
1

Branch Performance on the Tesla Architecture
Rune Johan Hovland

Abstract—The use of CUDA for GPGPU applications has been a tremendous success. Many applications and algorithms have been
reimplemented to run on the Tesla Architecture. However this architecture has other performance characteristics than regular CPUs
and CPU clusters. The use of a Singe-Instruction-Multiple-Thread (SIMT) architecture forces the developers to consider new pitfalls
such as wrong use of branching. This paper will show how the Tesla Architecture handles branching trough defining a theoretical model,
and discussing the validity of this. The performance characteristics which can be expected from a program using branches will also be
showed as part of validating the model.

Index Terms—Tesla Architecture, CUDA, branching, performance.

F

1 INTRODUCTION

W ITH the introduction of the Tesla Architecture
and CUDA, the High Performance Computing

(HPC) community has been given the tools neces-
sary to easily do General-Purpose Computing on GPUs
(GPGPU). The use of NIVIDAs GPUs has thus been
given much attention, and many papers has been re-
leased outlining how to perform various algorithms
and applications using CUDA. What is also pointed
out by the same articles is the difference in paradigm
under which one develops. As normal supercomput-
ers are either Single-Instruction-Multiple-Data (SIMD) or
Multiple-Instruction-Multiple-Data (MIMD), the change
to the Single-Instruction-Multiple-Thread (SIMT) encour-
aged through CUDA proves to be difficult. One of many
pitfalls is wrong use of branching which may lead to
reduction in performance. This paper seeks to clarify
the behavior of branching on the Tesla architecture, and
which performance characteristics can be expected when
using branching.

The paper will start with a outline of the GPU and
the Tesla Architecture in Section 2, and then later in
the section focus more on threading in the Tesla Ar-
chitecture, and how this correlates to branching. The
section then finishes with a small part about GPGPU and
CUDA. In Section 3 a theoretical model for instruction
execution on the Tesla Architecture is given, along with
a discussion on how this affects branching. Section 4
gives an overview of the test environment used in the
verification of the model. Here both the hardware and
software used is described. The tests used to verify the
model are given in Section 5 along with the results of the
tests. The paper concludes on the validity of the model
in Section 6.

• R. J. Hovland is a graduate student with the Department of Computer
and Information Science at the Norwegian University of Science and
Technology, Trondheim, Norway.
E-mail: runejoho@stud.ntnu.no

2 BACKGROUND

From the first simple dedicated graphics systems in
1960 to the massively parallel computational platforms
today.s graphics cards are, there has been a tremendous
evolution [1]. The first systems merely acted as special-
ized hardware for drawing graphics on vector displays
and later raster displays. As 3-dimentional drawing be-
came more sought after, the graphics systems included
hardware for transforming 3-dimentional objects into 2-
dimentional drawings. By the 1980’s personal computers
started including specialized extension cards for display-
ing graphics and gave birth to the graphics card. As more
and more features were added to the graphics pipeline,
the cost of supporting the various graphics cards in-
creased unacceptably, and the need for standardization
emerged, and in the 1990’s both OpenGL1 and Direct 3D2

application programming interface (API) were released.
Still with the standards in place, the pipeline increased
due to new requirements such as multimedia accelera-
tion and specialized shaders. To overcome this increase
in complexity, Direct 3D introduced its Unified Shader
Model in 2006.

The Unified Shader Model introduced as a part of
Shader Model 4.0 in the Direct 3D 10 specification [2]
marked a turning point in the development of graphics
processing units (GPU). By expressing all its shaders on a
single shader core, it allowed for reuse of shader units for
different types of shaders. The intention with this choice
was to overcome the problems with the earlier pipelines
where specialized shaders were not fully utilized due
to mismatch between the pipelines ratio between shader
types and the applications needs. By basing the shaders
on the same shader core, a shader could be used in
all shader steps of the pipeline and thereby allowing
the GPU to adjust the pipeline to applications needs.
Another effect caused by the Unified Shader Model was
that the use of a single shader core throughout the
pipeline made the GPU more suited for general-purpose

1. www.opengl.org
2. www.microsoft.com/windows/directx/

2

computation.

2.1 Tesla Architecture
The Tesla architecture [3] is NVIDIA’s Unified Shader
Architecture, and first appeared in the G80 series of its
GPUs. The architecture is designed in such a way that it
is highly scalable, allowing it to be used in a wide range
for GPUs. This scalability is achieved through the use of
Streaming Multiprocessors (SM). These processors can
be duplicated any number of times to give the GPU its
desired performance. Since each SM is an independent
unit without possibility to communicate directly with
other SMs, this scalability is easily achieved.

These processors form the backbone of the architec-
ture, and give the Tesla architecture its ability to scale.
To give the GPU its desired performance and parallelism,
the SM can be duplicated any number of times. As an
example, GeForce GTX 2853 which is the new high-end
GPU has a total of 30 SMs, while the low-end GeForce
9400GT4 9400GT5 only has two SMs. An example layout
of the Tesla Architecture can be viewed in Figure 1.

The Streaming Multiprocessor is a Single-Instruction-
Multiple-Thread (SIMT) processor, and this is empha-
sized by NVIDIA [4]. While not part of Flynn’s tax-
onomy [5], there is a key difference between SIMT
and Single-Instruction-Mulitple-Data (SIMD). Both types
allow the same instruction to be executed on multiple
data in parallel. The key difference as pointed out by
NVIDIA is that while SIMD processors exposes the data
parallelism, the Tesla Architecture hides this by allowing
the developers to program multiple threads and running
them in parallel when their instructions are equal. This
thread parallelism is achieved by the eight Streaming
Processors (SP) inside the SM. These SPs all perform the
same instruction which is given by the SMs Instruction
Fetch and Issue Unit (MT Issue). If one or more of the
threads does not contain the instruction, the correspond-
ing SP is deactivated during the instruction execution
and thus maintaining the correct program execution
for all threads. This effect will be discussed further
in Section 2.2. In addition to the SPs and MT Issue,
the SM contains two Special Function Units (SFU) and
a shared memory. The SFUs are specialized hardware
capable of performing more complex calculations such as
square root. Also include as of the NVIDIA G200 series,
is a double-precision floating-point unit which can do
double-precision calculation. This is required as the SPs
are only capable of performing calculations using single-
precision floating-point and integers.

The shared memory located on the SM is part of a two
level memory hierarchy in the Tesla Architecture. Since
the Tesla Architecture does not implement cache for data
memory, a good utilization of the shared memory by
the developers is crucial to achieve high performance.

3. http://www.nvidia.com/object/product geforce gtx 285 us.html
4. http://www.nvidia.com/object/product geforce 9400gt us.html
5. http://www.nvidia.com/object/product geforce 9400gt us.html

Since a memory access instruction takes four cycles,
and the latency to the global memory is 4-600 cycles,
there is great performance gain by prefetching data to
the shared memory. Another vital thing to consider is
the access pattern to the shared memory, as the shared
memory is divided into 16 memory banks which can
be accessed in parallel. If two or more threads try to
access the same memory bank, the access is serialized.
The NVIDIA CUDA Programming Guide [4] is a good
source of information on this effect, and some more
optimization techniques.

2.2 Thread Branching on Tesla Architecture
As pointed out earlier the Streaming Multiprocessor is a
SIMT processor. This enables the developers to write a
massively multithreaded program, and the Tesla Archi-
tecture manages and parallelizes the threads. To organize
the large number of threads, the threads are grouped
together in thread blocks of up to 512 threads. On or
more thread blocks are executed on a SM interleaved. To
mask IO operations, a stalled block may be replaced by
another block to allow high utilization of the SM. Each
thread block operates as a independent unit without
other possibilities to communicated with other blocks
than through the global memory. Within a thread block
the threads are grouped together in Warps of 32 threads.
These threads are run in parallel on the SM, and all
execute the same instruction. To allow for instruction
decoding, the SM runs the 32 threads in four iterations
on the eight SPs. In the documentation the Warp is
divided into half-warps of 16 threads, but as far as it
can be found this grouping refers more to memory access
than execution patterns.

When a warp is executed, it must all perform the
same instruction. If branching occurs among the threads,
and one or more threads follows another branch, the
SM executes the different branches in serial and disables
the SPs handling the threads not following the current
branch. An effect of this is that any branching within a
warp will lower the utilization of the SPs and thus also
reduce the performance.

In the code given in Figure 2.2 the if-statement will
create a divergent path for the threads in the warp. The
first 11 threads will execute line 5, while the remaining
threads will execute line 9. To handle this situation, the
SM will then execute line 1-3 as normal, and then execute
line 5 with the SPs handling thread 11 to 31 disabled.
Further it will then execute line 9 with SPs assigned to
thread 0 to 10 disabled, and then finally execute line
11 for all SPs. Even though each thread only executes
5 instructions, the SM have to use 6 steps to complete,
since the threads takes divergent paths, and this reduces
the performance.

2.3 General-Purpose Computing on GPUs
The ability to perform general-purpose computing on
GPUs (GPGPU) have been possible since the appearance

3

Fig. 1. The Tesla Architecture [3].

1 i n t threadID = threadIdx . x ;
2 i n t k = 8 ;
3 i f (threadID < 11)
4 {
5 k = k + 5 ;
6 }
7 e lse
8 {
9 k = k − 2 ;

10 }
11 k = k + 3 ;

Fig. 2. Branching code. The first 11 threads execute the
if-section while the remaining 21 threads executes the
else-section.

of programmable shaders. However, the task has not
always been as easy as today. The pioneers of GPGPU
had to camouflage their computations as graphical ren-
dering, a necessity to adapt the computation to the
graphics pipeline [6]. This transformation between a
given problem and a graphical rendering was not a
trivial task and set the bar to high for common usage.
Many attempts have been made to hide this transform
from the user through languages such as Brook and Sh.

Parallel to the introduction of the Tesla Architecture,

NVIDIA released CUDA which is an extension to the
C programming language. It allows the developer to
program directly towards the GPU without having to
consider the graphics pipeline. The extension includes
the method modifier __global__ which makes the
method execute on the GPU. These kind of methods are
called kernels. When calling the kernel, the program
specifies how many thread blocks and threads to spawn
like this; foobar<<<number of blocks, number
of threads per block >>>(arguments). Any
data required for the calculations must explicitly be
copied to the GPU, and the result copied back. The
graphics card and surrounding system may both
affect the performance of this operation [7], and thus
affect the performance of several bandwidth-bound
GPGPU-applications.

For more information regarding CUDA, see [4]

3 METHODOLOGY AND MODELS

Based on the description of how the Tesla Architecture
operates in [3][4], there has be created a simple model
describing the expected behavior of the system. The
model describes the two steps needed by the Tesla
Architecture to execute a single instruction. The MT

4

Issue unit fetches and decodes the instruction which
is to be executed in the first step. It also determines
which SPs are going to be active during the execution.
The deactivation of SPs will ensure that threads do
not execute unwanted instructions. After this step is
completed, the second step commences. Here the MT
Issue unit oversees the execution of the instruction. This
step is divided into four sub-steps where eight threads at
the time are executing the instruction. At the beginning
of each step, the MT Issue unit activates the SPs which is
assigned threads who are to execute the instruction. The
remaining SPs are deactivated. Both steps take the same
amount of time, allowing them to be pipelined, giving a
higher throughput. The outline of the model can be seen
below.

1) Instruction decoding stage
2) Exectuion stage

a Execute thread 0-7
b Execute thread 8-15
c Execute thread 16-23
d Execute thread 24-31

When executing a branch under these conditions, the
SM would see to instructions needed to be executed, and
would then serialize it since the SPs are only capable
of performing the same instruction. A branch with two
paths would therefore take the total execution time as if
the two paths were executed after one another, which is
exactly what is done.

4 TEST ENVIRONMENT

The hardware used for these tests are a common per-
sonal computer with high-end components. The hard-
ware can be seen in Table 4. It has been configured with
the 64 bit version of Ubuntu ’Hardy Heron’ 8.04, and the
NVIDIA driver is of version 180.22.

TABLE 1
Test hardware

Processor
Intel Core 2 Quad Q9550, 64 bit
Clock frequency 2.83 GHz
L2 Cache 12 MB
Bus speed 1333 MHz

Motherboard
EVGA nForce 790i Ultra SLI
Chipset nForce 790i Ultra SLI

Memory
OCZ DDR3 4 GB Platinum EB XTC Dual Channel
Frequency 1600 MHz
Size 2x 2048 MB

GPU
NVIDIA GeForce GTX 280
Processor Cores 240
Graphics Clock 602 MHz
Processor Clock 1296 MHz
Memory Clock 1107 MHz
Memory Size 1 GB
Memory Bandwidth 141.7 GB/sec

The software is a simple test program which enables
the user to run different types of branches multiple times

and count the number of cycles. The program consists of
two parts; a CUDA kernel which runs a for loop 10 000
times, and within that loop does the wanted branching.
Before and after the loop, there is functionality to start
and stop the cycle counter. The other part of the program
is the CPU application, which starts the CUDA kernel,
and supplies it with dummy data used in the kernel.

5 RESULTS

To exactly determine the behavior of the Tesla Archi-
tecture and its conformance with the model given in
Section 3 would detailed descriptions of the architecture
and all its optimizations. This is however not accessible,
so another approach has to be taken. By devising small
tests to expose performance details about the Tesla Ar-
chitecture, it can be showed beyond reasonable doubt
the correctness of the model. The four tests performed
are given in the following subsections.

5.1 Number of Branches
It is pointed out by NVIDIA in their CUDA Program-
ming Guide [4] that using branches within a warp can
seriously affect the performance. This is due to the SIMT
architecture, which only allows one instruction at the
time to be performed by the warp. Any divergent paths
must be handled in serial. The more divergent branches,
the longer it would require to complete all branches.
Based on this description, one would expect a linear
increase in cycles needed to complete an increasing
number of branches. This effect can be seen in Figure 3
where the test program create a number of divergent
branches. This is done using a switch with thread id
as argument. Threads who do not diverge are handled
by the default-clause, ensuring equal computational load
on all threads. What is worth noticing is the abnormality
with one divergent thread, where the additional thread
does not cause the expected increase in cycles. This
may be an optimization made by NVIDIA to allow one
branch to act as a control branch without the full branch
penalty.

5.2 Location of Branches
Since the test in Section 5.1 uses thread zero to branch
out one thread, an extra test is required to test if the
reduced cost of branching for a single branch is thread
location dependent. To test this, a divergent branch will
be created which only one thread will follow. Then this
branching scheme is tested for all 32 threads. As can
be seen in Figure 4, there is no difference in the cost of
branching out a single thread regardless of which thread
follows the branch.

5.3 Grouping of Branches
The SMs are composed of eight SPs, while the warp is
divided into half-warps of 16 threads. To determine if

5

Fig. 3. Total cycles needed by testprogram for increasing number of divergent branches.

Fig. 4. Total cycles neaded by testprogram with a single divergent thread.

these groupings may have an effect on the performance
of branching, two simple tests have been devised. The
first test determines if threads can diverge as long as
all threads executed simultaneously on the SPs does
not diverge. This is done by creating four branches,
and running groups of eight threads through the four
branches. The second test is created in the same manner
but with two branches and threads grouped 16 together.
The result of these runs can be seen compared with the
runs of the threads scrambled across the branches in
Figure 5. As can be seen there is no difference in the
required number of cycles.

5.4 Size of Branch

It has been showed that the location of a branch does not
have an impact on the performance, but what remains
to be showed is the impact of the number of threads
following a branch. To show this a branch is created
and a increasing number of threads are instructed to
follow this branch. As can be seen in Figure 6, there

is no difference in the required number of cycles for the
different number of threads following the branch.

6 CONCLUSION

Through this paper, there has been showed a theoret-
ical model which describes the execution of instruc-
tions on the Tesla Architecture. This model has then
been examined and attempted verified by four tests
designed to expose the performance characteristics of
the architecture. During these tests the model was for
most parts verified, with one exception. The test which
should show how the required number of cycles needed
to perform an increasing number of branches did not
appear to comply completely with the model. When
there is only one diverging branch, the performance does
not decrease to the expected level. This may indicate
that the Tesla architecture has some built-in optimization
to handle one diverging branch. A reason for this may
be to increase the performance for applications where
warps have master-threads which execute different code

6

Fig. 5. Total cycles neaded by testprogram with a divergent paths grouped or scrabled across threads.

Fig. 6. Total cycles neaded by testprogram with an increasing number of threads on divergent path.

to control the other threads. Besides this one case, the
model describes the instruction execution on the Tesla
Architecture well. Although not the main reason for
low performance on CUDA applications, this paper has
shown which impact poor use of branching could cause
on the performance, and that it is a aspect developers
must pay attention to.

ACKNOWLEDGMENTS

The author would like to thank the HPC-group at the
Department of Computer and Information Science at the
Norwegian University of Science and Technology for use
of the HPC-lab. He would also like to thank the NVIDIA
Corporation for donating the graphics cards used in this
paper.

REFERENCES

[1] D. Blythe, “Rise of the Graphics Processor,” Proceedings of the IEEE,
vol. 96, no. 5, pp. 761–777, May 2008.

[2] ——, “The Direct3D 10 System,” Proceedings of the ACM SIGGRAPH
2006, vol. 25, no. 3, pp. 724–734, July 2006.

[3] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA
Tesla: A Unified Graphics and Computing Architecture,” IEEE
Micro, vol. 28, no. 2, pp. 39–55, March-April 2008.

[4] NVIDIA Corporation, “NVIDIA CUDA Compute
Unified Device Architecture, Programming Guide,”
[Cited: January 17, 2009]. [Online]. Avail-
able: http://developer.download.nvidia.com/compute/cuda/2
0/docs/NVIDIA CUDA Programming Guide 2.0.pdf

[5] M. J. Flynn, “Very High-Speed Computing Systems,” Proceedings
of the IEEE, vol. 52, no. 12, pp. 1901–1909, December 1966.

[6] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and
J. C. Phillips, “GPU Computing,” Proceedings of the IEEE, vol. 96,
no. 5, pp. 879–899, May 2008.

[7] R. J. Hovland, “Latency and Bandwidth Impact on GPU-systems,”
December 2008, report in course ”TDT4590 Complex Computer
Systems, Specialization Project”, Department of Computer and
Information Science, Norwegian University of Science and
Technology. [Cited: February 2, 2009]. [Online]. Available: http:
//publications.runejoho.net/gpgpu latency bandwidth.pdf

Rune Johan Hovland pursuits his Master of
Technology at the Norwegian University of Sci-
ence and Technology. The focus of the master is
High Performance Computing, and the master-
thesis focuses on using GPUs to accelerate
search methods.

http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
http://publications.runejoho.net/gpgpu_latency_bandwidth.pdf
http://publications.runejoho.net/gpgpu_latency_bandwidth.pdf

	Introduction
	Background
	Tesla Architecture
	Thread Branching on Tesla Architecture
	General-Purpose Computing on GPUs

	Methodology and Models
	Test Environment
	Results
	Number of Branches
	Location of Branches
	Grouping of Branches
	Size of Branch

	Conclusion
	References
	Biographies
	Rune Johan Hovland

