
RC24704 (W0812-047) December 8, 2008
Computer Science

IBM Research Report

Optimizing Sparse Matrix-Vector Multiplication on GPUs
Using Compile-time and Run-time Strategies

Muthu Manikandan Baskaran
Department of Computer Science and Engineering

The Ohio State University
Columbus, OH

USA

Rajesh Bordawekar
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598
USA

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Optimizing Sparse Matrix-Vector Multiplication on GPUs using
Compile-time and Run-time Strategies

Muthu Manikandan Baskaran Rajesh Bordawekar
Dept. of Computer Science and Engineering IBM TJ Watson Research Center

The Ohio State University, Columbus, OH, USA Hawthorne, NY, USA
baskaran@cse.ohio-state.edu bordaw@us.ibm.com

Abstract
We are witnessing the emergence of Graphics Processor units
(GPUs) as powerful massively parallel systems. Furthermore, the
introduction of new APIs for general-purpose computations on
GPUs, namely CUDA from NVIDIA, Stream SDK from AMD, and
OpenCL, makes GPUs an attractive choice for high-performance
numerical and scientific computing. Sparse Matrix-Vector multi-
plication (SpMV) is one of the most important and heavily used
kernels in scientific computing. However with indirect and irregu-
lar memory accesses resulting in more memory accesses per float-
ing point operation, optimization of SpMV kernel is a significant
challenge in any architecture.

In this paper, we evaluate the various challenges in develop-
ing a high-performance SpMV kernel on NVIDIA GPUs using the
CUDA programming model and propose a framework that employs
both compile-time and run-time optimizations. The compile-time
optimizations include: (1) exploiting synchronization-free paral-
lelism, (2) optimized thread mapping based on the affinity towards
optimal memory access pattern, (3) optimized off-chip memory ac-
cess to tolerate the high latency, and (4) exploiting data reuse. The
runtime optimizations involve a runtime inspection of the sparse
matrix to determine dense non-zero sub-blocks, which facilitate
the reuse of input vector elements while execution. We propose a
new blocked storage format for storing and accessing elements of
a sparse matrix in an optimized manner from the GPU memories.
We evaluate our optimizations over two classes of NVIDIA GPU
chips, namely, GeForce 8800 GTX and GeForce GTX 280, and
we compare the performance of our approach with that of existing
parallel SpMV implementations such as the one from NVIDIA’s
CUDPP library and the one implemented using optimal segmented
scan primitive. Our approach outperforms the other existing imple-
mentations by a factor of 2 to 4. Using our framework, we achieve a
peak SpMV performance that is 70% of the performance observed
for SpMV computations using dense matrices stored in sparse for-
mat.

1. Introduction
Modern computer architecture has shifted towards designs that em-
ploy multiple processor cores on a chip, so called multicore pro-
cessors. Unfortunately, the current multicore systems are so archi-
tecturally diverse that to fully exploit the potential of multiple pro-
cessors, the applications have to be specialized for the underlying
system using architecture-specific optimization strategies.

One of the key reasons for the architectural diversity is the need
to balance memory and processor capabilities. Memory bandwidth
has always been a performance bottleneck in traditional computer
architectures, and it is even more pronounced in multicore systems.
The trend in computer architecture shows that increasing proces-
sor cores on a chip is more cost effective than increasing mem-
ory bandwidth. Hence, memory bottleneck is going to remain as
the key performance bottleneck in future multicore architectures.
Traditionally, a multi-level cache hierarchy is used to alleviate the
memory bottleneck. Due to various reasons concerning power ef-

ficiency and performance, many modern multicore processors, in-
stead of caches, support fast explicitly managed on-chip memo-
ries, often referred to as scratchpad memories or local stores. The
scratchpad memories are software-managed, unlike caches that are
hardware-controlled, and hence the execution times of programs
using scratchpad memories can be more accurately predicted and
controlled.

Thus, many of the architectural-specific optimization strategies
involve specific optimizations targeted towards improving memory
characteristics of an application. These optimizations enable paral-
lel applications to yield higher performance by tolerating the under-
lying memory bottleneck while utilizing the computational power
of the multi-core system. Such memory optimizations are better
appreciated in applications that are inherently memory-bound. One
such memory-bound application kernel that is heavily used in many
scientific and engineering applications is the Sparse Matrix-Vector
Multiplication (SpMV) kernel. The SpMV kernel computes a vec-
tor x as a result of multiplying a sparse matrix A by a vector y
(x = Ay).

(c)C Code for the SpMV Kernel (x=Ay)

(b) CSR Storage Representation

0 2 3 2 3 4 5 4 8 95 8 9 2 6 7 2 3 6 7 2 3 8 2 8

Row Pointer Array

Value Array

Index Array

for (int i=0; i <n; i++){

}

float t=0;
int lb = rowPtr[i];
int ub = rowPtr[i+1];
for (int j=lb; j < ub; j++){

int index = ind[j]
t += val[j]*y[index]

}
x[i] = t;

(a) Sparse Matrix

(ind)

(rowPtr)

(val)

Figure 1. Sparse Matrix-Vector Multiplication and CSR Sparse
Matrix Storage Format

Although SpMV is a prominent kernel used in many engineer-
ing and scientific applications, it is well known that SpMV yields
only a small fraction of machine peak performance [20]. Sparse
matrix computations involve far more memory accesses per float-
ing point operation, due to indirect and irregular memory accesses.
Higher performance in SpMV computation requires optimizations
that best utilize the properties of the sparse matrix and also the
underlying system architecture. If the sparse matrix structure is
known only at runtime, then runtime optimizations are needed to
analyze and utilize the properties of the sparse matrix to yield better
performance. The storage format of sparse matrix is also very im-
portant in determining the performance. The most common sparse
matrix storage format is the Compressed Sparse Row (CSR) for-

1 2008/11/17

mat (Figure 1). The non-zero elements of each row in the sparse
matrix are stored contiguously in a dense array, val. A dense inte-
ger array, ind, stores the column index of each non-zero element.
Another dense integer array, rowPtr, stores the starting position
of each row of the sparse matrix in val (and ind). Figure 1(c)
presents the SpMV kernel code in C. Some basic characteristics of
the SpMV computation can be inferred from the kernel presented
in Figure 1(c). They include: (1) existence of synchronization-free
parallelism across the rows, (2) existence of reuse of input and out-
put vector elements, (3) non-existence of data reuse of matrix el-
ements, and (4) more memory accesses per floating operation in-
volving a non-zero element.

Graphics Processing Units (GPUs) are one of the most power-
ful multi-core systems currently in use. For example, the NVIDIA
GeForce 8800 GTX GPU chip has a peak performance of over 350
GFLOPS and the NVIDIA GeForce GTX 280 chip has a peak per-
formance of over 900 GFLOPS. In addition to the primary use of
GPUs in accelerating graphics rendering operations, there has been
considerable interest in exploiting GPUs for General Purpose com-
putation (GPGPU) [7]. Until very recently, GPGPU computations
were performed by transforming matrix operations into specialized
graphics processing such as texture operations. The introduction of
new parallel programming interfaces for general purpose computa-
tions, such as Compute Unified Device Architecture (CUDA) [15],
Stream SDK [1], and OpenCL [16], have made GPUs powerful and
attractive choice for developing high-performance numerical and
scientific computations. Unfortunately, many modern GPUs exhibit
a complex memory organization with multiple low latency on-chip
memories in addition to the off-chip DRAM. In addition, they also
exhibit a hybrid cache and local-store hierarchy (Figure 2). The ac-
cess latencies and the optimal access patterns of each of the memo-
ries vary significantly, posing a significant challenge to devise tech-
niques that optimally utilize the various memories to tolerate the la-
tency and improve the memory throughput. The memory hierarchy
along with the highly parallel execution model make application
optimizations difficult. The challenges increase many-fold when
the application to be optimized is a memory-intensive kernel like
SpMV.

In this work, we investigate the problem of optimizing SpMV
kernels on a modern GPU, specifically, on the NVIDIA GTX series
using the CUDA parallel programming model. First, we evaluate
the NVIDIA GPU architecture and the CUDA execution model
using a naive non-optimized implementation of the SpMV ker-
nel. Our experiments revealed two key inter-related obstacles in
improving the SpMV performance on the NVIDIA GPUs: thread
mapping and data access strategies. To address these concerns,
we have proposed a system that uses both compile- and run-
time optimizations. We have implemented and tested this sys-
tem on two state-of-the-art NVIDIA GPUs, 8800 GTX and GTX
280, using a set of sparse matrices used in a wide variety of ap-
plication domains. We have also experimentally evaluated our
approach against two existing SpMV CUDA implementations,
namely, NVIDIA’s CUDPP [4] library and the one implemented
using optimal segmented scan primitives from Dotsenko et al. [6].
Our results demonstrate that in majority of cases, our compile-time
and runtime optimizations substantially improved performance of
the SpMV kernel over the naive implementation, the implemen-
tation using segmented scan, and the NVIDIA CUDPP library. In
some cases, we observe a factor of 6 improvement over the naive
implementation, and a factor of 2 to 4 over CUDPP and scan im-
plementations. The experimental results conclusively demonstrate
the advantages of our optimizations over existing approaches. Our
framework has been implemented and it is in the process of being
released as an Open Source project.

Our study makes the following key contributions:

1. We have evaluated the various challenges in developing a high-
performance SpMV kernel on NVIDIA GPUs using the CUDA

programming model and proposed a framework that employs
both compile-time and run-time optimizations.

2. We have developed a compile-time optimizer that applies the
following optimizations to a SpMV code executing on a GPU:
(1) exploiting synchronization-free parallelism, (2) optimized
thread mapping based on the affinity towards optimal memory
access pattern, (3) optimized off-chip memory access to tol-
erate the high latency, and (4) exploiting data reuse. We have
proposed a new blocked storage format for storing and access-
ing elements of a sparse matrix in an optimized manner from the
GPU memories. We have also implemented an optional runtime
optimizer that first performs an inspection of the sparse matrix
to identify dense non-zero sub-blocks that could facilitate the
reuse of input vector elements while execution.

3. We have evaluated our optimizations using two different NVIDIA
GPUs, namely, GeForce 8800 GTX, and GeForce GTX 280, us-
ing a large set of sparse matrices derived from real applications.
Our optimization techniques result in significant performance
improvements on both the GPUs over existing parallel SpMV
implementations by a factor of 2 to 4. Using our framework, we
are able to achieve a peak SpMV performance that is 70% of
the performance observed for SpMV computations using dense
matrices stored in sparse format.

The rest of the paper is organized as follows: Section 2 presents
an overview of the NVIDIA GPU architectures and the CUDA pro-
gramming model. The problem statement is presented in Section 3.
Section 4 describes the proposed SpMV optimization framework
in detail. Experimental results are presented in Section 5. Section 6
discusses related work. Finally, we conclude in Section 7.

2. GPU Architecture and the CUDA
Programming Model

In this Section, we discuss about the GPU parallel computing archi-
tecture, the CUDA programming interface, and the GPU execution
model.

2.1 GPU Computing Architecture

The GPU parallel computing architecture comprises of a set of
multiprocessor units called the streaming multiprocessors (SMs),
each one containing a set of processor cores (called the streaming
processors (SPs)). The NVIDIA GeForce 8800 GTX has 16 SMs
each consisting of 8 SPs and the NVIDIA GeForce GTX280 has 30
SMs with 8 SPs in each SM. The SPs within a SM communicate
through a fast explicitly managed on-chip local store memory, also
called the shared memory, while the different SMs communicate
through a slower off-chip DRAM, also called the global memory.
Each SM unit also has a fixed number of registers.

There are various memories available in GPUs for a program-
mer. The memories are organized in a hybrid cache and local-store
hierarchy. The memories are as follows: (1) off-chip global mem-
ory (768MB on the 8800 GTX), (2) off-chip local memory, (3)
on-chip shared memory (16KB per multiprocessor in 8800 GTX),
(4) off-chip constant memory with on-chip cache (64KB in 8800
GTX), and (5) off-chip texture memory with on-chip cache. Fig. 2
illustrates the memories in GPUs along with their hierarchical order
and access latencies.

2.2 CUDA Programming Model

Programming GPUs for general-purpose applications is enabled
through an easy-to-use C/C++ language interface exposed by the
NVIDIA Compute Unified Device Architecture (CUDA) technol-
ogy [15]. The CUDA programming model provides an abstraction
of the GPU parallel architecture using a minimal set of program-
ming constructs such as hierarchy of threads, hierarchy of memo-
ries, and synchronization primitives. A CUDA program comprises

2 2008/11/17

of a host program which is run on the CPU or host and a set of
CUDA kernels that are launched from the host program on the GPU
device. The CUDA kernel is a parallel kernel that is executed on a
set of threads. The threads are organized into groups called thread
blocks. The threads within a thread block synchronize among them-
selves through barrier synchronization primitives in CUDA and
they communicate through a shared memory space that is available
to the thread block. A kernel comprises of a grid of one or more
thread blocks. Each thread in a thread block is uniquely identified
by its thread id (threadIdx) within its block and each thread block
is uniquely identified by its block id (blockIdx). The dimensions of
the thread and thread block are specified at the time of launching
the kernel, through the identifiers blockDim and gridDim, respec-
tively. The dimensions may be 1, 2 or 3.

Each CUDA thread has access to various memories at different
levels in the hierarchy. The threads have a private local memory
space and register space. The threads in a thread block share a
shared memory space and variables in this space are declared using
the shared identifier. The GPU DRAM is accessible by all
threads in a kernel.

2.3 GPU Execution Model

The GPU computing architecture employs a Single Instruction
Multiple Threads (SIMT) model of execution. The threads in a ker-
nel are executed in groups called warps, where a warp is an unit
of execution. The scalar SPs within a SM share a single instruc-
tion unit and the threads of a warp are executed on the SPs. All
the threads of a warp execute the same instruction and each warp
has its Program Counter. The SM hardware employs a zero over-
head warp scheduling through the CUDA runtime scheduler. Warps
whose next instruction has its operands ready are eligible for exe-
cution and eligible warps are selected for execution on a prioritized
scheduling policy. The warp scheduling is completely transparent
to the CUDA programmer.

The computational resources on a multiprocessor unit, i.e., the
shared memory and the register bank, are shared among the active
thread blocks on that unit. For example, an application abstracted
as a grid of 64 thread blocks can have 4 thread blocks mapped on
each of the 16 multiprocessors of the NVIDIA GeForce 8800 GTX.
The GeForce 8800 GTX GPU has a 16 KB shared memory space
and 8192 registers. If the shared memory usage per thread block
is 8 KB or the register usage is 4096, at most 2 thread blocks can
be concurrently active on a multiprocessor. When any of the two
thread blocks complete execution, another thread block can become
active on the multiprocessor.

1

Registers

Shared
Memory

Global Memory

Texture, Constant
Cache

Host Memory

200-300
cycles

200-300
cycles

1-2 cycles

Constant, Texture
Memory

PCI-Express
latency

1-2 cycles

> 100
cycles

Figure 2. Memory Hierarchy in the NVIDIA GPUs.

3. Problem Statement
GPUs are massively data-parallel systems with very high per-chip
parallelism. A NVIDIA 8800 GTX GPU has a theoretical peak per-

formance of around 350 GFlops and a peak off-chip memory band-
width of over 85 GBps. However, the off-chip memory latency is
as high as 200 clock cycles. To fully exploit the massive comput-
ing resources of the GPUs, the off-chip memory latency needs to
be efficiently hidden. Thus, optimizations for enhancing the mem-
ory performance are critical to GPU systems for utilizing their raw
computing power. Furthermore, in future systems, where there will
be even more processor cores on chip, memory bottleneck will in-
creasingly become a very critical issue. Hence, reducing the mem-
ory footprint and tolerating the memory access latency are very
important for high performance, especially for memory bound ap-
plications.

Matrix vector multiplication is a memory-bound application
kernel in which each matrix element that is brought from memory
is used only once in the computation. Hence, the kernel is charac-
terized by a high memory overhead per floating point operation.
When the matrix is sparse, it incurs further complexity in terms of
memory overhead because of the indirect and irregular memory ac-
cesses. Sparse matrix vector (SpMV) multiplication involves, on an
average, more than two memory operations for accessing a single
non-zero matrix element and is heavily memory-bound. In addition,
the SpMV-specific optimizations depend heavily on the properties
of the structural properties of the sparse matrix, many of which
might be known only at run-time.

As discussed in Section 2, the GPU architecture has multiple
low latency memories in addition to the off-chip DRAM, and has
a hybrid cache and local-store hierarchy. The memory organization
is designed to improve the memory throughput of applications ex-
ecuted on GPUs. However, the characteristics of the various mem-
ories available in the GPU are diverse in terms of latency, optimal
memory access pattern, and control (either hardware-controlled or
software-controlled). This imposes several challenges to effectively
reduce memory footprint and hide latency. The optimal access pat-
tern is also dependent on the manner in which threads are mapped
for computation and also on the number of threads involved in
global memory access as involving more threads would assist in
hiding the global memory access latency. Hence, there has to be an
optimal thread mapping to ensure optimized memory access.

In summary, enhancing memory performance is key for utiliz-
ing the high computation power of GPU systems, especially for
memory-bound applications such as the SpMV kernel. However,
there are significant challenges to be addressed, both in the context
of the underlying architecture and the application. In this work, we
develop a framework for optimizing SpMV computations on GPUs
that uses compile- and run-time strategies to match application re-
quirements against the architectural constraints.

4. System Design and Implementation
In this Section, we discuss in detail the design and implementation
of our framework for optimizing SpMV computations on GPUs.
The main components of the framework are: (1) a module perform-
ing compile-time optimizations, (2) runtime inspector that analyzes
the sparse matrix structure, and (3) a module executing the opti-
mized kernel on GPU device.

Figure 3 sketches the design of our proposed system. The run-
time inspector analyzes the sparse matrix structure to derive opti-
mized block storage format. The inspector is invoked over the input
sparse matrix at the host (CPU) side to perform the structural anal-
ysis. Since runtime preprocessing incurs some overhead, it is an
optional module that can be by-passed to only apply compile-time
optimizations. However, in many real applications, e.g., the Conju-
gate Gradient Solver, the same sparse matrix is used repeatedly and
the cost of preprocessing the sparse matrix could then be amortized
over the multiple iterations. The runtime strategy to extract optimal
block structure is explained in detail in Section 4.2.

The compile-time optimizer module is invoked on the host for
determining the set of compile-time optimizations that would be

3 2008/11/17

Optimized SpMV

Compile−time

Optimizer

Runtime Executor

Non−Optimized SpMV

Run at the

Run at the
Device side

Runtime Inspector

(Optional)

Host side

Figure 3. System Design and Modules

applied to the SpMV kernel. The various compile-time optimiza-
tions that are devised for efficient execution of SpMV kernel on
GPU architecture are described in detail in Section 4.1. The final
optimized SpMV kernel CUDA code depends on the runtime and
compile-time optimizations that are applied. The optimized kernel
is executed on the GPU device by the runtime executor. It should be
noted that the storage format for the sparse matrices in our frame-
work is our block storage format when our runtime preprocessing
is performed, and it is the CSR format when only our compile-time
optimizations are performed.

4.1 Compile-time Optimizations

int tid = threadIdx.y;
int bid = blockIdx.y;
int myi = bid * BLOCKSIZE + tid;

if (myi < n) {
float t=0;
int lb = rowPtr[myi];
int ub = rowPtr[myi+1];

for (int j=lb; j<ub; j++) {
int index = ind[j];
t += val[j] * y[index];

}
x[myi] = t;

}

Figure 4. Naive CUDA SpMV code

Naive partitioning of Sparse Matrix

block 0

block 1

block 2

block 3

block 4

Thread 0

Thread 1

Figure 5. Naive Thread Mapping in a CUDA execution

In this Section, we present some of the key performance opti-
mizations that can be performed at compile-time to improve perfor-
mance on GPUs. We first explain how we devise the architecture-
specific optimizations for SpMV kernel and also then validate the

applicability of these optimizations in attaining good performance
by illustrating with a few performance results.

The compile-time optimizations targeted to improve the perfor-
mance of SpMV on GPUs are as follows:

1. Exploiting Synchronization-free Parallelism: The CUDA
programming model provides an API to synchronize across
all threads belonging to a thread block. However, there is no
API in CUDA to synchronize between thread blocks. To syn-
chronize between thread blocks, the CUDA programmer has to
explicitly implement synchronization primitives using atomic
reads/writes in the global memory space, which incurs a high
overhead. Hence, it is critical to utilize synchronization-free
parallelism across thread blocks. In SpMV computation, the
parallelism available across rows makes it a natural choice to
distribute computations corresponding to a row or a set of rows
to a thread block.

2. Optimized Thread Mapping: The naive way of paralleliz-
ing SpMV is to allocate one thread to perform the computa-
tion corresponding to one row and a thread block to handle a
set of rows, as shown in Figure 5. Figure 4 shows the CUDA
code corresponding to such a naive mapping in which a one-
dimensional grid of thread blocks and a one-dimensional block
of threads computing are used to perform SpMV. However in
GPUs, thread mapping for computation should ensure that suffi-
cient threads are involved to hide global memory access latency
and also ensure that the global memory access is optimized,
as it is very critical for performance. The most optimal pattern
of access for global memory is the hardware optimized coa-
lesced access pattern that would be enabled when consecutive
threads of a half-warp access consecutive elements. It is, there-
fore, necessary to involve multiple threads for the computation
corresponding to each row, and also arrive at a thread mapping
based on the affinity towards optimal memory access pattern.
Our thread mapping strategy maps multiple threads per row
such that consecutive threads access consecutive non-zero ele-
ments of the row in a cyclic fashion to compute partial products
corresponding to the non-zero elements. The threads mapped to
the row then compute the output vector element corresponding
to the row from the partial products through parallel sum reduc-
tion. The partial products are stored in shared memory as they
are accessed only by threads within a thread block.

3. Optimized (Aligned) Global Memory Access: Before we
proceed to explain our optimization to enable hardware op-
timized global memory coalesced accesses, we discuss about
global memory access coalescing in NVIDIA GPUs. Global
memory access coalescing is applicable to memory requests
issued by threads belonging to the same half-warp (i.e. group
of 16 threads). The constraints for global memory accesses of a
half-warp to get coalesced are slightly different for NVIDIA
GeForce 8800 GTX and NVIDIA GeForce GTX 280. The
global memory can be assumed to be consisting of aligned
memory segments. We further base our discussion to memory
requests for 32-bit words. In 8800 GTX device, when all 16
words requested by the threads of a half-warp lie within the
same 64 byte memory segment and if consecutive threads ac-
cess consecutive words, then all the memory requests of the
half-warp are coalesced into one memory transaction. But if
that access pattern is not followed among the threads of a half-
warp, then it results in 16 separate memory requests. However,
in GTX 280 device, the access pattern need not be so strict for
coalescing to happen. In GTX 280, the hardware detects the
number of 128 byte memory segments that hold the 16 words
requested by the threads of a half-warp and issues as many
memory transactions. There is no restriction on the sequence of
access within the threads of a half-warp.

4 2008/11/17

In both GPU devices, when the base address of global memory
access requests issued by the threads of a half-warp is aligned
to memory segment boundary and the threads access words in
sequence, it results in fewer memory transactions. It is a strict
requirement for coalescing in GeForce 8800 GTX, however it is
beneficial even in GeForce GTX 280. Hence we need to adjust
the computation to force the access pattern to be aligned in the
above-mentioned manner.

In the SpMV kernel, the number of non-zeros in a row varies
across rows, and hence the starting non-zero of a row might be
in an non-aligned position in the value array that stores non-
zeros of the sparse matrix. Hence the computation involving a
row should be adjusted to first access the non-aligned portion
of the row, before proceeding to access the aligned portion. If
this adjustment is not made, the entire row would be accessed
non-optimally and the memory access cost would increase.

Thread 2

(a) One Thread per row

(b) Unaligned Multiple threads per row

(c) Aligned Multiple threads per row

Threads

Threads

Threads

Threads

Threads

Threads

Thread 0

Thread 1

Figure 6. Illustration of our Compile-time Optimizations such
as Optimized Thread Mapping and Optimized (Aligned) Global
Memory Access

Figure 6 illustrates the afore-mentioned optimizations. Figure 7
displays the measured performance numbers (in GFLOPS) and
clearly depicts the performance improvements achieved for few
sample sparse matrices due to optimal thread mapping and
optimal global memory access as opposed to just exploiting
synchronization-free parallelism as illustrated in Figures 4 and
5. The performance improvement in GTX 280 due to optimized
global memory accesses, after the alignment adjustment, is less
compared to that in 8800 GTX due to the less constrained
coalescing requirement in the GTX 280 architecture.

4. Exploiting Data Reuse: The input and output vectors are the
ones that exhibit data reuse in SpMV computation. Exploiting
the reuse of input vector elements depends on the non-zero ac-
cess pattern of the sparse matrix. Hence it requires run-time
analysis of the sparse matrix. Our runtime analysis to create an
optimal block storage of the sparse matrix is explained in Sec-
tion 4.2. The reuse of output vector elements is performed at
compile-time and exploiting synchronization-free parallelism
with optimized thread mapping ensures that partial contribu-
tions to each output vector element are computed only by a cer-
tain set of threads and the final value is written only once.

5. Other Optimizations: The other optimizations that are per-
formed are: (1) optimizing shared memory access by minimiz-
ing bank conflicts through effective padding of the array(s) in
shared memory, (2) avoiding divergence among threads of a
thread block (to be specific, warp), and (3) reducing loop over-
head.

4.2 Run-time Inspection of the Sparse Matrix

Higher performance in SpMV computation needs optimizations
that best utilize the properties of the sparse matrix and also the tar-

raefsky3 ct20stif rma10 lp_osa_60 raefsky3 ct20stif rma10 lp_osa_60
Sparse Matrices

0

2

4

6

8

10

Sp
M

V
 P

er
fo

rm
an

ce
 (

G
FL

O
PS

)

Naive Implementation
Optimal Thread Mapping
Aligned Global-memory Coalescing

4 Different Sparse Matrices on 2 GPUs (8800GTX and 280GTX)

8800GTX

280GTX

Figure 7. Comparative Evaluation of our Compile-time Optimiza-
tions such as Optimized Thread Mapping and Optimized Global
Memory Access

get architecture. There are several sparse matrices corresponding
to real applications which possess dense block sub-structures. Ex-
ploiting the presence of dense blocks is very critical for obtaining
high performance in SpMV computation, as it will help in reduc-
ing the number of memory loads/stores by enhancing data reuse,
especially, of the input vector elements. However, extracting dense
blocks in a given sparse matrix requires an inspection of the matrix.
If the sparse matrix is available only at runtime, then the inspection
has to be performed at runtime. The dense block structure may ei-
ther contain same size blocks that are uniformly aligned or same
size blocks that are non-uniformly aligned or varied size blocks
that are irregularly aligned [21]. The Block CSR (BCSR) [8] and
Unaligned Block CSR (UBCSR) sparse storage formats are pro-
posed to improve sparse matrix computations by effectively han-
dling dense sub-blocks in sparse matrices.

The BCSR format is more constrained with respect to the align-
ment of blocks along rows and columns, and enforces the starting
row (and column) of the block to be a multiple of the block size
along row (and column). BCSR format reduces index storage over-
head, but might lead to filling of more zero entries. The UBCSR
format reduces the number of fill-in zeros, but it has more index
storage. The UBCSR format is more generalized to handle both
uniformly aligned and non-uniformly aligned blocks, but, in most
cases, extracts small dense blocks of varied sizes. In the case of
sequential optimization alone, the dense blocks are exploited for
data reuse. In the case of parallel optimization, different blocks
are optimized across different processes. Hence extracting small
dense blocks is more suited for coarse-grained parallelism. How-
ever, for those GPUs that exhibit two-level parallelism with prefer-
able fine-grained thread-level parallelism, exploiting smaller dense
blocks would result in inefficient global memory accesses. Another
disadvantage of implementing UBCSR format in GPUs is that the
UBCSR format has additional storage overhead in the form of in-
dices pointing to the starting row and column of each block and that
of block size. The additional storage overhead would cause heavy
memory access penalties in GPUs.

We propose a new block storage format that suits to GPU archi-
tecture. Our block storage format is a hybrid one between constant
and variable block formats that tries to exploit the benefits of both
the formats. The features of our format are:

1. To reduce the memory access penalty in reading block size and
block index, our block storage format sticks to constant block
sizes that enable fine-grained thread-level parallelism.

5 2008/11/17

2. Our format tries to minimize the number of zero entries that
are filled. To incorporate the filling of less zero entries, we
relax the constraint that starting column of a block should
be a multiple of the block size along column. However, we
enforce that starting column should adhere to the alignment
constraints of global memory coalescing. Hence, we store the
starting column index of each block and also the number of
column blocks for each row block.

3. Also, we do not make the entire block dense, by filling up zeros.
Instead, we allow each row in a block to have variable number
of entries, and fill up minimal zeros that are just enough to make
the number of entries in each row of a block to be a multiple of
half warp size. This would help in enabling coalesced accesses
in a block with less number of fill-in zeros.

(r,c)=(6,2)

r

b c Non−zero Entries

r mod b r = 0

c mod b
c

= q

c
q =k*halfwarp

0 <= q < b

b

Figure 8. GPU-specific Block Storage Format

Let br be the block size along row, bc the block size along
column, and (r,c) be the starting row and column numbers of a
block. Our block storage format has the following constraints:

r mod br = 0 ∧ c mod bc = q

where q is either zero or a multiple of half warp size that is less
than bc. We enforce bc also to be a multiple of half warp size.
Figure 8 illustrates our block storage approach. As shown in the
Figure, the blocks are of constant size and aligned according to the
afore-mentioned constraints. For illustration purpose, the value of
half warp in Figure 8 is assumed to be 2.

For every block, the required input vector elements are loaded
from global memory to shared memory, and they are reused across
the rows of a block. Hence, in our approach, we enable reuse of
input vector elements at the level of shared memory and not at the
level of registers, as enabling register reuse would lead to coarse-
grained parallelism and disable global memory access coalescing.
The number of input vector elements loaded for every block is
equal to the block size along column, and since the size is fixed,
there is no additional memory access involved to read the block
size. By enforcing the constraint that starting column index must be
a multiple of half warp size and that number of entries in each row
of a block must be a multiple of half warp size, our block storage
along with optimized thread mapping ensures that the input vector
elements and the sparse matrix elements are accessed in a coalesced
manner.

5. Experimental Results
We experimentally evaluated our system using two GPU processors
- NVIDIA GeForce 8800 GTX and NVIDIA GeForce GTX 280,
connected to a host x86/Linux system. The architectural configura-
tions of the two NVIDIA processors are presented in Table 1. The
CUDA kernels were compiled using the NVIDIA CUDA Compiler
(nvcc) to generate the device code that was then launched from the
CPU (host). The GPU device was connected to the CPU through a

Feature 8800 GTX GTX 280

Multiprocessors (SMs) 16 30
Processor cores (SPs) 8 8

Processor Clock 1.35 GHz 1.296 GHz
Off-chip Memory Size 768 MB 1 GB
Off-chip Memory BW 384 bits @ 1.8 GHz 512 bit @ 2.2 GHz

Peak Performance 388.8 GFLOPS 933.12 GFLOPS

Table 1. Architectural configurations of NVIDIA GeForce 8800
GTX and GeForce GTX 280

16-x PCI Express bus. The host programs were compiled using the
gcc compiler at -O3 optimization level.

For our evaluation, we used 19 sparse matrices from the sparse
matrix collection described in [5]. The selected sparse matrices rep-
resent a wide variety of real applications including finite element
method (FEM) based modeling, structural engineering, vibroacous-
tics, and linear programming. The selected matrices also cover a
spectrum of properties with respect to number of rows/columns of
matrix, number of non-zeros in matrix, presence of uniformly or
non-uniformly aligned dense sub-blocks of single block size, pres-
ence of dense sub-blocks of varied size, etc. The first eight matri-
ces (in the order of their appearance in Table 2 and Table 3) have
dense sub-blocks of single block size that are uniformly aligned,
and hence have very regular pattern. The next eight matrices have
mixed block structure and the dominant blocks are smaller (in the
range of 2-4) in size. The remaining matrices have quite a bit of
irregularity in their structure.

5.1 Overview of Existing Parallel SpMV Implementations

NVIDIA has recently released a library called CUDPP [4] for
data-parallel algorithm primitives, which has an implementation
for SpMV for NVIDIA GPUs. The CUDPP library implements
the SpMV kernel using segmented scan approach as proposed by
Sengupta et al. [17]. Their algorithm [17] is extended from the scan
algorithms proposed by Blelloch et al. [3].

A forward inclusive scan operation using a binary associative
operator ⊕ is defined as follows:

input = [a0 a1 . . . an−1]

out put = [a0 a0 ⊕a1 . . . a0 ⊕·· ·⊕an−1]

A segmented scan operator operates on a sequence that has
multiple segments and performs a scan operation on each segment
separately. An inclusive segmented scan with addition operator can
be illustrated as follows:

input = [[1 4 8 9] [5 6 2 4]]

out put = [[1 5 13 22] [5 11 13 17]]

The SpMV implementation (x = Ay) using segmented scan can
be performed in three steps:

1. Compute the product Ai jy j for each non zero element Ai j . The
result would be an array of products.

2. Perform a segmented scan using addition operator on the array
of products. Each row in the sparse matrix corresponds to a
segment.

3. Gather the sum accumulated in the first (or last) element of each
segment in the output vector.

The implementation of segmented scan in CUDPP library uses
a tree-based technique. This has several performance limitations
as pointed out by Dotsenko et al. [6]. The CUDPP implementa-
tion has inefficient global memory accesses, shared memory ac-
cesses with bank conflicts in some stages of their algorithm, and
higher synchronization across threads. Dotsenko et al. [6] have
implemented fast scan algorithms on GPUs using a matrix-based
technique, which outperforms the scan primitives in CUDPP. The

6 2008/11/17

raefsky3 olafu 3dtube ct20stif raefsky4 rma10 vibrobox lp_osa_60
Sparse Matrices

0

1

2

3

4

5

6

7

Sp
M

V
 P

er
fo

rm
an

ce
 (

G
FL

O
PS

)

Optimal Thread Mapping
Aligned Global-memory Coalescing
Runtime Preprocessing

8 Different Matrices on NVIDIA 8800GTX

Figure 9. Evaluation of our Optimizations on GeForce 8800 GTX

matrix-based segmented scan algorithm significantly reduces the
shared memory bank conflicts, improves global memory accesses,
and reduces synchronization. The algorithm is explained in detail
in [6]. We implemented the segmented scan algorithm from [6] and
implemented SpMV using the matrix-based segmented scan algo-
rithm, following the afore-mentioned steps. We refer to this imple-
mentation of SpMV in further discussion as the Segmented Scan
implementation. We use CUDPP version 1.0 alpha for our compar-
ative evaluation.

5.2 Performance Evaluation

Table 2 and Table 3 illustrate the performance measures (in
GFLOPS) on NVIDIA GeForce 8800 GTX and GeForce GTX
280, respectively, for all the 19 sparse matrices under consideration,
over all implementation schemes. The columns T hreadMapping
and AlignedAccess refer to our compile-time optimizations such
as optimized thread mapping and aligned global memory access,
as explained in Section 4.1. The column Runtime refers to the
runtime optimization involving inspection of the sparse matrix to
create optimized block storage, as explained in Section 4.2. It is
important to note that aligned access optimization encompasses
optimized thread mapping optimization and the runtime optimiza-
tion encompasses both the compile-time optimizations. The col-
umn Naive refers to the naive way of parallelizing SpMV by allo-
cating one row per thread and set of rows to a thread block. The
columns CUDPP and SegmentedScan refer to the CUDPP and Seg-
mented Scan implementations as explained above. The numbers in
bold identify the peak performance obtained using our optimiza-
tions. The column RelativeGain corresponding to each of Naive,
CUDPP, and SegmentedScan implementations indicates the max-
imum performance gain achieved using our optimizations relative
to that implementation. We base the rest of our explanation to eight
representative diverse matrices belonging to four different classes
in terms of sparse matrix structure.

First, we discuss in detail the performance improvements ob-
tained using our compile-time and runtime optimizations on the
two NVIDIA GPUs. As it can be inferred from Table 2 and Ta-
ble 3, the optimized thread mapping results in significant perfor-
mance improvement over naive parallelization for both GPUs (up
to 1.5 times on 8800 GTX and up to 5.5 times on GTX 280). The
optimization helps to tolerate global memory access latency and
also assists in obtaining coalesced accesses. Figure 9 and Figure 10
present the performance gains achieved using our compile-time
and run-time optimization strategies (optimizations corresponding
to columns 2-4 in Table 2 and Table 3) for the eight representa-
tive sparse matrices on NVIDIA GeForce 8800 GTX and GeForce

raefsky3 olafu 3dtube ct20stif raefsky4 rma10 vibrobox lp_osa_60
Sparse Matrices

0

2

4

6

8

10

12

Sp
M

V
 P

er
fo

rm
an

ce
 (

G
FL

O
PS

)

Optimal Thread Mapping
Aligned Global-memory Coalescing
Runtime Preprocessing

8 Different Matrices on NVIDIA 280GTX

Figure 10. Evaluation of our Optimizations on GeForce GTX 280

GTX 280, respectively. As discussed in Section 4.1, the alignment
of global memory accesses is more critical in 8800 GTX for high
performance. It is also important in GTX 280, but unaligned ac-
cesses in 8800 GTX might result in more memory transactions
than that in GTX 280. This can be clearly seen in Figure 9 and
Figure 10. The improvement achieved after aligned global memory
access optimization over optimal thread mapping optimization is
very minimal for GTX 280 whereas it is up to 1.7 times for 8800
GTX. The performance is generally poor for matrices that are more
irregular as there would be more memory transactions even after
the optimizations are applied.

The runtime preprocessing optimization involves the inspection
overhead and the reported performance numbers do not include
them. The performance numbers indicate just the performance im-
provement achieved (if it is the case) due to block storage that en-
ables data reuse of input vector elements. The block storage result-
ing from runtime inspection would result in filling of extra zeros
and also the final computation involves additional loop overhead
to iterate over blocks. In some cases, when these overheads be-
come high, it degrades performance. As seen from Figure 9 and
Figure 10, for some irregular matrices like rma10, the runtime op-
timization results in degradation of performance due to (1) addi-
tional loop overhead and (2) increased memory accesses because of
the irregularity of the non-zero pattern that leads to poor data reuse
of input vector. However, for more regular matrices like raefsky3,
runtime optimization can increase the performance up to 1.7 times
over that achieved via only compile-time optimizations. We did not
perform a sophisticated tuning of block sizes for our runtime block
storage optimization. However we performed few empirical runs
and fixed the block size along row to be 4 and block size along col-
umn to be 64 for our experiments. We also measured the runtime
inspection overhead for various matrices and we found that, on an
average, the inspection overhead time was around 15 times the time
taken to execute the SpMV kernel on the GPU device.

Figure 11 and Figure 12 compare the performance achieved us-
ing our compile-time optimizations with that of CUDPP and Seg-
mented Scan implementations. Since the CUDPP and Segmented
Scan implementations do not involve runtime optimizations, for
fairness, we have compared them with our compile-time-only and
runtime optimizations. It can be clearly observed that in all cases,
our both approaches out-perform both the CUDPP and Segmented
Scan implementations. The CUDPP implementation, as discussed
earlier, results in non-optimal global and shared memory accesses,
leading to poor overall performance. The Segmented Scan imple-
mentation has an optimized segmented scan primitive. However, as
discussed above, SpMV implementation using segmented scan re-

7 2008/11/17

raefsky3 olafu 3dtube ct20stif raefsky4 rma10 vibrobox lp_osa_60
Sparse Matrices

0

1

2

3

4

5

6

7

Sp
M

V
 P

er
fo

rm
an

ce
 (

G
FL

O
PS

)

CUDPP Implementation
Segmented Scan Implementation
Compile-time Optimizations
Compile-&Run-time Optimizations

8 Different Matrices on NVIDIA 8800GTX

Peak SpMV Performance for Dense Matrix: 8.75 GFLOPS

Figure 11. Comparison with Existing Approaches on GeForce
8800 GTX

quires three steps, and at least the step involving the product com-
putation and that involving the segmented scan operation have to
be launched as separate kernels. This results in additional kernel
invocation overhead and additional copy overhead as values have
to be written on to global memory in the first kernel to be used in
the second kernel. Also, segmented scan has unwanted memory ac-
cesses and computation as the segmented scan primitive computes
the prefix sum for each element of the segment whereas for SpMV
it is enough to find the prefix sum of the first (or last) element of
the segment. Another major setback with Segmented Scan imple-
mentation is that the segmented scan primitive works on a block of
array and the entire block is copied on to shared memory. Hence
it can work only on a block that can fit in shared memory, at a
time. So if elements belonging to a segment (in this case, row of
a sparse matrix) span across blocks, then it involves unnecessary
movement of partial results to and from global memory resulting
in high memory access overhead. Hence it is always optimal to
maintain the synchronization-free parallelism by maintaining the
computations of a row within a thread block. The non-existence of
such a partition of computation is a cause for poor performance of
the implementation. Our compile-time-only approach yields up to 4
times and 1.5 times improvement over Segmented Scan for regular
and irregular matrices, respectively. For the compile-time-only ap-
proach, the performance improvement is up to 8 times and 2 times
over CUDPP for regular and irregular matrices, respectively.

5.3 Profiling Architectural Metrics

The CUDA 2.0 supports a profiling infrastructure to instrument ar-
chitectural metrics such as number of coalesced accesses, number
of non-coalesced accesses, number of instructions executed, num-
ber of branch instructions executed, etc. We instrumented some of
the matrices to check for the number of non-coalesced accesses be-
fore and after the application of our compile-time optimizations.
Table 4 provides the summary of coalesced and non-coalesced ac-
cesses for GeForce 8800 GTX. These results clearly indicate sub-
stantial improvement in coalesced accesses (and corresponding re-
duction in non-coalesced accesses) through our optimizations.

5.4 Estimation of Peak SpMV Performance

The peak performance of 8800 GTX is more than 350 GFLOPS
and GTX 280 is around 933 GFLOPS. However the performance
achieved for the SpMV kernel is only around 7 GFLOPS on 8800
GTX and around 10 GFLOPS on GTX 280, even for very regular
matrices like raefsky3. Hence we estimated the peak performance
that can be achieved for SpMV kernel on these GPUs. For this

Coalesced Accesses # Non-Coalesced Accesses
Matrix Naive Thread Aligned Naive Thread Aligned

Mapping Access Mapping Access
raefsky3 172 18898 30457 582784 292676 114466
ct20stif 940 2423 34237 546081 496638 173269
rma10 414 3693 48289 894942 847676 295968

lp osa 60 273 413 19181 1085155 189438 134673

Table 4. Profiling Coalesced and Non-coalesced Accesses on 8800
GTX. Number of coalesced accesses increases as the two compile-
time optimizations are applied.

raefsky3 olafu 3dtube ct20stif raefsky4 rma10 vibrobox lp_osa_60
Sparse Matrices

0

2

4

6

8

10

12

Sp
M

V
 P

er
fo

rm
an

ce
 (

G
FL

O
PS

)

CUDPP Implementation
Segmented Scan Implementation
Compile-time Optimizations
Compile-&Run-time Optimizations

8 Different Matrices on NVIDIA 280GTX

Peak SpMV Performance for Dense Matrix: 15.15 GFLOPS

Figure 12. Comparison with Existing Approaches on GeForce
GTX 280

purpose, we stored a dense matrix using our block compressed
sparse row storage format and performed SpMV computation using
the matrix [23]. By doing so, we could completely exploit data
reuse, and at the same time, also measure the overhead due to
indirect accesses. The maximum performance achieved using the
dense matrix stored in sparse format was around 8.75 GFLOPS on
8800 GTX and around 15.15 GFLOPS on GTX 280. Using our
compile-time and runtime optimizations, we were able to achieve
75% and 70% of the “practical” peak performance on 8800 GTX
and GTX 280, respectively (for matrix raefsky3, our optimizations
achieved 6.6 GFLOPS on 8800 GTX and 10.9 GFLOPS on GTX
280).

6. Related Work
Over the last two decades, there has been significant amount of
work on optimizing sparse matrix computations (SpMV). Most of
the work have concentrated on optimizing sparse matrix kernels on
general-purpose architectures. SpMV being a memory-bound ker-
nel, most of the optimizations target performance improvements
at various memory levels in memory hierarchy. The optimizations
broadly include optimal data structure for storing the sparse ma-
trix [2], exploiting block structures in sparse matrix [21, 22, 8],
blocking for reuse at the level of cache [14, 19], TLB [14], and reg-
isters [12, 9], and locality-enhancing reordering [10]. OSKI [20]
is a state-of-the-art library collection providing low-level primi-
tives for automatically tuned kernels on sparse matrices. OSKI uses
techniques extensively from the SPARSITY sparse-kernel auto-
matic tuning framework [9] for arriving at optimizations for sparse
kernels. Unfortunately, the optimization techniques proposed for
cache-based general-purpose architectures cannot be directly ap-
plied for GPU architecture. GPUs are massively parallel systems in
which having more concurrently active threads are critical for per-
formance, especially for hiding high latency memory accesses by
effective thread scheduling. This is because when there are more
active threads, when some threads are busy waiting for the comple-

8 2008/11/17

Matrix Thread Aligned Runtime Naive Relative CUDPP Relative Segmented Relative
Mapping Access Gain Gain Scan Gain
GFLOPS GFLOPS GFLOPS GFLOPS GFLOPS GFLOPS

raefsky3 2.54 4.44 6.60 1.41 4.86 1.16 5.68 1.29 5.11
olafu 1.47 2.98 3.67 1.38 2.65 1.07 3.42 1.11 3.30

bcsstk35 1.49 2.80 2.76 1.34 2.08 1.12 2.5 1.14 2.45
venkat01 1.78 3.36 2.04 1.55 2.16 1.23 2.73 1.18 2.84
crystk02 1.47 3.04 2.85 1.28 2.37 1.03 2.95 1.13 2.69
crystk03 1.47 3.03 2.88 1.51 2.0 1.10 2.75 1.18 2.56
nasasrb 1.44 3.15 3.16 1.44 2.19 1.17 2.7 1.17 2.7
3dtube 1.42 2.82 3.01 0.86 3.5 1.15 2.61 1.17 2.57
ct20stif 1.49 2.82 2.26 1.25 2.25 1.13 2.49 1.16 2.43

bai 1.52 2.96 1.45 1.49 1.98 1.14 2.59 1.12 2.64
raefsky4 1.45 2.94 3.17 1.38 2.13 1.07 2.74 1.13 2.6

ex11 1.51 3.18 1.36 1.25 2.54 1.08 2.94 1.19 2.67
rdist1 1.25 2.09 1.01 1.11 1.88 0.77 2.71 0.78 2.69

vavasis3 1.27 1.84 0.41 0.72 2.55 1.23 1.49 1.18 1.55
orani678 0.83 1.15 0.81 0.20 5.75 0.67 1.71 0.70 1.64

rim 1.52 3.05 1.44 1.29 2.36 1.17 2.6 1.19 2.56
vibrobox 1.36 2.19 1.72 1.12 1.95 1.04 2.10 1.24 1.76

rma10 1.54 3.19 1.62 1.29 2.47 1.14 2.79 1.21 2.63
lp osa 60 1.29 1.34 1.28 0.79 1.69 1.15 1.16 1.21 1.10

Table 2. Detailed Performance Measures on GeForce 8800 GTX

Matrix Thread Aligned Runtime Naive Relative CUDPP Relative Segmented Relative
Mapping Access Gain Gain Scan Gain
GFLOPS GFLOPS GFLOPS GFLOPS GFLOPS GFLOPS

raefsky3 8.18 9.66 10.9 1.55 7.03 1.21 9.0 3.24 3.47
olafu 6.71 7.16 7.26 1.39 5.22 1.07 6.78 2.70 2.68

bcsstk35 6.27 6.22 6.26 1.27 4.93 0.98 6.39 2.78 2.25
venkat01 8.37 8.17 8.64 1.52 5.68 1.04 8.30 3.00 2.88
crystk02 6.77 6.29 6.86 1.50 4.57 0.89 7.07 2.57 2.67
crystk03 6.93 7.33 7.02 1.52 4.82 1.03 7.11 2.84 2.58
nasasrb 7.26 7.15 7.21 1.48 4.90 1.04 6.98 2.82 2.57
3dtube 5.48 5.93 6.18 0.82 7.53 1.10 5.61 2.96 2.08
ct20stif 5.86 6.28 4.51 1.39 4.51 1.07 5.86 2.85 2.20

bai 6.12 5.44 4.08 1.59 3.84 0.84 7.28 2.42 2.52
raefsky4 5.26 6.64 6.98 1.41 4.95 1.01 6.91 2.71 2.57

ex11 6.37 6.96 4.46 1.40 4.97 1.02 6.82 2.34 2.97
rdist1 3.70 3.63 2.45 1.44 2.56 0.66 5.60 2.11 1.75

vavasis3 2.48 2.71 2.41 0.64 4.23 1.01 2.68 2.62 1.03
orani678 1.73 1.85 1.31 0.18 10.27 0.62 2.98 1.14 1.62

rim 6.32 6.48 5.93 1.06 6.11 1.04 6.23 2.89 2.24
vibrobox 3.17 3.19 2.90 1.22 2.61 1.02 3.12 1.55 2.05

rma10 6.64 7.08 4.64 1.42 4.98 1.21 5.85 3.15 2.25
lp osa 60 2.22 2.30 2.33 1.09 2.13 1.08 2.14 2.00 1.16

Table 3. Detailed Performance Measures on GeForce GTX 280

tion of memory access request, the thread scheduler can switch con-
trol over to other threads, thereby keeping the system busy without
stalling as far as possible. Therefore, fine-grained thread-level par-
allelism is beneficial for GPUs, and hence, in most cases data reuse
across threads is better rather than reuse within a thread. While
spatial locality and temporal locality are very important to exploit
at the level of cache or registers in general-purpose architectures,
mapping of computation among threads that result in optimal mem-
ory access pattern has to be considered in GPU architectures which,
in some cases, can negate locality, but yet turn out to be beneficial.
As an example, consider the CSR format in SpMV. The non-zero
elements are stored in a single array and when accessed in row-
major order, there is spatial locality among the non-zero elements
when successive elements are used for computation by the same

thread. However in GPUs, such an access results in non-coalesced
hardware accesses and it is preferable to make successive threads
access successive elements, as it would be enable hardware access
coalescing (explained in Section 4.1).

Recently, Williams et al. [23] emphasize and substantiate the
need for multicore specific optimization strategies for various
emerging multicore platforms including AMD dual-core, Intel
quad core, STI Cell, and Sun Niagara2 systems. They clearly quan-
tify the extent of significance of memory bandwidth bottleneck for
increasing number of cores and motivate memory bandwidth re-
duction for SpMV computations. Our work also, on the same lines,
emphasizes optimization strategies that are specific to the GPU
architecture taking into consideration the complex GPU memory

9 2008/11/17

organization and the non-trivial optimal mapping of computation
among threads.

There are several sparse matrices corresponding to real appli-
cations which possess dense block substructures. Exploiting the
presence of dense blocks will help in enhancing data reuse, es-
pecially, of the input vector elements. The dense block structure
may either contain same size blocks that are uniformly aligned
or same size blocks that are non-uniformly aligned or varied size
blocks that are irregularly aligned [21]. The BCSR [8] and UBCSR
[21] sparse storage formats are proposed to improve sparse matrix
computations by effectively handling dense sub-blocks in sparse
matrices. These approaches identify small dense blocks which are
more suited for register blocking in traditional architectures and in
short-vector processors. Buatois et al. [11] have developed a sparse
linear solver on GPUs and have implemented SpMV, the primary
kernel in the solver, using the BCSR format for register blocking.
They have implemented using AMD’s (then ATI’s) Close-To-Metal
(CTM) API for general-purpose computation on ATI GPUs. The
GPUs they have targeted are the ATI X1k series which have mul-
tiple pipelines and each pipeline has a 4-element vector proces-
sors. However in modern massively parallel SIMD architecture of
NVIDIA GPUs which has scalar processors executing in SIMD
fashion in a multiprocessor, the BCSR format with small dense
blocks leads to coarse-grained parallelism that enhances register
level data reuse, but results in non-optimal global memory accesses.
We propose a block storage format that enables fine-grained thread-
level parallelism, optimal global memory access, and date reuse at
the level of shared memory, instead of registers.

There has been several works that perform a runtime process-
ing to reorder computation and data for locality enhancement for
cache-based architectures (e.g. [13]). Strout et al. [18] developed
a compile-time framework for composing run-time data and com-
putation reordering for data locality. However in our work, we nei-
ther perform any such heavy runtime processing nor use a compiler
framework to facilitate such a runtime reordering, but perform only
a simple processing to determine non-zero blocks of fixed block
size that is aligned as per the GPU architectural constraints.

NVIDIA’s CUDPP [4] library for data-parallel algorithm prim-
itives and the implementation of optimized scan primitives by Dot-
senko et al. [6] are the most prominent relevant works on sparse
matrix computations on NVIDIA GPUs. We have discussed these
works in detail in Section 5.

7. Conclusions and Future Work
In this work, we have presented the key architectural optimizations
that have to be addressed in GPUs for high performance execu-
tion. We have analyzed the various challenges in extracting high-
performance from a prominent memory-bound scientific kernel like
SpMV on NVIDIA GPUs using CUDA. We have developed tech-
niques, that involve compile-time and run-time optimizations, to
build a high performance SpMV kernel for efficient execution on
GPUs. We have proposed a new blocked storage format for storing
and accessing elements of a sparse matrix in an optimized man-
ner from the GPU memories. We have evaluated our techniques
over two classes of NVIDIA GPU chips, namely, GeForce 8800
GTX (having 128 cores per chip) and GeForce GTX 280 (having
240 cores per chip). We have obtained significant performance im-
provements (factor of 2 to 4) over existing parallel SpMV imple-
mentations, on both the GPU chips, clearly indicating the effec-
tiveness of our approach to scale the performance of SpMV for
increasing number of cores per chip.

We plan to extend our framework to include a more sophisti-
cated runtime inspection module that can effectively reorder data
and computation to further exploit data reuse and optimize mem-
ory access. We also plan to integrate auto tuning infrastructure into
our framework to determine optimal block sizes for arbitrary irreg-
ular sparse matrices.

References
[1] AMD Stream SDK.

http://ati.amd.com/technology/streamcomputing/.
[2] A. J. C. Bik and H. A. G. Wijshoff. Automatic data structure selection

and transformation for sparse matrix computations. IEEE Trans.
Parallel Distrib. Syst., 7(2):109–126, 1996.

[3] G. E. Blelloch. Prefix sums and their applications. Technical report,
1990.

[4] CUDPP: CUDA Data Parallel Primitives Library.
http://www.gpgpu.org/developer/cudpp/.

[5] T. Davis. The university of florida sparse matrix collection. ACM
Trans. on Mathematical Software.
http://www.cise.ufl.edu/research/sparse/matrices.

[6] Y. Dotsenko, N. K. Govindaraju, P.-P. Sloan, C. Boyd, and J. Man-
ferdelli. Fast scan algorithms on graphics processors. In ICS ’08:
Proceedings of the 22nd annual International Conference on Super-
computing, pages 205–213, 2008.

[7] General-Purpose Computation Using Graphics Hardware.
http://www.gpgpu.org/.

[8] E.-J. Im and K. A. Yelick. Optimizing sparse matrix computations
for register reuse in SPARSITY. In Proceedings of the International
Conference on Computational Science, volume 2073 of LNCS, pages
127–136, San Francisco, CA, May 2001. Springer.

[9] E.-J. Im, K. A. Yelick, and R. Vuduc. SPARSITY: Framework for
optimizing sparse matrix-vector multiply. International Journal of
High Performance Computing Applications, 18(1):135–158, February
2004.

[10] P. M. W. Knijenburg and H. A. G. Wijshoff. On improving data
locality in sparse matrix computations. In Technical Report 94-15,
Department of Computer Science, Leiden Univ., 1994.

[11] Luc Buatois and Guillaume Caumon and Bruno Lvy. Concurrent
Number Cruncher: An Efficient Sparse Linear Solver on the GPU.
In High Performance Computation Conference (HPCC), Springer
Lecture Notes in Computer Sciences, 2007.

[12] J. Mellor-Crummey and J. Garvin. Optimizing sparse matrix-vector
product computations using unroll and jam. Int. J. High Perform.
Comput. Appl., 18(2):225–236, 2004.

[13] J. Mellor-Crummey, D. Whalley, and K. Kennedy. Improving memory
hierarchy performance for irregular applications using data and
computation reorderings. Int. J. Parallel Program., 29(3), 2001.

[14] R. Nishtala, R. Vuduc, J. Demmel, and K. Yelick. When cache
blocking sparse matrix vector multiply works and why. In Proceed-
ings of the PARA’04 Workshop on the State-of-the-art in Scientific
Computing, Copenhagen, Denmark, June 2004.

[15] NVIDIA CUDA.
http://developer.nvidia.com/object/cuda.html.

[16] Open Computing Language (OpenCL).
http://www.khronos.org/news/press/releases/
khronos launches heterogeneous computing initiative/.

[17] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan primitives
for gpu computing. In GH ’07: Proceedings of the 22nd ACM
SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware,
pages 97–106, 2007.

[18] M. M. Strout, L. Carter, and J. Ferrante. Compile-time composition
of run-time data and iteration reorderings. In PLDI ’03: Proceedings
of the ACM SIGPLAN 2003 conference on Programming language
design and implementation, 2003.

[19] O. Temam and W. Jalby. Characterizing the behavior of sparse
algorithms on caches. In Supercomputing ’92: Proceedings of the
1992 ACM/IEEE conference on Supercomputing, pages 578–587,
1992.

[20] R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI: A library of
automatically tuned sparse matrix kernels. In Proceedings of SciDAC
2005, Journal of Physics: Conference Series, San Francisco, CA,
USA, June 2005. Institute of Physics Publishing.

[21] R. Vuduc and H.-J. Moon. Fast sparse matrix vector multiplication
by exploiting variable block structure. In Proceedings of the
International Conference on High-Performance Computing and
Communications, LNCS 3726, Sorrento, Italy, September 2005.

[22] R. W. Vuduc. Automatic performance tuning of sparse matrix kernels.
PhD thesis, University of California, Berkeley, December 2003.

[23] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel.
Optimization of sparse matrix-vector multiplication on emerging
multicore platforms. In SC ’07: Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, pages 1–12, 2007.

10 2008/11/17

