
Grid Te
hnologies for Task Parallelizationof Short Jobs: Usability StudyTDT4590 - Complex Computer Systems,Spe
ialization Proje
tAtle RudshaugSupervisor: Anne C. ElsterDe
ember 19, 2007
Department of Computer and Information S
ien
eFa
ulty of Information Te
hnology, Mathemati
s andEle
tri
al Engineering

Abstra
tIn this proje
t, the Condor and Sun Grid environments are evaluated as toolsto s
hedule
omputations with lots of small tasks. Our strategy is to
olle
tmultiple tasks into meta-tasks and
ompare their performan
e to single singletask jobs. Other methods dis
ussed, in
lude altering sour
e
ode for
omput-ing multiple tasks internally, tuning the Grid s
hedulers and implementing aMaster-Worker paradigm. Part of Dago
, a
ommer
ial appli
ation from theOil/Gas industry, is used as the test
ase. Basi
 s
enarios
ontain between1-1000 tasks. Ea
h task takes between 2 and 20 se
onds and are
urrently
al
ulated serially on one pro
essor. The tasks use di�erent sets of �les forinput data, whi
h resides on a NFS server. Splitting su
h small tasks intoindividual jobs may, however, not be suitable for Grid environments. How-ever, positive results are observed through di�erent ben
hmarks, using ourproposed meta-task exe
ution. Two well known Grid middlewares, Condorand Sun Grid Engine, are used in the ben
hmarks and their ease of installand performan
e is
ompared in the pro
ess. The installation pro
edure forCondor is shown to be mu
h simpler, however, Sun Grid Engine generallyperformed better in our tests. Appendi
es
ontaining pra
ti
al dis
ussionson installation and Grid usage pro
edures as well as pra
ti
al examples ofjob s
ripts and
ode for handling result �les, are in
luded as guides to futureusers.

Contents1 Introdu
tion 41.1 Proje
t Goal . 41.2 Our appli
ation . 41.3 Outline . 52 Grids 52.1 Grid features . 72.1.1 Condor 6.8.6 . 72.1.2 Sun Grid Engine 6 (SGE) 82.2 Ben
hmarking grids . 93 Implementation Ideas 93.1 A golden rule . 103.2 S
heduler tuning . 103.3 Submitting multiple jobs in one submit �le 113.4 Bash s
ript with multiple exe
utions 113.5 Condor spe
i�
 tools . 123.5.1 DAGMan . 123.5.2 MW: Master-Worker 123.6 Handling the input/output �les for Dago
 123.6.1 Condor spe
i�
 �le handling 133.6.2 Result gathering with DAGMan 133.6.3 Result gathering with SGE 133.6.4 Problems with NFS �le a

ess 144 Model 144.1 Test parameter . 155 Ben
hmarks and Results 175.1 Serial exe
ution . 175.2 Results for Condor . 175.3 Results for Sun Grid Engine (without result �le transfer) . . . 205.4 Results for Sun Grid Engine (with result �le transfer) 205.5 Results when altering the Job-Task ratio 245.6 Result summary . 246 Con
lusions and Future Work 256.1 Future work . 26A Setting up the Grid 28A.1 Sun Grid Engine 6.1 . 28A.1.1 Possible node
on�gurations 29A.1.2 A

ess to �les . 292

A.1.3 Problems . 29A.1.4 Windows restri
tions 30A.2 Condor-6.8.6 . 30A.2.1 Possible node
on�gurations 30A.2.2 A

ess to �les . 30A.2.3 Heterogeneous nodes 31A.2.4 Problems . 31A.2.5 Windows restri
tions 32B Using the Grid 32B.1 Sun Grid Engine 6.1 . 32B.1.1 Submitting Jobs . 32B.2 Condor-6.8.6 . 33B.2.1 Preparing jobs for exe
ution 33B.2.2 Submitting Jobs . 33B.2.3 Di�erent settings . 34C S
ripts and Code Listings 34

3

1 Introdu
tionIn re
ent years, multi
ore ar
hite
tures and networks of workstations hasbe
ome popular parallell
omputing platforms. To utilize these new envi-ronments fully, software has to be (re)designed. A serial
ode
annot utilizemore than one
ore on a multi
ore pro
essor. However, multiple independentserial appli
ations will be able to utilize multiple
ores, if exe
uted at thesame time. Serial
ode
an also be rewritten to make use of multiple
ores,through OpenMP or posix threads. Hopefully, these will be better tools tohelp the domain developers of the future.1.1 Proje
t GoalThe main fo
us of this proje
t is to look at two main Grid middleware plat-forms and evaluate how easy and well these
an be used to support s
hedulingappli
ations with many individual small tasks. Using Grid te
hnology, mul-tiple
ores
an be utilized, even multiple
omputers with multiple
ores inparallel. Methods how to minimize s
heduling overhead using built in Gridmiddleware fun
tions are also
onsidered. Note that these methods do notin
lude altering the sour
e
ode in the appli
ation to a great extent.A typi
al o�
e environment is
onsidered. Here, the
olle
tion of work-stations will in most
ases be quite heterogeneous. Some ma
hines are up-graded while others are kept as is. Some nodes might use Windows or Ma
OS X while others use di�erent �avors of Linux. Binary
ompatibility be-tween these platforms will indu
e problems. Sometimes between di�erent�avors of Linux as well. An exe
utable
ompiled for one �avor of Linuxmight return an error on another, be
ause of missing or outdated librariesor other
auses. A Grid must be able to handle this. If jobs are distributed
arelessly the su

ess of ea
h job exe
ution
ould end up being quite ran-dom. Without any
onstraints, the Grid engine will send jobs to arbitraryfree nodes. The user will not know if their job will be exe
uted su

essfully orif it will return an error. A
ommon interfa
e to these resour
es is providedby di�erent Grid middlewares.1.2 Our appli
ationIn this proje
t, we
onsider a
ommer
ial appli
ation, Dago
, whi
h is a toolfrom the Oil/Gas industry. It is developed by a small, Norwegian software
ompany
alled Yggdrasil AS. The part of the appli
ation we are looking at,is a typi
al Parameter Sweep Appli
ation (PSA) [10℄. We
onsider the
om-putation of di�erent sized
olle
tions of small, equal-sized and independenttasks,
ommonly known as meta-tasks [16℄. The meta-tasks are
urrentlydesigned to be exe
uted serially on a single workstation. Ea
h task in ameta-task,
omputes a �xed amount of sour
e data from a list of di�erent4

input parameters. The �nal result of a meta-task is to be saved at the end.At �rst look, our appli
ation should be perfe
t for use in a Grid environment.However, the individual tasks are quite small, between 2 and 20 se
onds.An average task needs about 0.5MB of input data from multiple small �les.The exe
utable is about 22MB and needs about 1.5MB of
ustom libraries.If the program is to be exe
uted in database mode, it will need a

ess to an1-2MB sqlite3 database �le as well. For su
h short tasks, the s
heduling and�le distribution may be
ome a dominant fa
tor.1.3 OutlineThe remainder of this paper is organized as follows. Se
tion 2 presentsa general overview of Grid te
hnology and a des
ription of the two Gridmiddlewares used in this proje
t. Di�erent thoughts on how to solve theproblem is presented in Se
tion 3. Se
tion 4 des
ribes di�erent issues relatedto the ben
hmarks and the respe
tive Grid middlewares. Ben
hmarks andresults are shown in Se
tion 5. Se
tion 6
on
ludes the proje
t and dis
ussesfuture work.In Appendix A, issues
on
erning installation pro
edures for the respe
-tive Grid middlewares, are dis
ussed. Appendix B, des
ribes issues
on-
erning job submission for both Condor and SGE. The example s
ripts inAppendix C,
an be used as starting points for
reating other, more
omplexs
ripts.2 GridsGrids are often referred to as High Throughput Computing (HTC). A Grid isa
olle
tion of di�erent, privately owned,
omputer resour
es to form a typeof heterogeneous, virtual super
omputer for providing
omputing power forlarge-s
ale jobs [1, 2℄ . Their job is to distribute a high number of jobs e�-
iently, through a
ommon interfa
e, and provide long lasting
omputationtime.A simple Grid
an be formed by lo
al workstations, for example inside ano�
e environment. Every day there are hours of idle
omputer time during,for example, the lun
h hour, sta� meetings, after-o�
e hours and at night.In these periods, the workstations
an be used for various
omputations.If the lo
al resour
es are not enough, the number of resour
es
an be dra-mati
ally in
reased, by
onne
ting the lo
al Grid to remote Grids in otherlo
ations. The ultimate Grid would be the one with a

ess to all the
om-puting resour
es in the world. However, people are usually very relu
tant tolet other, unknown people use their hardware, at least while they are usingit themselves. So what
an be done to get permission to use these resour
es?Introdu
ing a
omputational e
onomy [3℄, is suggested as a good mo-tivator for people to share their resour
es over the Internet, making it a5

omputational power Grid. This also opens for smaller
ompanies to buyonly the resour
es they need to get their
urrent jobs done, and not makehuge investments in own infrastru
ture and
omputing power.Other features are needed in a Grid as well, to attra
t users and resour
eproviders. These in
lude a transparent interfa
e for resour
e allo
ation andadministration, fault toleran
e and di�erent se
urity and authorization tools.A se
ure environment is important, so the providers know their resour
es willnot be exploited [2℄.Grids are, however, not to be
onfused with
lusters. A
luster is typi-
ally a
olle
tion of identi
al nodes with the same pro
essor and OS, typi
ally
ontaining a stati
 number of nodes, all pla
ed in the same physi
al lo
a-tion. A Grid is a heterogeneous system [18℄, with di�erent types of nodes(e.g.
omputational or storage nodes), pro
essors and OS's. Grids are dy-nami
 in number and resour
es, while
lusters are generally more stati
 overtime. Another important feature is that Grids
an
ontain di�erent HPCenvironments, su
h as
lusters and super
omputers, in addition to other re-sour
es [13℄. Thus, a Grid
an represent a heterogeneous environment withthe possibility to utilize the power of super
omputers for less embarrassinglyparallel tasks as well.Grids
an be a
heap alternative to dedi
ated super
omputers, sin
e aGrid
an utilize idle time on already available workstations. These worksta-tions
an be very
heap and do not need spe
ial rooms or
ooling fa
ilitiesas large super
omputers do, unless a large number of nodes are
lusteredtogether. However, as Grids are heterogeneous systems, they are best suitedfor embarrassingly parallel jobs where the individual jobs are independentof ea
h other during exe
ution. There are several
ases where a
olle
tionof heterogeneous workstations is not a suitable repla
ement, e.g., for �negrained parallel tasks with high dependen
y between pro
esses. Here, ea
hjob is best run on its own
luster or super
omputer for optimal performan
e.Submitting multiple �ne grained jobs simultaneously to a Grid with a

ess tomultiple
lusters or super
omputers,
an give a
ombination of
oarse- and�ne grained job exe
ution. For example, a large job
onsisting of multipleindependent �ne-grained jobs,
an be automati
ally distributed by a Gridand be run
oarse grained on di�erent
lusters simultaneously [4℄.Di�erent tools have been developed to transparently handle the dynami
nature of Grid systems, as well as standards for developing Grid integratedappli
ations. E�
ient s
heduling and exe
ution of PSA's on a Grid is a big
hallenge for Grid developers. These appli
ations often
onsist of a largenumber of jobs where the �nal result is dependent on all the individualresults. These jobs must therefore be s
heduled and distributed e�e
tively,so not to delay the total exe
ution time. Methods in
luding re-use of
ommon�les between exe
utions and adaptive exe
ution to migrate jobs to providebetter resour
es, are some suggested solutions [9, 10℄.George Tsouloupas and Marios D. Dikaiakos [19℄ suggest a method for6

ranking resour
es in a Grid a

ording to a ranking fun
tion. They have de-veloped a tool
alled SiteRank, a module built on top of GridBen
h. With it,a user
an rank all resour
es in a Grid with respe
t to a spe
i�
 appli
ation.This tool
an be used to better utilize the resour
es in a Grid for any kindof job, in
luding the short ones presented in this paper.An example of a large Grid
an be seen at CERN. They are
urrentlydeveloping Grid tools for their Large Hadron Collider (LHC). They needan in
redible amount of storage and
omputation power, and are
onne
tingsites all over the world to their Grid to satisfy their need [7℄. Without a Grid,it would be impossible to maintain the data and
omputation throughputne
essary for the LHC proje
t.2.1 Grid features2.1.1 Condor 6.8.6Condor is a free Grid manager from the Condor team. It was born at theUniversity of Wis
onsin in the 1980's, as a
ombination of a do
toral thesison
ooperative pro
essing, the Crystal Multi
omputer and Remote Unix. It
reates a High-Throughput Computing (HTC) environment by opportunis-ti
ally utilizing workstations
onne
ted through a regular network, remoteas well as lo
al. The main features that makes this environment possible areClassAds, Che
kpointing & migrating and Remote System Calls [18, 15, 12℄.The ClassAds system is a powerful me
hanism for mat
hing jobs to ex-e
ution nodes. Users advertise their resour
e needs for a job and Condormat
hes them with the resour
e ads for the available workstations. Thisway, the ne
essary resour
es are a
quired to best mat
h ea
h job.Che
kpointing is a system for transparently moving already running jobsfrom one workstation to another, if ne
essary. This will, for example, happenwhen a user returns from lun
h and starts using his or her workstation. Con-dor will only s
hedule a job to a node whi
h has been idle for a prede�nedamount of time, thus not bothering the owners of the respe
tive resour
es.Ea
h running job is regularly and transparently
he
kpointed during exe
u-tion to make this possible. When a job migrates to another node, the newnode
an resume exe
ution from the last
he
kpointed state.Remote System Calls te
hnology, as with
he
kpointing, requires re-linking of the job exe
utable with spe
i�
 Condor libraries. The RemoteSystem Calls feature preserves the submitting node's lo
al exe
ution envi-ronment, by redire
ting a jobs I/O me
hanisms ba
k to the submitting node.Thus, distributing the exe
utables and its input �les is not ne
essary prior tojob exe
ution, as this is handled automati
ally. It also gives a user a

ess tothe exe
uting node without having a login a

ount on it. There are however anumber of limitations1 to jobs whi
h are to support
he
kpointing, in
luding1http://www.
s.wis
.edu/
ondor/manual/v6.8.5/1_4Current_Limitations.html7

running them on Windows nodes. If for some reason the exe
utable
annotbe relinked to run in the standard Condor universe, e.g., no a

ess to thesour
e
ode, the exe
utable
an be run unaltered in the �vanilla� universeinstead. However, when using this universe, �le transfer has to be spe
i�edby the user in the submit s
ript, as des
ribed in Appendix A.2.2.To run jobs with dependen
ies, Condor in
ludes a feature
alled DAG-Man. This is a Dire
ted A
y
li
 Graph Manager, where rules for job depen-den
ies and pre- and post pro
essing s
ripts
an be set up in a spe
ial �le.The pre- and post s
ripts are run lo
ally on the submit host. When thistype of job is submitted, the DAGMan takes
are of the order of exe
utiona

ording to the rules spe
i�ed by the user. However, ea
h job de�ned in aDAG still needs its own regular Condor submit s
ript.Distributed Resour
e Management Appli
ation API (DRMAA) 1.0 Javaand C bindings are also supported. This API
an be used to integrate Gridte
hnology into appli
ations, instead of manually submitting jobs through a
onsole.Many other proje
ts are available for use with Condor, in
luding a �lehandling system
alled Stork, a system monitoring tool
alled Hawkeye, amaster-worker paradigm
alled MW, and more.2.1.2 Sun Grid Engine 6 (SGE)Sun Grid engine is a free Grid manager from SUN [5℄. It is now an opensour
e proje
t, with support
ontra
ts available from Sun. One of the newestfeatures in v6.1 is Resour
e Quotas, a feature for
ontrolling resour
es in theGrid. A

ess rules to di�erent parts of a Grid
an be set up for users, groups,proje
ts, et
. for �ne grained
ontrol of the available resour
es. A CondorClassAds alternative in SGE is Boolean operations. This is a tool for
reatingrules for spe
ifying resour
e needs with AND, OR and NOT operations.Job dependen
ies
an be managed using the Grid Engine Array Job In-terdependen
y (ARI) 2 feature. This, in
ombination with prolog- and epilogs
ripts, gives similar fun
tionality for SGE, as DAGMan does for Condor.Exe
ution of parallel jobs (MPI or PVM) is supported through a dedi-
ated interfa
e, as with Condor. SGE also supports
he
kpointing and mi-gration among other tools and fun
tions.A GUI interfa
e for easy
on�guration and administration of queues, jobsand nodes is available for Linux. However, all features in this GUI are alsoavailable from the
ommand line.Distributed Resour
e Management Appli
ation API (DRMAA) 1.0 Javaand C bindings are supported on the Linux platform, but not on Windows.2http://gridengine.sunsour
e.net/news/GE61ARIsnapshot-announ
e.html8

2.2 Ben
hmarking gridsThere are not many tools available for ben
hmarking Grid environments.Their heterogeneous nature makes this
hallenging
ompared to traditionalparallel, high performan
e systems. Liang Peng et al. [14℄, have done somework on ben
hmarking the performan
e between SGE and Globus in termsof CPU utilization and turnaround time. They noti
ed that the overheadintrodu
ed by the Grid middlewares was negligible for large problem sizes. Intheir
ase, the overhead a
tually
hanged very little even when the problemsize grew signi�
antly. For short jobs, however, they found that the overhead
an be quite signi�
ant, sometimes half the total time for a job. They alsofound that the Globus middleware generally had more overhead than SGE.The signi�
ant overhead for small jobs is what we are
onsidering in thisproje
t.3 Implementation IdeasIn this se
tion, di�erent ideas on how the respe
tive Grid middlewares
an beused to support our appli
ation, are dis
ussed. Di�erent issues
on
erningthe lo
ation of input and output �les are also
onsidered.Our PSA may
onsist of thousands of permutations, where ea
h permu-tation needs to be
omputed to �nd the �nal result. Lu
kily, Grid systemssupport methods for submitting multiple jobs automati
ally, as des
ribedbelow.In a Grid environment, all nodes must have a

ess, lo
ally or remotely,to all resour
es needed by the tasks they are given. If not, the tasks willobviously return an error. In most
ases, these �les are lo
ated in remotepla
es, e.g., on a NFS server for easy administration. For ea
h task, these�les have to be transferred to the respe
tive exe
ution nodes. Sin
e the tasksin our appli
ation are so short, this extra �le transfer overhead is fa
tor tobe
onsidered. Sin
e many �les are
ommon between the di�erent tasks,methods for
olle
ting multiple tasks in one job is the main fo
us in thisproje
t. A
olle
tion of multiple independent tasks is known as a meta-task[16℄ and will be used throughout this paper.The following methods are
onsidered to minimize overhead:
• Altering the sour
e
ode to exe
ute multiple
al
ulations from input inthe argument list
• Tuning the s
hedulers for faster submitting of jobs
• Bash s
ript with multiple exe
utions
• DAGMan and Master-Worker features in Condor9

3.1 A golden ruleA golden rule is to exploit appli
ation domain optimizations before platformdomain ones. Altering the sour
e
ode of one appli
ation, is not a general so-lution a
ross other appli
ations, like the solutions dis
ussed below. However,in many
ases it should be possible to make an appli
ation exe
ute multipletasks internally, by altering the input arguments. When altering the
odeto in
lude multiple
omputations, result
omparison between tasks
an beimplemented as well, and only the best result would have to be returned tothe submit node. However, how mu
h time is really saved by making theappli
ation do multiple exe
utions internally,
ompared to exe
uting mul-tiple single-exe
utions in a bash s
ript? Time will be saved by not havingto start and stop the exe
utable for every task. The question is if the timesaved for ea
h exe
ution is noti
eable
ompared to simply spe
ifying multiple
omputations in a bash s
ript.This may
ome down to whi
h is easier in the long run, depending on theappli
ation. De�ning multiple runs in a s
ript, ea
h with di�erent input, oraltering the sour
e
ode to open for
al
ulation of multiple tasks internally,in one single exe
utable.3.2 S
heduler tuningThe default s
heduler settings might not be optimal for every
ompute farmenvironment. Di�erent a
tions
an be taken to �ne tune the s
hedulers foroptimal performan
e in spe
i�
 environments. The SGE s
heduler supportsdi�erent tools3 for debugging and validation of s
heduled jobs. These
anbe turned on or o�, depending on the spe
i�
 needs. When the Grid is inprodu
tion state, these tools may not be ne
essary all the time and
an beturned o� by the administrator.For example,
on�guring the SGE s
heduler for immediate s
heduling,will in
rease the throughput of the
ompute farm. The only limitation is thepower of the ma
hine hosting the master and s
heduler. If this ma
hine isoverwhelmed by work, the s
heduler
an be
on�gured to run jobs only in a�xed s
hedule interval, whi
h also is the default setting.In Condor, di�erent parameters4
an be tuned in the
on�guration �lesfor faster s
heduling. One of Condor's default behaviors, is not to s
hedulejobs to non-idle nodes. It also preempts and/or suspends jobs, if the
urrentnode be
omes unavailable due to user intera
tion. These features
an bedisabled, if seen �t for the
ompute farm.3http://do
s.sun.
om/app/do
s/do
/820-0698/enfky?a=view4http://www.
s.wis
.edu/
ondor/CondorWeek2007/large_
ondor_pools.html10

3.3 Submitting multiple jobs in one submit �leWith Condor, one
an submit multiple jobs in one submit �le simply bystating the number of jobs with the �Queue�
ommand, e.g., �Queue 50� for50 jobs. Ea
h job
an be identi�ed with the $(CLUSTER) ma
ro and sub-jobs with the $(PROCESS) ma
ro. In this
ase, ea
h sub-job gets a uniqueidenti�er from 0-49. Di�erent input parameters
an be de�ned in the submits
ript, by using di�erent ma
ros. Using this multi submit method is similarto submitting 50 jobs manually, thus it does not remove any s
hedulingoverhead. It only saves the user time by instantly queuing X number of jobsautomati
ally.For SGE, the alternative is
alled Array Jobs. Array Jobs
an be spe
-i�ed either in the submit s
ript by adding �#$ -t �rst-last:step�, or as anargument to the SGE submit-to-queue binary qsub. Instead of the $(PRO-CESS) ma
ro in Condor, SGE de�nes a set of environment variables for thearray job, to identify the task and task range. To submit an array job fromthe
ommand line, type the following when submitting the job: qsub -t 1-10:2 s
ript.submit. This will queue 5 jobs with step 2. The tasks will getSGE_TASK_ID 1, 3, 5, 7 and 9. SGE_TASK_ID, SGE_TASK_FIRSTand SGE_TASK_LAST are environment variables set by SGE for this par-ti
ular array job. The s
heduling pro
ess is similar to Condor's Queue X
ommand. Ea
h job is s
heduled individually, but time is saved by auto-mati
 queuing of multiple jobs at the same time. The environment variables
an be used to automati
ally sele
t the
orre
t input �les for the respe
tivetasks.3.4 Bash s
ript with multiple exe
utionsThe exe
utable in Condor
an either be a binary exe
utable or a bash s
ript.This is de�ned in the submit s
ript with the argument �exe
utable = �le-name�. For meta-tasks, multiple exe
utions
an be spe
i�ed in a bash s
riptand the binary
an be transferred as an input �le. Thus, the exe
utableis only transferred on
e for the whole meta-task, and is reused by all thetasks spe
i�ed in the bash s
ript. Ea
h task's result, will be appended tothe spe
i�ed output �le if written to stdout. If the appli
ation
reates anynew �les, these will also be transferred ba
k to the submitter automati
allyby Condor. Thus, the exe
ution of multiple tasks does not overwrite anyintermediate results.SGE's submit s
ript is very similar to a regular bash s
ript. SGE spe-
i�
 �ags and options
an be de�ned dire
tly in this s
ript with �#$ -�agoption� notation. Multiple exe
utions
an therefore be de�ned dire
tly withbash arithmeti
's and submitted as is. However, SGE does not automati-
ally transfer any input �les. Its submit s
ript only invokes the remote host'senvironment as if it was invoked lo
ally. However, SGE supports prolog/epi-11

log s
ripts that
an perform any ne
essary pro
essing, in
luding �le transfer,before or after job exe
ution. These s
ripts are run on the exe
ution hostand not on the submit host, as for Condor's DAGMan. For SGE, the exe-
utable and input �les
an either be lo
ated on NFS for easy administration,transferred by a prolog s
ript or lo
ated lo
ally in the same path on everynode for minimum network tra�
.3.5 Condor spe
i�
 tools3.5.1 DAGManDAGMan makes it easy to de�ne job dependen
ies. The jobs in the DAGare regular Condor submit s
ripts and ea
h job is s
heduled individually.Therefore, DAGMan does not help to minimize s
heduling overhead of jobsin any way. It
an, however, help with post exe
ution result gathering, asdes
ribed in Se
tion 3.6.2.3.5.2 MW: Master-WorkerThe master-worker paradigm [17, 6℄
an be very qui
k for
olle
tions of shortjobs. The Condor implementation
onsists of a set of abstra
t
lasses, namelyTask, Driver and Worker. The Driver sits below your appli
ation and man-ages a pool of Workers and set of user de�ned Tasks. The Workers pi
k upTasks, does the user de�ned work on them, and returns result to the Driver.The implementation is spe
i�
 to ea
h appli
ation and will therefore involvealtering the existing
ode, if not implemented during initial development ofan appli
ation.Implementing MW in our appli
ation falls outside the s
ope of thisproje
t, as we are mainly looking at ways to use Grid tools to optimizeexe
ution of our appli
ation, without modifying the sour
e
ode.3.6 Handling the input/output �les for Dago
The amount of �les that are needed for ea
h task, as mentioned in Se
tion1.2, might be
ome a fa
tor for the total exe
ution time of our small jobs.Obviously, the job exe
utions would bene�t from reusing as mu
h of these�les as possible on ea
h node. One solution would be to have all the dataand the exe
utables lo
ally on all nodes, but this would be di�
ult to ad-minister. For easier administration all �les
ould be put on NFS, but thismight generate a lot of network tra�
, sin
e every
al
ulation has to a

essit for its input and exe
utable.By
olle
ting multiple tasks into meta-tasks, all
ommon �les would onlyhave to be transferred to the exe
ution node on
e, and
ould save a lotof tra�
. Hen
e, ea
h task in the job would only have to transfer a smallamount of �les, unique to that job, from the NFS server. All other �les would12

be already available lo
ally on the node for the duration of that parti
ularjob.3.6.1 Condor spe
i�
 �le handlingIn Condor, input �les
an be transferred from the submit host, by de�n-ing the ne
essary input �les in the submit s
ript. Using the option �trans-fer_input_�les = �le1,�le2,....�, these �les will be
opied next to the exe-
utable in the exe
ution node's spool dire
tory. However, transfer of wholedire
tory stru
tures is not support, only lists of spe
i�
 �les. See AppendixC for a Condor submit s
ript example with �le transfer.Sin
e the �Vanilla� universe is used (see Appendix B.2.1), the options�should_transfer_�les = YES� and �when_to_transfer_output = ON_EXIT�,are needed to spe
ify that the exe
utable and results are to be transferredbetween submit host and exe
ute host.3.6.2 Result gathering with DAGManWhen distributing our appli
ation onto a Grid, post pro
essing to �nd thebest result is ne
essary after all the
al
ulations are �nished . This
an beset up using job dependen
ies in DAGMan. Ea
h job has its own regularCondor submit �le, like the one shown in B.2.2. TheA solution was implemented, where the post pro
essing job was
on�g-ured to use the �lo
al universe�. This for
es the job to run on the submithost, where all the result �les are lo
ated. This job
ontains a s
ript thats
ans all the results �les, extra
ts the results and puts them all in one single�le. The
orresponding input parameters are saved as well. Regular Linuxtools su
h as 'grep' were used for this. Then, a short C++ program wasdeveloped that extra
ts the best result from the new single result �le (SeeAppendix C). The input parameters for the best result will then be used toexe
ute the task with the best result lo
ally, on the submit node. This willsave all the exe
ution data in the database. All this post pro
essing is doneautomati
ally, in sequen
e, by the last bash s
ript.3.6.3 Result gathering with SGEUsing the ARI fun
tionality mentioned in Se
tion 2.1.2, a post job resultgathering s
ript, similar to the one des
ribed above,
an be used. However,if NFS home dire
tories are not used, ea
h exe
ution host will have to transfertheir results to the submit host, before the �nal result
an be extra
ted. Filestaging5 with epilog s
ripts
an be used for this. File staging has to beenabled by the administrator. The epilog s
ript
an use di�erent variables,set by SGE, to identify whi
h �les are to be sent where. An epilog s
ript was5http://gridengine.sunsour
e.net/howto/�lestaging/�lestaging6.html13

written to transfer the output from SGE's array tasks ba
k to the submitterautomati
ally (see Appendix C).3.6.4 Problems with NFS �le a

essA

essing SQLite databases on NFS may indu
e problems. In some perfe
t,up to date NFS setups it might work. Others, in
luding ours, have issues with�le lo
king and databases. Sin
e our appli
ation uses an SQLite databasefor data a

ess, this problem was en
ountered while having this database�le remotely. A workaround in Condor, is to
opy the database �le as aninput �le by adding it in the submit s
ript. For SGE, a prolog s
ript
anbe used to transfer the
orre
t database before the job is exe
uted. Theother alternative is to have a lo
al
opy on ea
h node. This should not bea problem for the
al
ulations in our
ase, as the intermediate tasks are notwriting to the database, but only reading. However, administration mightbe
ome
umbersome and jobs may at times give false results if some nodesare not updated
orre
tly with new database �les.4 ModelIn this proje
t, the fo
us is on small o�
e environments with limited re-sour
es. A small 3-node Grid is used in the ben
hmarks. The nodes arebasi
 workstations
onne
ted through an Ethernet network. The Linux dis-tribution Fedora 7 is used as operating system on ea
h node. Furthermore,the workstations are quite di�erent, as shown in Table 1.Methods for distributing a
olle
tion of short independent tasks on multi-ple nodes, are
onsidered. If using multi
ore nodes in a Grid, one would alsobe able to exploit all the
ores available, without altering the sour
e
ode ofthe appli
ation. This is possible due to the Grid engine's ability to s
hedulea job for ea
h CPU on a node. Sin
e HyperThreading te
hnology is inter-preted as an extra CPU by the operating system, the [P4Hyper℄ ma
hinewill be s
heduled two jobs simultaneously, when used in a Grid. This mightgive a slight speedup, although not twofold sin
e the extra CPU dete
ted bythe OS is only virtual.All the nodes in the Grid are assumed to be idle during ben
hmarking.The default Condor setup ex
ludes nodes, whi
h have not been idle for aperiod of time, as
andidates for jobs. Sin
e one of the exe
ution nodes isalso used as the submit node, Condor is
on�gured in testing-mode to removethe waiting time for this node. This will make Condor's environment moresimilar to SGE's. The nodes are not used for other tasks while ben
hmarking,so not to bias the results. All tasks used in the ben
hmarks will be givenidenti
al input. The
al
ulated results
an then be used to verify that thesame
al
ulation is exe
uted in every task.14

Job exe
ution is handled di�erently by the two middlewares, as des
ribedin Appendix B.1.1. To support SGE's �le lo
ality
on
ept6, all the ne
essaryinput �les, in
luding the binary exe
utable, are assumed available on NFS.Hen
e, ea
h node
an �nd all spe
i�ed �les using the same paths, provided bySGE's bash s
ript. However, NFS �le
a
hing and bu�ering might bias theresult in SGE's favor. Some
ommon �les, in
luding the exe
utable, mightalready be available in the lo
al �le bu�er on the exe
ution nodes for thefollowing task, redu
ing �le transfer. Sin
e we are not using NFS mountedhome dire
tories, the results from SGE will be lo
ated on the lo
al homedire
tories for the submitting user on ea
h exe
ution node. This may be
omea signi�
ant fa
tor in the ben
hmark results, sin
e Condor automati
allytransfers all results ba
k to the submitting node. Hen
e, two ben
hmarkswill be run for SGE; one with and one without result �le transfer ba
k tothe submit node. An epilog s
ript is
on�gured, in SGE's queue, to be usedby ea
h task. After a job
ompletes, the epilog s
ript is exe
uted and theresults are transferred ba
k to the submitter using SCP. Password-less SSHkeys were distributed among the nodes prior to job exe
ution. Thus, se
ureauthenti
ation is handled automati
ally, without user intera
tion.The SQLite database �le needed by the appli
ation will, for SGE, belo
ally available on ea
h node during exe
ution. This is due to the NFS�le lo
king problems des
ribed in Se
tion 3.6.4. For Condor, its regular �lehandling will be used, and the database �le is transferred with the job alongwith the exe
utable binary or bash s
ript. However, the textual input �lesfor ea
h task will be lo
ated in the same NFS lo
ation for both SGE andCondor. Thus, Condor will transfer the exe
utable and database �le fromthe submit node to the exe
ute nodes, while SGE will transfer the exe
utablefrom the NFS server. The NFS server is in our
ase the same as the submitnode, namely the [P4Hyper℄.After all results are
opied ba
k to the submit host, the �nal result
an be
olle
ted using the method des
ribed in Se
tion 3.6.2. For Condor, DAGMan
an be used. However, DAGMan jobs are not s
heduled instantly, but onlyafter about 5 minutes by default. Thus, the ben
hmarks for Condor wererun by simply submitting the
omputation job s
ript dire
tly, sin
e this iss
heduled instantly. The time taken to �nd the �nal result is therefore notin
luded in the numbers for either Condor or SGE. However, the �nal s
riptis run manually and the extra time used is given in the results.4.1 Test parameterWalltime is used as the parameter to
ompare the time taken to exe
ute Xvery short tasks serially versus distributing them on a Grid. We are lookingfor speedup in the range of se
onds and minutes, not
lo
k
y
les, hen
e the6http://gridengine.sunsour
e.net/howto/nfsredu
e.html15

Table 1: Workstation spe
i�
ations[Athlon64℄ [P4Hyper℄ [Athlon32℄Pro
essor AMD Athlon64 Intel Pentium 4 AMD AthlonExtras 64-bit support HyperThreading N/ASpeed 3500+ 3.0Ghz 2500+RAM 2GB 1GB 1GBGrid job Submit/Exe
ute Master/Submit/Exe
ute Submit/Exe
uteOS Linux Fedora 7
hoi
e of timing parameter granularity. The following tests were run:
• Time used serially on ea
h of the nodes
• 3 runs of single task jobs on both Condor and SGE
• 3 runs of meta-tasks on both Condor and SGE
• 3 runs of single task jobs and meta-tasks on SGE, without result �letransfer
• Altering the job-task ratio for 1000 jobsThe ben
hmarks are run 3 times to see if the [P4Hyper℄ ma
hine will giveany signi�
ant di�eren
e in the total exe
ution time, as well as to verifythe results. HyperThreading does not nearly give double the
omputationpower, hen
e, two jobs running simultaneously on the [P4Hyper℄ ma
hinemight use longer time altogether than if exe
uted on two di�erent nodes.Another ben
hmark where the the job-task ratio for 1000 tasks is altered,is also performed to see if there is room for �ne-tuning the amount of taskssent to di�erent nodes.The number of jobs were not
hosen through an empiri
al study, butarbitrarily only to
ompare the di�erent ben
hmarks. The range was
hosenbetween 10 to 1000 tasks, to
over our appli
ation's usual task range.The a
tual timings are extra
ted from log �les,
apturing the submit timeand the end time for the last task in the job. In Condor, the user spe
i�esthe log �le name, in whi
h the submit, start and stop times for ea
h taskin a job are re
orded. A bash s
ript is used to automati
ally extra
t and
al
ulate the time used for the total job (See Appendix C).SGE has a tool, �qa

t� , whi
h extra
ts data about jobs, in
luding wall-time. Data from ea
h job is piped to a �le and another bash s
ript is usedto extra
t the timing results for the jobs (See Appendix C).16

5 Ben
hmarks and ResultsThis Se
tion shows the results from
omputing X small tasks serially,
om-pared to distributed on a small three node Grid. The ideas from Se
tion3.3 and 3.4 were used. A dis
ussion follows of the results from using thethese methods in both Condor and SGE. The serial results are shown �rstfor
omparison.As mentioned in Se
tion 4, �nding the �nal result was to be done man-ually for pra
ti
al reasons. The time used to
olle
t,
ompare and extra
tthe best result from 1000 tasks, was found to take about 3 se
onds. This isnegligible, when the
orresponding
al
ulation time is in the range of over athousand se
onds. For 100 tasks, it took less than one se
ond. Thus, thislast result
omparison is ignored in the results.5.1 Serial exe
utionTable 2 shows that the serial exe
ution time varies by about 27% betweenthe fastest and the slowest node. The average time taken between the threewas used later in the
omparisons. One single task is shown to take between3 and 4 se
onds. The same task was used in all ben
hmarks and this wasveri�ed by
he
king the result of the tasks.Table 2: Results for serial exe
utionMa
hine/nTasks 10 50 100 200 500 1000Athlon64 30 150 299 599 1498 2988P4Hyper 37 186 371 741 1853 3702Athlon32 38 192 382 764 1915 3826Average(se
.) 35 176 350.67 701.33 1755.33 3505.335.2 Results for CondorThe �rst Grid ben
hmark was simply submitting all the tasks in single taskjobs, using Condor's Queue X
ommand mentioned in 3.3. There is nosigni�
ant di�eren
e in the total time used by the di�erent runs, as shownin Table 3. Thus, the dis
ussion about the HyperThreading
apability ofone of the nodes from Se
tion 4.1, seems not have any signi�
ant impli
ationfor single task jobs. However, sin
e all three ben
hmarks are identi
al, thes
heduling should be very similar in ea
h run.Sin
e ea
h task only takes 3-4 se
onds, s
heduling and �le transfer over-head might add a signi�
ant delay to the total job exe
ution time. Theresults in Table 4,
ompared to Table 3, show that this is indeed the
ase.In the meta-task test, multiple tasks were sent in fewer jobs, lowering the17

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
on

ds
)

Number of Tasks

Calculation time Serial vs. Condor

Serial Single Task Jobs Meta-tasksFigure 1: Cal
ulation time serial vs. CondorTable 3: Condor single task job exe
ution timeRun/nJobs 10 50 100 200 500 10001 34 149 275 543 1353 27132 34 142 277 552 1362 27443 35 143 278 540 1358 2742Average(se
) 34.33 144.67 276.67 545 1357.67 2733Table 4: Condor meta-task exe
ution timeRun/Jobs x Tasks 5x2 5x10 10x10 10x20 10x50 10x1001 30 91 183 338 799 15772 30 94 181 336 802 15753 30 95 181 335 800 1577Average(se
) 30 93.33 182.67 336.33 800.33 1576.33Table 5: Speedup using Condor
ompared to serial exe
utionnTasks 10 50 100 200 500 1000Single task jobs 1.02 1.22 1.27 1.29 1.29 1.28Meta-tasks 1.17 1.89 1.93 2.09 2.19 2.2218

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 100 200 300 400 500 600 700 800 900 1000

S
pe

ed
up

Number of Tasks

Speedup Serial vs. Condor

Single Task Jobs Meta-tasksFigure 2: Speedup serial vs. Condor
s
heduling and �le transfer delays
onsiderably as the task
ount in
reased.There is an even smaller di�eren
e in time between the di�erent runs inthis test than the former. One should think that if the [P4Hyper℄ ma
hinewas given two 100-task jobs while another node is idle, would give moredi�eren
e. Disabling the HyperThreading feature altogether, showed littledi�eren
e in the timing results for Condor. Furthermore, more ben
hmarkswith di�erent job-task ratios, should be run for a more se
ure
on
lusion.This will be
onsidered future work.Table 5 shows the speedup of the two former ben
hmarks. Sending ea
htask as a single task job peaks at about 1.29 speedup, whi
h is not verygood keeping in mind the use of three times the
omputing power. Meta-tasks, however, show a mu
h higher speedup. Thus, it seems that for su
hshort tasks as in our
ase (3-4 se
), one
an gain a lot from submittingmultiple tasks together, when using Condor. A speedup of 2.2 is seen for1000 tasks
ompared to serial exe
ution, whi
h in turn is a speedup of fa
tor1.73
ompared to single task jobs. Fewer result �les are transferred ba
k,though their size are larger a

ording to the number of tasks in the respe
tivejobs. 19

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
on

ds
)

Number of Tasks

Calculation time Serial vs. SGE, no result transfer

Serial Single Task Jobs Meta-tasksFigure 3: Cal
ulation time serial vs. SGE (no result transfer)5.3 Results for Sun Grid Engine (without result �le transfer)Table 6 shows very good results for single task jobs on SGE, even faster thanCondor's meta-task exe
utions. Compared to the average serial
al
ulationtime, a speedup fa
tor of the number of nodes used in this small Grid isseen. This shows that all the extra �le transferring done by Condor
reatesa signi�
ant amount of overhead. Apparently, SGE has nearly nonexistentoverhead for these parti
ular tasks when not transferring the results ba
k tothe submitter.Table 7 shows an interesting result. It a
tually shows slower performan
efor meta-tasks than for single task jobs. Some tweaking of the job-task ratiowas performed and generally showed that the more jobs submitted (withfewer tasks), the
loser the timings
ame to the single task jobs. Thus, itseems that for SGE, single task jobs submitted as array jobs, will performequal to or better than meta-tasks when not transferring the results ba
k tothe submitter after ea
h exe
ution.5.4 Results for Sun Grid Engine (with result �le transfer)In this ben
hmark, an epilog s
ript is used to transfer the result �les for alltasks ba
k to the submit host. This ben
hmark is run for better
ompari-son to Condor, as Condor transfers all result �les ba
k to the submit host20

Table 6: SGE single task job exe
ution time (no result transfer)Run/nJobs 10 50 100 200 500 10001 26 59 117 249 588 11452 31 59 116 227 587 11453 30 60 118 242 571 1147Average(se
) 29 59.33 117 239.33 582 1145.67Table 7: SGE meta-task exe
ution time (no result transfer)Run/Jobs x Tasks 5x2 5x10 10x10 10x20 10x50 10x1001 21 64 130 259 644 12932 21 65 130 259 644 12873 20 65 131 258 648 1294Average(se
) 20.67 64.67 130.33 258.67 645.33 1291.33Table 8: Speedup using SGE
ompared to serial exe
ution (no result transfer)nTasks 10 50 100 200 500 1000Single task jobs 1.21 2.97 3.00 2.93 3.02 3.06Meta-tasks 1.69 2.72 2.69 2.71 2.72 2.71

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 0 100 200 300 400 500 600 700 800 900 1000

S
pe

ed
up

Number of Tasks

Speedup Serial vs. SGE, no result transfer

Single Task Jobs Meta-tasksFigure 4: Speedup serial vs. SGE (no result transfer)21

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
on

ds
)

Number of Tasks

Calculation time Serial vs. SGE, with result transfer

Serial Single Task Jobs Meta-tasksFigure 5: Cal
ulation time serial vs. SGE (with result transfer)automati
ally. Both stdout and stderr will be transferred for
omparison, al-though one
an
hoose not to transfer the stderr �les if they are not needed.A
tually, sin
e the epilog transfer s
ript is a regular bash s
ript, one
an
hoose to transfer whatever, in whi
hever way found suitable.The results in Table 9, shows the exe
ution time with result transferba
k to the submit host. Compared to the single task jobs without result�le transfer from Table 6, the numbers are generally higher, espe
ially forsmall task
olle
tions. It is a
tually slower than serial exe
ution for 10 and50 tasks.In Table 10, it is observed that the meta-tasks with the
hosen job-taskratios, perform almost equally well as single task jobs. This result is quitedi�erent from the former ben
hmark, shown in Table 7, where mu
h slowerperforman
e was observed for meta-tasks than for single task jobs. Thus, itseems that the extra �le transferring levels out the performan
e between thetwo.In Table 11, it is observed that when transferring result �les for SGE,the performan
e is almost identi
al for both meta-tasks and single task jobs.In Se
tion 5.5, it is observed that this was arbitrary, and that it is possibleto tweak the submit s
ripts in favor of meta-tasks.22

Table 9: SGE single task job exe
ution time (with result �le transfer)Run/nJobs 10 50 100 200 500 10001 160 207 267 388 750 13542 161 207 270 389 752 14613 161 206 270 390 753 1465Average(se
) 160.67 206.67 269 389 751.67 1426.67Table 10: SGE meta-task exe
ution time (with result transfer)Run/Jobs x Tasks 5x2 5x10 10x10 10x20 10x50 10x1001 168 200 277 396 746 13342 169 200 278 394 746 13353 168 200 278 395 745 1332Average(se
) 168.33 200 277.67 395 745.57 1333.67Table 11: Speedup using SGE
ompared to serial exe
ution (with resulttransfer) nTasks 10 50 100 200 500 1000Single task jobs 0.22 0.85 1.30 1.80 2.34 2.46Meta-tasks 0.21 0.88 1.26 1.78 2.35 2.63

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500 600 700 800 900 1000

S
pe

ed
up

Number of Tasks

Speedup Serial vs. SGE, with result transfer

Single Task Jobs Meta-tasksFigure 6: Speedup serial vs. SGE (with result transfer)23

Table 12: Results for 1000 tasks when altering the job-task ratioGrid/Jobs x Tasks 10x100 20x50 40x25 100x10Condor 1576 1477 1462 1535SGE (�le transfer) 1333 1290 1246 12635.5 Results when altering the Job-Task ratioTable 12 shows that there is room for �ne tuning the job-task ratio forbetter performan
e. It was observed, during the ben
hmarking, that the[P4Hyper℄ ma
hine was usually the last ma
hine doing
omputations, ontwo jobs simultaneously. Hen
e, for jobs with large amounts of tasks, thetwo other ma
hines were idle for a long time. Thus, it seems that HyperThreading might a
tually give worse performan
e altogether, when used onnodes i a Grid. However, this ma
hine
ould also be looked at as two slowerma
hines, sin
e ea
h of its two jobs take about twi
e as long to �nish as oneon the [Athlon64℄. Thus, it seems that this environment
ould bene�t fromdynami
 s
heduling, giving larger jobs to more powerful ma
hines.In any multi user Grid environment, however, the idle ma
hines would beused to
ompute tasks from other jobs, by other users. Thus, when speakingof overall throughput in a Grid, this dis
ussion is not equally important.The otherwise idle nodes will be utilized as long as there are other jobs inthe queue.Furthermore, the trend today is multi
ore pro
essors without HyperThreading te
hnology, eliminating the dis
ussion altogether. However, thedynami
 s
heduling idea still stands.5.6 Result summaryTable 13 summarizes the speedup from all our ben
hmarks. It was ob-served, that the speedup qui
kly peaks at around 3, using SGE on threeheterogeneous nodes. However, when looking at the details of this parti
ularben
hmark, this speedup did not in
lude the transfer of result �les from theexe
ution nodes ba
k to the submit node. When in
luding the �le trans-ferring into the equation, the speedup, for SGE, was 2.46 for 1000 singletask jobs. Another interesting result was a
tual slowdown when submittinga small number of tasks on SGE. Condor, however, was observed to havemu
h better performan
e for small number of tasks.The results show that SGE was about twi
e as fast as Condor for singletask jobs, when transferring the results ba
k to the submitter. Overall,Condor had bad performan
e when distributing the tasks in our appli
ation,using single task jobs. Using three nodes, only a peak speedup of 1.29 wasobserved. For
omparison, an extra test was performed for Condor. This test24

Table 13: Summary of speedup from all ben
hmarks(Originally shown in Tables: 5, 8 and 11)Ben
hmark/nJobs 10 50 100 200 500 1000Condor single task 1.02 1.22 1.27 1.29 1.29 1.28Condor meta-task 1.17 1.89 1.93 2.09 2.19 2.22SGE single transf. 0.22 0.85 1.30 1.80 2.34 2.46SGE meta-task transf. 0.21 0.88 1.26 1.78 2.35 2.63SGE single no-transf. 1.21 2.97 3.00 2.93 3.02 3.06SGE meta-task no-transf. 1.69 2.72 2.69 2.71 2.72 2.71used the same bash s
ript as for SGE's single task jobs, removing the transferof the database �le, as opposed to the regular Condor exe
ution. This gavea speedup of 1.43 for 1000 tasks, whi
h was only slightly better
ompared tothe original Condor ben
hmark. Thus, it seems that transferring the binaryfrom the submit node or fet
hing it from an NFS server, in
luding removingthe database transfer overhead, yield only slightly better performan
e.In Se
tion 5.5, it is observed that there is room for �ne-tuning the job-task ratio for meta-tasks. A performan
e in
rease of 7-8% was observed,using 40 jobs with 25 tasks
ompared to 10 jobs with 100 tasks.The ben
hmarks in this paper did not in
lude the
olle
tion of the endresults. The user will expe
t the same end results in the database as forserial exe
ution without having to manually enter it. Without any means ofautomati
ally extra
ting and saving the end result from the distributed
al-
ulations, users may be
ome more relu
tant towards using Grid te
hnology.The time saved in distributing
al
ulations is lost in
olle
ting and extra
t-ing the end result. For Condor, using DAGMan possible solution, where one
ould add a result gathering job, as dependent on the rest of the
al
ulations.For SGE, the newly released ARI fun
tionality
ould be used to add postjobs dependent on an array of jobs. These methods are only proposed in thisproje
t, and not thoroughly tested.6 Con
lusions and Future WorkIn this proje
t, we have seen how a
ommer
ial appli
ation, developed se-rially without any initial thought of parallelism or distributed
al
ulationfun
tionality,
an bene�t from being used in a Grid environment. Two wellknown Grid middlewares, Condor and Sun Grid Engine, were
onsidered inthe pro
ess, and ease-of-use evaluated. A dis
ussion of installation pro
e-dures and problems
an be found in the Appendi
es as well as pra
ti
al jobsubmission examples for the respe
tive middlewares.25

Due to the short exe
ution time of our tasks, di�erent methods for mini-mizing s
heduler overhead were proposed, in
luding altering the sour
e
odeof our appli
ation to make it exe
ute multiple tasks internally, tuning theGrid s
hedulers, and implementing the Master-Worker paradigm.The �rst alternative would entail altering the input parameter list and thesour
e
ode
orresponding to the task
omputations, to make the appli
ationexe
ute multiple tasks internally. This was believed not to have
onsiderablespeedup
ompared to our multiple task job proposal. The only time savedwas assumed to be the starting and stopping of the exe
utable for ea
h task,and, if internal result
omparison was implemented, fewer �les would have tobe
ompared by the last result s
ript. However, this was only an assumptionand needs further evaluation before a
on
rete
on
lusion
an be taken.In this proje
t, however, only methods using regular Grid submit s
riptswere analyzed. Thus, all speedup results were gained without altering thesour
e
ode in any way.Grid s
hedulers have multiple parameters and features whi
h
an be �netuned in di�erent ways. By removing unne
essary features and �ne tuningdi�erent timing
onstraints, s
heduler overhead
an be redu
ed. Removableand tunable features in
lude s
heduler monitoring, job validation, load ad-justments and di�erent s
heduling timings. More information
an be foundon the web pages for respe
tive Grid systems.Implementing the Master-Worker paradigm proposed for Condor, is
on-sidered to give easy a

ess to a heterogeneous environment. The MW-paradigm des
ribes three
lasses that would have to be implemented, namelyDriver, Task and Worker. These
lasses are used to des
ribe, generate andexe
ute tasks
oherently and fast. MW is shown to be easily implementedin
ertain serial appli
ations, with good results [6℄. However, this solutionwas found to be outside the s
ope of this proje
t.The results gained in this proje
t, show that the e�ort needed for in-stalling a lo
al Grid system in an organization, may be well worth it. Au-tomati
 distribution of tasks to nodes with idle CPU
y
les, would givee�e
tive utilization of already available
omputing resour
es. For
ertainappli
ations, no sour
e
ode needs to be altered to make good use of a Gridenvironment.6.1 Future workIn future work, dynami
 s
heduling of the meta-tasks, sized to better �t thedi�erent nodes in the Grid, would be of interest. From Table 2, it showsthat the Athlon64 ma
hine is about 27% faster than the Athlon32. Couldthe Athlon64 be sent bigger meta-tasks than the Athlon32 to make them�nish at the same time? Or will it level out automati
ally when enough jobsare in the queue?Methods for dynami
 s
heduling is found important for heterogeneous26

environments, like Grids. Di�erent methods are proposed to handle di�er-ent aspe
ts of heterogeneous environments. These in
lude, handling dynami
network bandwidth, de
reasing makespan of meta-tasks of di�erent size, andon-line dynami
 s
heduling algorithms, using dedi
ated s
heduling pro
es-sors [16, 8, 11℄. Combining SiteRank [19℄ with a method for dynami
 sizingof meta-tasks, is an interesting idea for future work.Referen
es[1℄ J.H. Abawajy. Job s
heduling poli
y for high throughput
omputing en-vironments. Parallel and Distributed Systems, 2002. Pro
eedings. NinthInternational Conferen
e on, pages 605�610, 17-20 De
. 2002.[2℄ Mark Baker, Rajkumar Buyya, and Domeni
o Laforenza. Grids andgrid te
hnologies for wide-area distributed
omputing. Softw. Pra
t.Exper., 32(15):1437�1466, 2002.[3℄ R. Buyya, D. Abramson, and J. Giddy. E
onomy driven resour
e man-agement ar
hite
ture for
omputational power grids, 2000.[4℄ EGEE. http://egee.
esnet.
z/en/info/appli
ations.html.[5℄ Sun Grid Engine. http://www.sun.
om/software/gridware/.[6℄ Goux, J.-P., Kulkarni, S., Linderoth, J., and Yoder, M. An enablingframework for master-worker appli
ations on the
omputational grid. InThe Ninth International Symposium on High-Performan
e DistributedComputing, pages 43�50, May 2000.[7℄ GridCafé. http://grid
afe.web.
ern.
h/grid
afe/gridat
ern/l
g.html.[8℄ B. Hamidzadeh, D. J. Lilja, and Y. Atif. Dynami
 s
heduling te
h-niques for heterogeneous
omputing systems. Con
urren
y: Pra
ti
eand Experien
e, 7(7):633�652, 1995.[9℄ J. Herrera, E. Huedo, R. S. Montero, and I. M. Llorente. Exe
utionof typi
al s
ienti�
 appli
ations on globus-based grids. In ISPDC '04:Pro
eedings of the Third International Symposium on Parallel and Dis-tributed Computing/Third International Workshop on Algorithms, Mod-els and Tools for Parallel Computing on Heterogeneous Networks (ISPD-C/HeteroPar'04), pages 177�183, Washington, DC, USA, 2004. IEEEComputer So
iety.[10℄ Eduardo Huedo, Ruben S. Montero, and Igna
io M. Llorente. Experi-en
es on adaptive grid s
heduling of parameter sweep appli
ations. pdp,00:28, 2004. 27

[11℄ Hung-Yuan; Liu Kang-Yuan; Chang Gei-Ming; Lien Chin-Chih Lee,Liang-Teh; Chang. A dynami
 s
heduling algorithm in heterogeneous
omputing environments. Communi
ations and Information Te
hnolo-gies, 2006. ISCIT '06. International Symposium on, pages 313�318, O
t.18 2006-Sept. 20 2006.[12℄ Miron Livny, Jim Basney, Rajesh Raman, and Todd Tannenbaum.Me
hanisms for high throughput
omputing. SPEEDUP Journal, 11(1),June 1997.[13℄ Liang Peng, Lip Kian Ng, and Simon See. Yellowriver: A �exible highperforman
e
luster
omputing servi
e for grid. In HPCASIA '05: Pro-
eedings of the Eighth International Conferen
e on High-Performan
eComputing in Asia-Pa
i�
 Region, page 553, Washington, DC, USA,2005. IEEE Computer So
iety.[14℄ Liang Peng, Simon See, Jie Song, Appie Stoelwinder, and Hoon KangNeo. Ben
hmark performan
e on
luster grid with ngb. ipdps, 18, 2004.[15℄ Condor Proje
t. http://www.
s.wis
.edu/
ondor/.[16℄ Prashanth C SaiRanga and Sanjeev Baskiyar. A low
omplexity algo-rithm for dynami
 s
heduling of independent tasks onto heterogeneous
omputing systems. In ACM-SE 43: Pro
eedings of the 43rd annualSoutheast regional
onferen
e, pages 63�68, New York, NY, USA, 2005.ACM.[17℄ MW Team. http://www.
s.wis
.edu/
ondor/mw/.[18℄ Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed
om-puting in pra
ti
e: the
ondor experien
e. Con
urren
y - Pra
ti
e andExperien
e, 17(2-4):323�356, 2005.[19℄ George Tsouloupas and Marios D. Dikaiakos. Grid resour
e rankingusing low-level performan
e measurements. In Anne-Marie Kermarre
,Lu
 Bougé, and Thierry Priol, editors, Euro-Par, volume 4641 of Le
tureNotes in Computer S
ien
e, pages 467�476. Springer, 2007.A Setting up the GridA.1 Sun Grid Engine 6.1SGE master host and exe
ution host was su

essfully installed on Fedora 7by following the installation manual found on the Sun web page [5℄. Afterworking out the problems mentioned in A.1.3, the installation was prettystraight forward. There were a lot of steps to set up di�erent things and itis a good idea to have a plan or basi
 idea of the Grid before installing.28

To install an exe
ution host, it is ne
essary to
opy all the installation �lesfrom the master host to the exe
ution host after the master host installation.This way the exe
ution host will get the
orre
t settings set up for the masterhost.A.1.1 Possible node
on�gurationsThere are several di�erent node fun
tions available for SGE:
• Master host: this is where the Grid engine runs.
• Shadow master host: this is a ba
kup host if the master host fails.There
an be several shadow hosts in a Grid.
• Administration host: nodes that
an do administrative tasks on theGrid.
• Submit host: a node whi
h
an submit and
ontrol jobs.
• Exe
ute host: a node where jobs are exe
uted.A.1.2 A

ess to �lesEa
h node in a SGE Grid, needs all exe
utables and input �les lo
ally oron a NFS/AFS mount. There is no automati
 �le transfer in SGE, like inCondor. However, prolg- and epilog s
ripts
an be de�ned for a queue, where�le transfer or other operations
an be de�ned. Results are
opied to therespe
tive user's home dire
tory. SGE expe
ts the home dire
tories to bemounted on NFS. If they are not, all results will be
opied lo
ally on theexe
ution node. An epilog s
ript
an then be used to automati
ally transferall results ba
k to the submit node. An example of su
h a s
ript is shown inAppendix C.A.1.3 ProblemsSome problems were en
ountered while installing the master host:
• SGE needs the libXm.so.3 library, whi
h
an be found in the OpenMotifpa
kage, for its GUI appli
ation. OpenMotif-2.3.0.0.f
7.

rma.i386.rpmfor fedora
ore 7 was installed whi
h had the newer version, libXm.so.4,of the library. I had to make a symlink to this �le for the SGE GUI towork (sin
e it is a newer version, the linker is happy):ln -s /opt/openmotif/usr/lib/libXm.so.4.0.0 /usr/lib/libXm.so.3
• After unpa
king the �les, the
ommand set�leperm.sh $SGE_ROOTis to be run to set the right permissions. This failed be
ause of a wrong29

GLIBC version in Fedora 7. To �x this, open the �le �$SGE_ROOT/util/ar
h�and edit line 248 from 3|4|5) to 3|4|5|*) and run the s
ript again. (NB!This problem did not appear on a ma
hine running Kubuntu)A.1.4 Windows restri
tionsWindows ma
hines
annot run as master hosts, shadow master hosts ors
heduler. Windows is therefore limited to exe
ution and submit hosts. Cer-ti�
ates (Certi�
ate Se
urity Proto
ol (CSP)) are also ne
essary for
ommu-ni
ation between master host and windows exe
ution host. The GUI toolqmon and DRMAA are not supported either.A.2 Condor-6.8.6I installed Condor with a rpm pa
kage on Fedora 7, with a tar.gz pa
kageon Kubuntu and with a MSI pa
kage on WindowsXP. The only prerequisiteon Linux was an older version of the libstd
++ library. This
an be in-stalled with yum install
ompat-libstd
++-33 for Fedora 7 or apt-getinstall libstd
++5 on Kubuntu. The installation was easily
ompleted byfollowing the installation manual found on the Condor web page [15℄. Theinstallation of a 4 node Condor pool, in
luding a WindowsXP node, was anhours pro
ess. On SGE, it was more a days pro
ess, for a Grid beginner.Registering an exe
ute and submit node on the master host in Linux,simply enter the following
ommand on the host to add:./
ondor_
on�gure �
entral-manager=host�domain.
om �type=exe
ute,submitMake sure all the nodes networking is set up
orre
tly before runningthis
ommand. If not, the request might not be dete
ted by the master host.A.2.1 Possible node
on�gurations
• Master host (even Windows nodes, unlike SGE)
• Exe
ute host
• Submit host
• Or any
ombination of theseA.2.2 A

ess to �lesIn Condors standard universe, a

ess to �les, input and output, is handledautomati
ally through remote system
alls. In other universes, vanilla, Javaand MPI, a

ess is presumed, as default, to be through a shared �le systemon UNIX ma
hines. If no shared �le system is available, �le transfer has to30

be spe
i�ed in the submit �les by the user. Add the following lines to thesubmit s
ript to enable �le transfer (other options are available):s h ou l d_t r an s f e r_ f i l e s = YESwhen_to_transfer_output = ON_EXITt r an s f e r_ inpu t_ f i l e s = f i l e 1 , f i l e 2 , . . .A.2.3 Heterogeneous nodesIn a heterogeneous Grid, it is bene�
ial to have as mu
h information aboutea
h node as possible. If a job has spe
i�
 needs, spe
ial
are should be taketo whi
h node the jobs are sent to. Condor solves this with the ClassAdssystem. Ea
h node has a set of parameters (e.g. Total Memory, OpSys,Ar
hite
ture, Disk Spa
e), whi
h
an be used as requirements for jobs. Con-dor administrators
an spe
ify their own ClassAds for ea
h node, as well.Inserting the following in a submit �le, states that the job needs the LinuxOpSys and �avor RedHat9 (OPSYS_FLAVOR=�RedHat9� has to be de�nedin the exe
ution nodes
on�guration �le for it to be eligible):REQUIREMENTS = (OpSys == �LINUX�) && (OPSYS_FLAVOR =?=�RedHat9�)This is useful if the exe
utable is
ompiled only for a spe
i�
 �avor ofLinux, with possibility to fail if exe
uted on, for example, Debian. A neattri
k to make use more nodes, would be to have di�erent exe
utables for dif-ferent OS's and �avors, and spe
ify whi
h exe
utable should be transferredto the di�erent nodes. The following line will
hoose the
orre
t exe
utablefor the spe
i�ed requirement.Exe
utable = exe
.$$(OpSys).$$(OPSYS_FLAVOR)The exe
utables must have names similar to exe
.LINUX.RedHat9 orexe
.LINUX.Debian, for this to work.A.2.4 ProblemsI installed a net install of Debian on a 3rd node and ran into a problem withip-addresses and hostnames. The installation de�ned the IP address for thenode's hostname, in the /et
/hosts �le, to a lo
al one (127.0.1.1). This
aused the master to blo
k a

ess for the node, be
ause it had an unknowndomain address. Commenting out this line and letting DHCP take
are ofhostname and
orresponding ip-addresses, �xed the problem.31

A.2.5 Windows restri
tionsIt is not possible to
ondor_
ompile Windows appli
ations. As a result, re-mote system
alls and
he
kpointing is not available on this platform. There-fore, Windows jobs have to run in the �vanilla� universe. The following
anbe added to the submit s
ript, to run on Windows ma
hines:un ive r s e = van i l l arequ i rements = (OpSys == WINNT50)B Using the GridB.1 Sun Grid Engine 6.1To start the SGE daemons, enter the following
ommands as root:$SGE_ROOT/name-of-
ell/
ommon/sgemaster start$SGE_ROOT/name-of-
ell/
ommon/sgeexe
d startB.1.1 Submitting JobsSubmitting jobs to SGE, is done by sending bat
h s
ripts to the masterserver with the
ommand �qsub /path/to/s
ript.sh� or through the GUIinterfa
e qmon. A
omputer is not allowed to submit jobs, unless it is reg-istered as a �Submit Host�. On
e this is done, jobs sent from this node willbe a

epted and put in a job queue.The results are handled di�erently than in Condor. Condor
opies allresults ba
k to the same folder, on the node it was submitted from, simply byrunning in the �standard� universe, or by de�ning �le transfer in the submits
ript. SGE
opies the results to the owners home dire
tory. Thus, SGEassumes the users home dire
tories are NFS mounted. If the home dire
toriesare not NFS mounted, the results are
opied lo
ally on the exe
ution nodethat
ompleted the job. This
an be tri
ky, as you don't know whi
h nodeyour job is exe
uted on. Epilog s
ripts
an be used to remedy this, asdes
ribed in Appendix A.1.2.SGE does not have automati
 job exe
utable transfer, like Condor. Ea
hjob exe
utable must therefore be available on every node, in the path givenin the bash s
ript. The easiest way to make sure this is the
ase, is to haveall the �les available on AFS of NFS. However, it is possible to manuallyde�ne transfer of exe
utables in a prolog s
ript, if ne
essary.Example of a simple SGE submit s
ript:#!/ bin / sh## This i s a s imple example o f a SGE bat
h s
 r i p t# SGE s p e
 i f i
 op t i ons s t a r t s with '#$ '32

#$ −S /bin /sh#$ −o output_file_name/path/ to / exe
utab l e arg1 arg2B.2 Condor-6.8.6To start Condor, enter the following
ommands as root:$CONDOR_ROOT/sbin/
ondor_masterB.2.1 Preparing jobs for exe
utionTo use remote system
alls and
he
kpointing/migration in Condor, the ex-e
utable has to be relinked with the Condor libraries. Here a problem wasen
ountered on both Fedora 7 and Kubuntu: �ERROR: Internal ld was notinvoked! Exe
utable may not be linked properly for Condor!�. A solutionwas not found and the jobs were run in the �vanilla� universe instead. Con-dor_
ompile had problems lo
ating some appli
ation libraries, thus a stati
link of the exe
utable
ould maybe have �xed the problem.B.2.2 Submitting JobsSubmitting jobs is done with the
ommand �
ondor_submit job.
md� .The .
md �le
ontains di�erent job settings, in
luding input/output �le lo-
ations, �les that have to be transferred to the exe
ution node, the requiredar
hite
ture for running a binary, et
. Setting up
orre
t
onstraints andrequirements for a job, will help make sure the job is exe
uted su

essfully.Copying dire
tories of input �les, is not supported in the
urrent version ofCondor. For jobs with dire
tories as input data, a shared �le system
an beused for input �les instead. ClassAds
an be used to �nd a node whi
h hasa

ess to the spe
i�
 remote lo
ation.Example of a simple Condor submit s
ript, that
opies the exe
utable to theexe
ute node and returns the results to the submit node (noti
e the use ofthe �standard� universe):## Test Condor
ommand f i l e#un ive r s e = standardexe
utab l e = name_of_exe
utableoutput = exe
utab l e . oute r r o r = exe
utab l e . e r rl og = exe
utab l e . l ogarguments = arg1 arg3queue 33

See manual for more options:http://www.
s.wis
.edu/
ondor/manual/v6.8/
ondor_submit.htmlB.2.3 Di�erent settingsCondor
an either be set up to run jobs on any node, idle or not, or to nodeswhi
h have been idle for more than 15 minutes (either no keyboard, nomouse movement or CPU idle time). When the node is no longer available,the job
an be
he
kpointed and kept on the same node until idle again, orthe job
an be sent to another idle node. During testing, it is re
ommendeduse Condor in testing mode, to disable the �wait for idle� settings. See themanual for details on how to do so.C S
ripts and Code ListingsHere follows a listing of all s
ripts used in ben
hmarking Condor and SGE.The last listing is the C++ program used to extra
t the best result from thepre formatted result �le, des
ribed in Se
tion 3.6.2.

34

Listing 1: Job s
ript for SGE1 ####################2 # Sing l e Task Job S
 r i p t f o r Sun Grid Engine3 # Sing l e j ob submiss ion :4 # qsub t h i s_ s
 r i p t . sh5 # Array job submiss ion :6 # qsub −t [t _ f i r s t ℄−[t_ l a s t ℄ : [t_ s t e p s i z e ℄ t h i s_ s
 r i p t .sh7 ####################8 #!/ b in / sh9 # Request Bourne s h e l l as s h e l l f o r j ob10 #$ −S / b in / sh1112 v1=$ (date +%s)13 # Run dago
14 for ((i =0; i <[set_num_tasks_here ℄ ; i+=1)) ; do15 /mnt/ p r o j e
 t /dago
 −
 −s t a r t=1 −stop=10 \16 "/mnt/ p r o j e
 t / setups /TEST_sge . sup"17 done1819 # Print Job Data20 e
ho s t a r t=$SGE_TASK_FIRST stop=$SGE_TASK_LAST \21 step=$SGE_TASK_STEPSIZE id=$SGE_TASK_ID2223 # Print time taken24 v2=$ (date +%s)25 l e t v3=$v2−$v126 e
ho "Se
onds used f o r t h i s task : " $v3
35

Listing 2: Result transfer epilog s
ript for SGE1 ####################2 # re su l t_ t r an s f e r_ep i l o g . sh3 # Trans fers SGE array r e s u l t s to hos t4 ####################5 #!/ b in / bash6 e
ho SGE_HOST: $SGE_O_HOST7 e
ho HOSTNAME: $ (hostname −s)8 i f ["$ (hostname −s) " != "$SGE_O_HOST" ℄ ;9 then10 e
ho " Trans f e r r ing r e s u l t to host . . . "11 s
p $SGE_O_WORKDIR/dago
 . sh . o$JOB_ID .$SGE_TASK_ID \12 $SGE_O_WORKDIR/dago
 . sh . e$JOB_ID.$SGE_TASK_ID \13 $SGE_O_HOST:/$SGE_O_WORKDIR14 rm $SGE_O_WORKDIR/dago
 . sh . o$JOB_ID .$SGE_TASK_ID15 rm $SGE_O_WORKDIR/dago
 . sh . e$JOB_ID.$SGE_TASK_ID16 f i

36

Listing 3: S
ript for extra
ting runtime for SGE1 ####################2 # Get time used from Sun Grid Engine3 # Useage :4 # qa

 t −j [job_id ℄ > sgejobsummary . t x t5 # ./ t h i s_ s
 r i p t . sh sgejobsummary . t x t6 ####################7 #!/ b in / bash89 #Get job submit time10 t0=$ (grep "qsub_time" $1 | head −n 1 | \11 grep −o [0 −9 ℄ [0 −9 ℄ : [0 −9 ℄ [0 −9 ℄ : [0 −9 ℄ [0 −9 ℄)12 s0=$ (date −−date=$t0 +%s)1314 #Get l a s t j o b end time15 t1=$ (grep "end_time " $1 | \16 grep −o [0 −9 ℄ [0−9 ℄ : [0−9 ℄ [0−9 ℄ : [0−9 ℄ [0−9 ℄ | \17 s o r t −r | head −n 1)18 s1=$ (date −−date=$t1 +%s)1920 #Get t o t a l t ime used f o r array job21 l e t s=$s1−$s022 e
ho " F i l e : " $123 e
ho "Time : " $s " se
onds "

37

Listing 4: Condor single task jobs submit s
ript1 ####################2 # dago
 .
ondor3 # 100 S in g l e Task Jobs Condor
ommand f i l e4 ####################5 un ive r s e = van i l l a6 exe
utab l e = dago
7 output = dago
 . out . $ (CLUSTER) . $ (PROCESS)8 e r r o r = dago
 . e r r . $ (CLUSTER) . $ (PROCESS)9 l og = dago
 . l og . $ (CLUSTER)1011 REQUIREMENTS = (OpSys == "LINUX") && (OPSYS_FLAVOR =?="FC7")12 shou l d_t r an s f e r_ f i l e s = YES13 when_to_transfer_output = ON_EXIT14 t r an s f e r_ inpu t_ f i l e s = /mnt/ p r o j e
 t / dbases /TEST. db15 arguments = −
 −s t a r t=1 −stop=10 /mnt/ p r o j e
 t / setups /TEST. sup16 queue 100
Listing 5: Condor meta-task submit s
ript1 ####################2 # 10 Mult i (10 x)Task Job Condor
ommand f i l e3 ####################4 un ive r s e = van i l l a5 exe
utab l e = multiTaskJob . sh6 output = dago
 . out . $ (CLUSTER) . $ (PROCESS)7 e r r o r = dago
 . e r r . $ (CLUSTER) . $ (PROCESS)8 l og = dago
 . l og . $ (CLUSTER)9 REQUIREMENTS = (OpSys == "LINUX") && (OPSYS_FLAVOR =?="FC7")1011 shou l d_t r an s f e r_ f i l e s = YES12 when_to_transfer_output = ON_EXIT13 t r an s f e r_ inpu t_ f i l e s = dago
 , /mnt/ p r o j e
 t / dbases /TEST.db14 arguments = 1015 queue 10 38

Listing 6: Condor meta-task bash s
ript1 ####################2 # MultiTaskJob . sh3 ####################4 #!/ b in / bash5 v1=$ (date +%s)6 e
ho " Sta r t : " ` date `7 for ((i =0; i<$1 ; i+=1)) ; do8 . / dago
 −
 −s t a r t=1 −stop=10 /mnt/ p r o j e
 t / setups /TEST. sup9 done10 v2=$ (date +%s)11 l e t v3=$v2−$v112 e
ho " Fin i shed : " ` date `13 e
ho "Se
onds used : " $v3
Listing 7: S
ript for extra
ting runtime for Condor1 ####################2 # Get time used from Condor l o g f i l e3 # Useage :4 # ./ t h i s_ s
 r i p t . sh nameOfLogFile . l o g5 ####################6 #!/ b in / bash78 # Get submit time and l a s t j o b end time9 t0=$ (grep "Job submitted " $1 | head −n 1 | \10 grep −o [0 −9 ℄ [0 −9 ℄ : [0 −9 ℄ [0 −9 ℄ : [0 −9 ℄ [0 −9 ℄)11 t1=$ (grep "Job terminated " $1 | t a i l −n 1 | \12 grep −o [0 −9 ℄ [0 −9 ℄ : [0 −9 ℄ [0 −9 ℄ : [0 −9 ℄ [0 −9 ℄)1314 # Convert to se
onds and f i nd t o t a l t ime15 s0=$ (date −−date=$t0 +%s)16 s1=$ (date −−date=$t1 +%s)17 l e t s=$s1−$s01819 # Print r e s u l t s20 e
ho " F i l e : " $121 e
ho "Time : " $s " se
onds " 39

Listing 8: Condor DAGMan s
ript1 ####################2 # DAGMan s
 r i p t f o r3 # pos t p ro
e s s ing4 ####################5 Job A dago
 .
ondor6 Job B post .
ondor7 Parent A CHILD B

Listing 9: The 'post.
ondor' s
ript1 ####################2 # pos t .
ondor3 # Post pro
e s s ing job f o r
ondor4 ####################5 un ive r s e = lo
al6 exe
utab l e = post . sh7 output = post . out . $ (CLUSTER)8 e r r o r = post . e r r . $ (CLUSTER)9 log = dago
_dag . l og10 arguments = 1 10 GROUP.FIELD . FGasa11 queue
40

Listing 10: The result extra
tion bash s
ript for single task jobs1 ####################2 # pos t . sh3 # Post pro
e s s ing s
 r i p t4 # (S ing l e t a s k j o b s)5 # Arguments :6 # 1: s t a r t 2 : s t op7 # 3: r e su l t_ t a g 4 : res_file_name8 ####################9 #!/ b in / bash10 e
ho Co l l e
 t i n g r e s u l t s from output f i l e s11 s0=$ (date +%s)12 i f [−f r e s u l t . post ℄13 then14 rm r e s u l t . post15 f i16 for i in $ (l s $4 ∗) ; do17 e
ho JobID : $ i >> r e s u l t . post18 grep Setup $ i >> r e s u l t . post19 grep $3 $ i >> r e s u l t . post20 done2122 e
ho −−−23 e
ho Gett ing best r e s u l t from
 o l l e
 t i o n24 e
ho −−−25 . / f i ndBes tResu l t $1 $2 $3 r e s u l t . post2627 e
ho −−−28 e
ho Running dago
 with the best setup29
hmod 775 postDagmanS
ript . sh30 . / postDagmanS
ript . sh31 rm postDagmanS
ript . sh3233 e
ho −−−34 e
ho Done !35 s1=$ (date +%s)36 l e t s=$s1−$s037 e
ho "Time used f o r post p r o
 e s s i n g : " $s " se
onds "
41

Listing 11: Code for extra
ting and
omparing results1 /∗####################2 ∗ f i n dBe s tRe su l t .
pp3 ∗/####################4 #in
lude <sstream>5 #in
lude <iostream>6 #in
lude <fstream>7 #in
lude <st r ing >8 using namespa
e std ;9 // Input args : s t a r t s t op re su l tTag10 int main (int arg
 ,
har ∗∗ argv) {11 i f (arg
 != 5)12 {13 f p r i n t f (s tde r r , "Wrong # of arguments ! \ n") ;14 return 1 ;15 }16 //Get input parameters17 int s t a r t = a to i (argv [1 ℄) ;18 int stop = a to i (argv [2 ℄) ;19 s t r i n g tagResu l t = argv [3 ℄ ;2021 s t r i n g tagSe tupF i l e ("Setup f i l e : ") ;22 s t r i n g l i n e ;23 double bes tResu l t = −1.0;24 s t r i n g setupFi l ePath ;25 i f s t r e am myf i l e (argv [4 ℄) ;26 i f (my f i l e . is_open ())27 {28 while (! my f i l e . e o f ())29 {30 g e t l i n e (myf i l e , l i n e) ;31 i f (l i n e . f i nd (tagSetupFi l e , 0) != s t r i n g : : npos)32 {33 //Save temporary b e s t se tup f i l e path34 s t r i n g tmpSetupFilePath = l i n e . subs t r (tagSe tupF i l e .l ength ()) ;3536 //Read nex t l i n e i f "Setup Path" tag found37 g e t l i n e (myf i l e , l i n e) ;38 i f (l i n e . f i nd (tagResult , 0) == s t r i n g : : npos)39 {40
out << "Did not f i nd r e s u l t tag f o r " <<tmpSetupFilePath << endl ;41
ontinue ;42 } 42

43 // I f "Resu l t Tag" found parse the r e s u l t44 double tmpRes = −1.0;45 s t r i n g r e s = l i n e . subs t r (l i n e . f i nd (" : " ,0)+1) ;46 i s t r i n g s t r e am i (r e s) ;47 i f (! (i >> tmpRes))48 {49
out << "Res : " << re s << endl ;50
out << "Could not parse r e s u l t " << endl ;51
ontinue ;52 }5354 //Save new be s t r e s u l t and se tup f i l e path55 i f (tmpRes > bes tResu l t)56 {57 be s tResu l t = tmpRes ;58 //Remove l a s t po in t59 setupFi l ePath = tmpSetupFilePath . subs t r (0 ,tmpSetupFilePath . l ength ()−1) ;60 }61 }62 }63 myf i l e .
 l o s e () ;6465 //Create s
 r i p t wi th f i n a l dago
 exe
u t i on66 ofstream outputF i l e ;67 outputF i l e . open ("postDagmanS
ript . sh") ;68 i f (outputF i l e . is_open ())69 {70 outputF i l e << "#!/ bin /bash\n" ;71 outputF i l e << " . / dago
 −
 −s t a r t=" << s t a r t << " −stop=" << stop << " " << setupFi l ePath << " >DAGOCRESULT.RES\n" ;72 outputF i l e .
 l o s e () ;73 }74 else
out << "Unable to open output f i l e " << endl ;7576 //Print r e s u l t s77
out << "Best r e s u l t : " << bes tResu l t << endl ;78
out << "Setup Path : " << setupFi l ePath << endl ;79 }80 else
out << "Unable to open input f i l e " << endl ;8182 return 0 ;83 } 43

