	Framework --- Definitions
	Framework --- Definitions
	Coordinate Spaces
	Caching Strategy I
	Caching Strategy I
	Caching Strategy II
	Caching Strategy II
	Load-Balancing
	Load-Balancing
	Load-Balancing
	Load-Balancing Strategy I: Global
	Load-Balancing Strategy II: Local
	Load-Balancing Strategy III: Manhattan
	Summary
	Future Work --- Voxelization
	Future Work --- Framework
	Future Work --- Framework

