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Abstract

In this project, the Condor and Sun Grid environments are evaluated as tools
to schedule computations with lots of small tasks. Our strategy is to collect
multiple tasks into meta-tasks and compare their performance to single single
task jobs. Other methods discussed, include altering source code for comput-
ing multiple tasks internally, tuning the Grid schedulers and implementing a
Master-Worker paradigm. Part of Dagoc, a commercial application from the
Oil/Gas industry, is used as the test case. Basic scenarios contain between
1-1000 tasks. Each task takes between 2 and 20 seconds and are currently
calculated serially on one processor. The tasks use different sets of files for
input data, which resides on a NFS server. Splitting such small tasks into
individual jobs may, however, not be suitable for Grid environments. How-
ever, positive results are observed through different benchmarks, using our
proposed meta-task execution. Two well known Grid middlewares, Condor
and Sun Grid Engine, are used in the benchmarks and their ease of install
and performance is compared in the process. The installation procedure for
Condor is shown to be much simpler, however, Sun Grid Engine generally
performed better in our tests. Appendices containing practical discussions
on installation and Grid usage procedures as well as practical examples of
job scripts and code for handling result files, are included as guides to future
users.
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1 Introduction

In recent years, multicore architectures and networks of workstations has
become popular parallell computing platforms. To utilize these new envi-
ronments fully, software has to be (re)designed. A serial code cannot utilize
more than one core on a multicore processor. However, multiple independent
serial applications will be able to utilize multiple cores, if executed at the
same time. Serial code can also be rewritten to make use of multiple cores,
through OpenMP or posix threads. Hopefully, these will be better tools to
help the domain developers of the future.

1.1 Project Goal

The main focus of this project is to look at two main Grid middleware plat-
forms and evaluate how easy and well these can be used to support scheduling
applications with many individual small tasks. Using Grid technology, mul-
tiple cores can be utilized, even multiple computers with multiple cores in
parallel. Methods how to minimize scheduling overhead using built in Grid
middleware functions are also considered. Note that these methods do not
include altering the source code in the application to a great extent.

A typical office environment is considered. Here, the collection of work-
stations will in most cases be quite heterogeneous. Some machines are up-
graded while others are kept as is. Some nodes might use Windows or Mac
OS X while others use different flavors of Linux. Binary compatibility be-
tween these platforms will induce problems. Sometimes between different
flavors of Linux as well. An executable compiled for one flavor of Linux
might return an error on another, because of missing or outdated libraries
or other causes. A Grid must be able to handle this. If jobs are distributed
carelessly the success of each job execution could end up being quite ran-
dom. Without any constraints, the Grid engine will send jobs to arbitrary
free nodes. The user will not know if their job will be executed successfully or
if it will return an error. A common interface to these resources is provided
by different Grid middlewares.

1.2 Our application

In this project, we consider a commercial application, Dagoc, which is a tool
from the Oil/Gas industry. It is developed by a small, Norwegian software
company called Yggdrasil AS. The part of the application we are looking at,
is a typical Parameter Sweep Application (PSA) [10]. We consider the com-
putation of different sized collections of small, equal-sized and independent
tasks, commonly known as meta-tasks [16]. The meta-tasks are currently
designed to be executed serially on a single workstation. Each task in a
meta-task, computes a fixed amount of source data from a list of different



input parameters. The final result of a meta-task is to be saved at the end.
At first look, our application should be perfect for use in a Grid environment.

However, the individual tasks are quite small, between 2 and 20 seconds.
An average task needs about 0.5MB of input data from multiple small files.
The executable is about 22MB and needs about 1.5MB of custom libraries.
If the program is to be executed in database mode, it will need access to an
1-2MB sqlite3d database file as well. For such short tasks, the scheduling and
file distribution may become a dominant factor.

1.3 Outline

The remainder of this paper is organized as follows. Section 2 presents
a general overview of Grid technology and a description of the two Grid
middlewares used in this project. Different thoughts on how to solve the
problem is presented in Section 3. Section 4 describes different issues related
to the benchmarks and the respective Grid middlewares. Benchmarks and
results are shown in Section 5. Section 6 concludes the project and discusses
future work.

In Appendix A, issues concerning installation procedures for the respec-
tive Grid middlewares, are discussed. Appendix B, describes issues con-
cerning job submission for both Condor and SGE. The example scripts in
Appendix C, can be used as starting points for creating other, more complex
scripts.

2 Grids

Grids are often referred to as High Throughput Computing (HTC). A Grid is
a collection of different, privately owned, computer resources to form a type
of heterogeneous, virtual supercomputer for providing computing power for
large-scale jobs [1, 2] . Their job is to distribute a high number of jobs effi-
ciently, through a common interface, and provide long lasting computation
time.

A simple Grid can be formed by local workstations, for example inside an
office environment. Every day there are hours of idle computer time during,
for example, the lunch hour, staff meetings, after-office hours and at night.
In these periods, the workstations can be used for various computations.
If the local resources are not enough, the number of resources can be dra-
matically increased, by connecting the local Grid to remote Grids in other
locations. The ultimate Grid would be the one with access to all the com-
puting resources in the world. However, people are usually very reluctant to
let other, unknown people use their hardware, at least while they are using
it themselves. So what can be done to get permission to use these resources?

Introducing a computational economy [3], is suggested as a good mo-
tivator for people to share their resources over the Internet, making it a



computational power Grid. This also opens for smaller companies to buy
only the resources they need to get their current jobs done, and not make
huge investments in own infrastructure and computing power.

Other features are needed in a Grid as well, to attract users and resource
providers. These include a transparent interface for resource allocation and
administration, fault tolerance and different security and authorization tools.
A secure environment is important, so the providers know their resources will
not be exploited [2].

Grids are, however, not to be confused with clusters. A cluster is typi-
cally a collection of identical nodes with the same processor and OS, typically
containing a static number of nodes, all placed in the same physical loca-
tion. A Grid is a heterogeneous system [18|, with different types of nodes
(e.g. computational or storage nodes), processors and OS’s. Grids are dy-
namic in number and resources, while clusters are generally more static over
time. Another important feature is that Grids can contain different HPC
environments, such as clusters and supercomputers, in addition to other re-
sources [13]. Thus, a Grid can represent a heterogeneous environment with
the possibility to utilize the power of supercomputers for less embarrassingly
parallel tasks as well.

Grids can be a cheap alternative to dedicated supercomputers, since a
Grid can utilize idle time on already available workstations. These worksta-
tions can be very cheap and do not need special rooms or cooling facilities
as large supercomputers do, unless a large number of nodes are clustered
together. However, as Grids are heterogeneous systems, they are best suited
for embarrassingly parallel jobs where the individual jobs are independent
of each other during execution. There are several cases where a collection
of heterogeneous workstations is not a suitable replacement, e.g., for fine
grained parallel tasks with high dependency between processes. Here, each
job is best run on its own cluster or supercomputer for optimal performance.
Submitting multiple fine grained jobs simultaneously to a Grid with access to
multiple clusters or supercomputers, can give a combination of coarse- and
fine grained job execution. For example, a large job consisting of multiple
independent fine-grained jobs, can be automatically distributed by a Grid
and be run coarse grained on different clusters simultaneously [4].

Different tools have been developed to transparently handle the dynamic
nature of Grid systems, as well as standards for developing Grid integrated
applications. Efficient scheduling and execution of PSA’s on a Grid is a big
challenge for Grid developers. These applications often consist of a large
number of jobs where the final result is dependent on all the individual
results. These jobs must therefore be scheduled and distributed effectively,
so not to delay the total execution time. Methods including re-use of common
files between executions and adaptive execution to migrate jobs to provide
better resources, are some suggested solutions [9, 10].

George Tsouloupas and Marios D. Dikaiakos [19] suggest a method for



ranking resources in a Grid according to a ranking function. They have de-
veloped a tool called SiteRank, a module built on top of GridBench. With it,
a user can rank all resources in a Grid with respect to a specific application.
This tool can be used to better utilize the resources in a Grid for any kind
of job, including the short ones presented in this paper.

An example of a large Grid can be seen at CERN. They are currently
developing Grid tools for their Large Hadron Collider (LHC). They need
an incredible amount of storage and computation power, and are connecting
sites all over the world to their Grid to satisfy their need [7]. Without a Grid,
it would be impossible to maintain the data and computation throughput
necessary for the LHC project.

2.1 Grid features
2.1.1 Condor 6.8.6

Condor is a free Grid manager from the Condor team. It was born at the
University of Wisconsin in the 1980’s, as a combination of a doctoral thesis
on cooperative processing, the Crystal Multicomputer and Remote Unix. It
creates a High-Throughput Computing (HTC) environment by opportunis-
tically utilizing workstations connected through a regular network, remote
as well as local. The main features that makes this environment possible are
ClassAds, Checkpointing & migrating and Remote System Calls [18, 15, 12].

The ClassAds system is a powerful mechanism for matching jobs to ex-
ecution nodes. Users advertise their resource needs for a job and Condor
matches them with the resource ads for the available workstations. This
way, the necessary resources are acquired to best match each job.

Checkpointing is a system for transparently moving already running jobs
from one workstation to another, if necessary. This will, for example, happen
when a user returns from lunch and starts using his or her workstation. Con-
dor will only schedule a job to a node which has been idle for a predefined
amount of time, thus not bothering the owners of the respective resources.
Each running job is regularly and transparently checkpointed during execu-
tion to make this possible. When a job migrates to another node, the new
node can resume execution from the last checkpointed state.

Remote System Calls technology, as with checkpointing, requires re-
linking of the job executable with specific Condor libraries. The Remote
System Calls feature preserves the submitting node’s local execution envi-
ronment, by redirecting a jobs I/O mechanisms back to the submitting node.
Thus, distributing the executables and its input files is not necessary prior to
job execution, as this is handled automatically. It also gives a user access to
the executing node without having a login account on it. There are however a
number of limitations' to jobs which are to support checkpointing, including

"http://www.cs.wisc.edu/condor/manual /v6.8.5/1_4Current_Limitations.html



running them on Windows nodes. If for some reason the executable cannot
be relinked to run in the standard Condor universe, e.g., no access to the
source code, the executable can be run unaltered in the “vanilla” universe
instead. However, when using this universe, file transfer has to be specified
by the user in the submit script, as described in Appendix A.2.2.

To run jobs with dependencies, Condor includes a feature called DAG-
Man. This is a Directed Acyclic Graph Manager, where rules for job depen-
dencies and pre- and post processing scripts can be set up in a special file.
The pre- and post scripts are run locally on the submit host. When this
type of job is submitted, the DAGMan takes care of the order of execution
according to the rules specified by the user. However, each job defined in a
DAG still needs its own regular Condor submit script.

Distributed Resource Management Application API (DRMAA) 1.0 Java
and C bindings are also supported. This API can be used to integrate Grid
technology into applications, instead of manually submitting jobs through a
console.

Many other projects are available for use with Condor, including a file
handling system called Stork, a system monitoring tool called Hawkeye, a
master-worker paradigm called MW, and more.

2.1.2 Sun Grid Engine 6 (SGE)

Sun Grid engine is a free Grid manager from SUN [5]. It is now an open
source project, with support contracts available from Sun. One of the newest
features in v6.1 is Resource Quotas, a feature for controlling resources in the
Grid. Access rules to different parts of a Grid can be set up for users, groups,
projects, etc. for fine grained control of the available resources. A Condor
ClassAds alternative in SGE is Boolean operations. This is a tool for creating
rules for specifying resource needs with AND, OR and NOT operations.

Job dependencies can be managed using the Grid Engine Array Job In-
terdependency (ARI) ? feature. This, in combination with prolog- and epilog
scripts, gives similar functionality for SGE, as DAGMan does for Condor.

Execution of parallel jobs (MPI or PVM) is supported through a dedi-
cated interface, as with Condor. SGE also supports checkpointing and mi-
gration among other tools and functions.

A GUI interface for easy configuration and administration of queues, jobs
and nodes is available for Linux. However, all features in this GUI are also
available from the command line.

Distributed Resource Management Application API (DRMAA) 1.0 Java
and C bindings are supported on the Linux platform, but not on Windows.

http://gridengine.sunsource.net/news/GE61ARIsnapshot-announce.html



2.2 Benchmarking grids

There are not many tools available for benchmarking Grid environments.
Their heterogeneous nature makes this challenging compared to traditional
parallel, high performance systems. Liang Peng et al. [14], have done some
work on benchmarking the performance between SGE and Globus in terms
of CPU utilization and turnaround time. They noticed that the overhead
introduced by the Grid middlewares was negligible for large problem sizes. In
their case, the overhead actually changed very little even when the problem
size grew significantly. For short jobs, however, they found that the overhead
can be quite significant, sometimes half the total time for a job. They also
found that the Globus middleware generally had more overhead than SGE.
The significant overhead for small jobs is what we are considering in this
project.

3 Implementation Ideas

In this section, different ideas on how the respective Grid middlewares can be
used to support our application, are discussed. Different issues concerning
the location of input and output files are also considered.

Our PSA may consist of thousands of permutations, where each permu-
tation needs to be computed to find the final result. Luckily, Grid systems
support methods for submitting multiple jobs automatically, as described
below.

In a Grid environment, all nodes must have access, locally or remotely,
to all resources needed by the tasks they are given. If not, the tasks will
obviously return an error. In most cases, these files are located in remote
places, e.g., on a NFS server for easy administration. For each task, these
files have to be transferred to the respective execution nodes. Since the tasks
in our application are so short, this extra file transfer overhead is factor to
be considered. Since many files are common between the different tasks,
methods for collecting multiple tasks in one job is the main focus in this
project. A collection of multiple independent tasks is known as a meta-task
[16] and will be used throughout this paper.

The following methods are considered to minimize overhead:

Altering the source code to execute multiple calculations from input in
the argument list

Tuning the schedulers for faster submitting of jobs

Bash script with multiple executions

DAGMan and Master-Worker features in Condor



3.1 A golden rule

A golden rule is to exploit application domain optimizations before platform
domain ones. Altering the source code of one application, is not a general so-
lution across other applications, like the solutions discussed below. However,
in many cases it should be possible to make an application execute multiple
tasks internally, by altering the input arguments. When altering the code
to include multiple computations, result comparison between tasks can be
implemented as well, and only the best result would have to be returned to
the submit node. However, how much time is really saved by making the
application do multiple executions internally, compared to executing mul-
tiple single-executions in a bash script? Time will be saved by not having
to start and stop the executable for every task. The question is if the time
saved for each execution is noticeable compared to simply specifying multiple
computations in a bash script.

This may come down to which is easier in the long run, depending on the
application. Defining multiple runs in a script, each with different input, or
altering the source code to open for calculation of multiple tasks internally,
in one single executable.

3.2 Scheduler tuning

The default scheduler settings might not be optimal for every compute farm
environment. Different actions can be taken to fine tune the schedulers for
optimal performance in specific environments. The SGE scheduler supports
different tools® for debugging and validation of scheduled jobs. These can
be turned on or off, depending on the specific needs. When the Grid is in
production state, these tools may not be necessary all the time and can be
turned off by the administrator.

For example, configuring the SGE scheduler for immediate scheduling,
will increase the throughput of the compute farm. The only limitation is the
power of the machine hosting the master and scheduler. If this machine is
overwhelmed by work, the scheduler can be configured to run jobs ounly in a
fixed schedule interval, which also is the default setting.

In Condor, different parameters* can be tuned in the configuration files
for faster scheduling. One of Condor’s default behaviors, is not to schedule
jobs to non-idle nodes. It also preempts and/or suspends jobs, if the current
node becomes unavailable due to user interaction. These features can be
disabled, if seen fit for the compute farm.

3http://docs.sun.com/app/docs/doc/820-0698 /enfky?a=view
*http://www.cs.wisc.edu/condor/CondorWeek2007/large _condor _pools.html
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3.3 Submitting multiple jobs in one submit file

With Condor, one can submit multiple jobs in one submit file simply by
stating the number of jobs with the "Queue” command, e.g., “Queue 50” for
50 jobs. Each job can be identified with the $(CLUSTER) macro and sub-
jobs with the $(PROCESS) macro. In this case, each sub-job gets a unique
identifier from 0-49. Different input parameters can be defined in the submit
script, by using different macros. Using this multi submit method is similar
to submitting 50 jobs manually, thus it does not remove any scheduling
overhead. It only saves the user time by instantly queuing X number of jobs
automatically.

For SGE, the alternative is called Array Jobs. Array Jobs can be spec-
ified either in the submit script by adding “#§ -t first-last:step”, or as an
argument to the SGE submit-to-queue binary gsub. Instead of the $(PRO-
CESS) macro in Condor, SGE defines a set of environment variables for the
array job, to identify the task and task range. To submit an array job from
the command line, type the following when submitting the job: qsub -t 1-
10:2 script.submit. This will queue 5 jobs with step 2. The tasks will get
SGE TASK ID 1, 3,5, 7and 9. SGE_TASK ID, SGE TASK FIRST
and SGE TASK LAST are environment variables set by SGE for this par-
ticular array job. The scheduling process is similar to Condor’s Queue X
command. Each job is scheduled individually, but time is saved by auto-
matic queuing of multiple jobs at the same time. The environment variables
can be used to automatically select the correct input files for the respective
tasks.

3.4 Bash script with multiple executions

The executable in Condor can either be a binary executable or a bash script.
This is defined in the submit script with the argument “exzecutable = file-
name”. For meta-tasks, multiple executions can be specified in a bash script
and the binary can be transferred as an input file. Thus, the executable
is only transferred once for the whole meta-task, and is reused by all the
tasks specified in the bash script. Each task’s result, will be appended to
the specified output file if written to stdout. If the application creates any
new files, these will also be transferred back to the submitter automatically
by Condor. Thus, the execution of multiple tasks does not overwrite any
intermediate results.

SGE’s submit script is very similar to a regular bash script. SGE spe-
cific flags and options can be defined directly in this script with “#§ -flag
option” notation. Multiple executions can therefore be defined directly with
bash arithmetic’s and submitted as is. However, SGE does not automati-
cally transfer any input files. Its submit script only invokes the remote host’s
environment as if it was invoked locally. However, SGE supports prolog/epi-

11



log scripts that can perform any necessary processing, including file transfer,
before or after job execution. These scripts are run on the execution host
and not on the submit host, as for Condor’s DAGMan. For SGE, the exe-
cutable and input files can either be located on NF'S for easy administration,
transferred by a prolog script or located locally in the same path on every
node for minimum network traffic.

3.5 Condor specific tools
3.5.1 DAGMan

DAGMan makes it easy to define job dependencies. The jobs in the DAG
are regular Condor submit scripts and each job is scheduled individually.
Therefore, DAGMan does not help to minimize scheduling overhead of jobs
in any way. It can, however, help with post execution result gathering, as
described in Section 3.6.2.

3.5.2 MW: Master-Worker

The master-worker paradigm [17, 6] can be very quick for collections of short
jobs. The Condor implementation consists of a set of abstract classes, namely
Task, Driver and Worker. The Driver sits below your application and man-
ages a pool of Workers and set of user defined Tasks. The Workers pick up
Tasks, does the user defined work on them, and returns result to the Driver.
The implementation is specific to each application and will therefore involve
altering the existing code, if not implemented during initial development of
an application.

Implementing MW in our application falls outside the scope of this
project, as we are mainly looking at ways to use Grid tools to optimize
execution of our application, without modifying the source code.

3.6 Handling the input/output files for Dagoc

The amount of files that are needed for each task, as mentioned in Section
1.2, might become a factor for the total execution time of our small jobs.
Obviously, the job executions would benefit from reusing as much of these
files as possible on each node. One solution would be to have all the data
and the executables locally on all nodes, but this would be difficult to ad-
minister. For easier administration all files could be put on NFS, but this
might generate a lot of network traffic, since every calculation has to access
it for its input and executable.

By collecting multiple tasks into meta-tasks, all common files would only
have to be transferred to the execution node once, and could save a lot
of traffic. Hence, each task in the job would only have to transfer a small
amount of files, unique to that job, from the NFS server. All other files would

12



be already available locally on the node for the duration of that particular
job.

3.6.1 Condor specific file handling

In Condor, input files can be transferred from the submit host, by defin-
ing the necessary input files in the submit script. Using the option “trans-
fer _input_files = filel file2,....”, these files will be copied next to the exe-
cutable in the execution node’s spool directory. However, transfer of whole
directory structures is not support, only lists of specific files. See Appendix
C for a Condor submit script example with file transfer.

Since the "Vanilla” universe is used (see Appendix B.2.1), the options
“should_transfer _files = YES” and “when_to_transfer output = ON_EXIT”,
are needed to specify that the executable and results are to be transferred
between submit host and execute host.

3.6.2 Result gathering with DAGMan

When distributing our application onto a Grid, post processing to find the
best result is necessary after all the calculations are finished . This can be
set up using job dependencies in DAGMan. Each job has its own regular
Condor submit file, like the one shown in B.2.2. The

A solution was implemented, where the post processing job was config-
ured to use the “local universe”. This forces the job to run on the submit
host, where all the result files are located. This job contains a script that
scans all the results files, extracts the results and puts them all in one single
file. The corresponding input parameters are saved as well. Regular Linux
tools such as ’grep’ were used for this. Then, a short C++ program was
developed that extracts the best result from the new single result file (See
Appendix C). The input parameters for the best result will then be used to
execute the task with the best result locally, on the submit node. This will
save all the execution data in the database. All this post processing is done
automatically, in sequence, by the last bash script.

3.6.3 Result gathering with SGE

Using the ARI functionality mentioned in Section 2.1.2; a post job result
gathering script, similar to the one described above, can be used. However,
if NF'S home directories are not used, each execution host will have to transfer
their results to the submit host, before the final result can be extracted. File
staging® with epilog scripts can be used for this. File staging has to be
enabled by the administrator. The epilog script can use different variables,
set by SGE, to identify which files are to be sent where. An epilog script was

®http://gridengine sunsource.net/howto/filestaging /filestaging6.html
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written to transfer the output from SGE’s array tasks back to the submitter
automatically (see Appendix C).

3.6.4 Problems with NFS file access

Accessing SQLite databases on NFS may induce problems. In some perfect,
up to date NFS setups it might work. Others, including ours, have issues with
file locking and databases. Since our application uses an SQLite database
for data access, this problem was encountered while having this database
file remotely. A workaround in Condor, is to copy the database file as an
input file by adding it in the submit script. For SGE, a prolog script can
be used to transfer the correct database before the job is executed. The
other alternative is to have a local copy on each node. This should not be
a problem for the calculations in our case, as the intermediate tasks are not
writing to the database, but only reading. However, administration might
become cumbersome and jobs may at times give false results if some nodes
are not updated correctly with new database files.

4 Model

In this project, the focus is on small office environments with limited re-
sources. A small 3-node Grid is used in the benchmarks. The nodes are
basic workstations connected through an Ethernet network. The Linux dis-
tribution Fedora 7 is used as operating system on each node. Furthermore,
the workstations are quite different, as shown in Table 1.

Methods for distributing a collection of short independent tasks on multi-
ple nodes, are considered. If using multicore nodes in a Grid, one would also
be able to exploit all the cores available, without altering the source code of
the application. This is possible due to the Grid engine’s ability to schedule
a job for each CPU on a node. Since HyperThreading technology is inter-
preted as an extra CPU by the operating system, the [P4Hyper| machine
will be scheduled two jobs simultaneously, when used in a Grid. This might
give a slight speedup, although not twofold since the extra CPU detected by
the OS is only virtual.

All the nodes in the Grid are assumed to be idle during benchmarking.
The default Condor setup excludes nodes, which have not been idle for a
period of time, as candidates for jobs. Since one of the execution nodes is
also used as the submit node, Condor is configured in testing-mode to remove
the waiting time for this node. This will make Condor’s environment more
similar to SGE’s. The nodes are not used for other tasks while benchmarking,
so not to bias the results. All tasks used in the benchmarks will be given
identical input. The calculated results can then be used to verify that the
same calculation is executed in every task.

14



Job execution is handled differently by the two middlewares, as described
in Appendix B.1.1. To support SGE’s file locality concept®, all the necessary
input files, including the binary executable, are assumed available on NF'S.
Hence, each node can find all specified files using the same paths, provided by
SGE’s bash script. However, NFS file caching and buffering might bias the
result in SGE’s favor. Some common files, including the executable, might
already be available in the local file buffer on the execution nodes for the
following task, reducing file transfer. Since we are not using NFS mounted
home directories, the results from SGE will be located on the local home
directories for the submitting user on each execution node. This may become
a significant factor in the benchmark results, since Condor automatically
transfers all results back to the submitting node. Hence, two benchmarks
will be run for SGE; one with and one without result file transfer back to
the submit node. An epilog script is configured, in SGE’s queue, to be used
by each task. After a job completes, the epilog script is executed and the
results are transferred back to the submitter using SCP. Password-less SSH
keys were distributed among the nodes prior to job execution. Thus, secure
authentication is handled automatically, without user interaction.

The SQLite database file needed by the application will, for SGE, be
locally available on each node during execution. This is due to the NFS
file locking problems described in Section 3.6.4. For Condor, its regular file
handling will be used, and the database file is transferred with the job along
with the executable binary or bash script. However, the textual input files
for each task will be located in the same NFS location for both SGE and
Condor. Thus, Condor will transfer the executable and database file from
the submit node to the execute nodes, while SGE will transfer the executable
from the NF'S server. The NFS server is in our case the same as the submit
node, namely the [P4Hyper].

After all results are copied back to the submit host, the final result can be
collected using the method described in Section 3.6.2. For Condor, DAGMan
can be used. However, DAGMan jobs are not scheduled instantly, but only
after about 5 minutes by default. Thus, the benchmarks for Condor were
run by simply submitting the computation job script directly, since this is
scheduled instantly. The time taken to find the final result is therefore not
included in the numbers for either Condor or SGE. However, the final script
is run manually and the extra time used is given in the results.

4.1 Test parameter

Walltime is used as the parameter to compare the time taken to execute X
very short tasks serially versus distributing them on a Grid. We are looking
for speedup in the range of seconds and minutes, not clock cycles, hence the

®http://gridengine.sunsource.net/howto/nfsreduce.html
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Table 1: Workstation specifications

[Athlon64] [P4Hyper| [Athlon32]
Processor AMD Athlon64  Intel Pentium 4 AMD Athlon
Extras 64-bit support HyperThreading N/A
Speed 3500+ 3.0Ghz 2500+
RAM 2GB 1GB 1GB
Grid job  Submit/Execute Master/Submit/Execute Submit/Execute
0OS Linux Fedora 7

choice of timing parameter granularity. The following tests were run:

e Time used serially on each of the nodes

3 runs of single task jobs on both Condor and SGE

3 runs of meta-tasks on both Condor and SGE

3 runs of single task jobs and meta-tasks on SGE, without result file
transfer

Altering the job-task ratio for 1000 jobs

The benchmarks are run 3 times to see if the |[P4Hyper| machine will give
any significant difference in the total execution time, as well as to verify
the results. HyperThreading does not nearly give double the computation
power, hence, two jobs running simultaneously on the |[P4Hyper| machine
might use longer time altogether than if executed on two different nodes.
Another benchmark where the the job-task ratio for 1000 tasks is altered,
is also performed to see if there is room for fine-tuning the amount of tasks
sent to different nodes.

The number of jobs were not chosen through an empirical study, but
arbitrarily only to compare the different benchmarks. The range was chosen
between 10 to 1000 tasks, to cover our application’s usual task range.

The actual timings are extracted from log files, capturing the submit time
and the end time for the last task in the job. In Condor, the user specifies
the log file name, in which the submit, start and stop times for each task
in a job are recorded. A bash script is used to automatically extract and
calculate the time used for the total job (See Appendix C).

SGE has a tool, “gacct” , which extracts data about jobs, including wall-
time. Data from each job is piped to a file and another bash script is used
to extract the timing results for the jobs (See Appendix C).
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5 Benchmarks and Results

This Section shows the results from computing X small tasks serially, com-
pared to distributed on a small three node Grid. The ideas from Section
3.3 and 3.4 were used. A discussion follows of the results from using the
these methods in both Condor and SGE. The serial results are shown first
for comparison.

As mentioned in Section 4, finding the final result was to be done man-
ually for practical reasons. The time used to collect, compare and extract
the best result from 1000 tasks, was found to take about 3 seconds. This is
negligible, when the corresponding calculation time is in the range of over a
thousand seconds. For 100 tasks, it took less than one second. Thus, this
last result comparison is ignored in the results.

5.1 Serial execution

Table 2 shows that the serial execution time varies by about 27% between
the fastest and the slowest node. The average time taken between the three
was used later in the comparisons. One single task is shown to take between
3 and 4 seconds. The same task was used in all benchmarks and this was
verified by checking the result of the tasks.

Table 2: Results for serial execution

Machine/nTasks 10 50 100 200 500 1000
Athlon64 30 150 299 999 1498 2988
P4Hyper 37 186 371 741 1853 3702

Athlon32 38 192 382 764 1915 3826
Average(sec.) 35 176 350.67 701.33 1755.33 3505.33

5.2 Results for Condor

The first Grid benchmark was simply submitting all the tasks in single task
jobs, using Condor’s Queue X command mentioned in 3.3. There is no
significant difference in the total time used by the different runs, as shown
in Table 3. Thus, the discussion about the HyperThreading capability of
one of the nodes from Section 4.1, seems not have any significant implication
for single task jobs. However, since all three benchmarks are identical, the
scheduling should be very similar in each run.

Since each task only takes 3-4 seconds, scheduling and file transfer over-
head might add a significant delay to the total job execution time. The
results in Table 4, compared to Table 3, show that this is indeed the case.
In the meta-task test, multiple tasks were sent in fewer jobs, lowering the
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Figure 1: Calculation time serial vs. Condor

Table 3: Condor single task job execution time
Run/nJobs 10 50 100 200 500 1000

1 34 149 275 543 1353 2713
2 34 142 277 552 1362 2744
3 35 143 278 540 1358 2742

Average(sec) 34.33 144.67 276.67 545 1357.67 2733

Table 4: Condor meta-task execution time

Run/Jobs x Tasks 5x2 5x10 10x10 10x20 10x50  10x100

1 30 91 183 338 799 1577
2 30 94 181 336 802 1575
3 30 95 181 335 800 1577

Average(sec) 30 93.33 182.67 336.33 800.33 1576.33

Table 5: Speedup using Condor compared to serial execution
nTasks 10 50 100 200 500 1000

Single task jobs 1.02 1.22 127 1.29 129 1.28
Meta-tasks 1.17 189 193 2.09 219 222
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Figure 2: Speedup serial vs. Condor

scheduling and file transfer delays considerably as the task count increased.
There is an even smaller difference in time between the different runs in
this test than the former. One should think that if the [P4Hyper| machine
was given two 100-task jobs while another node is idle, would give more
difference. Disabling the HyperThreading feature altogether, showed little
difference in the timing results for Condor. Furthermore, more benchmarks
with different job-task ratios, should be run for a more secure conclusion.
This will be considered future work.

Table 5 shows the speedup of the two former benchmarks. Sending each
task as a single task job peaks at about 1.29 speedup, which is not very
good keeping in mind the use of three times the computing power. Meta-
tasks, however, show a much higher speedup. Thus, it seems that for such
short tasks as in our case (3-4 sec), one can gain a lot from submitting
multiple tasks together, when using Condor. A speedup of 2.2 is seen for
1000 tasks compared to serial execution, which in turn is a speedup of factor
1.73 compared to single task jobs. Fewer result files are transferred back,
though their size are larger according to the number of tasks in the respective
jobs.
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Figure 3: Calculation time serial vs. SGE (no result transfer)

5.3 Results for Sun Grid Engine (without result file transfer)

Table 6 shows very good results for single task jobs on SGE, even faster than
Condor’s meta-task executions. Compared to the average serial calculation
time, a speedup factor of the number of nodes used in this small Grid is
seen. This shows that all the extra file transferring done by Condor creates
a significant amount of overhead. Apparently, SGE has nearly nonexistent
overhead for these particular tasks when not transferring the results back to
the submitter.

Table 7 shows an interesting result. It actually shows slower performance
for meta-tasks than for single task jobs. Some tweaking of the job-task ratio
was performed and generally showed that the more jobs submitted (with
fewer tasks), the closer the timings came to the single task jobs. Thus, it
seems that for SGE, single task jobs submitted as array jobs, will perform
equal to or better than meta-tasks when not transferring the results back to
the submitter after each execution.

5.4 Results for Sun Grid Engine (with result file transfer)

In this benchmark, an epilog script is used to transfer the result files for all
tasks back to the submit host. This benchmark is run for better compari-
son to Condor, as Condor transfers all result files back to the submit host
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Table 6: SGE single task job execution time (no result transfer)
Run/nJobs 10 50 100 200 200 1000

1 26 59 117 249 288 1145
2 31 99 116 227 587 1145
3 30 60 118 242 o71 1147

Average(sec) 29 59.33 117 239.33 582 1145.67

Table 7: SGE meta-task execution time (no result transfer)
Run/Jobs x Tasks  5x2  5x10 10x10 10x20 10x50 10x100

1 21 64 130 259 644 1293
2 21 65 130 259 644 1287
3 20 65 131 258 648 1294

Average(sec) 20.67 64.67 130.33 258.67 645.33 1291.33

Table 8: Speedup using SGE compared to serial execution (no result transfer)
nTasks 10 50 100 200 500 1000

Single task jobs 1.21 297 3.00 293 3.02 3.06
Meta-tasks 1.69 2.72 269 271 272 271
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Figure 4: Speedup serial vs. SGE (no result transfer)
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Calculation time Serial vs. SGE, with result transfer
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Figure 5: Calculation time serial vs. SGE (with result transfer)

automatically. Both stdout and stderr will be transferred for comparison, al-
though one can choose not to transfer the stderr files if they are not needed.
Actually, since the epilog transfer script is a regular bash script, one can
choose to transfer whatever, in whichever way found suitable.

The results in Table 9, shows the execution time with result transfer
back to the submit host. Compared to the single task jobs without result
file transfer from Table 6, the numbers are generally higher, especially for
small task collections. It is actually slower than serial execution for 10 and
50 tasks.

In Table 10, it is observed that the meta-tasks with the chosen job-task
ratios, perform almost equally well as single task jobs. This result is quite
different from the former benchmark, shown in Table 7, where much slower
performance was observed for meta-tasks than for single task jobs. Thus, it
seems that the extra file transferring levels out the performance between the
two.

In Table 11, it is observed that when transferring result files for SGE,
the performance is almost identical for both meta-tasks and single task jobs.
In Section 5.5, it is observed that this was arbitrary, and that it is possible
to tweak the submit scripts in favor of meta-tasks.
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Table 9: SGE single task job execution time (with result file transfer)

Run/nJobs 10 50 100 200 500 1000
1 160 207 267 388 750 1354
2 161 207 270 389 752 1461
3 161 206 270 390 733 1465

Average(sec) 160.67 206.67 269 389 751.67 1426.67

Table 10: SGE meta-task execution time (with result transfer)
Run/Jobs x Tasks ~ 5x2  5x10 10x10 10x20 10x50 10x100

1 168 200 277 396 746 1334
2 169 200 278 394 746 1335
3 168 200 278 395 745 1332

Average(sec) 168.33 200 277.67 395  T45.57 1333.67

Table 11: Speedup using SGE compared to serial execution (with result
transfer)

nTasks 10 50 100 200 500 1000

Single task jobs 0.22 0.85 1.30 1.80 2.34 2.46
Meta-tasks 021 088 126 1.78 235 2.63

Speedup Serial vs. SGE, with result transfer
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Figure 6: Speedup serial vs. SGE (with result transfer)
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Table 12: Results for 1000 tasks when altering the job-task ratio
Grid/Jobs x Tasks 10x100 20x50 40x25 100x10

Condor 1576 1477 1462 1535
SGE (file transfer) 1333 1290 1246 1263

5.5 Results when altering the Job-Task ratio

Table 12 shows that there is room for fine tuning the job-task ratio for
better performance. It was observed, during the benchmarking, that the
[P4Hyper| machine was usually the last machine doing computations, on
two jobs simultaneously. Hence, for jobs with large amounts of tasks, the
two other machines were idle for a long time. Thus, it seems that Hyper
Threading might actually give worse performance altogether, when used on
nodes i a Grid. However, this machine could also be looked at as two slower
machines, since each of its two jobs take about twice as long to finish as one
on the [Athlon64|. Thus, it seems that this environment could benefit from
dynamic scheduling, giving larger jobs to more powerful machines.

In any multi user Grid environment, however, the idle machines would be
used to compute tasks from other jobs, by other users. Thus, when speaking
of overall throughput in a Grid, this discussion is not equally important.
The otherwise idle nodes will be utilized as long as there are other jobs in
the queue.

Furthermore, the trend today is multicore processors without Hyper
Threading technology, eliminating the discussion altogether. However, the
dynamic scheduling idea still stands.

5.6 Result summary

Table 13 summarizes the speedup from all our benchmarks. It was ob-
served, that the speedup quickly peaks at around 3, using SGE on three
heterogeneous nodes. However, when looking at the details of this particular
benchmark, this speedup did not include the transfer of result files from the
execution nodes back to the submit node. When including the file trans-
ferring into the equation, the speedup, for SGE, was 2.46 for 1000 single
task jobs. Another interesting result was actual slowdown when submitting
a small number of tasks on SGE. Condor, however, was observed to have
much better performance for small number of tasks.

The results show that SGE was about twice as fast as Condor for single
task jobs, when transferring the results back to the submitter. Overall,
Condor had bad performance when distributing the tasks in our application,
using single task jobs. Using three nodes, only a peak speedup of 1.29 was
observed. For comparison, an extra test was performed for Condor. This test
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Table 13: Summary of speedup from all benchmarks
(Originally shown in Tables: 5, 8 and 11)

Benchmark /nJobs 10 50 100 200 500 1000
Condor single task 1.02 1.22 127 129 129 1.28
Condor meta-task 1.17 1.89 193 2.09 219 2.22
SGE single transf. 022 0.8 130 180 234 246

SGE meta-task transf. 021 088 126 1.78 235 2.63

SGE single no-transf. 1.21 297 3.00 293 3.02 3.06
SGE meta-task no-transf. 1.69 2.72 269 271 272 271

used the same bash script as for SGE’s single task jobs, removing the transfer
of the database file, as opposed to the regular Condor execution. This gave
a speedup of 1.43 for 1000 tasks, which was only slightly better compared to
the original Condor benchmark. Thus, it seems that transferring the binary
from the submit node or fetching it from an NF'S server, including removing
the database transfer overhead, yield only slightly better performance.

In Section 5.5, it is observed that there is room for fine-tuning the job-
task ratio for meta-tasks. A performance increase of 7-8% was observed,
using 40 jobs with 25 tasks compared to 10 jobs with 100 tasks.

The benchmarks in this paper did not include the collection of the end
results. The user will expect the same end results in the database as for
serial execution without having to manually enter it. Without any means of
automatically extracting and saving the end result from the distributed cal-
culations, users may become more reluctant towards using Grid technology.
The time saved in distributing calculations is lost in collecting and extract-
ing the end result. For Condor, using DAGMan possible solution, where one
could add a result gathering job, as dependent on the rest of the calculations.
For SGE, the newly released ARI functionality could be used to add post
jobs dependent on an array of jobs. These methods are only proposed in this
project, and not thoroughly tested.

6 Conclusions and Future Work

In this project, we have seen how a commercial application, developed se-
rially without any initial thought of parallelism or distributed calculation
functionality, can benefit from being used in a Grid environment. Two well
known Grid middlewares, Condor and Sun Grid Engine, were considered in
the process, and ease-of-use evaluated. A discussion of installation proce-
dures and problems can be found in the Appendices as well as practical job
submission examples for the respective middlewares.
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Due to the short execution time of our tasks, different methods for mini-
mizing scheduler overhead were proposed, including altering the source code
of our application to make it execute multiple tasks internally, tuning the
Grid schedulers, and implementing the Master-Worker paradigm.

The first alternative would entail altering the input parameter list and the
source code corresponding to the task computations, to make the application
execute multiple tasks internally. This was believed not to have considerable
speedup compared to our multiple task job proposal. The only time saved
was assumed to be the starting and stopping of the executable for each task,
and, if internal result comparison was implemented, fewer files would have to
be compared by the last result script. However, this was only an assumption
and needs further evaluation before a concrete conclusion can be taken.

In this project, however, only methods using regular Grid submit scripts
were analyzed. Thus, all speedup results were gained without altering the
source code in any way.

Grid schedulers have multiple parameters and features which can be fine
tuned in different ways. By removing unnecessary features and fine tuning
different timing constraints, scheduler overhead can be reduced. Removable
and tunable features include scheduler monitoring, job validation, load ad-
justments and different scheduling timings. More information can be found
on the web pages for respective Grid systems.

Implementing the Master-Worker paradigm proposed for Condor, is con-
sidered to give easy access to a heterogeneous environment. The MW-
paradigm describes three classes that would have to be implemented, namely
Driver, Task and Worker. These classes are used to describe, generate and
execute tasks coherently and fast. MW is shown to be easily implemented
in certain serial applications, with good results [6]. However, this solution
was found to be outside the scope of this project.

The results gained in this project, show that the effort needed for in-
stalling a local Grid system in an organization, may be well worth it. Au-
tomatic distribution of tasks to nodes with idle CPU cycles, would give
effective utilization of already available computing resources. For certain
applications, no source code needs to be altered to make good use of a Grid
environment.

6.1 Future work

In future work, dynamic scheduling of the meta-tasks, sized to better fit the
different nodes in the Grid, would be of interest. From Table 2, it shows
that the Athlon64 machine is about 27% faster than the Athlon32. Could
the Athlon64 be sent bigger meta-tasks than the Athlon32 to make them
finish at the same time? Or will it level out automatically when enough jobs
are in the queue?

Methods for dynamic scheduling is found important for heterogeneous
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environments, like Grids. Different methods are proposed to handle differ-
ent aspects of heterogeneous environments. These include, handling dynamic
network bandwidth, decreasing makespan of meta-tasks of different size, and
on-line dynamic scheduling algorithms, using dedicated scheduling proces-
sors [16, 8, 11|. Combining SiteRank [19] with a method for dynamic sizing
of meta-tasks, is an interesting idea for future work.
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Setting up the Grid

Sun Grid Engine 6.1

SGE master host and execution host was successfully installed on Fedora 7
by following the installation manual found on the Sun web page [5]. After
working out the problems mentioned in A.1.3, the installation was pretty
straight forward. There were a lot of steps to set up different things and it
is a good idea to have a plan or basic idea of the Grid before installing.
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To install an execution host, it is necessary to copy all the installation files
from the master host to the execution host after the master host installation.
This way the execution host will get the correct settings set up for the master
host.

A.1.1 Possible node configurations

There are several different node functions available for SGE:

e Master host: this is where the Grid engine runs.

e Shadow master host: this is a backup host if the master host fails.
There can be several shadow hosts in a Grid.

o Administration host: nodes that can do administrative tasks on the
Grid.

e Submit host: a node which can submit and control jobs.

e Execute host: a node where jobs are executed.

A.1.2 Access to files

Each node in a SGE Grid, needs all executables and input files locally or
on a NFS/AFS mount. There is no automatic file transfer in SGE, like in
Condor. However, prolg- and epilog scripts can be defined for a queue, where
file transfer or other operations can be defined. Results are copied to the
respective user’s home directory. SGE expects the home directories to be
mounted on NFS. If they are not, all results will be copied locally on the
execution node. An epilog script can then be used to automatically transfer
all results back to the submit node. An example of such a script is shown in
Appendix C.

A.1.3 Problems

Some problems were encountered while installing the master host:

e SGE needs the libXm.so0.3 library, which can be found in the OpenMotif
package, for its GUI application. OpenMotif-2.3.0.0.fc7.ccrma.i386.rpm
for fedora core 7 was installed which had the newer version, libXm.so0.4,
of the library. I had to make a symlink to this file for the SGE GUI to
work (since it is a newer version, the linker is happy):

In -s /opt/openmotif/usr/lib/libXm.s0.4.0.0 /usr/lib/libXm.so.3

o After unpacking the files, the command setfileperm.sh $SGE _ROOT
is to be run to set the right permissions. This failed because of a wrong
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GLIBC version in Fedora 7. To fix this, open the file "$SGE _ROOT /util/arch”
and edit line 248 from 3|4|5) to 3|4|5]*) and run the script again. (NB!
This problem did not appear on a machine running Kubuntu)

A.1.4 Windows restrictions

Windows machines cannot run as master hosts, shadow master hosts or
scheduler. Windows is therefore limited to execution and submit hosts. Cer-
tificates (Certificate Security Protocol (CSP)) are also necessary for commu-
nication between master host and windows execution host. The GUI tool
gmon and DRMAA are not supported either.

A.2 Condor-6.8.6

I installed Condor with a rpm package on Fedora 7, with a tar.gz package
on Kubuntu and with a MSI package on WindowsXP. The only prerequisite
on Linux was an older version of the libstdc++ library. This can be in-
stalled with yum install compat-libstdc+-+-33 for Fedora 7 or apt-get
install libstdc+-+45 on Kubuntu. The installation was easily completed by
following the installation manual found on the Condor web page [15]. The
installation of a 4 node Condor pool, including a WindowsXP node, was an
hours process. On SGE, it was more a days process, for a Grid beginner.

Registering an execute and submit node on the master host in Linux,
simply enter the following command on the host to add:

./condor _ configure —central-manager=host@domain.com —type=execute,submit

Make sure all the nodes networking is set up correctly before running
this command. If not, the request might not be detected by the master host.

A.2.1 Possible node configurations

e Master host (even Windows nodes, unlike SGE)
o Lxecute host
e Submit host

e Or any combination of these

A.2.2 Access to files

In Condors standard universe, access to files, input and output, is handled
automatically through remote system calls. In other universes, vanilla, Java
and MPI, access is presumed, as default, to be through a shared file system
on UNIX machines. If no shared file system is available, file transfer has to
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be specified in the submit files by the user. Add the following lines to the
submit script to enable file transfer (other options are available):

should transfer files = YES
when to transfer output = ON_EXIT
transfer input files = filel , file2 ,

A.2.3 Heterogeneous nodes

In a heterogeneous Grid, it is beneficial to have as much information about
each node as possible. If a job has specific needs, special care should be take
to which node the jobs are sent to. Condor solves this with the ClassAds
system. Each node has a set of parameters (e.g. Total Memory, OpSys,
Architecture, Disk Space), which can be used as requirements for jobs. Con-
dor administrators can specify their own ClassAds for each node, as well.
Inserting the following in a submit file, states that the job needs the Linux
OpSys and flavor RedHat9 (OPSYS FLAVOR="RedHat9” has to be defined
in the execution nodes configuration file for it to be eligible):

REQUIREMENTS = (OpSys == "LINUX”) &€& (OPSYS_FLAVOR =7
"RedHat9”)

This is useful if the executable is compiled only for a specific flavor of
Linux, with possibility to fail if executed on, for example, Debian. A neat
trick to make use more nodes, would be to have different executables for dif-
ferent OS’s and flavors, and specify which executable should be transferred
to the different nodes. The following line will choose the correct executable
for the specified requirement.

Ezecutable = exec.$$(0pSys).$$(OPSYS FLAVOR)

The executables must have names similar to ezec. LINUX.RedHat9 or
exec. LINUX. Debian, for this to work.

A.2.4 Problems

Iinstalled a net install of Debian on a 3rd node and ran into a problem with
ip-addresses and hostnames. The installation defined the IP address for the
node’s hostname, in the /etc/hosts file, to a local one (127.0.1.1). This
caused the master to block access for the node, because it had an unknown
domain address. Commenting out this line and letting DHCP take care of
hostname and corresponding ip-addresses, fixed the problem.
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A.2.5 Windows restrictions

It is not possible to condor compile Windows applications. As a result, re-
mote system calls and checkpointing is not available on this platform. There-
fore, Windows jobs have to run in the "vanilla” universe. The following can
be added to the submit script, to run on Windows machines:

universe = vanilla
requirements = (OpSys =— WINNT50)

B Using the Grid

B.1 Sun Grid Engine 6.1

To start the SGE daemons, enter the following commands as root:
$SGE_ROOT /name-of-cell/common/sgemaster start
$SGE _ROOT /name-of-cell/common/sgeexecd start

B.1.1 Submitting Jobs

Submitting jobs to SGE, is done by sending batch scripts to the master
server with the command ”gsub /path/to/script.sh” or through the GUI
interface gmon. A computer is not allowed to submit jobs, unless it is reg-
istered as a "Submit Host”. Once this is done, jobs sent from this node will
be accepted and put in a job queue.

The results are handled differently than in Condor. Condor copies all
results back to the same folder, on the node it was submitted from, simply by
running in the “standard” universe, or by defining file transfer in the submit
script. SGE copies the results to the owners home directory. Thus, SGE
assumes the users home directories are NFS mounted. If the home directories
are not NFS mounted, the results are copied locally on the execution node
that completed the job. This can be tricky, as you don’t know which node
your job is executed on. Epilog scripts can be used to remedy this, as
described in Appendix A.1.2.

SGE does not have automatic job executable transfer, like Condor. Each
job executable must therefore be available on every node, in the path given
in the bash script. The easiest way to make sure this is the case, is to have
all the files available on AFS of NFS. However, it is possible to manually
define transfer of executables in a prolog script, if necessary.

Example of a simple SGE submit script:

#!/bin /sh
#
# This is a simple example of a SGE batch script

# SGE specific options starts with '#§$’
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#$ —S /bin/sh
#$ —o output_file name
/path/to/executable argl arg2

B.2 Condor-6.8.6

To start Condor, enter the following commands as root:
$CONDOR _ROOT/sbin/condor master

B.2.1 Preparing jobs for execution

To use remote system calls and checkpointing/migration in Condor, the ex-
ecutable has to be relinked with the Condor libraries. Here a problem was
encountered on both Fedora 7 and Kubuntu: "ERROR: Internal 1d was not
invoked! Executable may not be linked properly for Condor!”. A solution
was not found and the jobs were run in the “vanilla” universe instead. Con-
dor compile had problems locating some application libraries, thus a static
link of the executable could maybe have fixed the problem.

B.2.2 Submitting Jobs

Submitting jobs is done with the command ”condor submit job.cmd”.
The .cmd file contains different job settings, including input/output file lo-
cations, files that have to be transferred to the execution node, the required
architecture for running a binary, etc. Setting up correct constraints and
requirements for a job, will help make sure the job is executed successfully.
Copying directories of input files, is not supported in the current version of
Condor. For jobs with directories as input data, a shared file system can be
used for input files instead. ClassAds can be used to find a node which has
access to the specific remote location.

Example of a simple Condor submit script, that copies the executable to the

execute node and returns the results to the submit node (notice the use of
the “standard” universe):

7

# Test Condor command file

7

universe = standard

executable = name of executable
output = executable.out

error = executable.err

log = executable.log

arguments — argl arg3

queue
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See manual for more options:
http://www.cs.wisc.edu/condor/manual/v6.8/condor_submit.html

B.2.3 Different settings

Condor can either be set up to run jobs on any node, idle or not, or to nodes
which have been idle for more than 15 minutes (either no keyboard, no
mouse movement or CPU idle time). When the node is no longer available,
the job can be checkpointed and kept on the same node until idle again, or
the job can be sent to another idle node. During testing, it is recommended
use Condor in testing mode, to disable the “wait for idle” settings. See the
manual for details on how to do so.

C Scripts and Code Listings

Here follows a listing of all scripts used in benchmarking Condor and SGE.
The last listing is the C++ program used to extract the best result from the
pre formatted result file, described in Section 3.6.2.
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Listing 1: Job script for SGE

# Single Task Job Script for Sun Grid Engine

# Single job submission:
# qsub this script.sh
# Array job submission:

# qsub —t [t first]—[t last[:[t stepsize] this_script.

sh

#1/bin/sh
# Request Bourne shell as shell for job
#8 =S /bin/sh

v1=§(

date +%s)

# Run dagoc

for ((1i=0; i<[set num tasks here];
/mnt/project /dagoc —c —start=1 —stop=10 \
"/mnt/project /setups /TEST sge.sup"

done

# Print Job Data

echo start=$SGE TASK FIRST stop=$SGE TASK LAST \

i+=1))

step=$SGE_TASK STEPSIZE id=$SGE_TASK ID

# Print time taken

v2=5(

date +%s)

let v3=$v2—-$vl

echo

"Seconds used for this

task:

" $v3

Y

; do
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Listing 2: Result transfer epilog script for SGE

# result transfer epilog.sh
# Transfers SGE array results to host

#1/bin/bash
echo SGE HOST: $SGE O HOST
echo HOSINAME: $(hostname —s)
if [ "$(hostname —s)" != "$SGE O HOST" |;
then
echo "Transferring result to host..."
scp $SGE_ O WORKDIR/dagoc . sh.0$JOB_ID.$SGE TASK ID \
$SGE_O_WORKDIR/dagoc .sh.e$JOB_ID.$SGE_TASK ID \
$SGE_O_HOST: /$SGE_O WORKDIR
rm $SGE O WORKDIR/dagoc . sh.0$JOB_ID.$SGE TASK ID
rm $SGE O WORKDIR/dagoc . sh.e$JOB ID.$SGE TASK ID
fi
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Listing 3: Script for extracting runtime for SGE

# Get time used from Sun Grid Engine

# Useage :

# qacct —j [job_id] > sgejobsummary. tzt
# ./this_script.sh sgejobsummary. tzt

#1/bin/bash

#Get job submit time

t0=$(grep "gsub_time" $1 | head —m 1 | \
grep —o [0—9][0—9]:[0—9][0—9]:[0—9][0—9])
s0=%(date —date=$t0 +%s)

#Get last job end time

t1=$ (grep "end time" $1 | \

grep —o [0—9][0—=9]:[0—9][0—9]:[0—-9][0—-9] | \
sort —r | head —m 1)

s1=$(date —date=$t1 +%s)

#Get total time used for array job
let s=$s1—8s0

echo "File:" §$1

echo "Time:" $s "seconds"
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Listing 4: Condor single task jobs submit script

# dagoc.condor
# 100 Single Task Jobs Condor command file

universe = vanilla

executable = dagoc

output = dagoc.out .$(CLUSTER) . $ (PROCESS)

error = dagoc.err.$(CLUSTER) . $ (PROCESS)

log = dagoc.log.$(CLUSTER)

REQUIREMENTS = (OpSys — "LINUX") && (OPSYS FLAVOR —7—
"FCT")

should transfer files = YES

when to transfer output = ON_EXIT

transfer input_files = /mnt/project/dbases/TEST.db

arguments — —c —start—1 —stop—10 /mnt/project /setups/
TEST . sup

queue 100

Listing 5: Condor meta-task submit script

# 10 Multi(10x) Task Job Condor command file

universe = vanilla

executable = multiTaskJob .sh

output = dagoc.out .$(CLUSTER) . $ (PROCESS)

error = dagoc.err .$(CLUSTER) . $ (PROCESS)

log = dagoc.log.$(CLUSTER)

REQUIREMENTS — (OpSys — "LINUX") && (OPSYS FLAVOR —7—
"FC7”)

should transfer files = YES

when to transfer output = ON_EXIT

transfer input_files = dagoc, /mnt/project/dbases/TEST.
db

arguments = 10

queue 10
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Listing 6: Condor meta-task bash script

# MultiTaskJob .sh
#1/bin/bash
vl=$(date +%s)
echo "Start: " ‘date”
for ((i=0; i<$1; i+=1)) ; do
./dagoc —c —start—1 —stop—=10 /mnt/project/setups/
TEST . sup
done
v2=$(date +%s)

let v3=$v2—-$vl
echo "Finished: " ‘date’
echo "Seconds used: " $v3

Listing 7: Script for extracting runtime for Condor

# Get time used from Condor log file
# Useage :
# ./this_script.sh nameOfLogFile.log

#1/bin/bash

# Get submit time and last job end time
t0=$(grep "Job submitted" $1 | head —m 1 | \
grep —o [0—9][0—=9]:[0—9][0—9]:[0—9][0—9])
t1=$ (grep "Job terminated" $1 | tail —m 1 | \
grep —o [0—9][0—=9]:[0—9]|0—-9]:]0—-9][0—9])

# Convert to seconds and find total time
s0=$(date —date=$t0 +%s)

s1=%(date —date=$t1 +%s)

let s=$s1—$s0

# Print results

echo "File:" $1
echo "Time:" $s "seconds"
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Listing 8: Condor DAGMan script

# DAGMan script for
# post processing

Job A dagoc.condor
Job B post.condor
Parent A CHILD B

Listing 9: The "post.condor’ script

# post.condor
# Post processing job for condor

universe = local

executable = post.sh

output — post.out.$(CLUSTER)
error = post.err.$(CLUSTER)
log = dagoc_dag.log

arguments = 1 10 GROUP.FIELD.FGasa
queue
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Listing 10: The result extraction bash script for single task jobs

# post.sh

# Post processing script

# (Single task jobs)

# Arguments :

# 1: start 2: stop

# 3: result tag 4: res_file name

#1/bin/bash
echo Collecting results from output files
s0=$ (date +%s)
if [ —f result.post |
then
rm result.post
fi
for i in $( ls $4%); do
echo JobID: $i >> result.post
grep Setup $i >> result.post
grep $3 $i >> result.post
done

echo
echo Getting best result from collection
echo

./findBestResult $1 $2 $3 result.post

echo

echo Running dagoc with the best setup
chmod 775 postDagmanScript.sh

./ postDagmanScript . sh

rm postDagmanScript.sh

echo

echo Done!

sl=$(date +%s)

let s=$s1—$s0

echo "Time used for post processing: " $s

"seconds"
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Listing 11: Code for extracting and comparing results

/%
x findBestResult. cpp
Wiz

#include <sstream>
#include <iostream >
#include <fstream >
#include <string >

using namespace std ;

//Input args: start stop resultTag

int main (int argc, char sxargv) {

if(arge !'= 5)

{
fprintf(stderr, "Wrong # of arguments!\n");
return 1;

}

//Get input parameters

int start = atoi(argv|l]);
int stop = atoi(argv|2]);
string tagResult = argv|[3];

string tagSetupFile("Setup file:");

string line;

double bestResult = —1.0;

string setupFilePath;

ifstream myfile (argv[4]);

if (myfile.is open())

{

while (! myfile.eof () )

{
getline (myfile,line);
if(line.find (tagSetupFile ,0) != string::npos)
{

//Save temporary best setup file path

string tmpSetupFilePath = line.substr(tagSetupFile.

length ()

//Read nezxt line if "Setup Path" tag found

getline (myfile ,line);

if(line.find (tagResult ,0) = string ::npos)

{

cout << "Did not find result tag for" <<
tmpSetupFilePath << endl;

continue;
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43 //If "Result Tag" found parse the result

44 double tmpRes = —1.0;

45 string res = line.substr(line.find(":",0)+1);

46 istringstream i(res);

47 if (!(i >> tmpRes))

48 {

49 cout << "Res: " << res << endl;

50 cout << "Could not parse result" << endl;

ol continue;

52 }

53

54 //Save new best result and setup file path

55 if ( tmpRes > bestResult)

56 {

57 bestResult = tmpRes;

58 //Remove last point

59 setupFilePath = tmpSetupFilePath .substr (0,
tmpSetupFilePath .length ()—1);

60 }

61 }

62 }

63 myfile.close () ;

64

65 //Create script with final dagoc ezecution
66 ofstream outputFile;

67 outputFile.open("postDagmanScript.sh");

68 if(outputFile.is_open())

69 {

70 outputFile << "#!/bin/bash\n";

71 outputFile << "./dagoc —c —start=" << start << " —
stop=" << stop << " " << setupFilePath << " >
DAGOCRESULT .RES\n";

72 outputFile.close ();

73 }

74 else cout << "Unable to open output file" << endl;

75

76 //Print results

7 cout << "Best result: " << bestResult << endl;

78 cout << "Setup Path: " << setupFilePath << endl;

9}

80 else cout << "Unable to open input file" << endl;
81

82 return O0;

83 }
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