
PROJECT REPORT.

PROJECT REPORT... 1
INTRODUCTION ... 2

ABOUT THE PROJECT.. 2
“THE MISSION”... 2

ARCHITECTURES .. 3
SUPERCOMPUTER – SMP.. 3
CLUSTERS .. 3
GRID .. 4

BENCHMARKING MACHINES.. 5
WHAT IS A BENCHMARK? ... 5
DIFFERENT TYPES OF BENCHMARKS ... 5

Component Bencmarks .. 6
System Benchmarks ... 6

SPECIFIC CHARACTERISTICS OF BENCHMARKS FOR MULTIPROCESSOR MACHINES .. 7
BENCHMARK EXAMPLES .. 7

LINPACK/LAPACK... 7
SPEComp... 8
SPEC HPC .. 9
HINT.. 9

RECOMMENDATIONS FOR USE .. 10
PROFILING APPLICATIONS ... 11

INTRODUCTION TO APPLICATION PROFILING.. 11
DIFFERENT TYPES OF PROFILING TOOLS ... 11
SPECIFIC CHARACTERISTICS OF PROFILING TOOLS FOR PARALLEL PROGRAMS.. 11
A REVIEW OF PERFORMANCE ANALYSIS TOOLS FOR MPI PARALLEL PROGRAMS.. 11

Tools reviewed... 12
DEEP/MPI... 12
MPE Logging and Jumpshot ... 14
Pablo Performance and Analysis Tools ... 15
Paradyn.. 16
TAU... 17

RECOMMENDATIONS FOR USE: ... 18
APPENDIX A – SGI ORIGIN 3800... 21

FROM SGI’S 3800-SITE [3]:.. 21
REFERENCES .. 22

Introduction

About the Project

This report is based on a project done in cooperation with the Norwegian High
Performance Computing Consortium (NOTUR) [1]. More specifically, I work with the
Emerging Technologies (ET) project at NOTUR [2].

The task at hand is to aid them in determining how to best evaluate which machines best
meet their needs.

The NOTUR site in Trondheim has different users with different needs for high
performance computing, including:

• Statoil – An oil company that does geological and seismic modelling in the
search for petrochemical resources

• DNMI - The Norwegian Meteorological Institute. Does climate modelling to
create weather forecasts.

• NTNU – The Norwegian University of Science and Technology. Different user
groups, e.g. the chemical institute, which does a lot of molecular simulations.

They are currently running a timeshared 220-processor SGI Origin 3800 SMP (shared
memory multiprocessor) system [3], but are investigating if different architectures could
meet their needs. Price vs. performance is an important factor. For a brief description of
the Origin 3800, see Appendix A – SGI Origin 3800, p. 21.

“The mission”

BENCHMARKING TECHNIQUES OF PARALLEL AND DISTRIBUTED SUPERCOMPUTING
SYSTEMS

Develop benchmarking techniques in conjunction with NOTUR staff and
associates to help evaluate which HPC systems NTNU and NOTUR should
acquire in the future.

The project will include analyzing standard user applications from up
to 3 different areas (e.g. meteorology, petroleum engineering and
chemistry).

• What kind of computations do the applications involve?
• What kind of resources/platforms/communication patterns are

important for the respective application profiles?

The profiling of the applications may be done with the use of public
domain and/or commercial profilers, depending on the applications and
platforms evaluated. It may also involve developing in-house
profiling tools as well as modules.

Architectures

Supercomputer – SMP

The Shared Memory Multiprocessor (SMP) architecture has over the last years been a
“standard” architecture for high-performance computers.

High-end SMPs are often expensive machines with up to several thousand processors
working in parallel on a shared memory system. The typical rationale for choosing these
types of systems has been that they have given the best available performance. The
drawback of these high-end systems has often been the price.

The scalability of SMPs vary,
some SMPs are scalab
the sense that you can add
modules of more
processors, more RAM, e
up to a certain point. They
are however not as scalable
as for instance cluster
solutions, where adding a
computing node is a rather
straightforward task of
adding yet another machine
to the cluster.

le in

tc.

Another type of SMPs
becoming more popular in
the recent years is the
multiprocessor workstation.
These type machines can be
a good choice as computing
nodes in computing
networks.

Clusters

The recent advances in high
speed networks and improved
microprocessor performance
are making clusters or
networks of workstations an
appealing vehicle for cost
effective parallel computing.

Clusters built using
commodity hardware and
software components are
playing a major role in
redefining the concept of
supercomputing. [4]
Figure 1 - The Apple G4 Dual Processor
Workstation
Figure 2 - A Beowulf cluster of workstations

The trend in parallel computing is to move away from specialized platforms to cheaper,
general purpose systems consisting of loosely coupled components built up from single or
multi-processor workstations or PCs. This approach claims to have a number of
advantages including that of being able to build a platform for a given budget, which is
suitable for a large class of applications and workloads.

There is a definition of a cluster of computers as a collection of (basically workstation
type) computers working together to solve a tightly coupled problem. This means that in
a cluster, there is a lot of communication and synchronization between the computing
nodes. If on the other hand the same set of computers were working on a loosely
coupled problem or if they were each working on different problems altogether, you’d
rather call it a compute farm. [30]

NOTUR has projects using dual Intel Itanium workstations as nodes in a cluster setting
(typically processors of 2*800MHz), and gigabit-networks connecting them. The nodes
can be set up in different ways, depending on the needs and characteristics of the
application. One example is having one of the processors in the node being dedicated to
running the operating system, while the other processor does the actual computing.

The application signature is the characteristics of the communication between the nodes,
and the characteristics of the actual computing. This signature will determine what parts
of the cluster system that will be stressed, and will differ from application to application.
Knowing the signature of your application is therefore important when evaluating how
well suited it is for a cluster system.

(TODO: Insert more)

Grid

The computational power grid is analogous to the electric power grid. Grid computing
allows to couple geographically distributed resources and offers consistent and
inexpensive access to resources irrespective of their physical location or access point. It
enables sharing, selection, and aggregation of a wide variety of geographically
distributed computational resources (such as supercomputers, compute clusters, storage
systems, data sources, instruments, people). Thus allowing them to be used a single,
unified resource for solving large-scale compute and data intensive computing
applications. [5]

The Globus project and others are currently working on enabling the Grid as a
computational framework [6, 7, 8]. There is still a lot to do before it is commonly
available, but they claim that “the grid” has the potential to be for computing what the
Internet was for information sharing.

I believe that the Grid is still too immature a technology to be considered for Notur in this
project, but that said Notur could possibly build a “quasi grid” internally in their
organization, but that wouldn’t constitute a true grid, which by definition has to be an
open and dynamic structure. [6]

Benchmarking machines

What is a benchmark?

Benchmarking is a way of testing and
measuring the performance of a
computer. It is used to compare the
performance of different computers both
internally in a range of computers, and
across platforms and architectures.

It generally considered important that the
benchmarks are independent of the
vendors of the machines they are testing,
so they can be trusted as a neutral
measurement of the performance.

Another issue conserning benchmarks, is
the portability. It is important that a
benchmark can be used across machines,
and that it isn’t tailored for a certain
platform. Some would claim that the
Photoshop-performance metrics [9] often used to promote Apple computers isn’t fair,
since Apple’s are especially tailored to do well in this benchmark, and that they aren’t as
as good on general tasks as the Photoshop-metric could suggest.

But on the other hand, it is important that the benchmarks test the parts of the systems
that are relevant to the performance experienced by the user, so if the user is planning
to work mostly in Photoshop, then the Photoshop-metric migth be an excellent
benchmark for him. The more general a benchmark is, the less useful it is for a particular
application or domain, and conversely the more specific and narrow a benchmark is, the
less useful it is for applications and domains outside that scope. [10]

A benchmark run typically generates a lot of data about the performance of the
uncerlying machine. But it is important for the users of the benchmark that the results of
a are easily understood, so therefore several benchmarks are ”boiling down” their results
to a single metric summarizing the performance. This metric is easily compared across
platforms and architectures.

The only totally accurate way to measure the performance of your system, however, is to
test the software applications you use on your computer system. Benchmark results are
measured on specific systems or components using specific hardware and software
configurations, and any differences between those configurations (including software)
and the production configuration may very well make those results inapplicable to the
production component or system. [11]

Benchmarks are, at most, only one kind of information that you may use during the
purchasing process. To get a true picture of the performance of a component or system
you are considering purchasing, you must consult other sources of information (such as
performance information on the exact system you are considering purchasing).

Different types of benchmarks

Benchmark and performance tests measure different aspects of processor and/or system
performance. While no single numerical measurement can completely describe the
performance of a complex device like a microprocessor, a PC or a cluster system,
benchmarks can be useful tools for comparing different components and systems.

Benchmarks can be divided into two kinds, component and system. Component
benchmarks measure the performance of specific parts of a computer system, such as a
microprocessor or hard disk drive, while system benchmarks typically measure the
performance of the entire computer system. In either case, the performance you see in
day to day use will almost certainly vary from benchmark performance, for a number of
reasons. First, individual components must usually be tested in a complete computer
system, and it is not always possible to eliminate the considerable effects that differences
in system design and configuration will have on benchmark results. For instance, system
vendors sell systems with a wide variety of disk capabilities and speeds, system memory,
system bus features and video and graphics capabilities, all of which influence how the
system components (such as the microprocessor) and the computer system perform in
actual use and can dramatically affect benchmark results. Also, differences in software,
including operating systems and compilers, will affect component and system
performance. Finally, benchmark tests are typically written to be exemplary of only a
certain type of computer application, which may or may not be similar to your
applications. [11]

Component Bencmarks

Component benchmarks set out to test different components in your system. But it is
hard to directly compare two different runs unless you know more about the system. For
instance, a graphics systems benchmark will most probably run faster if you upgrade
your CPU.

It's impossible to totally isolate the components in your system. Every piece of your PC
interacts with the others to some extent. Accordingly, you cannot simply compare a
component benchmark of two different machines unless you know more about the rest of
the systems.

Having said that, component benchmarks can still be useful when comparing different
systems, just be careful to examine more than just the single-number metric most
benchmarks boil down to.

There really are no benchmarks that let you really know how fast one particular piece is.
What component benchmarks are highly useful for is comparing things. You can compare
your system to itself after you've changed something, and you can compare your system
with ones similar to it to see how it rates.

System Benchmarks

While component benchmarks try to measure the performance of specific subcomponents
of a computer system, system level benchmarks try to measure the performance of a
computer system as a whole.

System level benchmarks try to mimic full applications or application suites, and try to
exercise the whole system in the same way as a realistic application would. For the
personal computer market, we have benchmarks emulating standard applications such as

Microsoft Office, Adobe Photoshop, Quake, etc. [15] The SPEC CPU suite is another
example of a system benchmark. [13, 14]

The SPEC CPU 2000 suite is made up from several different real-life applications, from
different application domains such as chemistry, meteorology, etc. The applications are
modified and ported to several platforms in order to be suitable for the benchmark.

By using industrial applications as a basis for the benchmark suite, SPEC is trying to
ensure that the application signatures of the benchmarking programs are similar to the
signature of real world applications. That is, that they exercise the same parts of the
system as a typical application in that application domain is likely to exercise. This is an
important issue when testing on the system level. Even though the system level
benchmarks are designed to test the system as a whole, there always be differences
from application to application when it comes to how much focus there should be on the
different parts of the system. (For example, the requirements for a computer system that
mainly is to a word processor are quite different from the requirements of computer
system that is to run 3D games).

Therefore, a user who knows that he is going to use the computer system for
computations on fluid dynamics, might test how different computers perform on the
SPEC-benchmark that mimics this application domain, wheras another user might be
more interested in climate modelling, and should pay more attention to the performance
on that part of the benchmark suite.

Specific characteristics of benchmarks for multiprocessor machines

The difference between a single computer (or a single processor machine) and a machine
where several processing units work together is an obvious one – we need
communication between the computing nodes.

The benchmarking schemes of these systems, be they a multiprocessor computer such
as a SMP (p. 3) or a collection of computers (e.g. a cluster, p. 3) need to simulate the
communication patterns in a realistic way in addition to placing a realistic load on the
other parts of the system.

A component level benchmark of a multiprocessor system might of course set out to test
only the communication part of the system. The SKaMPI benchmark [17] is an example
of such a benchmark, which is created to test the communication subsystem of a MPI-
based cluster system.

A system level benchmark must test the communication part in addition to the rest of the
system. System level benchmarks for parallel or cluster systems are created in much the
same way as system level benchmarks for single node systems – the benchmark suites
are often modified versions of real applications. The rationale is the same as for the
single node case, to have as realistic a load on the system as possible for a given
application domain.

Benchmark examples

LINPACK/LAPACK
The LINPACK (Linear Algebra Package) Benchmark [18] is one of the more famous
floating point benchmarks of recent years, created by Jack Dongarra, which get its name

from a linear algebra package. The benchmark solves a dense system of linear equations.
Over the years the characteristics of the benchmark has changed a bit. In fact, there are
three benchmarks included in the LINPACK Benchmark report.

The LINPACK Benchmark is something that grew out of the LINPACK software project. It
was originally intended to give users of the package a feeling for how long it would take
to solve certain matrix problems. The benchmark stated as an appendix to the LINPACK
Users' Guide and has grown since the LINPACK User’s Guide was published in 1979. [18]

LINPACK is a very common benchmark for the pure ”number crunching” capabilities of a
computer, and there is a even a popular ”Top 500” list [20] containing the LINPACK
benchmark results. There are also different parallelized versions of the LINPACK
benchmark.

The original goal of the LAPACK project [19] was to make the widely used EISPACK and
LINPACK libraries run efficiently on shared-memory vector and parallel processors. On
these machines, LINPACK and EISPACK are inefficient because their memory access
patterns disregard the multi-layered memory hierarchies of the machines, thereby
spending too much time moving data instead of doing useful floating-point operations.

LAPACK claims to be "transportable" instead of "portable" because, for fastest possible
performance, LAPACK requires that highly optimized block matrix operations be already
implemented on each machine.

LAPACK routines are written so that as much as possible of the computation is performed
by calls to the Basic Linear Algebra Subprograms (BLAS). Highly efficient machine-
specific implementations of the BLAS are available for many modern high-performance
computers. The BLAS enable LAPACK routines to achieve high performance with
transportable software.

It is possible to use LINPACK/LAPACK in a cluster environment to test the number
crunching capabilities of the system, there is even a separate ”Top 500” list for this: see
[21].

SPEComp
Over the past decade several computer benchmarks have taken aim at parallel machines.

• SPLASH. Used by research community but have not been updated to current
computer applications.

• Perfect. Included serial programs which the benchmarker had to turn into
parallel versions.

• Parkbench. An effort to create an extensive parallel benchmark suite at system
level. No longer an ongoing effort.

• SPEChpc suite. A currently maintained benchmark for high-performance
computer systems. Includes large-scale computational applications.

Addressing the fact that parallelism no longer is just an issue for the High Performance
Computing society, SPEC has created SPEComp [23, 24], a benchmarking suite that aims
at mid-range parallel computers.

The SPEComp benchmarks are adapted from the SPEC CPU 2000 [25] suite of
benchmarks. In SPEComp 2001, the benchmark suite is partitioned into a Medium and a
Large Data set.

• Medium. For moderate sized SMP (shared memory multiprocessors) systems
of about 10 CPUs. About 1.6 GB memory required per CPU.

• Large. Oriented to systems with 30 CPUs or more. Up to 6 GB memory
required per CPU.

Runtimes can easily exceed 10 wallclock hrs on a single state-of-the-art processor.

The suite includes large, complex modelling and simulation programs of the type used in
many engineering and research organizations. Application areas include:

• Chemistry
• Mechanical engineering
• Climate modelling
• Physics
• Image processing
• Decision optimisation

SPEC has also developed a methodology on how to run the benchmark suite, for instance
rules on what optimizations are allowed on the source code, etc.

SPEC HPC

SPEC HPC (currently: SPEChpc96) is a benchmark suite that measures the performance
of high-end computing systems running industrial-style applications. The SPEChpc line of
benchmarks is especially suited for evaluating the performance of parallel and distributed
computer architectures.

As the SPEComp suite, SPEChpc96 also represents a commitment to providing
benchmarks that measure sustained performance, instead of the peak performance
numbers still used widely today. The benchmarks within the SPEChpc96 suite represent
real-world industrial applications that run on today's high-performance systems.

HINT
HINT or Hierarchical INTegration is a computer benchmarking tool developed at the
Scalable Computing Laboratory (SCL) of Ames Laboratory, and is funded by the Office of
Scientific Computing, U.S. Department of Energy (DOE). Unlike traditional benchmarks,
HINT neither fixes the size of the problem nor the calculation time and instead uses a
measure called QUIPS (QUality Improvement Per Second).

This enables HINT to display the speed for a given machine specification and problem
size. Computers typically start up fast and slow down as they run out of fast memory and
start using the main memory, or slow down even more if they have to access the disk.
Such changes are easily visible with HINT generated data.

HINT is scalable and easily portable for a variety of architectures. It can be run on
anything from a programmable calculator to a supercomputer.

The result from a HINT run is a graph of QUIPS vs. time, and is often very revealing
about the system. You can easily see the performance impact when the systems runs out
of cache (or L2 cache, memory, etc.) as a result of the memory requirements of the
computation ever increasing.

Error! Reference source not found. [27] shows a graph of a HINT run on a
workstation. You can easily see the performance drops as the computer in turn runs out
of L1 cache (primary memory) L2 cache (secondary memory), RAM (main memory).

Figure 3 - HINT memory revealing graph

AHINT (Analytical HINT) [27] is a model that allows you to predict which impact a change
in the parameters of a system will have on the HINT performance of the system. For
instance, what impact replacing the processor with a faster one will have.

AHINT promises performance prediction based on a small set of design statistics. It
presents the computer architect with a tool to build a balanced computer by varying
design parameters based on cost and performance. The model also benefits users of
existing computers. Consider a computer user trying to determine whether or not to
upgrade from 128 K secondary cache to 512 K secondary cache. Advertisements indicate
'huge' performance increases. One could run HINT on the existing configuration, match
the QUIPS curve using the analytical model to determine the input statistics, and then
increase the secondary cache size input to the analytical model which would then predict
the performance increase. At this point, an educated decision could be made based on
cost increase versus performance increase. By fitting the model to existing HINT graphs,
a user can find out the true computer performance parameters and compare them
against manufacturer claims. For example, in one case we discovered a so-called
"secondary data cache" was nothing of the kind, and served only as an extra memory for
instruction storage. [27]

Recommendations for use

(TODO: Insert analysis for the Notur cluster setup, and recommendation for the
benchmarks to use).

Profiling applications

Introduction to Application Profiling

The purpose of application profiling is to determine the behavior of an application, in the
context of performance, so that analysis may be done. The goal of the analysis is to spot
performance problems in the application so that algorithm or coding improvements may
be made to the application by the developer.

For instance, on an IBM version of Linux that they use for their servers [], there are
currently three application profilers avaiable; gprof, vprof, and cprof. I use these tools
here as an example on how typical application profiling tools are used.

• gprof is the GNU profiler that is part of the binutils component of Linux. It
supports profiling of single-threaded C applications

• vprof is a visual profiler that is shipped with the SuSE disrtribution and supports
profiling of single-threaded C and C++ applications.

• cprof is an open source profiler, distributed by Corel, which supports multi-
threaded C and C++ applications.

The 3 tools described here are similar in their implementation and use. The typical use of
such application profilers, is to re-build your application with appropriate hooks compiled
into your code. This is generally done by adding compiler and/or link options when the
program is built. These hooks generate calls to routines that get invoked at entry and
exit to the functions you want to get profile information about. Each of the tools use
specific compiler and link options to accomplish this. The tool itself may need to be built
and some routines link-edited into the application.

Data collection. Examples of the types of data that may be collected are:

• Call graph information
• Time spent in each function
• Statistical sampling

This data is collected when the application is run. Be sure to run the application with the
parameters or options that will drive the component of the application you're looking to
profile. An output file is generated during the run, which contains information about the
execution in it's own internal format.

Post-processing of the output file to generate data in a format that can be analyzed.
Once this step is complete, the application execution characteristics can be determined
and adjustments to the application algorithms used and/or code can be made.

Different types of profiling tools
(TODO: General info on the different profiling approaches)

Specific characteristics of profiling tools for parallel programs
(TODO: What separates and distinguishes performance analysis tools for parallel
environments from their sequential counterparts)

A review of performance analysis tools for MPI parallel programs

This section of the paper is based on an ongoing review process [29] of the performance
analysis tools available for MPI [31] parallel programs.

In order to produce MPI applications that perform well on todays architectures,
programmers need effective tools for collecting and analyzing performance data. Because
programmers typically work on more than one platform, cross-platform tools are highly
desirable. A variety of such tools are becoming available.

The reasons for poor performance of parallel, message-passing codes can be varied and
complex, and programmers and users need to understand the problems in order to
identify bottlenecks and troublespots in the program. Performance tools can help by
monitoring a program’s execution and producing performance data that can be analyzed
to locate and understand these areas of poor performance.

The prevalent approach taken by the tools available today is to collect data during
execution of the program, and then provide a post-mortem analysis and display of the
performance information. Some tools are specialized to provide just one of these two
phases, and some tools can also do a run-time analysis of the performance.

The reviewers focus on tools that are commonly available, and also on tools that work
across different platforms, as opposed to vendor tools that work only on one platform.

The set of evaluation criteria are as follows:

1. Robustness. The program should be stable and should produce correct results.
2. Usability. Easy to learn, easy to use. Batch-capabilities are also treasured due

to the nature of the applications and calculations commonly found in High-
Performance Computing.

3. Scalability. The tools must be able to function on a range of architectures and
applications.

4. Portability. Users are reluctant to having to learn a new performance analysis
tool for each platform they work on. Having the same tool on different
platforms makes the user more confident in the program, and also makes it
easier to compare the results across platforms.

5. Versatility. The tools should be able to analyze the data in different ways and
also to display the results in different ways.

In addition to these general criteria, there is also included a set of more specific criteria:

1. Support for hybrid environments (a combination of shared and distributed
memory). The trend in HPC is towards such systems where SMP computers of
up to 32 or more CPUs are interconnected by dedicated high performance
networks.

2. Support for distributed heterogeneous environments. (The architecture of the
computational grid).

3. Support for analysis of MPI-2 I/O, which is a feature included in the MPI 2
standard in order to reduce the bottleneck effect I/O is tending to have.

Tools reviewed

DEEP/MPI

URL http://www.psrv.com/deep.html
Version
Supported languages Fortran 77/90/95, mixed Fortran and C
Supported platforms Linux x86, SGI IRIX, Sun Solaris Sparc,

IBM RS/6000 AIX, Windows NT x86

http://www.psrv.com/deep.html

DEEP and DEEP/MPI are commercial parallel analysis tools from Veridan/Pacific-Sierra
Research [32]. DEEP provides an integrated graphical interface for performance analysis
of shared and distributed memory parallel programs.

Figure 4 - DEEP/MPI screen dump

To use DEEP/MPI you must compile your MPI program with the DEEP profiling driver
mpiprof. This step collects compile-time information which instruments the code. After
executing your program, you can view the performance information using the DEEP/MPI
interface.

The DEEP/MPI interface includes a call tree viewer for program structure browsing and
tools for examining profiling data at various levels:

• Whole program: Data such as the wallclock time used by different procedures.
• Sub-program parts: For example loop performance tables.

The DEEP Performance Advisor suggest which parts of the program the user should
examine first.

Other information provided is for example the CPU and message balance which shows
the distribution of work and the number of messages, respectively, among the processes.
DEEP supports the PAPI interface to hardware counters, and can do profiling based on
any of the PAPI metrics. [33]

MPE Logging and Jumpshot

URL http://www-unix.mcs.anl.gov/mpi/mpich
Version MPICH 1.2.1, Jumpshot-3
Supported languages Fortran, C, C++
Supported platforms AIX, Compaq Tru64, UNIX, HP-UX, IRIX,

Linux, Solaris, Windows NT/2000

The MPE (Multi-Processing Environment) library is distributed with the freely available
MPICH implementation [34] and provides a number of useful facilities, including
debugging, logging, graphics and some common utility routines. MPE was developed for
use with MPICH, but can also be used with other MPI implementations.

MPE provides several ways to create logfiles, which in turn can be viewed and analysed
with graphical tools also provided with MPE. The easiest way to generate logfiles is to link
with an MPE library that uses the MPI profiling interface. The user can also manually
insert calls to the MPE logging routines in his/her code.

Figure 5 - Jumpshot 3 screen dump

http://www-unix.mcs.anl.gov/mpi/mpich

The visualization and presentation tools here are also hierachical in the sense that the
user first is presented with a statistical preview of the data, from which the user can
select the parts of the information that seems interesting for a more detailed
presentation. The user may select and deselect states so that only the interesting ones
are displayed. In the case of a multithreaded environment, such as in a SMP node, the
logfile may contain thread information, from which the presentation tools will show how
threads are dispatched and used in the MPI program. There is click-for-more-info
functionality built into the presentation tools.

Pablo Performance and Analysis Tools

URL
Version Trace Library 5.1.3, Pablo Performance

Capture Facility (PCF), March 2001 release,
SvPablo 4.1

Supported languages Fortran 77/90, C, HPF (Pablo)
Supported platforms PCF: Sun Solaris, SGI IRIX, Linux x86

SvPablo: Sun Solaris, SGI IRIX, IBM AIX,
Linux x86

(TODO: Find URL –
univ.of Illinois)

 timestamped
vent records and

ry.
n

nd
arameter information for

t.
 is

s

e

The Pablo Trace Library
includes a library for
recording
e
extensions for recording
performance about MPI
calls, MPI I/O calls and
I/O requests. The
performance records
created are in the Pablo
SDDF (Self Defining Data
Format) format.

The MPI-extension is in
form of a profiling libra
Trace records are writte
that capture timing a
p
MPI calls in SDDF forma
A separate SDDF file
created for each MPI
process. Utility program
are provided for merging
the per-process trace
files, but they must b
invoked manually.

The MPI I/O extension

provides additional
wrapper routines for Figure 6 - svPablo screen dump

recording information about MPI I/O calls. The user may choose between a detailed
acing or tracing that provides more summary-mode that summarizes information for

ns
ata Format (HPF) and

PI I/O operations. PCF can either write its output to SDDF-files, or it can display it run-

e source code, and

erforms statistical analysis. It also displays a graphical representation that visually links
erformance information to the original source code. Plans are to use the PAPS portable
ardware counter interface [33] in future versions of SvPablo.

Paradyn

tr
each type of MPI I/O call. Utilities are provided to analyze and produce reports from the
MPI I/O trace files.

The Pablo Performance Capture Facility (PCF) supports MPI and provides several optio
for recording performance information for Unix I/O, Hierarchical D
M
time through the Pablo Autopilot facility. Unlike the Pablo Trace Utility, PCF is thread-
safe, and can be used with mixed MPI and threaded programs.

SvPablo is a graphical interface for instrumenting soruce code and browsing runtime
performance data. Applications can either be instrumented interactively or automatically.
After running the application, SvPablo compares the results to th
p
p
h

URL http://www.cs.wisc.edu/paradyn/
3.2
Fortran, C, C++, Java

Version
Supported languages
Supported platforms Solaris (SPARC and x86), IRIX (MIPS),

Linux (x86), AIX (RS6000), Tru64 Unix
(Alpha), heterogeneous combinations

Figure 7 - Paradyn example screen shot

Paradyn is a tool for measuring the performance of parallel and distributed programs. I
dynamicall

t
y inserts instrumentation into a running application and analyzes and displays

erformance in real-time. It decides which information to collect while the program is

at
fy the source code or use special compilers. The program

struments the binary image of the running program using the DyninstAPI dynamic

o use Paradyn, MPI programs can only be run under the POE environment on the IBM

alizations, use the
erformance Consultant to find bottlenecks, etc. The daemons operate under the control

 experiencing excessive I/O or synchronization waiting time. The user can
hange the behaviour of the consultant by adjusting the thresholds used to evalute the
ypotheses.

TAU

p
running.

Paradyne distinguishes itself from the majority of the performance analysis tools in th
the user doesn’t have to modi
in
instrumentation library [35].

T
SP2, under IRIX on the SGI Origin, and under MPICH on Linux and Solaris platforms.

Paradyn has two main components, the Paradyn front-end and user-interface, and the
Paradyn daemons. The daemons run on each remote host where an application is
running. The user interface allows the user to display performance visu
P
of the front-end to monitor and instrument the application processes.

The user specifies what performance data Paradyn is to collect in two parts: the type of
performance data and the parts of the program from which to collect this data. The
performance data can then be displayed using various visualizations. As an alternative to
manually selecting which data to collect and analyze, the user can invoke the Paradyn
Performance Consultant, which tries to determine the types of performance problems a
program is having by testing various hypotheses such as whether the CPU is bound or if
the program is
c
h

URL
Version 2.9.11 (Beta)
Supported languages Fortran, C, C++, Java
Supported platforms

P-UX, Compaq Alpha Tru64 UNIX,
Compaq Alpha Linux, Cray T3E, Microsoft
Windows

SGI IRIX 6.x, Linux x86, Sun Solaris, IBM
AIX, HP H

TAU (Tuning and Analysis Utilities) is a portable profiling and tracing toolkit that includes
 visualization tool, Racy. In addition, TAU can generate event traces that can be

PI or using a TAU run-
me instrumentor which is based on the DyninstAPI dynamic instrumentation package.
n automatic instrumentor for Fortran is under development.)

Vampir

a
displayed with the Vampir trace visualization tool.

TAU instrumentation must be added to the source code. This can be done automatically
for C++ programs, manually through the TAU Instrumentation A
ti
(A

URL
Version Vampitrace 2.0, Vampir 2.5

Supported languages Fortran 77/90, C, C++
Supported platforms All major workstation and parallel platforms

Vampir is a commercially available MPI analysis tool from Pallas GmbH. Vampitrace, also
from Pallas, is an MPI profiling library that produces trace files that can be analysed with
Vampir. Vampitrace records all M

PI and MPI I/O calls, but a runtime filtering mechanism

an be used to limit the amount of trace data generated. Vampitrace also automatically

ehaviour.
ompiler

tatistical analysis of program execution,
ommunicatoin operations, and a dynamical calling tree display are among the

ay of
ousands of processes would clearly be impractical. A new version of Vampir is under

evelopment, and promises a hierarchical way of presenting the processes.

Evaluatio

ss

c
corrects clock offset and skew.

Vampir provides several graphical displays for visualizing application runtime b
Source code click-back functionality is available on platforms with the required c
support. Message passing overview, s
c
visualizations that can be provided.

Although the current version of Vampir can display information of up to 512 processes,
this information can be overwhelming to the user, and the simultaneous displ
th
d

n summary

Robustne It is too early to report on the robustness of the tools.

Support umpshot, all the tools have fairly
mplete user guides and other supporting materials

With the exception of J
co
(tutorials/examples).

Usability fficult or
possible to use in batch queueing environments due

mentation for MPE/Pablo and TAU
ortran) can be tedious to the point of being

DEEP/MPI,
vPablo and Vampir is very helpful for relating

 and the new

Paradyn has the drawback that it is di
im
to the interactive nature of the tool.

Manual instru
(F
impractical.

The source code click-back functionality of
S
performance data to program constructs.

Scalable log formats such as MPE’s SLOG
Vampitrace format are essential for reducing the time
needed to load and display the results.

Portability r is the only one that has
een tested extensively on all major platforms and with

designed to work
ith any MPI implementation. However, on untested

plementation of some Paradyn features tends to lag
platforms.

Of all the tools tested, Vampi
b
most MPI implementations.

The MPE and Pablo trace libraries are
w
platforms we might expect glitches.

Because of the platform dependencies in the dynamic
instrumentation technology used by Paradyn, the
im
behind on all except their main development

The SDDF file format is intended to promote
interoperability by providing a common performance
ata meta-format, but not many tools have adopted the

 to

d
format.

Several tools use the PAPI cross-platform interface
hardware counters, and make use of hardware
performance data in their performance analysis.

Hybrid PE/Jumpshot and TAU all support mixed
PI and OpenMP programming, as will the next version

ce files for heterogeneous MPI
rograms. Paradyn also supports heterogeneous MPI

of the tools, the only tools that explicitly adress
MPI I/O performance analysis are the Pablo I/O analysis
tools.

DEEP/MPI, M
M
of Vampir.

The MPE and Pablo trace libraries, when used with
MPICH, can generate tra
p
programs with MPICH.

Although profiling of MPI I/O operations is possible with
several

(TODO: Insert analysis for Notur setup and recommendation for which tools to use).

Recommendations for use:

Hardware

For Clusters:

• Brief history of parallel processors.
• IA32 (x86)
• IA64 – (Intel Itanium, 64-bit)

• GigaNet
• Other popular network interconnects

Appendix A – SGI Origin 3800

SGI Origin-3800L

• Rev MIPS R12000
• 220 CPUs
• 500 MHz
• 218 GB mem
• 8.0 MB L2
• 220 Gflop/s
• IRIX 6.5

(Source: notur.org)

From SGI’s 3800-site [3]:

SGI® Origin® 3800

With the revolutionary SGI® NUMAflexTM computing model in the underlying system
structure, you decide how much CPU, I/O, memory, and disk infrastructure to add to SGI
Origin 3800. Every system component can be upgraded, maintained, or redeployed
independently, so the SGI Origin 3800 system can evolve as quickly as your computing
needs.

With the industry's most advanced NUMA architecture from SGI, you can configure your
SGI Origin 3800 system up to a single 512-processor shared memory system, or use
partitioning to divide it into as many as 32 partitions and run them as a tightly coupled
cluster. Many application environments can improve availability by implementing a
cluster of smaller partitions that can contain failures and leaving other partitions
unaffected. Utilizing the ultralow- latency and ultrahigh-bandwidth NUMAlinkTM
interconnect fabric as a communication vehicle, partitioning is an option that can deliver
both high availability and high performance.

Processors : 16-512 using 4-processor C-bricks
System bandwidth: Up to 716 GB/sec
Maximum memory: 1 TB
Router type: 8-port
Base I/O: I-brick

I-brick, P-brick, X-brick, D-brick

Built on the reliable SGI® NUMA architecture and IRIX® 6.5 operating system, SGI
Origin 3800 servers work with your existing application software and are fully compatible
with other IRIX OS- based workstations and servers. The applications you use every day
transition effortlessly and perform better than ever. With the same familiar tools and
operating system, you can integrate the series with no retraining. The SGI Origin 3800
server protects your investments thoroughly and ensures the availability of a wide range
of open systems software into the future.

SARA Supercomputer Facility Installation
SGI, in conjunction with the Netherlands Organization for Scientific Research and the
Netherlands Computing Facilities Foundation, has implemented an SGI® Origin® 3800
supercomputer at SARA Computing and Networking Services in Amsterdam. The grand
opening was held on November 22nd and was attended by His Royal Highness Prince
Wilem-Alexander. The facility will help the Dutch academic community to understand and
resolve the world's most complex scientific, technical and medical issues.

REFERENCES

1. Norwegian High Performance Computing Consortium - webpage
http://www.notur.org

2. Emerging Technologies (ET) project at NOTUR - http://www.notur.org/et/
3. Silicon Graphics presentation of the SGI Origin 3800 -

http://www.sgi.com/origin/3000/3800.html
4. IEEE Computer Society Task Force on Cluster Computing – webpage

http://www.ieeetfcc.org/
5. Grid Computing Info Centre (GRID Infoware) – webpage

http://www.gridcomputing.com/
6. The Anatomy of the Grid: Enabling Scalable Virtual Organizations. I. Foster, C.

Kesselman, S. Tuecke. International J. Supercomputer Applications, 15(3), 2001.
7. The Physiology of the Grid: An Open Grid Services Architecture for Distributed

Systems Integration. I. Foster, C. Kesselman, J. Nick, S. Tuecke; January, 2002.
8. The Globus Project – webpage http://www.globus.org
9. Photoshop Performance and Productivity Benchmarks, Apple – webpage

http://www.apple.com/creative/resources/photoshop/
10. Standard Benchmarks for Database Systems, Sigmod 97 Industrial Session 5,

Charles Levine, Microsoft -
http://www.tpc.org/information/sessions/sigmod/index.htm

11. Intel Desktop Processor Performance, Intel Corp., webpage -
http://www.intel.com/procs/perf/

12. Benchmarking Business and Consumer System Performance: Benefits of the
IntelTM PentiumTM 4 and XeonTM Processors, Dell – webpage
http://www.dell.com/us/en/gen/topics/vectors_2001-pentium4performance.htm

13. Standard Performance Evaluation Corporation (SPEC) – webpage
http://www.specbench.org

14. The SPEC CPU 2000 Benchmark suite – webpage
http://www.specbench.org/osg/cpu2000/

15. How we test desktop systems, ZDnet.com – article on webpage
http://www.zdnet.com/products/stories/reviews/0,4161,2711665,00.html

16. The Benchmark Handbook, Morgan Kaufmann Publishers, webpage
http://www.benchmarkresources.com/handbook/

17. Special Karlsruher MPI (SKaMPI) benchmark – web page
http://wwwipd.ira.uka.de/~skampi/

18. LINPACK (Linear Algebra Package) - http://www.netlib.org/linpack/
19. LAPACK (Linear Algebra Package, modern version of Linpack) -

http://www.netlib.org/lapack/
20. LINPACK TOP 500 - http://www.top500.org/
21. Clusters @ TOP 500 - http://clusters.top500.org
22. PARKBENCH (PARallel Kernels and BENCHmarks) – web page

http://www.netlib.org/parkbench/
23. SPEComp: A new benchmark suite for measuring parallel computer performance,

Vishal Aslot, Max Domeika, Rudolf Eigenmann, Greg Gaertner, Wesley B. Jones,
and Bodo Parady. In Proc. of WOMPAT 2001, Workshop on OpenMP Applications
and Tools, Lecture Notes in Computer Science, 2104, pages 1-10, July 2001,
http://www.ece.purdue.edu/~eigenman/reports/wompat01spec.pdf

24. SPEComp 2001 – web page http://www.spec.org/hpg/omp2001/
25. SPEC CPU 2000 Benchmark Suite – web page http://www.spec.org/osg/cpu2000/
26. HINT – Hierarchical Integration benchmark, web page

http://www.scl.ameslab.gov/Projects/HINT/
27. An analytical model of the HINT performance metric, Quinn O. Snell, John L.

Gustavson – web page http://www.scl.ameslab.gov/ahint/
28. IBM.com – Introduction to Application Profiling, Article / web page - http://www-

1.ibm.com/servers/eserver/zseries/os/linux/ldt/profs.html

http://www.notur.org/
http://www.notur.org/et/
http://www.sgi.com/origin/3000/3800.html
http://www.ieeetfcc.org/
http://www.gridcomputing.com/
http://www.globus.org/
http://www.apple.com/creative/resources/photoshop/
http://www.tpc.org/information/sessions/sigmod/index.htm
http://www.intel.com/procs/perf/
http://www.dell.com/us/en/gen/topics/vectors_2001-pentium4performance.htm
http://www.specbench.org/
http://www.specbench.org/osg/cpu2000/
http://www.zdnet.com/products/stories/reviews/0,4161,2711665,00.html
http://www.benchmarkresources.com/handbook/
http://wwwipd.ira.uka.de/~skampi/
http://www.netlib.org/linpack/
http://www.netlib.org/lapack/
http://www.top500.org/
http://clusters.top500.org/
http://www.netlib.org/parkbench/
http://www.ece.purdue.edu/~eigenman/reports/wompat01spec.pdf
http://www.spec.org/hpg/omp2001/
http://www.spec.org/osg/cpu2000/
http://www.scl.ameslab.gov/Projects/HINT/
http://www.scl.ameslab.gov/ahint/
http://www-1.ibm.com/servers/eserver/zseries/os/linux/ldt/profs.html
http://www-1.ibm.com/servers/eserver/zseries/os/linux/ldt/profs.html

29. Review of Performance Analysis Tools for MPI Parallel Programs, Shirley Browne,
Jack Dongarra, Kevin London (Computer Science Departement, University of
Tennessee), web page http://www.cs.utk.edu/~browne/perftools-review/

30. Apple High Performance Computing web page
http://www.apple.com/scitech/research/hiperformance/

31. MPI Forum – The official site of the MPI standard - http://www.mpi-forum.org/
32. DEEP (Development Environment for Parallel Programs) – web page

http://www.psrv.com/deep.html
33. A Portable Programming Interface for Performance Evaluation on Modern

Processors, S. Browne, J. J. Dongarra, N. Garner, G. Ho and P. Mucci,
International Journal of High Performance Computing Applications, 14:3 (Fall
2000), pp. 189-204.

34. MPICH – A portable implementation of MPI, Mathematics and Computer Science
Division, Argonne National Laboratory, http://www-unix.mcs.anl.gov/mpi/mpich

35. An API for Runtime Code Patching, B. Buck and J. K. Hollingsworth, Journal of
High Performance Computing Applications, 14:4 (2000), pp. 317-329.

http://www.cs.utk.edu/~browne/perftools-review/
http://www.apple.com/scitech/research/hiperformance/
http://www.mpi-forum.org/
http://www.psrv.com/deep.html

	PROJECT REPORT.
	Introduction
	About the Project
	“The mission”

	Architectures
	Supercomputer – SMP
	Clusters
	Grid

	Benchmarking machines
	What is a benchmark?
	Different types of benchmarks
	Component Bencmarks
	System Benchmarks

	Specific characteristics of benchmarks for multiprocessor machines
	Benchmark examples
	LINPACK/LAPACK
	SPEComp
	SPEC HPC
	HINT

	Recommendations for use

	Profiling applications
	Introduction to Application Profiling
	Different types of profiling tools
	Specific characteristics of profiling tools for parallel programs
	A review of performance analysis tools for MPI parallel programs
	Tools reviewed
	DEEP/MPI
	MPE Logging and Jumpshot
	Pablo Performance and Analysis Tools
	Paradyn
	TAU
	Vampir
	Evaluation summary

	Recommendations for use:

	Appendix A – SGI Origin 3800
	From SGI’s 3800-site [3]:

	REFERENCES

