
MATRIX ALGEBRA ON GPU AND MULTICORE ARCHITECTURES

The MAGMA project, led by the linear algebra research groups at University of Tennessee, UC Berkeley, and UC Denver, aims to 
develop a linear algebra library similar to LAPACK but for heterogeneous/hybrid architectures, starting with current “Multicore+GPU” 
systems. This transition cannot be done automatically, as in many cases new algorithms that significantly differ from algorithms for 
conventional architectures will be needed. Preliminary studies on a new class of “heterogeneity-aware” algorithms of “reduced 
communication” and “high-parallelism” confirm that this is the case.

Hardware Software

•  HETEROGENEITY-AWARE ALGORITHMS 
•  INNOVATIVE DATA STRUCTURES
•  PRECONDITIONING TO REDUCE PIVOTING
•  MIXED PRECISION ALGORITHMS
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DENSE LINEAR ALGEBRA (DLA)�FOR GPUs

DLA Algorithms, due to high ratio of floating point calculations to data required, 
have been of high performance on standard architectures. Therefore, special 
purpose architectures have not been able to significantly accelerate them up until 
recently. This has changed as CPUs move to multi/manycores with an 
exponentially growing gap between processor speed and memory, while GPUs 
have consistently outpaced them both in performance and memory bandwidth.
First CUDA GPU results to significantly outperform CPUs on DLA started 
appearing at the beginning of 2008 (illustrated below for the GEMM operation and 
on the reverse page for the main factorizations and solvers).

PEAK GEMM ON CURRENT MULTICORES VS GPUs 
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1. GPU computing has reached a point to significantly 
outperform current multicores on DLA (in spite of DLA's 
traditionally high performance on x86 architectures).

2. Architecture trends have moved towards heterogeneous 
(GPU + CPU) designs of increased parallelism and communi-
cation costs, and software trends have to reflect on that. 
MAGMA addresses this with innovative heterogeneity-aware 
algorithms/techniques on extracting parallelism and 
reducing communication.

3. There are significant differences between the new 
algorithms and those for conventional CPUs.

4. The new techniques in many cases present an opportunity 
for trade-off between speed and accuracy. 

5. The need for DLA for hybrid systems will grow, motivating 
our Future work directions, As envisioned in the MAGMA 
Project, Towards a self contained DLA library similar to 
LAPACK but for heterogeneous architectures. 

HARDWARE TRENDS AND CURRENT 
WORK ON MAGMA SHOW:

MAGMA
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PERFORMANCE RESULTS1

GPU ALGORITHMS ≠ TRADITIONAL ALGORITHMS
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Solvers

Single Core + Single GPU 

2 Cores + 2 GPUs [Partial Pivoting (PP) LU]

8 Cores + 1 GPU  [Preconditioned Limited Pivoting (LP) LU(NB)3]

16 Cores / Tigerton [Pairwise Pivoting (PwP) LU from PLASMA]

8 Cores / Harpertown [PwP LU from PLASMA]
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1 The new techniques often gain in 
speed for the price of reduced 
accuracy. Understanding this 
trade-off of speed vs accuracy can 
lead to very efficient algorithms. 

2 Mixed precision solvers often achieve 4 x speedup 
compared to DP solvers but the speed depends on the 
conditioning of the matrix. In these performance results, 
we considered three steps of iterative refinement (on 
symmetric and positive definite matrices using Cholesky).

3 Limited amount of pivoting (within the block size NB or more) is justified by a 
specially designed unitary transformation: experiments with random 
matrices show that LP LU(NB+64) for example is comparable in accuracy to 
PP LU, and LP LU(NB) loses only from 1 to 2 digits of accuracy to gain up to 
30% in speed compared to PP LU.

HARDWARE USED

GPU: GeForce GTX 280 (240 Cores @ 1.30 GHz) Tigerton: Intel Xeon (4 x 4 Cores @ 2.4 GHz)�Host: Intel Xeon (2 x 4 Cores @ 2.33 GHz) Harpertown: Intel Xeon (2 x 4 Cores @2.33 GHz)

1. Splitting Algorithms into tasks
• The concept of representing algorithms as Directed Acyclic Graphs (DAGs) where the 
nodes represent the sub-tasks and the edges the dependencies�    

• Heterogeneity-aware splitting 
2. Scheduling task execution

• Crucial for performance, for example scheduling tasks on the critical path 'as soon as 
possible' frees more parallelism 

3. GPU triangular solvers through explicitly inverting the triangular matrix
• Significantly accelerates both TRSM (up to 3 times) and TRSV (order of magnitude)

A. HETEROGENEITY-AWARE ALGORITHMS
Algorithms for hybrid GPU + multicore computing should 
split the computation to fully exploit the power that each of 
the hybrid components offers.
1.  'Small' tasks of low parallelism to be executed on the 

CPU (for example tasks on the critical path)�
2.  Larger tasks of high parallelism to be executed on the 

GPU�
3.  Proper scheduling should explore asynchronicity 

between CPU and GPU
4.  Blocking strategies 

• Varying block sizes (as in QR)�   
• Two-level blocking (as in Cholesky)   

5.  Work partitioning (specific) for hybrid GPU + Multicore�     
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Algorithms as DAGs
(small tasks/tiles for multicore)

Current hybrid CPU-GPU algorithms
(small and large tasks)
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An LU factorization work splitting for 
Single GPU + 8 cores CPU host
The first N – 7nb columns reside on the 
GPU and� are processed by 1 GPU + 1 
core, the rest resides and is processed 
by the remaining cores

B. INNOVATIVE DATA STRUCTURES
Non-traditional data layouts may be beneficial in reducing 
communication costs, e.g. to avoid severely penalized strided 
memory access in pivoting on�the GPU, the matrix is laid out in the 
GPU memory in row-major order (to often double the performance).

REDUCE COMMUNICATION

C. PRECONDITIONING FOR REDUCED PIVOTING

D. MIXED PRECISION ALGORITHMS

E. TILED ALGORITHMS

F. COMMUNICATION-OPTIMAL ALGORITHMS

EXTRACTING PARALLELISM

MAGMA

I N N O VAT I V E       C O M P U T I N G  L A B O R AT O RY C E N T E R  fo r  I N F O R M AT I O N  T E C H N O LO G Y  R E S E A R C H

http://icl.cs.utk.edu/magma/


