
MATRIX ALGEBRA ON GPU AND MULTICORE ARCHITECTURES

The MAGMA project, led by the linear algebra research groups at University of Tennessee, UC Berkeley, and UC Denver, aims to
develop a linear algebra library similar to LAPACK but for heterogeneous/hybrid architectures, starting with current “Multicore+GPU”
systems. This transition cannot be done automatically, as in many cases new algorithms that significantly differ from algorithms for
conventional architectures will be needed. Preliminary studies on a new class of “heterogeneity-aware” algorithms of “reduced
communication” and “high-parallelism” confirm that this is the case.

Hardware Software

• HETEROGENEITY-AWARE ALGORITHMS
• INNOVATIVE DATA STRUCTURES
• PRECONDITIONING TO REDUCE PIVOTING
• MIXED PRECISION ALGORITHMS

DGETF2

DLSWP

DTRSM

DGEMM

Extracting parallelism from the BLAS routines

DEFINE
DEPENDENCIES

EXTRACT
PARALLELISM

REDUCE
COMMUNICATION

INCREASE IN
PARALLELISM

INCREASE IN
COMMUNICATION
COST (VS COMPUTATION)

Hybrid / Heterogeneous Designs

Multicore + GPUs
N

EW
 A

LG
O

R
IT

H
M

S
N

EE
D

ED

HARDWARE TO SOFTWARE TRENDS

SPONSORED BY

University of
Coimbra

University of California
Berkeley

DENSE LINEAR ALGEBRA (DLA)�FOR GPUs

DLA Algorithms, due to high ratio of floating point calculations to data required,
have been of high performance on standard architectures. Therefore, special
purpose architectures have not been able to significantly accelerate them up until
recently. This has changed as CPUs move to multi/manycores with an
exponentially growing gap between processor speed and memory, while GPUs
have consistently outpaced them both in performance and memory bandwidth.
First CUDA GPU results to significantly outperform CPUs on DLA started
appearing at the beginning of 2008 (illustrated below for the GEMM operation and
on the reverse page for the main factorizations and solvers).

PEAK GEMM ON CURRENT MULTICORES VS GPUs

SINGLE PRECISION

G
Fl

op
/s

DOUBLE PRECISION

no
t a

va
ila

bl
e

400
375
350
325
300
275
250
225
200
175
150
125
100

75
50
25

0

Quadro FX 5600
(120 @ 1.5 GHz)

Intel Xeon Tigerton
(4 x 4 @ 2.4 GHz)

GeForce GTX 280
(240 @ 1.29 GHz)

Intel Xeon Harpertown
(2 x 4 @ 2.33 GHz)

1. GPU computing has reached a point to significantly
outperform current multicores on DLA (in spite of DLA's
traditionally high performance on x86 architectures).

2. Architecture trends have moved towards heterogeneous
(GPU + CPU) designs of increased parallelism and communi-
cation costs, and software trends have to reflect on that.
MAGMA addresses this with innovative heterogeneity-aware
algorithms/techniques on extracting parallelism and
reducing communication.

3. There are significant differences between the new
algorithms and those for conventional CPUs.

4. The new techniques in many cases present an opportunity
for trade-off between speed and accuracy.

5. The need for DLA for hybrid systems will grow, motivating
our Future work directions, As envisioned in the MAGMA
Project, Towards a self contained DLA library similar to
LAPACK but for heterogeneous architectures.

HARDWARE TRENDS AND CURRENT
WORK ON MAGMA SHOW:

MAGMA

I N N O VAT I V E C O M P U T I N G L A B O R AT O RY C E N T E R fo r I N F O R M AT I O N T E C H N O LO G Y R E S E A R C H

http://icl.cs.utk.edu/magma/

PERFORMANCE RESULTS1

GPU ALGORITHMS ≠ TRADITIONAL ALGORITHMS

QR

Cholesky

PP LU

Iterative Mixed Precison
(GPU Iterations)
Iterative Mixed Precision
(CPU Iterations)
Direct Solver

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 10 12 14

G
Fl

op
/s

Matrix size x 1000
Single Precision

Main Factorizations

0

75

150

225

300

1 2 3 4 5 6 7

Matrix size x 1000
Double Precision2

Solvers

Single Core + Single GPU

2 Cores + 2 GPUs [Partial Pivoting (PP) LU]

8 Cores + 1 GPU [Preconditioned Limited Pivoting (LP) LU(NB)3]

16 Cores / Tigerton [Pairwise Pivoting (PwP) LU from PLASMA]

8 Cores / Harpertown [PwP LU from PLASMA]

0

20

40

60

80

100

120

1 2 3 4 5 6 7

Matrix size x 1000
Double Precision LU Factorization

G
Fl

op
/s

Matrix size x 1000
Single Precision LU Factorization

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 10 12 21

Multicores / Multi-GPUs

1 The new techniques often gain in
speed for the price of reduced
accuracy. Understanding this
trade-off of speed vs accuracy can
lead to very efficient algorithms.

2 Mixed precision solvers often achieve 4 x speedup
compared to DP solvers but the speed depends on the
conditioning of the matrix. In these performance results,
we considered three steps of iterative refinement (on
symmetric and positive definite matrices using Cholesky).

3 Limited amount of pivoting (within the block size NB or more) is justified by a
specially designed unitary transformation: experiments with random
matrices show that LP LU(NB+64) for example is comparable in accuracy to
PP LU, and LP LU(NB) loses only from 1 to 2 digits of accuracy to gain up to
30% in speed compared to PP LU.

HARDWARE USED

GPU: GeForce GTX 280 (240 Cores @ 1.30 GHz) Tigerton: Intel Xeon (4 x 4 Cores @ 2.4 GHz)�Host: Intel Xeon (2 x 4 Cores @ 2.33 GHz) Harpertown: Intel Xeon (2 x 4 Cores @2.33 GHz)

1. Splitting Algorithms into tasks
• The concept of representing algorithms as Directed Acyclic Graphs (DAGs) where the
nodes represent the sub-tasks and the edges the dependencies�

• Heterogeneity-aware splitting
2. Scheduling task execution

• Crucial for performance, for example scheduling tasks on the critical path 'as soon as
possible' frees more parallelism

3. GPU triangular solvers through explicitly inverting the triangular matrix
• Significantly accelerates both TRSM (up to 3 times) and TRSV (order of magnitude)

A. HETEROGENEITY-AWARE ALGORITHMS
Algorithms for hybrid GPU + multicore computing should
split the computation to fully exploit the power that each of
the hybrid components offers.
1. 'Small' tasks of low parallelism to be executed on the

CPU (for example tasks on the critical path)�
2. Larger tasks of high parallelism to be executed on the

GPU�
3. Proper scheduling should explore asynchronicity

between CPU and GPU
4. Blocking strategies

• Varying block sizes (as in QR)�
• Two-level blocking (as in Cholesky)

5. Work partitioning (specific) for hybrid GPU + Multicore�

GPU

GPU

GPU

Critical Path

Algorithms as DAGs
(small tasks/tiles for multicore)

Current hybrid CPU-GPU algorithms
(small and large tasks)

NB N - 7 nb nb

1 Core
Panel fact.

(or more, e.g. 1/socket)

1 GPU
Update trailing

sub-matrix

7 Cores
Update trailing

sub-matrix

-

An LU factorization work splitting for
Single GPU + 8 cores CPU host
The first N – 7nb columns reside on the
GPU and� are processed by 1 GPU + 1
core, the rest resides and is processed
by the remaining cores

B. INNOVATIVE DATA STRUCTURES
Non-traditional data layouts may be beneficial in reducing
communication costs, e.g. to avoid severely penalized strided
memory access in pivoting on�the GPU, the matrix is laid out in the
GPU memory in row-major order (to often double the performance).

REDUCE COMMUNICATION

C. PRECONDITIONING FOR REDUCED PIVOTING

D. MIXED PRECISION ALGORITHMS

E. TILED ALGORITHMS

F. COMMUNICATION-OPTIMAL ALGORITHMS

EXTRACTING PARALLELISM

MAGMA

I N N O VAT I V E C O M P U T I N G L A B O R AT O RY C E N T E R fo r I N F O R M AT I O N T E C H N O LO G Y R E S E A R C H

http://icl.cs.utk.edu/magma/

