
NTNU, May 31st, 2007

2/51

Framework for Polygonal
Structures on Clusters

Leif Christian Larsen (leifchl@idi.ntnu.no)
Anne C. Elster (main supervisor),
Tore Fevang (co-supervisor, Schlumberger)

NTNU, May 31st, 2007

3/51

Outline
Motivation:
Pillar Gridding for Seismic Fault Detection

Main Problem I
Efficient Voxelization

Main Problem II
Voxel transfer and caching, load-balancing

NTNU, May 31st, 2007

4/51

Motivation: Pillar Gridding

x

z

(Image courtesy Schlumberger)

NTNU, May 31st, 2007

5/51

Motivation: Pillar Gridding

NTNU, May 31st, 2007

6/51

Motivation: Pillar Gridding
Pillar Gridding Workflow

1. A geologist marks fault pillars or fault sticks

2. Insert additional fault pillars between
interpreted pillars, and connect pillars by a
polygon mesh.

3. Finally, polygon is voxelized to do
computations (e.g. filtering) over voxels

4. Subsequently, pillars/polygon vertices can be
moved

NTNU, May 31st, 2007

7/51

Motivation: Pillar Gridding
Problem: How can this be done when voxel data

is distributed?
x

y

z

grid points

grid points

Subgrids assigned
to each node;
each subgrid contains

grid points
(n/2) × (m/2) × k

n grid points

m

k

NTNU, May 31st, 2007

8/51

Motivation: Pillar Gridding
Need efficient interface to:

Add polygons

Remove polygons/vertices

Move vertices

Create/destroy meshes

Voxelize all faces on all nodes

NTNU, May 31st, 2007

9/51

Contributions
Contributions:

New parallel polygon voxelization algorithm

Introduce efficient caching/transfer strategies
for the operations on the previous slide

Introduce three algorithms for load-balancing

NTNU, May 31st, 2007

10/51

Problem I: Voxelization
Voxelization of a polygon/triangle

x

y

z

NTNU, May 31st, 2007

11/51

Voxelization — Introduction
Voxelization is the process of discretizing a
3D object with 3D voxels.

Rasterization is the same process and is
implemented in hardware on GPUs, but
discretizes only to 2D pixels.

NTNU, May 31st, 2007

12/51

Voxelization — Introduction
Traditionally, visualization has focused at
going the other direction (from voxels to
polygons) through the Marching Cubes
algorithm

Therefore: Small research community

NTNU, May 31st, 2007

13/51

Voxelization — Introduction II
Voxelization has applications in:

Certain volume-rendering algorithms in
visualization
3D screens (which were first suggested in
1912, but are yet to come)
A few other applications: seismologic
interpretation for representing faults and
horizons, and medical applications for
representing radiation therapy beam
surfaces intersecting a human body

NTNU, May 31st, 2007

14/51

Voxelization — Algorithms
Most voxelization research focuses on
visualization or voxelization of non-planar
objects. Not relevant for our purposes

Original voxelization algorithm by A.
Kaufman in 1988 is one of the few
voxelization techniques applicable to our
problem

NTNU, May 31st, 2007

15/51

Kaufman’s Algorithm

x

y

z

NTNU, May 31st, 2007

16/51

Voxelization — Algorithms
Voxelization is just an extension of
rasterization. Thus we should be able to
exploit GPU hardware to do voxelization.

NTNU, May 31st, 2007

17/51

Voxelization — Algorithms
Some previous attempts have been made on
doing voxelization on GPU.

Previous approaches focus on
visualization apps

NTNU, May 31st, 2007

18/51

Voxelization — Algorithms
Idea: Transform the voxelization problem to a
rasterization problem

x

y

z

Transformations

z

x

y

Inverse Transformations

NTNU, May 31st, 2007

19/51

Voxelization — Algorithms
1. Translate one vertex to the origin.

2. Rotate vertices such that the longest edge is
in z = 0 plane.

3. Rotate about z-axis such that longest edge is
aligned with x-axis.

4. Rotate final vertex about x-axis such that it
too is in the z = 0 plane.

5. VS Kaufman: Trade more computation for
less branches

NTNU, May 31st, 2007

20/51

Voxelization — Algorithms
Three quaternions represent the rotations

qi = (v, s)(1)

Inverse quaternion q−1
i : simply negate v

Quaternions are combined by the formula

q1 ∗ q2 = (s1v2 + s2v1 + v1 × v2, s1s2 − v1 • v2)(2)

NTNU, May 31st, 2007

21/51

Voxelization — Algorithms
Corresponding 4 × 4 rotation matrix

s2 + v2
x − v2

y − v2
z 2vxvy − 2svz 2svy + 2vxvz 0

2svz + 2vxvy s2 − v2
x + v2

y − v2
z 2vyvz − 2svx 0

2vxvz − 2svy 2svx + 2vyvz s2 − v2
x − v2

y + v2
z 0

0 0 0 1

(3)

NTNU, May 31st, 2007

22/51

Voxelization Algorithm
Therefore:

1. Rotate initial polygon vertices. From this we
obtain the combined quaternion q

2. Apply rasterization to the transformed
vertices.

3. For each rasterized coordinate found,
multiply by rotation matrix obtained from q−1.

NTNU, May 31st, 2007

23/51

Voxelization Algorithm

Step 1
Vertices passed to
vertex processors

Step 2
Rasterization and
fragment processor program x-coordinate

of voxel

of voxel

0 if not

y-coordinate
of voxel

z-coordinate

x

y

x

y

downloaded to CPU,
which finds elements

1 if rasterized,

which have alpha component = 1,
and then reads x,y,z coordinate

Entire output texture
Step 3

execution. Each rasterized coordinate
is multiplied by the inverse

and the result is written to
GPU texture memory.

rotation/translation matrix,

x

y

of voxel from R, G, B-components
The resulting coordinates are put into a
list.

NTNU, May 31st, 2007

24/51

Preliminary Results
In general: GPU Speedup only when polygons
are about 105; about 2

Arithmetic complexity of algorithm is low

Post-processing which must be done on
CPU ruins GPU speedup.

Using multple cores gives a slowdown on
Intel systems, but not on Njord (speedup = 2,
max at 8 nodes, decreases for 16/32)

NTNU, May 31st, 2007

25/51

Now, let’s talk about
something completely
different

NTNU, May 31st, 2007

26/51

Framework Operations
Need support for the following operations:

Create/destroy meshes

Add/remove polygons

Voxelize all polygons on all nodes
(Extract-All Operation)

Move vertices of polygons

NTNU, May 31st, 2007

27/51

Framework
Decision: Keep polygon model global

Voxels stored on node 0 (n0)

Voxels stored on node 1 (n1)

n1

x

y

n0 n1

x

y

n0

Visible on both n0 and n1 Visible on both n0 and n1

Visible only on n0

Visible only on n1

Global polygon model Distribtued/local polygon model

NTNU, May 31st, 2007

28/51

Framework
Use a variant of Baumgart’s winged-edge model

1..*

1

1

1..*

1 4

Vertex
2

3

Mesh

Face

1..*

1

1..*

1..2
Edge

1..* 1..*

NTNU, May 31st, 2007

29/51

Framework
Idea: Defer all communication to when
voxelizing all polygons on all nodes.

Keeps add/remove/move.. operations quick

NTNU, May 31st, 2007

30/51

Framework — Definitions
We use some definitions:

Centroid c of a triangle:

c =
1

3

(

3

∑
i=1

vi,x,
3

∑
i=1

vi,y,
3

∑
i=1

vi,z

)

(4)

Coordinate space Ci of a node: Each node i
stores a subset Ci of the 3D space
N × M × K. With p = ab processes,
|Ci| = |N|/a × |M|/b × |K|.

NTNU, May 31st, 2007

31/51

Coordinate Spaces

x

y

z

grid points

grid points

Subgrids assigned
to each node;
each subgrid contains

grid points
(n/2) × (m/2) × k

n grid points

m

k

NTNU, May 31st, 2007

32/51

Framework — Definitions
Define the centroid node of a triangle T with
centroid c to be the node i such that c ∈ Ci.

NTNU, May 31st, 2007

33/51

Coordinate Spaces
Voxels stored on node 0 (n0)

Voxels stored on node 1 (n1)

n1

x

y

n0

C1

C0

Since c ∈ C1, node 1 is the
centroid node of the triangle

Centroid c of triangle

NTNU, May 31st, 2007

34/51

Framework — Definitions
Let F be a face. Then let V∗(F) be the set of
coordinates in F’s voxelization.

Define a function V(p) which associates
which a coordinate p = (x, y, z) a
user-defined, application-dependent value,
typically single 32-bit float

For each face F, all V(p) values for
p ∈ V∗(F) must be copied/available to/on a
single node in order to do computations

NTNU, May 31st, 2007

35/51

Framework — Definitions
Define the responsible node of a triangle T
the node at which all V(p) for p ∈ V∗(T)
values are available after doing the
Extract-All operation.

For now, assume that the responsible node
is equal to the centroid node for all triangles.

NTNU, May 31st, 2007

36/51

Coordinate Spaces
Voxels stored on node 0 (n0)

Voxels stored on node 1 (n1)

n1

x

y

n0

C1

C0

Since c ∈ C1, node 1 is the
centroid node of the triangle

Centroid c of triangle

NTNU, May 31st, 2007

37/51

Caching Strategy I
On each node:

1. Voxelize all faces that node is responsible for.

2. Request missing V(p) values and
surrounding k ≥ 0 V(p) values from other
nodes, receive requests from other nodes.

3. Transfer/receive voxels to/from other nodes,
caching the voxels.

4. Do computation.

NTNU, May 31st, 2007

38/51

Caching Strategy I
Voxels stored on node 0 (n0)

Voxels stored on node 1 (n1)

x

y

n1

x

y

n0

C1

C0

Old vertex location
n0

New vertex location
n1

Voxel copied from n0 to n1 and cached on n1

NTNU, May 31st, 2007

39/51

Caching Strategy II
On each node:

1. For all faces, check if the bounding volume of
the face intersects the coordinate space of
the present node and has a different
responsible node.

2. Transmit those voxels to the other node, if
not already transmitted before.

3. (As nonblocking call in Step 2 proceeds)
Voxelize all polygons node is responsible for.

4. Do computation when nonblocking call is
complete.

NTNU, May 31st, 2007

40/51

Caching Strategy II
Voxels stored on node 0 (n0)

Voxels stored on node 1 (n1)

n1

x

y

n0

C1

C0

Voxels in B0,1 and stored on n0

NTNU, May 31st, 2007

41/51

Load-Balancing
Question: Should the responsible node =

centriod node?

Voxels stored on node 0 (n0)

Voxels stored on node 1 (n1)

n1

x

y

n0

NTNU, May 31st, 2007

42/51

Load-Balancing
Let A(F) be the area of a set of faces F, A =
area of all faces/# of nodes, Fi = set of faces
node i is responsible for

Node i is overloaded if

L(i) = A(Fi) − A(5)

is > 0. Generally use a threshold δ ≥ 0 so
that i is considered overloaded only if
L(i) > δ.

NTNU, May 31st, 2007

43/51

Load-Balancing
All LB algorithms execute w/ no
communication.

Simplifies, minimizes overhead, and all
nodes know which node is responsible for all
faces.

Potential disadvantage when scaling to
10,000+++ processors

NTNU, May 31st, 2007

44/51 Load-Balancing Strategy I:
Global

Overloaded node to which a triangle is added

x

y

overloaded node is assigned
The most underloaded node, to which the triangle from the

NTNU, May 31st, 2007

45/51 Load-Balancing Strategy II: Lo-
cal

x

y

Overloaded centroid node

The most underloaded node of the nodes whose
coordinate space the face intersects, and which is assigned to
be responsible for the face

Other nodes whose coordinate spaces intersect the triangle
NTNU, May 31st, 2007

46/51 Load-Balancing Strategy III:
Manhattan

01 12

2

2

2

2

2

2

2

3

3

3 3

3

3

3

3

3

3

34

4

4

4 4

4

4

4

44

4

5

5

5

5

6

6

5

7 5 5 5

6

1

1

x

y

5

NTNU, May 31st, 2007

47/51

Summary
New parallel voxelization algorithm

Caching/transfer strategies for the optimizing
parallel voxelization operation

Strategy 1: Extract only required voxels (+
more if using greater block size)
Strategy 2: Based on bounding volumes,
less data transferred +
voxelization/transfer in parallel

Load-balancing: global, local, Manhattan

NTNU, May 31st, 2007

48/51

Future Work — Voxelization
Compare to Kaufman’s algorithm.

Extend algorithm to not only voxelize
triangles but entire meshes.

NTNU, May 31st, 2007

49/51

Future Work — Framework
Further LB investigation.

How often should LB be done?
New LB algorithms which explicitly
consider how many voxels have already
been cached at target node
Make LB algorithms fully dynamic

NTNU, May 31st, 2007

50/51

Future Work — Framework
Investigate parameters and optimal
cache/LB strategies for various:

data set size, average polygon size,
average distance moved when moving a
vertex, number of nodes, number of
voxelization threads on Njord, different
workloads (we consider
voxelize-move-voxelize-move.....),
different LB thresholds

NTNU, May 31st, 2007

51/51

Thank you for your attention!

NTNU, May 31st, 2007

	Outline
	Motivation: Pillar Gridding
	Motivation: Pillar Gridding
	Motivation: Pillar Gridding
	Motivation: Pillar Gridding
	Motivation: Pillar Gridding
	Contributions
	Problem I: Voxelization
	Voxelization --- Introduction
	Voxelization --- Introduction
	Voxelization --- Introduction II
	Voxelization --- Algorithms
	Kaufman's Algorithm
	Voxelization --- Algorithms
	Voxelization --- Algorithms
	Voxelization --- Algorithms
	Voxelization --- Algorithms
	Voxelization --- Algorithms
	Voxelization --- Algorithms
	Voxelization Algorithm
	Voxelization Algorithm
	Preliminary Results
	Framework Operations
	Framework
	Framework
	Framework
	Framework --- Definitions
	Coordinate Spaces
	Framework --- Definitions
	Coordinate Spaces
	Framework --- Definitions
	Framework --- Definitions
	Coordinate Spaces
	Caching Strategy I
	Caching Strategy I
	Caching Strategy II
	Caching Strategy II
	Load-Balancing
	Load-Balancing
	Load-Balancing
	Load-Balancing Strategy I: Global
	Load-Balancing Strategy II: Local
	Load-Balancing Strategy III: Manhattan
	Summary
	Future Work --- Voxelization
	Future Work --- Framework
	Future Work --- Framework

