
Grid Tehnologies for Task Parallelizationof Short Jobs: Usability StudyTDT4590 - Complex Computer Systems,Speialization ProjetAtle RudshaugSupervisor: Anne C. ElsterDeember 19, 2007
Department of Computer and Information SieneFaulty of Information Tehnology, Mathematis andEletrial Engineering

AbstratIn this projet, the Condor and Sun Grid environments are evaluated as toolsto shedule omputations with lots of small tasks. Our strategy is to olletmultiple tasks into meta-tasks and ompare their performane to single singletask jobs. Other methods disussed, inlude altering soure ode for omput-ing multiple tasks internally, tuning the Grid shedulers and implementing aMaster-Worker paradigm. Part of Dago, a ommerial appliation from theOil/Gas industry, is used as the test ase. Basi senarios ontain between1-1000 tasks. Eah task takes between 2 and 20 seonds and are urrentlyalulated serially on one proessor. The tasks use di�erent sets of �les forinput data, whih resides on a NFS server. Splitting suh small tasks intoindividual jobs may, however, not be suitable for Grid environments. How-ever, positive results are observed through di�erent benhmarks, using ourproposed meta-task exeution. Two well known Grid middlewares, Condorand Sun Grid Engine, are used in the benhmarks and their ease of installand performane is ompared in the proess. The installation proedure forCondor is shown to be muh simpler, however, Sun Grid Engine generallyperformed better in our tests. Appendies ontaining pratial disussionson installation and Grid usage proedures as well as pratial examples ofjob sripts and ode for handling result �les, are inluded as guides to futureusers.

Contents1 Introdution 41.1 Projet Goal . 41.2 Our appliation . 41.3 Outline . 52 Grids 52.1 Grid features . 72.1.1 Condor 6.8.6 . 72.1.2 Sun Grid Engine 6 (SGE) 82.2 Benhmarking grids . 93 Implementation Ideas 93.1 A golden rule . 103.2 Sheduler tuning . 103.3 Submitting multiple jobs in one submit �le 113.4 Bash sript with multiple exeutions 113.5 Condor spei� tools . 123.5.1 DAGMan . 123.5.2 MW: Master-Worker 123.6 Handling the input/output �les for Dago 123.6.1 Condor spei� �le handling 133.6.2 Result gathering with DAGMan 133.6.3 Result gathering with SGE 133.6.4 Problems with NFS �le aess 144 Model 144.1 Test parameter . 155 Benhmarks and Results 175.1 Serial exeution . 175.2 Results for Condor . 175.3 Results for Sun Grid Engine (without result �le transfer) . . . 205.4 Results for Sun Grid Engine (with result �le transfer) 205.5 Results when altering the Job-Task ratio 245.6 Result summary . 246 Conlusions and Future Work 256.1 Future work . 26A Setting up the Grid 28A.1 Sun Grid Engine 6.1 . 28A.1.1 Possible node on�gurations 29A.1.2 Aess to �les . 292

A.1.3 Problems . 29A.1.4 Windows restritions 30A.2 Condor-6.8.6 . 30A.2.1 Possible node on�gurations 30A.2.2 Aess to �les . 30A.2.3 Heterogeneous nodes 31A.2.4 Problems . 31A.2.5 Windows restritions 32B Using the Grid 32B.1 Sun Grid Engine 6.1 . 32B.1.1 Submitting Jobs . 32B.2 Condor-6.8.6 . 33B.2.1 Preparing jobs for exeution 33B.2.2 Submitting Jobs . 33B.2.3 Di�erent settings . 34C Sripts and Code Listings 34

3

1 IntrodutionIn reent years, multiore arhitetures and networks of workstations hasbeome popular parallell omputing platforms. To utilize these new envi-ronments fully, software has to be (re)designed. A serial ode annot utilizemore than one ore on a multiore proessor. However, multiple independentserial appliations will be able to utilize multiple ores, if exeuted at thesame time. Serial ode an also be rewritten to make use of multiple ores,through OpenMP or posix threads. Hopefully, these will be better tools tohelp the domain developers of the future.1.1 Projet GoalThe main fous of this projet is to look at two main Grid middleware plat-forms and evaluate how easy and well these an be used to support shedulingappliations with many individual small tasks. Using Grid tehnology, mul-tiple ores an be utilized, even multiple omputers with multiple ores inparallel. Methods how to minimize sheduling overhead using built in Gridmiddleware funtions are also onsidered. Note that these methods do notinlude altering the soure ode in the appliation to a great extent.A typial o�e environment is onsidered. Here, the olletion of work-stations will in most ases be quite heterogeneous. Some mahines are up-graded while others are kept as is. Some nodes might use Windows or MaOS X while others use di�erent �avors of Linux. Binary ompatibility be-tween these platforms will indue problems. Sometimes between di�erent�avors of Linux as well. An exeutable ompiled for one �avor of Linuxmight return an error on another, beause of missing or outdated librariesor other auses. A Grid must be able to handle this. If jobs are distributedarelessly the suess of eah job exeution ould end up being quite ran-dom. Without any onstraints, the Grid engine will send jobs to arbitraryfree nodes. The user will not know if their job will be exeuted suessfully orif it will return an error. A ommon interfae to these resoures is providedby di�erent Grid middlewares.1.2 Our appliationIn this projet, we onsider a ommerial appliation, Dago, whih is a toolfrom the Oil/Gas industry. It is developed by a small, Norwegian softwareompany alled Yggdrasil AS. The part of the appliation we are looking at,is a typial Parameter Sweep Appliation (PSA) [10℄. We onsider the om-putation of di�erent sized olletions of small, equal-sized and independenttasks, ommonly known as meta-tasks [16℄. The meta-tasks are urrentlydesigned to be exeuted serially on a single workstation. Eah task in ameta-task, omputes a �xed amount of soure data from a list of di�erent4

input parameters. The �nal result of a meta-task is to be saved at the end.At �rst look, our appliation should be perfet for use in a Grid environment.However, the individual tasks are quite small, between 2 and 20 seonds.An average task needs about 0.5MB of input data from multiple small �les.The exeutable is about 22MB and needs about 1.5MB of ustom libraries.If the program is to be exeuted in database mode, it will need aess to an1-2MB sqlite3 database �le as well. For suh short tasks, the sheduling and�le distribution may beome a dominant fator.1.3 OutlineThe remainder of this paper is organized as follows. Setion 2 presentsa general overview of Grid tehnology and a desription of the two Gridmiddlewares used in this projet. Di�erent thoughts on how to solve theproblem is presented in Setion 3. Setion 4 desribes di�erent issues relatedto the benhmarks and the respetive Grid middlewares. Benhmarks andresults are shown in Setion 5. Setion 6 onludes the projet and disussesfuture work.In Appendix A, issues onerning installation proedures for the respe-tive Grid middlewares, are disussed. Appendix B, desribes issues on-erning job submission for both Condor and SGE. The example sripts inAppendix C, an be used as starting points for reating other, more omplexsripts.2 GridsGrids are often referred to as High Throughput Computing (HTC). A Grid isa olletion of di�erent, privately owned, omputer resoures to form a typeof heterogeneous, virtual superomputer for providing omputing power forlarge-sale jobs [1, 2℄ . Their job is to distribute a high number of jobs e�-iently, through a ommon interfae, and provide long lasting omputationtime.A simple Grid an be formed by loal workstations, for example inside ano�e environment. Every day there are hours of idle omputer time during,for example, the lunh hour, sta� meetings, after-o�e hours and at night.In these periods, the workstations an be used for various omputations.If the loal resoures are not enough, the number of resoures an be dra-matially inreased, by onneting the loal Grid to remote Grids in otherloations. The ultimate Grid would be the one with aess to all the om-puting resoures in the world. However, people are usually very relutant tolet other, unknown people use their hardware, at least while they are usingit themselves. So what an be done to get permission to use these resoures?Introduing a omputational eonomy [3℄, is suggested as a good mo-tivator for people to share their resoures over the Internet, making it a5

omputational power Grid. This also opens for smaller ompanies to buyonly the resoures they need to get their urrent jobs done, and not makehuge investments in own infrastruture and omputing power.Other features are needed in a Grid as well, to attrat users and resoureproviders. These inlude a transparent interfae for resoure alloation andadministration, fault tolerane and di�erent seurity and authorization tools.A seure environment is important, so the providers know their resoures willnot be exploited [2℄.Grids are, however, not to be onfused with lusters. A luster is typi-ally a olletion of idential nodes with the same proessor and OS, typiallyontaining a stati number of nodes, all plaed in the same physial loa-tion. A Grid is a heterogeneous system [18℄, with di�erent types of nodes(e.g. omputational or storage nodes), proessors and OS's. Grids are dy-nami in number and resoures, while lusters are generally more stati overtime. Another important feature is that Grids an ontain di�erent HPCenvironments, suh as lusters and superomputers, in addition to other re-soures [13℄. Thus, a Grid an represent a heterogeneous environment withthe possibility to utilize the power of superomputers for less embarrassinglyparallel tasks as well.Grids an be a heap alternative to dediated superomputers, sine aGrid an utilize idle time on already available workstations. These worksta-tions an be very heap and do not need speial rooms or ooling failitiesas large superomputers do, unless a large number of nodes are lusteredtogether. However, as Grids are heterogeneous systems, they are best suitedfor embarrassingly parallel jobs where the individual jobs are independentof eah other during exeution. There are several ases where a olletionof heterogeneous workstations is not a suitable replaement, e.g., for �negrained parallel tasks with high dependeny between proesses. Here, eahjob is best run on its own luster or superomputer for optimal performane.Submitting multiple �ne grained jobs simultaneously to a Grid with aess tomultiple lusters or superomputers, an give a ombination of oarse- and�ne grained job exeution. For example, a large job onsisting of multipleindependent �ne-grained jobs, an be automatially distributed by a Gridand be run oarse grained on di�erent lusters simultaneously [4℄.Di�erent tools have been developed to transparently handle the dynaminature of Grid systems, as well as standards for developing Grid integratedappliations. E�ient sheduling and exeution of PSA's on a Grid is a bighallenge for Grid developers. These appliations often onsist of a largenumber of jobs where the �nal result is dependent on all the individualresults. These jobs must therefore be sheduled and distributed e�etively,so not to delay the total exeution time. Methods inluding re-use of ommon�les between exeutions and adaptive exeution to migrate jobs to providebetter resoures, are some suggested solutions [9, 10℄.George Tsouloupas and Marios D. Dikaiakos [19℄ suggest a method for6

ranking resoures in a Grid aording to a ranking funtion. They have de-veloped a tool alled SiteRank, a module built on top of GridBenh. With it,a user an rank all resoures in a Grid with respet to a spei� appliation.This tool an be used to better utilize the resoures in a Grid for any kindof job, inluding the short ones presented in this paper.An example of a large Grid an be seen at CERN. They are urrentlydeveloping Grid tools for their Large Hadron Collider (LHC). They needan inredible amount of storage and omputation power, and are onnetingsites all over the world to their Grid to satisfy their need [7℄. Without a Grid,it would be impossible to maintain the data and omputation throughputneessary for the LHC projet.2.1 Grid features2.1.1 Condor 6.8.6Condor is a free Grid manager from the Condor team. It was born at theUniversity of Wisonsin in the 1980's, as a ombination of a dotoral thesison ooperative proessing, the Crystal Multiomputer and Remote Unix. Itreates a High-Throughput Computing (HTC) environment by opportunis-tially utilizing workstations onneted through a regular network, remoteas well as loal. The main features that makes this environment possible areClassAds, Chekpointing & migrating and Remote System Calls [18, 15, 12℄.The ClassAds system is a powerful mehanism for mathing jobs to ex-eution nodes. Users advertise their resoure needs for a job and Condormathes them with the resoure ads for the available workstations. Thisway, the neessary resoures are aquired to best math eah job.Chekpointing is a system for transparently moving already running jobsfrom one workstation to another, if neessary. This will, for example, happenwhen a user returns from lunh and starts using his or her workstation. Con-dor will only shedule a job to a node whih has been idle for a prede�nedamount of time, thus not bothering the owners of the respetive resoures.Eah running job is regularly and transparently hekpointed during exeu-tion to make this possible. When a job migrates to another node, the newnode an resume exeution from the last hekpointed state.Remote System Calls tehnology, as with hekpointing, requires re-linking of the job exeutable with spei� Condor libraries. The RemoteSystem Calls feature preserves the submitting node's loal exeution envi-ronment, by redireting a jobs I/O mehanisms bak to the submitting node.Thus, distributing the exeutables and its input �les is not neessary prior tojob exeution, as this is handled automatially. It also gives a user aess tothe exeuting node without having a login aount on it. There are however anumber of limitations1 to jobs whih are to support hekpointing, inluding1http://www.s.wis.edu/ondor/manual/v6.8.5/1_4Current_Limitations.html7

running them on Windows nodes. If for some reason the exeutable annotbe relinked to run in the standard Condor universe, e.g., no aess to thesoure ode, the exeutable an be run unaltered in the �vanilla� universeinstead. However, when using this universe, �le transfer has to be spei�edby the user in the submit sript, as desribed in Appendix A.2.2.To run jobs with dependenies, Condor inludes a feature alled DAG-Man. This is a Direted Ayli Graph Manager, where rules for job depen-denies and pre- and post proessing sripts an be set up in a speial �le.The pre- and post sripts are run loally on the submit host. When thistype of job is submitted, the DAGMan takes are of the order of exeutionaording to the rules spei�ed by the user. However, eah job de�ned in aDAG still needs its own regular Condor submit sript.Distributed Resoure Management Appliation API (DRMAA) 1.0 Javaand C bindings are also supported. This API an be used to integrate Gridtehnology into appliations, instead of manually submitting jobs through aonsole.Many other projets are available for use with Condor, inluding a �lehandling system alled Stork, a system monitoring tool alled Hawkeye, amaster-worker paradigm alled MW, and more.2.1.2 Sun Grid Engine 6 (SGE)Sun Grid engine is a free Grid manager from SUN [5℄. It is now an opensoure projet, with support ontrats available from Sun. One of the newestfeatures in v6.1 is Resoure Quotas, a feature for ontrolling resoures in theGrid. Aess rules to di�erent parts of a Grid an be set up for users, groups,projets, et. for �ne grained ontrol of the available resoures. A CondorClassAds alternative in SGE is Boolean operations. This is a tool for reatingrules for speifying resoure needs with AND, OR and NOT operations.Job dependenies an be managed using the Grid Engine Array Job In-terdependeny (ARI) 2 feature. This, in ombination with prolog- and epilogsripts, gives similar funtionality for SGE, as DAGMan does for Condor.Exeution of parallel jobs (MPI or PVM) is supported through a dedi-ated interfae, as with Condor. SGE also supports hekpointing and mi-gration among other tools and funtions.A GUI interfae for easy on�guration and administration of queues, jobsand nodes is available for Linux. However, all features in this GUI are alsoavailable from the ommand line.Distributed Resoure Management Appliation API (DRMAA) 1.0 Javaand C bindings are supported on the Linux platform, but not on Windows.2http://gridengine.sunsoure.net/news/GE61ARIsnapshot-announe.html8

2.2 Benhmarking gridsThere are not many tools available for benhmarking Grid environments.Their heterogeneous nature makes this hallenging ompared to traditionalparallel, high performane systems. Liang Peng et al. [14℄, have done somework on benhmarking the performane between SGE and Globus in termsof CPU utilization and turnaround time. They notied that the overheadintrodued by the Grid middlewares was negligible for large problem sizes. Intheir ase, the overhead atually hanged very little even when the problemsize grew signi�antly. For short jobs, however, they found that the overheadan be quite signi�ant, sometimes half the total time for a job. They alsofound that the Globus middleware generally had more overhead than SGE.The signi�ant overhead for small jobs is what we are onsidering in thisprojet.3 Implementation IdeasIn this setion, di�erent ideas on how the respetive Grid middlewares an beused to support our appliation, are disussed. Di�erent issues onerningthe loation of input and output �les are also onsidered.Our PSA may onsist of thousands of permutations, where eah permu-tation needs to be omputed to �nd the �nal result. Lukily, Grid systemssupport methods for submitting multiple jobs automatially, as desribedbelow.In a Grid environment, all nodes must have aess, loally or remotely,to all resoures needed by the tasks they are given. If not, the tasks willobviously return an error. In most ases, these �les are loated in remoteplaes, e.g., on a NFS server for easy administration. For eah task, these�les have to be transferred to the respetive exeution nodes. Sine the tasksin our appliation are so short, this extra �le transfer overhead is fator tobe onsidered. Sine many �les are ommon between the di�erent tasks,methods for olleting multiple tasks in one job is the main fous in thisprojet. A olletion of multiple independent tasks is known as a meta-task[16℄ and will be used throughout this paper.The following methods are onsidered to minimize overhead:
• Altering the soure ode to exeute multiple alulations from input inthe argument list
• Tuning the shedulers for faster submitting of jobs
• Bash sript with multiple exeutions
• DAGMan and Master-Worker features in Condor9

3.1 A golden ruleA golden rule is to exploit appliation domain optimizations before platformdomain ones. Altering the soure ode of one appliation, is not a general so-lution aross other appliations, like the solutions disussed below. However,in many ases it should be possible to make an appliation exeute multipletasks internally, by altering the input arguments. When altering the odeto inlude multiple omputations, result omparison between tasks an beimplemented as well, and only the best result would have to be returned tothe submit node. However, how muh time is really saved by making theappliation do multiple exeutions internally, ompared to exeuting mul-tiple single-exeutions in a bash sript? Time will be saved by not havingto start and stop the exeutable for every task. The question is if the timesaved for eah exeution is notieable ompared to simply speifying multipleomputations in a bash sript.This may ome down to whih is easier in the long run, depending on theappliation. De�ning multiple runs in a sript, eah with di�erent input, oraltering the soure ode to open for alulation of multiple tasks internally,in one single exeutable.3.2 Sheduler tuningThe default sheduler settings might not be optimal for every ompute farmenvironment. Di�erent ations an be taken to �ne tune the shedulers foroptimal performane in spei� environments. The SGE sheduler supportsdi�erent tools3 for debugging and validation of sheduled jobs. These anbe turned on or o�, depending on the spei� needs. When the Grid is inprodution state, these tools may not be neessary all the time and an beturned o� by the administrator.For example, on�guring the SGE sheduler for immediate sheduling,will inrease the throughput of the ompute farm. The only limitation is thepower of the mahine hosting the master and sheduler. If this mahine isoverwhelmed by work, the sheduler an be on�gured to run jobs only in a�xed shedule interval, whih also is the default setting.In Condor, di�erent parameters4 an be tuned in the on�guration �lesfor faster sheduling. One of Condor's default behaviors, is not to shedulejobs to non-idle nodes. It also preempts and/or suspends jobs, if the urrentnode beomes unavailable due to user interation. These features an bedisabled, if seen �t for the ompute farm.3http://dos.sun.om/app/dos/do/820-0698/enfky?a=view4http://www.s.wis.edu/ondor/CondorWeek2007/large_ondor_pools.html10

3.3 Submitting multiple jobs in one submit �leWith Condor, one an submit multiple jobs in one submit �le simply bystating the number of jobs with the �Queue� ommand, e.g., �Queue 50� for50 jobs. Eah job an be identi�ed with the $(CLUSTER) maro and sub-jobs with the $(PROCESS) maro. In this ase, eah sub-job gets a uniqueidenti�er from 0-49. Di�erent input parameters an be de�ned in the submitsript, by using di�erent maros. Using this multi submit method is similarto submitting 50 jobs manually, thus it does not remove any shedulingoverhead. It only saves the user time by instantly queuing X number of jobsautomatially.For SGE, the alternative is alled Array Jobs. Array Jobs an be spe-i�ed either in the submit sript by adding �#$ -t �rst-last:step�, or as anargument to the SGE submit-to-queue binary qsub. Instead of the $(PRO-CESS) maro in Condor, SGE de�nes a set of environment variables for thearray job, to identify the task and task range. To submit an array job fromthe ommand line, type the following when submitting the job: qsub -t 1-10:2 sript.submit. This will queue 5 jobs with step 2. The tasks will getSGE_TASK_ID 1, 3, 5, 7 and 9. SGE_TASK_ID, SGE_TASK_FIRSTand SGE_TASK_LAST are environment variables set by SGE for this par-tiular array job. The sheduling proess is similar to Condor's Queue Xommand. Eah job is sheduled individually, but time is saved by auto-mati queuing of multiple jobs at the same time. The environment variablesan be used to automatially selet the orret input �les for the respetivetasks.3.4 Bash sript with multiple exeutionsThe exeutable in Condor an either be a binary exeutable or a bash sript.This is de�ned in the submit sript with the argument �exeutable = �le-name�. For meta-tasks, multiple exeutions an be spei�ed in a bash sriptand the binary an be transferred as an input �le. Thus, the exeutableis only transferred one for the whole meta-task, and is reused by all thetasks spei�ed in the bash sript. Eah task's result, will be appended tothe spei�ed output �le if written to stdout. If the appliation reates anynew �les, these will also be transferred bak to the submitter automatiallyby Condor. Thus, the exeution of multiple tasks does not overwrite anyintermediate results.SGE's submit sript is very similar to a regular bash sript. SGE spe-i� �ags and options an be de�ned diretly in this sript with �#$ -�agoption� notation. Multiple exeutions an therefore be de�ned diretly withbash arithmeti's and submitted as is. However, SGE does not automati-ally transfer any input �les. Its submit sript only invokes the remote host'senvironment as if it was invoked loally. However, SGE supports prolog/epi-11

log sripts that an perform any neessary proessing, inluding �le transfer,before or after job exeution. These sripts are run on the exeution hostand not on the submit host, as for Condor's DAGMan. For SGE, the exe-utable and input �les an either be loated on NFS for easy administration,transferred by a prolog sript or loated loally in the same path on everynode for minimum network tra�.3.5 Condor spei� tools3.5.1 DAGManDAGMan makes it easy to de�ne job dependenies. The jobs in the DAGare regular Condor submit sripts and eah job is sheduled individually.Therefore, DAGMan does not help to minimize sheduling overhead of jobsin any way. It an, however, help with post exeution result gathering, asdesribed in Setion 3.6.2.3.5.2 MW: Master-WorkerThe master-worker paradigm [17, 6℄ an be very quik for olletions of shortjobs. The Condor implementation onsists of a set of abstrat lasses, namelyTask, Driver and Worker. The Driver sits below your appliation and man-ages a pool of Workers and set of user de�ned Tasks. The Workers pik upTasks, does the user de�ned work on them, and returns result to the Driver.The implementation is spei� to eah appliation and will therefore involvealtering the existing ode, if not implemented during initial development ofan appliation.Implementing MW in our appliation falls outside the sope of thisprojet, as we are mainly looking at ways to use Grid tools to optimizeexeution of our appliation, without modifying the soure ode.3.6 Handling the input/output �les for DagoThe amount of �les that are needed for eah task, as mentioned in Setion1.2, might beome a fator for the total exeution time of our small jobs.Obviously, the job exeutions would bene�t from reusing as muh of these�les as possible on eah node. One solution would be to have all the dataand the exeutables loally on all nodes, but this would be di�ult to ad-minister. For easier administration all �les ould be put on NFS, but thismight generate a lot of network tra�, sine every alulation has to aessit for its input and exeutable.By olleting multiple tasks into meta-tasks, all ommon �les would onlyhave to be transferred to the exeution node one, and ould save a lotof tra�. Hene, eah task in the job would only have to transfer a smallamount of �les, unique to that job, from the NFS server. All other �les would12

be already available loally on the node for the duration of that partiularjob.3.6.1 Condor spei� �le handlingIn Condor, input �les an be transferred from the submit host, by de�n-ing the neessary input �les in the submit sript. Using the option �trans-fer_input_�les = �le1,�le2,....�, these �les will be opied next to the exe-utable in the exeution node's spool diretory. However, transfer of wholediretory strutures is not support, only lists of spei� �les. See AppendixC for a Condor submit sript example with �le transfer.Sine the �Vanilla� universe is used (see Appendix B.2.1), the options�should_transfer_�les = YES� and �when_to_transfer_output = ON_EXIT�,are needed to speify that the exeutable and results are to be transferredbetween submit host and exeute host.3.6.2 Result gathering with DAGManWhen distributing our appliation onto a Grid, post proessing to �nd thebest result is neessary after all the alulations are �nished . This an beset up using job dependenies in DAGMan. Eah job has its own regularCondor submit �le, like the one shown in B.2.2. TheA solution was implemented, where the post proessing job was on�g-ured to use the �loal universe�. This fores the job to run on the submithost, where all the result �les are loated. This job ontains a sript thatsans all the results �les, extrats the results and puts them all in one single�le. The orresponding input parameters are saved as well. Regular Linuxtools suh as 'grep' were used for this. Then, a short C++ program wasdeveloped that extrats the best result from the new single result �le (SeeAppendix C). The input parameters for the best result will then be used toexeute the task with the best result loally, on the submit node. This willsave all the exeution data in the database. All this post proessing is doneautomatially, in sequene, by the last bash sript.3.6.3 Result gathering with SGEUsing the ARI funtionality mentioned in Setion 2.1.2, a post job resultgathering sript, similar to the one desribed above, an be used. However,if NFS home diretories are not used, eah exeution host will have to transfertheir results to the submit host, before the �nal result an be extrated. Filestaging5 with epilog sripts an be used for this. File staging has to beenabled by the administrator. The epilog sript an use di�erent variables,set by SGE, to identify whih �les are to be sent where. An epilog sript was5http://gridengine.sunsoure.net/howto/�lestaging/�lestaging6.html13

written to transfer the output from SGE's array tasks bak to the submitterautomatially (see Appendix C).3.6.4 Problems with NFS �le aessAessing SQLite databases on NFS may indue problems. In some perfet,up to date NFS setups it might work. Others, inluding ours, have issues with�le loking and databases. Sine our appliation uses an SQLite databasefor data aess, this problem was enountered while having this database�le remotely. A workaround in Condor, is to opy the database �le as aninput �le by adding it in the submit sript. For SGE, a prolog sript anbe used to transfer the orret database before the job is exeuted. Theother alternative is to have a loal opy on eah node. This should not bea problem for the alulations in our ase, as the intermediate tasks are notwriting to the database, but only reading. However, administration mightbeome umbersome and jobs may at times give false results if some nodesare not updated orretly with new database �les.4 ModelIn this projet, the fous is on small o�e environments with limited re-soures. A small 3-node Grid is used in the benhmarks. The nodes arebasi workstations onneted through an Ethernet network. The Linux dis-tribution Fedora 7 is used as operating system on eah node. Furthermore,the workstations are quite di�erent, as shown in Table 1.Methods for distributing a olletion of short independent tasks on multi-ple nodes, are onsidered. If using multiore nodes in a Grid, one would alsobe able to exploit all the ores available, without altering the soure ode ofthe appliation. This is possible due to the Grid engine's ability to shedulea job for eah CPU on a node. Sine HyperThreading tehnology is inter-preted as an extra CPU by the operating system, the [P4Hyper℄ mahinewill be sheduled two jobs simultaneously, when used in a Grid. This mightgive a slight speedup, although not twofold sine the extra CPU deteted bythe OS is only virtual.All the nodes in the Grid are assumed to be idle during benhmarking.The default Condor setup exludes nodes, whih have not been idle for aperiod of time, as andidates for jobs. Sine one of the exeution nodes isalso used as the submit node, Condor is on�gured in testing-mode to removethe waiting time for this node. This will make Condor's environment moresimilar to SGE's. The nodes are not used for other tasks while benhmarking,so not to bias the results. All tasks used in the benhmarks will be givenidential input. The alulated results an then be used to verify that thesame alulation is exeuted in every task.14

Job exeution is handled di�erently by the two middlewares, as desribedin Appendix B.1.1. To support SGE's �le loality onept6, all the neessaryinput �les, inluding the binary exeutable, are assumed available on NFS.Hene, eah node an �nd all spei�ed �les using the same paths, provided bySGE's bash sript. However, NFS �le ahing and bu�ering might bias theresult in SGE's favor. Some ommon �les, inluding the exeutable, mightalready be available in the loal �le bu�er on the exeution nodes for thefollowing task, reduing �le transfer. Sine we are not using NFS mountedhome diretories, the results from SGE will be loated on the loal homediretories for the submitting user on eah exeution node. This may beomea signi�ant fator in the benhmark results, sine Condor automatiallytransfers all results bak to the submitting node. Hene, two benhmarkswill be run for SGE; one with and one without result �le transfer bak tothe submit node. An epilog sript is on�gured, in SGE's queue, to be usedby eah task. After a job ompletes, the epilog sript is exeuted and theresults are transferred bak to the submitter using SCP. Password-less SSHkeys were distributed among the nodes prior to job exeution. Thus, seureauthentiation is handled automatially, without user interation.The SQLite database �le needed by the appliation will, for SGE, beloally available on eah node during exeution. This is due to the NFS�le loking problems desribed in Setion 3.6.4. For Condor, its regular �lehandling will be used, and the database �le is transferred with the job alongwith the exeutable binary or bash sript. However, the textual input �lesfor eah task will be loated in the same NFS loation for both SGE andCondor. Thus, Condor will transfer the exeutable and database �le fromthe submit node to the exeute nodes, while SGE will transfer the exeutablefrom the NFS server. The NFS server is in our ase the same as the submitnode, namely the [P4Hyper℄.After all results are opied bak to the submit host, the �nal result an beolleted using the method desribed in Setion 3.6.2. For Condor, DAGManan be used. However, DAGMan jobs are not sheduled instantly, but onlyafter about 5 minutes by default. Thus, the benhmarks for Condor wererun by simply submitting the omputation job sript diretly, sine this issheduled instantly. The time taken to �nd the �nal result is therefore notinluded in the numbers for either Condor or SGE. However, the �nal sriptis run manually and the extra time used is given in the results.4.1 Test parameterWalltime is used as the parameter to ompare the time taken to exeute Xvery short tasks serially versus distributing them on a Grid. We are lookingfor speedup in the range of seonds and minutes, not lok yles, hene the6http://gridengine.sunsoure.net/howto/nfsredue.html15

Table 1: Workstation spei�ations[Athlon64℄ [P4Hyper℄ [Athlon32℄Proessor AMD Athlon64 Intel Pentium 4 AMD AthlonExtras 64-bit support HyperThreading N/ASpeed 3500+ 3.0Ghz 2500+RAM 2GB 1GB 1GBGrid job Submit/Exeute Master/Submit/Exeute Submit/ExeuteOS Linux Fedora 7hoie of timing parameter granularity. The following tests were run:
• Time used serially on eah of the nodes
• 3 runs of single task jobs on both Condor and SGE
• 3 runs of meta-tasks on both Condor and SGE
• 3 runs of single task jobs and meta-tasks on SGE, without result �letransfer
• Altering the job-task ratio for 1000 jobsThe benhmarks are run 3 times to see if the [P4Hyper℄ mahine will giveany signi�ant di�erene in the total exeution time, as well as to verifythe results. HyperThreading does not nearly give double the omputationpower, hene, two jobs running simultaneously on the [P4Hyper℄ mahinemight use longer time altogether than if exeuted on two di�erent nodes.Another benhmark where the the job-task ratio for 1000 tasks is altered,is also performed to see if there is room for �ne-tuning the amount of taskssent to di�erent nodes.The number of jobs were not hosen through an empirial study, butarbitrarily only to ompare the di�erent benhmarks. The range was hosenbetween 10 to 1000 tasks, to over our appliation's usual task range.The atual timings are extrated from log �les, apturing the submit timeand the end time for the last task in the job. In Condor, the user spei�esthe log �le name, in whih the submit, start and stop times for eah taskin a job are reorded. A bash sript is used to automatially extrat andalulate the time used for the total job (See Appendix C).SGE has a tool, �qat� , whih extrats data about jobs, inluding wall-time. Data from eah job is piped to a �le and another bash sript is usedto extrat the timing results for the jobs (See Appendix C).16

5 Benhmarks and ResultsThis Setion shows the results from omputing X small tasks serially, om-pared to distributed on a small three node Grid. The ideas from Setion3.3 and 3.4 were used. A disussion follows of the results from using thethese methods in both Condor and SGE. The serial results are shown �rstfor omparison.As mentioned in Setion 4, �nding the �nal result was to be done man-ually for pratial reasons. The time used to ollet, ompare and extratthe best result from 1000 tasks, was found to take about 3 seonds. This isnegligible, when the orresponding alulation time is in the range of over athousand seonds. For 100 tasks, it took less than one seond. Thus, thislast result omparison is ignored in the results.5.1 Serial exeutionTable 2 shows that the serial exeution time varies by about 27% betweenthe fastest and the slowest node. The average time taken between the threewas used later in the omparisons. One single task is shown to take between3 and 4 seonds. The same task was used in all benhmarks and this wasveri�ed by heking the result of the tasks.Table 2: Results for serial exeutionMahine/nTasks 10 50 100 200 500 1000Athlon64 30 150 299 599 1498 2988P4Hyper 37 186 371 741 1853 3702Athlon32 38 192 382 764 1915 3826Average(se.) 35 176 350.67 701.33 1755.33 3505.335.2 Results for CondorThe �rst Grid benhmark was simply submitting all the tasks in single taskjobs, using Condor's Queue X ommand mentioned in 3.3. There is nosigni�ant di�erene in the total time used by the di�erent runs, as shownin Table 3. Thus, the disussion about the HyperThreading apability ofone of the nodes from Setion 4.1, seems not have any signi�ant impliationfor single task jobs. However, sine all three benhmarks are idential, thesheduling should be very similar in eah run.Sine eah task only takes 3-4 seonds, sheduling and �le transfer over-head might add a signi�ant delay to the total job exeution time. Theresults in Table 4, ompared to Table 3, show that this is indeed the ase.In the meta-task test, multiple tasks were sent in fewer jobs, lowering the17

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
on

ds
)

Number of Tasks

Calculation time Serial vs. Condor

Serial Single Task Jobs Meta-tasksFigure 1: Calulation time serial vs. CondorTable 3: Condor single task job exeution timeRun/nJobs 10 50 100 200 500 10001 34 149 275 543 1353 27132 34 142 277 552 1362 27443 35 143 278 540 1358 2742Average(se) 34.33 144.67 276.67 545 1357.67 2733Table 4: Condor meta-task exeution timeRun/Jobs x Tasks 5x2 5x10 10x10 10x20 10x50 10x1001 30 91 183 338 799 15772 30 94 181 336 802 15753 30 95 181 335 800 1577Average(se) 30 93.33 182.67 336.33 800.33 1576.33Table 5: Speedup using Condor ompared to serial exeutionnTasks 10 50 100 200 500 1000Single task jobs 1.02 1.22 1.27 1.29 1.29 1.28Meta-tasks 1.17 1.89 1.93 2.09 2.19 2.2218

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 100 200 300 400 500 600 700 800 900 1000

S
pe

ed
up

Number of Tasks

Speedup Serial vs. Condor

Single Task Jobs Meta-tasksFigure 2: Speedup serial vs. Condor
sheduling and �le transfer delays onsiderably as the task ount inreased.There is an even smaller di�erene in time between the di�erent runs inthis test than the former. One should think that if the [P4Hyper℄ mahinewas given two 100-task jobs while another node is idle, would give moredi�erene. Disabling the HyperThreading feature altogether, showed littledi�erene in the timing results for Condor. Furthermore, more benhmarkswith di�erent job-task ratios, should be run for a more seure onlusion.This will be onsidered future work.Table 5 shows the speedup of the two former benhmarks. Sending eahtask as a single task job peaks at about 1.29 speedup, whih is not verygood keeping in mind the use of three times the omputing power. Meta-tasks, however, show a muh higher speedup. Thus, it seems that for suhshort tasks as in our ase (3-4 se), one an gain a lot from submittingmultiple tasks together, when using Condor. A speedup of 2.2 is seen for1000 tasks ompared to serial exeution, whih in turn is a speedup of fator1.73 ompared to single task jobs. Fewer result �les are transferred bak,though their size are larger aording to the number of tasks in the respetivejobs. 19

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
on

ds
)

Number of Tasks

Calculation time Serial vs. SGE, no result transfer

Serial Single Task Jobs Meta-tasksFigure 3: Calulation time serial vs. SGE (no result transfer)5.3 Results for Sun Grid Engine (without result �le transfer)Table 6 shows very good results for single task jobs on SGE, even faster thanCondor's meta-task exeutions. Compared to the average serial alulationtime, a speedup fator of the number of nodes used in this small Grid isseen. This shows that all the extra �le transferring done by Condor reatesa signi�ant amount of overhead. Apparently, SGE has nearly nonexistentoverhead for these partiular tasks when not transferring the results bak tothe submitter.Table 7 shows an interesting result. It atually shows slower performanefor meta-tasks than for single task jobs. Some tweaking of the job-task ratiowas performed and generally showed that the more jobs submitted (withfewer tasks), the loser the timings ame to the single task jobs. Thus, itseems that for SGE, single task jobs submitted as array jobs, will performequal to or better than meta-tasks when not transferring the results bak tothe submitter after eah exeution.5.4 Results for Sun Grid Engine (with result �le transfer)In this benhmark, an epilog sript is used to transfer the result �les for alltasks bak to the submit host. This benhmark is run for better ompari-son to Condor, as Condor transfers all result �les bak to the submit host20

Table 6: SGE single task job exeution time (no result transfer)Run/nJobs 10 50 100 200 500 10001 26 59 117 249 588 11452 31 59 116 227 587 11453 30 60 118 242 571 1147Average(se) 29 59.33 117 239.33 582 1145.67Table 7: SGE meta-task exeution time (no result transfer)Run/Jobs x Tasks 5x2 5x10 10x10 10x20 10x50 10x1001 21 64 130 259 644 12932 21 65 130 259 644 12873 20 65 131 258 648 1294Average(se) 20.67 64.67 130.33 258.67 645.33 1291.33Table 8: Speedup using SGE ompared to serial exeution (no result transfer)nTasks 10 50 100 200 500 1000Single task jobs 1.21 2.97 3.00 2.93 3.02 3.06Meta-tasks 1.69 2.72 2.69 2.71 2.72 2.71

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 0 100 200 300 400 500 600 700 800 900 1000

S
pe

ed
up

Number of Tasks

Speedup Serial vs. SGE, no result transfer

Single Task Jobs Meta-tasksFigure 4: Speedup serial vs. SGE (no result transfer)21

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
on

ds
)

Number of Tasks

Calculation time Serial vs. SGE, with result transfer

Serial Single Task Jobs Meta-tasksFigure 5: Calulation time serial vs. SGE (with result transfer)automatially. Both stdout and stderr will be transferred for omparison, al-though one an hoose not to transfer the stderr �les if they are not needed.Atually, sine the epilog transfer sript is a regular bash sript, one anhoose to transfer whatever, in whihever way found suitable.The results in Table 9, shows the exeution time with result transferbak to the submit host. Compared to the single task jobs without result�le transfer from Table 6, the numbers are generally higher, espeially forsmall task olletions. It is atually slower than serial exeution for 10 and50 tasks.In Table 10, it is observed that the meta-tasks with the hosen job-taskratios, perform almost equally well as single task jobs. This result is quitedi�erent from the former benhmark, shown in Table 7, where muh slowerperformane was observed for meta-tasks than for single task jobs. Thus, itseems that the extra �le transferring levels out the performane between thetwo.In Table 11, it is observed that when transferring result �les for SGE,the performane is almost idential for both meta-tasks and single task jobs.In Setion 5.5, it is observed that this was arbitrary, and that it is possibleto tweak the submit sripts in favor of meta-tasks.22

Table 9: SGE single task job exeution time (with result �le transfer)Run/nJobs 10 50 100 200 500 10001 160 207 267 388 750 13542 161 207 270 389 752 14613 161 206 270 390 753 1465Average(se) 160.67 206.67 269 389 751.67 1426.67Table 10: SGE meta-task exeution time (with result transfer)Run/Jobs x Tasks 5x2 5x10 10x10 10x20 10x50 10x1001 168 200 277 396 746 13342 169 200 278 394 746 13353 168 200 278 395 745 1332Average(se) 168.33 200 277.67 395 745.57 1333.67Table 11: Speedup using SGE ompared to serial exeution (with resulttransfer) nTasks 10 50 100 200 500 1000Single task jobs 0.22 0.85 1.30 1.80 2.34 2.46Meta-tasks 0.21 0.88 1.26 1.78 2.35 2.63

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500 600 700 800 900 1000

S
pe

ed
up

Number of Tasks

Speedup Serial vs. SGE, with result transfer

Single Task Jobs Meta-tasksFigure 6: Speedup serial vs. SGE (with result transfer)23

Table 12: Results for 1000 tasks when altering the job-task ratioGrid/Jobs x Tasks 10x100 20x50 40x25 100x10Condor 1576 1477 1462 1535SGE (�le transfer) 1333 1290 1246 12635.5 Results when altering the Job-Task ratioTable 12 shows that there is room for �ne tuning the job-task ratio forbetter performane. It was observed, during the benhmarking, that the[P4Hyper℄ mahine was usually the last mahine doing omputations, ontwo jobs simultaneously. Hene, for jobs with large amounts of tasks, thetwo other mahines were idle for a long time. Thus, it seems that HyperThreading might atually give worse performane altogether, when used onnodes i a Grid. However, this mahine ould also be looked at as two slowermahines, sine eah of its two jobs take about twie as long to �nish as oneon the [Athlon64℄. Thus, it seems that this environment ould bene�t fromdynami sheduling, giving larger jobs to more powerful mahines.In any multi user Grid environment, however, the idle mahines would beused to ompute tasks from other jobs, by other users. Thus, when speakingof overall throughput in a Grid, this disussion is not equally important.The otherwise idle nodes will be utilized as long as there are other jobs inthe queue.Furthermore, the trend today is multiore proessors without HyperThreading tehnology, eliminating the disussion altogether. However, thedynami sheduling idea still stands.5.6 Result summaryTable 13 summarizes the speedup from all our benhmarks. It was ob-served, that the speedup quikly peaks at around 3, using SGE on threeheterogeneous nodes. However, when looking at the details of this partiularbenhmark, this speedup did not inlude the transfer of result �les from theexeution nodes bak to the submit node. When inluding the �le trans-ferring into the equation, the speedup, for SGE, was 2.46 for 1000 singletask jobs. Another interesting result was atual slowdown when submittinga small number of tasks on SGE. Condor, however, was observed to havemuh better performane for small number of tasks.The results show that SGE was about twie as fast as Condor for singletask jobs, when transferring the results bak to the submitter. Overall,Condor had bad performane when distributing the tasks in our appliation,using single task jobs. Using three nodes, only a peak speedup of 1.29 wasobserved. For omparison, an extra test was performed for Condor. This test24

Table 13: Summary of speedup from all benhmarks(Originally shown in Tables: 5, 8 and 11)Benhmark/nJobs 10 50 100 200 500 1000Condor single task 1.02 1.22 1.27 1.29 1.29 1.28Condor meta-task 1.17 1.89 1.93 2.09 2.19 2.22SGE single transf. 0.22 0.85 1.30 1.80 2.34 2.46SGE meta-task transf. 0.21 0.88 1.26 1.78 2.35 2.63SGE single no-transf. 1.21 2.97 3.00 2.93 3.02 3.06SGE meta-task no-transf. 1.69 2.72 2.69 2.71 2.72 2.71used the same bash sript as for SGE's single task jobs, removing the transferof the database �le, as opposed to the regular Condor exeution. This gavea speedup of 1.43 for 1000 tasks, whih was only slightly better ompared tothe original Condor benhmark. Thus, it seems that transferring the binaryfrom the submit node or fething it from an NFS server, inluding removingthe database transfer overhead, yield only slightly better performane.In Setion 5.5, it is observed that there is room for �ne-tuning the job-task ratio for meta-tasks. A performane inrease of 7-8% was observed,using 40 jobs with 25 tasks ompared to 10 jobs with 100 tasks.The benhmarks in this paper did not inlude the olletion of the endresults. The user will expet the same end results in the database as forserial exeution without having to manually enter it. Without any means ofautomatially extrating and saving the end result from the distributed al-ulations, users may beome more relutant towards using Grid tehnology.The time saved in distributing alulations is lost in olleting and extrat-ing the end result. For Condor, using DAGMan possible solution, where oneould add a result gathering job, as dependent on the rest of the alulations.For SGE, the newly released ARI funtionality ould be used to add postjobs dependent on an array of jobs. These methods are only proposed in thisprojet, and not thoroughly tested.6 Conlusions and Future WorkIn this projet, we have seen how a ommerial appliation, developed se-rially without any initial thought of parallelism or distributed alulationfuntionality, an bene�t from being used in a Grid environment. Two wellknown Grid middlewares, Condor and Sun Grid Engine, were onsidered inthe proess, and ease-of-use evaluated. A disussion of installation proe-dures and problems an be found in the Appendies as well as pratial jobsubmission examples for the respetive middlewares.25

Due to the short exeution time of our tasks, di�erent methods for mini-mizing sheduler overhead were proposed, inluding altering the soure odeof our appliation to make it exeute multiple tasks internally, tuning theGrid shedulers, and implementing the Master-Worker paradigm.The �rst alternative would entail altering the input parameter list and thesoure ode orresponding to the task omputations, to make the appliationexeute multiple tasks internally. This was believed not to have onsiderablespeedup ompared to our multiple task job proposal. The only time savedwas assumed to be the starting and stopping of the exeutable for eah task,and, if internal result omparison was implemented, fewer �les would have tobe ompared by the last result sript. However, this was only an assumptionand needs further evaluation before a onrete onlusion an be taken.In this projet, however, only methods using regular Grid submit sriptswere analyzed. Thus, all speedup results were gained without altering thesoure ode in any way.Grid shedulers have multiple parameters and features whih an be �netuned in di�erent ways. By removing unneessary features and �ne tuningdi�erent timing onstraints, sheduler overhead an be redued. Removableand tunable features inlude sheduler monitoring, job validation, load ad-justments and di�erent sheduling timings. More information an be foundon the web pages for respetive Grid systems.Implementing the Master-Worker paradigm proposed for Condor, is on-sidered to give easy aess to a heterogeneous environment. The MW-paradigm desribes three lasses that would have to be implemented, namelyDriver, Task and Worker. These lasses are used to desribe, generate andexeute tasks oherently and fast. MW is shown to be easily implementedin ertain serial appliations, with good results [6℄. However, this solutionwas found to be outside the sope of this projet.The results gained in this projet, show that the e�ort needed for in-stalling a loal Grid system in an organization, may be well worth it. Au-tomati distribution of tasks to nodes with idle CPU yles, would givee�etive utilization of already available omputing resoures. For ertainappliations, no soure ode needs to be altered to make good use of a Gridenvironment.6.1 Future workIn future work, dynami sheduling of the meta-tasks, sized to better �t thedi�erent nodes in the Grid, would be of interest. From Table 2, it showsthat the Athlon64 mahine is about 27% faster than the Athlon32. Couldthe Athlon64 be sent bigger meta-tasks than the Athlon32 to make them�nish at the same time? Or will it level out automatially when enough jobsare in the queue?Methods for dynami sheduling is found important for heterogeneous26

environments, like Grids. Di�erent methods are proposed to handle di�er-ent aspets of heterogeneous environments. These inlude, handling dynaminetwork bandwidth, dereasing makespan of meta-tasks of di�erent size, andon-line dynami sheduling algorithms, using dediated sheduling proes-sors [16, 8, 11℄. Combining SiteRank [19℄ with a method for dynami sizingof meta-tasks, is an interesting idea for future work.Referenes[1℄ J.H. Abawajy. Job sheduling poliy for high throughput omputing en-vironments. Parallel and Distributed Systems, 2002. Proeedings. NinthInternational Conferene on, pages 605�610, 17-20 De. 2002.[2℄ Mark Baker, Rajkumar Buyya, and Domenio Laforenza. Grids andgrid tehnologies for wide-area distributed omputing. Softw. Prat.Exper., 32(15):1437�1466, 2002.[3℄ R. Buyya, D. Abramson, and J. Giddy. Eonomy driven resoure man-agement arhiteture for omputational power grids, 2000.[4℄ EGEE. http://egee.esnet.z/en/info/appliations.html.[5℄ Sun Grid Engine. http://www.sun.om/software/gridware/.[6℄ Goux, J.-P., Kulkarni, S., Linderoth, J., and Yoder, M. An enablingframework for master-worker appliations on the omputational grid. InThe Ninth International Symposium on High-Performane DistributedComputing, pages 43�50, May 2000.[7℄ GridCafé. http://gridafe.web.ern.h/gridafe/gridatern/lg.html.[8℄ B. Hamidzadeh, D. J. Lilja, and Y. Atif. Dynami sheduling teh-niques for heterogeneous omputing systems. Conurreny: Pratieand Experiene, 7(7):633�652, 1995.[9℄ J. Herrera, E. Huedo, R. S. Montero, and I. M. Llorente. Exeutionof typial sienti� appliations on globus-based grids. In ISPDC '04:Proeedings of the Third International Symposium on Parallel and Dis-tributed Computing/Third International Workshop on Algorithms, Mod-els and Tools for Parallel Computing on Heterogeneous Networks (ISPD-C/HeteroPar'04), pages 177�183, Washington, DC, USA, 2004. IEEEComputer Soiety.[10℄ Eduardo Huedo, Ruben S. Montero, and Ignaio M. Llorente. Experi-enes on adaptive grid sheduling of parameter sweep appliations. pdp,00:28, 2004. 27

[11℄ Hung-Yuan; Liu Kang-Yuan; Chang Gei-Ming; Lien Chin-Chih Lee,Liang-Teh; Chang. A dynami sheduling algorithm in heterogeneousomputing environments. Communiations and Information Tehnolo-gies, 2006. ISCIT '06. International Symposium on, pages 313�318, Ot.18 2006-Sept. 20 2006.[12℄ Miron Livny, Jim Basney, Rajesh Raman, and Todd Tannenbaum.Mehanisms for high throughput omputing. SPEEDUP Journal, 11(1),June 1997.[13℄ Liang Peng, Lip Kian Ng, and Simon See. Yellowriver: A �exible highperformane luster omputing servie for grid. In HPCASIA '05: Pro-eedings of the Eighth International Conferene on High-PerformaneComputing in Asia-Pai� Region, page 553, Washington, DC, USA,2005. IEEE Computer Soiety.[14℄ Liang Peng, Simon See, Jie Song, Appie Stoelwinder, and Hoon KangNeo. Benhmark performane on luster grid with ngb. ipdps, 18, 2004.[15℄ Condor Projet. http://www.s.wis.edu/ondor/.[16℄ Prashanth C SaiRanga and Sanjeev Baskiyar. A low omplexity algo-rithm for dynami sheduling of independent tasks onto heterogeneousomputing systems. In ACM-SE 43: Proeedings of the 43rd annualSoutheast regional onferene, pages 63�68, New York, NY, USA, 2005.ACM.[17℄ MW Team. http://www.s.wis.edu/ondor/mw/.[18℄ Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed om-puting in pratie: the ondor experiene. Conurreny - Pratie andExperiene, 17(2-4):323�356, 2005.[19℄ George Tsouloupas and Marios D. Dikaiakos. Grid resoure rankingusing low-level performane measurements. In Anne-Marie Kermarre,Lu Bougé, and Thierry Priol, editors, Euro-Par, volume 4641 of LetureNotes in Computer Siene, pages 467�476. Springer, 2007.A Setting up the GridA.1 Sun Grid Engine 6.1SGE master host and exeution host was suessfully installed on Fedora 7by following the installation manual found on the Sun web page [5℄. Afterworking out the problems mentioned in A.1.3, the installation was prettystraight forward. There were a lot of steps to set up di�erent things and itis a good idea to have a plan or basi idea of the Grid before installing.28

To install an exeution host, it is neessary to opy all the installation �lesfrom the master host to the exeution host after the master host installation.This way the exeution host will get the orret settings set up for the masterhost.A.1.1 Possible node on�gurationsThere are several di�erent node funtions available for SGE:
• Master host: this is where the Grid engine runs.
• Shadow master host: this is a bakup host if the master host fails.There an be several shadow hosts in a Grid.
• Administration host: nodes that an do administrative tasks on theGrid.
• Submit host: a node whih an submit and ontrol jobs.
• Exeute host: a node where jobs are exeuted.A.1.2 Aess to �lesEah node in a SGE Grid, needs all exeutables and input �les loally oron a NFS/AFS mount. There is no automati �le transfer in SGE, like inCondor. However, prolg- and epilog sripts an be de�ned for a queue, where�le transfer or other operations an be de�ned. Results are opied to therespetive user's home diretory. SGE expets the home diretories to bemounted on NFS. If they are not, all results will be opied loally on theexeution node. An epilog sript an then be used to automatially transferall results bak to the submit node. An example of suh a sript is shown inAppendix C.A.1.3 ProblemsSome problems were enountered while installing the master host:
• SGE needs the libXm.so.3 library, whih an be found in the OpenMotifpakage, for its GUI appliation. OpenMotif-2.3.0.0.f7.rma.i386.rpmfor fedora ore 7 was installed whih had the newer version, libXm.so.4,of the library. I had to make a symlink to this �le for the SGE GUI towork (sine it is a newer version, the linker is happy):ln -s /opt/openmotif/usr/lib/libXm.so.4.0.0 /usr/lib/libXm.so.3
• After unpaking the �les, the ommand set�leperm.sh $SGE_ROOTis to be run to set the right permissions. This failed beause of a wrong29

GLIBC version in Fedora 7. To �x this, open the �le �$SGE_ROOT/util/arh�and edit line 248 from 3|4|5) to 3|4|5|*) and run the sript again. (NB!This problem did not appear on a mahine running Kubuntu)A.1.4 Windows restritionsWindows mahines annot run as master hosts, shadow master hosts orsheduler. Windows is therefore limited to exeution and submit hosts. Cer-ti�ates (Certi�ate Seurity Protool (CSP)) are also neessary for ommu-niation between master host and windows exeution host. The GUI toolqmon and DRMAA are not supported either.A.2 Condor-6.8.6I installed Condor with a rpm pakage on Fedora 7, with a tar.gz pakageon Kubuntu and with a MSI pakage on WindowsXP. The only prerequisiteon Linux was an older version of the libstd++ library. This an be in-stalled with yum install ompat-libstd++-33 for Fedora 7 or apt-getinstall libstd++5 on Kubuntu. The installation was easily ompleted byfollowing the installation manual found on the Condor web page [15℄. Theinstallation of a 4 node Condor pool, inluding a WindowsXP node, was anhours proess. On SGE, it was more a days proess, for a Grid beginner.Registering an exeute and submit node on the master host in Linux,simply enter the following ommand on the host to add:./ondor_on�gure �entral-manager=host�domain.om �type=exeute,submitMake sure all the nodes networking is set up orretly before runningthis ommand. If not, the request might not be deteted by the master host.A.2.1 Possible node on�gurations
• Master host (even Windows nodes, unlike SGE)
• Exeute host
• Submit host
• Or any ombination of theseA.2.2 Aess to �lesIn Condors standard universe, aess to �les, input and output, is handledautomatially through remote system alls. In other universes, vanilla, Javaand MPI, aess is presumed, as default, to be through a shared �le systemon UNIX mahines. If no shared �le system is available, �le transfer has to30

be spei�ed in the submit �les by the user. Add the following lines to thesubmit sript to enable �le transfer (other options are available):s h ou l d_t r an s f e r_ f i l e s = YESwhen_to_transfer_output = ON_EXITt r an s f e r_ inpu t_ f i l e s = f i l e 1 , f i l e 2 , . . .A.2.3 Heterogeneous nodesIn a heterogeneous Grid, it is bene�ial to have as muh information abouteah node as possible. If a job has spei� needs, speial are should be taketo whih node the jobs are sent to. Condor solves this with the ClassAdssystem. Eah node has a set of parameters (e.g. Total Memory, OpSys,Arhiteture, Disk Spae), whih an be used as requirements for jobs. Con-dor administrators an speify their own ClassAds for eah node, as well.Inserting the following in a submit �le, states that the job needs the LinuxOpSys and �avor RedHat9 (OPSYS_FLAVOR=�RedHat9� has to be de�nedin the exeution nodes on�guration �le for it to be eligible):REQUIREMENTS = (OpSys == �LINUX�) && (OPSYS_FLAVOR =?=�RedHat9�)This is useful if the exeutable is ompiled only for a spei� �avor ofLinux, with possibility to fail if exeuted on, for example, Debian. A neattrik to make use more nodes, would be to have di�erent exeutables for dif-ferent OS's and �avors, and speify whih exeutable should be transferredto the di�erent nodes. The following line will hoose the orret exeutablefor the spei�ed requirement.Exeutable = exe.$$(OpSys).$$(OPSYS_FLAVOR)The exeutables must have names similar to exe.LINUX.RedHat9 orexe.LINUX.Debian, for this to work.A.2.4 ProblemsI installed a net install of Debian on a 3rd node and ran into a problem withip-addresses and hostnames. The installation de�ned the IP address for thenode's hostname, in the /et/hosts �le, to a loal one (127.0.1.1). Thisaused the master to blok aess for the node, beause it had an unknowndomain address. Commenting out this line and letting DHCP take are ofhostname and orresponding ip-addresses, �xed the problem.31

A.2.5 Windows restritionsIt is not possible to ondor_ompile Windows appliations. As a result, re-mote system alls and hekpointing is not available on this platform. There-fore, Windows jobs have to run in the �vanilla� universe. The following anbe added to the submit sript, to run on Windows mahines:un ive r s e = van i l l arequ i rements = (OpSys == WINNT50)B Using the GridB.1 Sun Grid Engine 6.1To start the SGE daemons, enter the following ommands as root:$SGE_ROOT/name-of-ell/ommon/sgemaster start$SGE_ROOT/name-of-ell/ommon/sgeexed startB.1.1 Submitting JobsSubmitting jobs to SGE, is done by sending bath sripts to the masterserver with the ommand �qsub /path/to/sript.sh� or through the GUIinterfae qmon. A omputer is not allowed to submit jobs, unless it is reg-istered as a �Submit Host�. One this is done, jobs sent from this node willbe aepted and put in a job queue.The results are handled di�erently than in Condor. Condor opies allresults bak to the same folder, on the node it was submitted from, simply byrunning in the �standard� universe, or by de�ning �le transfer in the submitsript. SGE opies the results to the owners home diretory. Thus, SGEassumes the users home diretories are NFS mounted. If the home diretoriesare not NFS mounted, the results are opied loally on the exeution nodethat ompleted the job. This an be triky, as you don't know whih nodeyour job is exeuted on. Epilog sripts an be used to remedy this, asdesribed in Appendix A.1.2.SGE does not have automati job exeutable transfer, like Condor. Eahjob exeutable must therefore be available on every node, in the path givenin the bash sript. The easiest way to make sure this is the ase, is to haveall the �les available on AFS of NFS. However, it is possible to manuallyde�ne transfer of exeutables in a prolog sript, if neessary.Example of a simple SGE submit sript:#!/ bin / sh## This i s a s imple example o f a SGE bath s r i p t# SGE s p e i f i op t i ons s t a r t s with '#$ '32

#$ −S /bin /sh#$ −o output_file_name/path/ to / exeutab l e arg1 arg2B.2 Condor-6.8.6To start Condor, enter the following ommands as root:$CONDOR_ROOT/sbin/ondor_masterB.2.1 Preparing jobs for exeutionTo use remote system alls and hekpointing/migration in Condor, the ex-eutable has to be relinked with the Condor libraries. Here a problem wasenountered on both Fedora 7 and Kubuntu: �ERROR: Internal ld was notinvoked! Exeutable may not be linked properly for Condor!�. A solutionwas not found and the jobs were run in the �vanilla� universe instead. Con-dor_ompile had problems loating some appliation libraries, thus a statilink of the exeutable ould maybe have �xed the problem.B.2.2 Submitting JobsSubmitting jobs is done with the ommand �ondor_submit job.md� .The .md �le ontains di�erent job settings, inluding input/output �le lo-ations, �les that have to be transferred to the exeution node, the requiredarhiteture for running a binary, et. Setting up orret onstraints andrequirements for a job, will help make sure the job is exeuted suessfully.Copying diretories of input �les, is not supported in the urrent version ofCondor. For jobs with diretories as input data, a shared �le system an beused for input �les instead. ClassAds an be used to �nd a node whih hasaess to the spei� remote loation.Example of a simple Condor submit sript, that opies the exeutable to theexeute node and returns the results to the submit node (notie the use ofthe �standard� universe):## Test Condor ommand f i l e#un ive r s e = standardexeutab l e = name_of_exeutableoutput = exeutab l e . oute r r o r = exeutab l e . e r rl og = exeutab l e . l ogarguments = arg1 arg3queue 33

See manual for more options:http://www.s.wis.edu/ondor/manual/v6.8/ondor_submit.htmlB.2.3 Di�erent settingsCondor an either be set up to run jobs on any node, idle or not, or to nodeswhih have been idle for more than 15 minutes (either no keyboard, nomouse movement or CPU idle time). When the node is no longer available,the job an be hekpointed and kept on the same node until idle again, orthe job an be sent to another idle node. During testing, it is reommendeduse Condor in testing mode, to disable the �wait for idle� settings. See themanual for details on how to do so.C Sripts and Code ListingsHere follows a listing of all sripts used in benhmarking Condor and SGE.The last listing is the C++ program used to extrat the best result from thepre formatted result �le, desribed in Setion 3.6.2.

34

Listing 1: Job sript for SGE1 ####################2 # Sing l e Task Job S r i p t f o r Sun Grid Engine3 # Sing l e j ob submiss ion :4 # qsub t h i s_ s r i p t . sh5 # Array job submiss ion :6 # qsub −t [t _ f i r s t ℄−[t_ l a s t ℄ : [t_ s t e p s i z e ℄ t h i s_ s r i p t .sh7 ####################8 #!/ b in / sh9 # Request Bourne s h e l l as s h e l l f o r j ob10 #$ −S / b in / sh1112 v1=$ (date +%s)13 # Run dago14 for ((i =0; i <[set_num_tasks_here ℄ ; i+=1)) ; do15 /mnt/ p r o j e t /dago − −s t a r t=1 −stop=10 \16 "/mnt/ p r o j e t / setups /TEST_sge . sup"17 done1819 # Print Job Data20 eho s t a r t=$SGE_TASK_FIRST stop=$SGE_TASK_LAST \21 step=$SGE_TASK_STEPSIZE id=$SGE_TASK_ID2223 # Print time taken24 v2=$ (date +%s)25 l e t v3=$v2−$v126 eho "Seonds used f o r t h i s task : " $v3
35

Listing 2: Result transfer epilog sript for SGE1 ####################2 # re su l t_ t r an s f e r_ep i l o g . sh3 # Trans fers SGE array r e s u l t s to hos t4 ####################5 #!/ b in / bash6 eho SGE_HOST: $SGE_O_HOST7 eho HOSTNAME: $ (hostname −s)8 i f ["$ (hostname −s) " != "$SGE_O_HOST" ℄ ;9 then10 eho " Trans f e r r ing r e s u l t to host . . . "11 sp $SGE_O_WORKDIR/dago . sh . o$JOB_ID .$SGE_TASK_ID \12 $SGE_O_WORKDIR/dago . sh . e$JOB_ID.$SGE_TASK_ID \13 $SGE_O_HOST:/$SGE_O_WORKDIR14 rm $SGE_O_WORKDIR/dago . sh . o$JOB_ID .$SGE_TASK_ID15 rm $SGE_O_WORKDIR/dago . sh . e$JOB_ID.$SGE_TASK_ID16 f i

36

Listing 3: Sript for extrating runtime for SGE1 ####################2 # Get time used from Sun Grid Engine3 # Useage :4 # qa t −j [job_id ℄ > sgejobsummary . t x t5 # ./ t h i s_ s r i p t . sh sgejobsummary . t x t6 ####################7 #!/ b in / bash89 #Get job submit time10 t0=$ (grep "qsub_time" $1 | head −n 1 | \11 grep −o [0 −9 ℄ [0 −9 ℄ : [0 −9 ℄ [0 −9 ℄ : [0 −9 ℄ [0 −9 ℄)12 s0=$ (date −−date=$t0 +%s)1314 #Get l a s t j o b end time15 t1=$ (grep "end_time " $1 | \16 grep −o [0 −9 ℄ [0−9 ℄ : [0−9 ℄ [0−9 ℄ : [0−9 ℄ [0−9 ℄ | \17 s o r t −r | head −n 1)18 s1=$ (date −−date=$t1 +%s)1920 #Get t o t a l t ime used f o r array job21 l e t s=$s1−$s022 eho " F i l e : " $123 eho "Time : " $s " seonds "

37

Listing 4: Condor single task jobs submit sript1 ####################2 # dago . ondor3 # 100 S in g l e Task Jobs Condor ommand f i l e4 ####################5 un ive r s e = van i l l a6 exeutab l e = dago7 output = dago . out . $ (CLUSTER) . $ (PROCESS)8 e r r o r = dago . e r r . $ (CLUSTER) . $ (PROCESS)9 l og = dago . l og . $ (CLUSTER)1011 REQUIREMENTS = (OpSys == "LINUX") && (OPSYS_FLAVOR =?="FC7")12 shou l d_t r an s f e r_ f i l e s = YES13 when_to_transfer_output = ON_EXIT14 t r an s f e r_ inpu t_ f i l e s = /mnt/ p r o j e t / dbases /TEST. db15 arguments = − −s t a r t=1 −stop=10 /mnt/ p r o j e t / setups /TEST. sup16 queue 100
Listing 5: Condor meta-task submit sript1 ####################2 # 10 Mult i (10 x)Task Job Condor ommand f i l e3 ####################4 un ive r s e = van i l l a5 exeutab l e = multiTaskJob . sh6 output = dago . out . $ (CLUSTER) . $ (PROCESS)7 e r r o r = dago . e r r . $ (CLUSTER) . $ (PROCESS)8 l og = dago . l og . $ (CLUSTER)9 REQUIREMENTS = (OpSys == "LINUX") && (OPSYS_FLAVOR =?="FC7")1011 shou l d_t r an s f e r_ f i l e s = YES12 when_to_transfer_output = ON_EXIT13 t r an s f e r_ inpu t_ f i l e s = dago , /mnt/ p r o j e t / dbases /TEST.db14 arguments = 1015 queue 10 38

Listing 6: Condor meta-task bash sript1 ####################2 # MultiTaskJob . sh3 ####################4 #!/ b in / bash5 v1=$ (date +%s)6 eho " Sta r t : " ` date `7 for ((i =0; i<$1 ; i+=1)) ; do8 . / dago − −s t a r t=1 −stop=10 /mnt/ p r o j e t / setups /TEST. sup9 done10 v2=$ (date +%s)11 l e t v3=$v2−$v112 eho " Fin i shed : " ` date `13 eho "Seonds used : " $v3
Listing 7: Sript for extrating runtime for Condor1 ####################2 # Get time used from Condor l o g f i l e3 # Useage :4 # ./ t h i s_ s r i p t . sh nameOfLogFile . l o g5 ####################6 #!/ b in / bash78 # Get submit time and l a s t j o b end time9 t0=$ (grep "Job submitted " $1 | head −n 1 | \10 grep −o [0 −9 ℄ [0 −9 ℄ : [0 −9 ℄ [0 −9 ℄ : [0 −9 ℄ [0 −9 ℄)11 t1=$ (grep "Job terminated " $1 | t a i l −n 1 | \12 grep −o [0 −9 ℄ [0 −9 ℄ : [0 −9 ℄ [0 −9 ℄ : [0 −9 ℄ [0 −9 ℄)1314 # Convert to seonds and f i nd t o t a l t ime15 s0=$ (date −−date=$t0 +%s)16 s1=$ (date −−date=$t1 +%s)17 l e t s=$s1−$s01819 # Print r e s u l t s20 eho " F i l e : " $121 eho "Time : " $s " seonds " 39

Listing 8: Condor DAGMan sript1 ####################2 # DAGMan s r i p t f o r3 # pos t p roe s s ing4 ####################5 Job A dago . ondor6 Job B post . ondor7 Parent A CHILD B

Listing 9: The 'post.ondor' sript1 ####################2 # pos t . ondor3 # Post proe s s ing job f o r ondor4 ####################5 un ive r s e = loal6 exeutab l e = post . sh7 output = post . out . $ (CLUSTER)8 e r r o r = post . e r r . $ (CLUSTER)9 log = dago_dag . l og10 arguments = 1 10 GROUP.FIELD . FGasa11 queue
40

Listing 10: The result extration bash sript for single task jobs1 ####################2 # pos t . sh3 # Post proe s s ing s r i p t4 # (S ing l e t a s k j o b s)5 # Arguments :6 # 1: s t a r t 2 : s t op7 # 3: r e su l t_ t a g 4 : res_file_name8 ####################9 #!/ b in / bash10 eho Co l l e t i n g r e s u l t s from output f i l e s11 s0=$ (date +%s)12 i f [−f r e s u l t . post ℄13 then14 rm r e s u l t . post15 f i16 for i in $ (l s $4 ∗) ; do17 eho JobID : $ i >> r e s u l t . post18 grep Setup $ i >> r e s u l t . post19 grep $3 $ i >> r e s u l t . post20 done2122 eho −−−23 eho Gett ing best r e s u l t from o l l e t i o n24 eho −−−25 . / f i ndBes tResu l t $1 $2 $3 r e s u l t . post2627 eho −−−28 eho Running dago with the best setup29 hmod 775 postDagmanSript . sh30 . / postDagmanSript . sh31 rm postDagmanSript . sh3233 eho −−−34 eho Done !35 s1=$ (date +%s)36 l e t s=$s1−$s037 eho "Time used f o r post p r o e s s i n g : " $s " seonds "
41

Listing 11: Code for extrating and omparing results1 /∗####################2 ∗ f i n dBe s tRe su l t . pp3 ∗/####################4 #inlude <sstream>5 #inlude <iostream>6 #inlude <fstream>7 #inlude <st r ing >8 using namespae std ;9 // Input args : s t a r t s t op re su l tTag10 int main (int arg , har ∗∗ argv) {11 i f (arg != 5)12 {13 f p r i n t f (s tde r r , "Wrong # of arguments ! \ n") ;14 return 1 ;15 }16 //Get input parameters17 int s t a r t = a to i (argv [1 ℄) ;18 int stop = a to i (argv [2 ℄) ;19 s t r i n g tagResu l t = argv [3 ℄ ;2021 s t r i n g tagSe tupF i l e ("Setup f i l e : ") ;22 s t r i n g l i n e ;23 double bes tResu l t = −1.0;24 s t r i n g setupFi l ePath ;25 i f s t r e am myf i l e (argv [4 ℄) ;26 i f (my f i l e . is_open ())27 {28 while (! my f i l e . e o f ())29 {30 g e t l i n e (myf i l e , l i n e) ;31 i f (l i n e . f i nd (tagSetupFi l e , 0) != s t r i n g : : npos)32 {33 //Save temporary b e s t se tup f i l e path34 s t r i n g tmpSetupFilePath = l i n e . subs t r (tagSe tupF i l e .l ength ()) ;3536 //Read nex t l i n e i f "Setup Path" tag found37 g e t l i n e (myf i l e , l i n e) ;38 i f (l i n e . f i nd (tagResult , 0) == s t r i n g : : npos)39 {40 out << "Did not f i nd r e s u l t tag f o r " <<tmpSetupFilePath << endl ;41 ontinue ;42 } 42

43 // I f "Resu l t Tag" found parse the r e s u l t44 double tmpRes = −1.0;45 s t r i n g r e s = l i n e . subs t r (l i n e . f i nd (" : " ,0)+1) ;46 i s t r i n g s t r e am i (r e s) ;47 i f (! (i >> tmpRes))48 {49 out << "Res : " << re s << endl ;50 out << "Could not parse r e s u l t " << endl ;51 ontinue ;52 }5354 //Save new be s t r e s u l t and se tup f i l e path55 i f (tmpRes > bes tResu l t)56 {57 be s tResu l t = tmpRes ;58 //Remove l a s t po in t59 setupFi l ePath = tmpSetupFilePath . subs t r (0 ,tmpSetupFilePath . l ength ()−1) ;60 }61 }62 }63 myf i l e . l o s e () ;6465 //Create s r i p t wi th f i n a l dago exeu t i on66 ofstream outputF i l e ;67 outputF i l e . open ("postDagmanSript . sh") ;68 i f (outputF i l e . is_open ())69 {70 outputF i l e << "#!/ bin /bash\n" ;71 outputF i l e << " . / dago − −s t a r t=" << s t a r t << " −stop=" << stop << " " << setupFi l ePath << " >DAGOCRESULT.RES\n" ;72 outputF i l e . l o s e () ;73 }74 else out << "Unable to open output f i l e " << endl ;7576 //Print r e s u l t s77 out << "Best r e s u l t : " << bes tResu l t << endl ;78 out << "Setup Path : " << setupFi l ePath << endl ;79 }80 else out << "Unable to open input f i l e " << endl ;8182 return 0 ;83 } 43

