
TDT4590 - Complex Computer Systems, Specialization Project

Linear Optimization with CUDA

Daniele Giuseppe Spampinato
daniele.spampinato@gmail.com

Department of Computer and Information Science
Norwegian University of Science and Technology, Trondheim

(Norway)

January 2009

Supervisor
Dr. Anne C. Elster

Preface

This report is the result of a project assigned by the course TDT4590 - Complex
Computer Systems, Specialization Project, during the fall semester 2008. The course
gave the possibility to expand my knowledge and interest for the new trends in high
performance computing.
I would like to thank Dr. Anne C. Elster for her high spirit and continuos support.
A special thanks also to all the members of the HPC-Lab. For all the important
experiences we shared, and for the friendly and valuable help they always gave me
during the entire project development.

Trondheim, January 2009

Daniele Giuseppe Spampinato

i

Abstract

Optimization is an increasingly important task in many different areas, such as fi-
nance and engineering. Typical real problems involve several hundreds of variables,
and are subject to as many constraints. Several methods have been developed try-
ing to reduce the theoretical time complexity. Nevertheless, when problems exceed
reasonable dimensions they end up in a huge computational power requirement.
Heterogeneous systems composed by coupling commodity CPUs and GPUs turn
out to be relatively cheap, highly performing systems. Recent evolution of GPGPU
technologies give even more powerful control over them.
This project aims at developing a parallel, GPU-supported version of an estab-
lished algorithm for solving linear programming problems. The algorithm is selected
among those suited for GPUs. A serial version based on the same solving model
is also developed, and experimental results are compared in terms of performance,
and precision.
Experimental outcomes confirm that the application written with CUDA leverages
the GPU’s huge number of cores, to solve with an appreciable preciseness, big prob-
lems with thousands of variables and constraints between 2 and 2.5 times faster than
the serial version. This result is also important from a dimensional point of view.
Previous attempts to solve linear programming problems with a GPU were con-
strained to a few hundreds of variables; a barrier definitively broken by the present
solution.

ii

Contents

Preface i

Abstract ii

Table of Contents iii

1 Introduction 1
1.1 Project Goals . 1
1.2 Report Outline . 2

2 Graphics Processing Unit 3
2.1 The NVIDIA Landscape . 4
2.2 The Tesla Architecture Processing Model 6

2.2.1 Streaming Multiprocessors . 7
2.2.2 GPU Memories . 7
2.2.3 The SIMT Paradigm . 8

2.3 The CUDA Programming Model . 9
2.3.1 A Heterogeneous Programming Model 10
2.3.2 The CUDA Software Stack . 10
2.3.3 Threads Organization . 12
2.3.4 Memory Organization . 13
2.3.5 Mapping to the Tesla Architecture 14
2.3.6 Compute Capability . 15

3 Linear Programming 16
3.1 Linear Programming Model . 17

3.1.1 Geometric Interpretation . 20
3.1.2 Duality Theory . 22

3.2 Solving Linear Programming Problems 23
3.2.1 Simplex-Based Methods . 23
3.2.2 Interior Point Methods . 27

3.3 Complexity Aspects . 31

4 Linear Programming in CUDA 33
4.1 Method Selection . 33
4.2 Implementation Strategy . 36

4.2.1 Data Structures . 36
4.2.2 Kernels Configuration . 37

iii

CONTENTS iv

4.2.3 Non-Algebraic Routines: Computing Entering Variable 37
4.2.4 Non-Algebraic Routines: Computing Leaving Variable 38
4.2.5 Non-Algebraic Routines: Computing B−1 39

5 Experimental Results 40
5.1 The Experimental Environment . 40
5.2 Methodology . 40

5.2.1 Analysis Objectives . 41
5.2.2 Tools . 41

5.3 Results Elicitation and Analysis . 42
5.3.1 Speedup Analysis . 44
5.3.2 A Few Reflections . 46

6 Conclusions and Future Work 48
6.1 Conclusions . 49
6.2 Future Work . 50

Bibliography 51

A Linear Programming Solvers 53
A.1 Serial Version . 53

A.1.1 Main Module: lpsolver.c . 53
A.1.2 liblp.c . 60
A.1.3 matman.c . 62

A.2 CUDA Version . 63
A.2.1 Main Module: culpsolver.cpp 63
A.2.2 culiblp.cu . 68
A.2.3 cumatman.cu . 84

B Tools 86
B.1 popmat.c . 86
B.2 matgen.py . 87
B.3 clock.py . 88

Chapter 1

Introduction

The past century has certainly been characterized by the computer’s revolution.
Computer systems evolve very quickly. Recently the ability to provide speed has
gone incredibly beyond what one may have thought just ten years ago.
In addition, parallel systems now appear as the key answer to leap over the brick
wall of serial performance [15]. Graphics Processing Units (GPUs) are considered
today one of the most affordable computing solutions to speedup computationally
demanding applications, offering performance peaks that introduced the teraflop
era.
The present decade has been defined by Blythe [7] as the programmability and
ubiquity decade for graphics devices, and, as a matter of fact, programming general
purpose applications on a GPU (also known as GPGPU) is one of the most discussed
topics today.
The GPGPU paradigm opens new frontiers especially in scientific computing, where
there is a tremendous speed requirement. Having at disposal such a computational
power together with an easier approach to control it, appears as a winning combi-
nation to get high performance with less effort at a cheaper price.
Many scientific fields have been supported with great success by GPUs [7, 24]. We
selected linear optimization, a topic that has been methodically studied by opera-
tional researchers during the last 70 years. Several interesting theoretical models
have been developed, and some of them fit quite well to GPUs.

1.1 Project Goals

This project aims at developing a parallel, GPU-supported version of an established
algorithm for solving linear programming problems. We will implement and properly
evaluate a serial and a parallel GPU-based version of the predefined application. We
want to see how much it is possible to gain in performance writing code based on a
solving approach still compatible with serial programming models. The algorithm
will be selected so that it presents features that make it suitable for being executed
on a GPU.
Our decision has been led mainly by the fact that optimization is an increasingly
important task in many different areas, such as finance and engineering. Moreover,
literature does not cover extensively such a topic in the light of the most recent tools

1

CHAPTER 1. INTRODUCTION 2

for GPGPU.
To our knowledge [10, 12], the latest studies are still based on the old GPGPU pro-
gramming methodology, where the graphics pipeline is coopted to perform general
purpose computation. Such a practice requires applications to be designed taking
into account graphics aspects, and programmed using graphics API.
New GPGPU tools and techniques overcome such limitations. NVIDIA CUDA is
a programming environment that provides developers with a new high-level pro-
gramming model that allows to take full advantage of the GPUs powerful hardware,
enabling a larger productivity of complex solutions.

1.2 Report Outline

Chapter 2 deals with the technological background, introducing the recent GPU
technologies that will support our study. We will focus on NVIDIA’s recent
technologies, describing in particular the Tesla architecture processing model
and the CUDA programming model.

Chapter 3 is about linear programming. It provides with models and methods to
solve linear optimization problems. We will give the mathematical definition
of a linear programming problem, underlining its geometrical interpretation.
This will help the understanding of two important classes of solving methods:
simplex-based and interior point methods. Consequences of linear program-
ming P -completeness are also discussed.

Chapter 4 is about practical aspects of the implementation process. In this chapter
we merge the knowledge coming from the two previous chapters in order to
design the development of both a sequential and a parallel version of a LP
solver, enlightening its most relevant features.

Chapter 5 presents the results of the comparison between the two different imple-
mentations given in Chapter 4.

Chapter 6 summarizes the project conclusions and suggests some future work.

Chapter 2

Graphics Processing Unit

For the last generation, terms like video games, 3D-acceleration and animation, video
rendering and many others concerning image processing tasks, are getting more and
more common. If we investigate what they have in common, we will hit on another
very recent and quite interesting word: GPU. GPU is the acronym for Graphics
Processing Unit. Today, not only young people refer often to such concepts, and
ultimately to the one of GPU. Graphics processing is adopted in a wide range of
different areas, from physics simulation to graphic arts. GPUs are used to play video
games on a home PC as well as to run complex astrophysics simulations in a spatial
laboratory. Market trends confirm the growing interest for GPUs. A recent study
in graphics and multimedia1[25], affirms that the percentage increase in shipments
in the last third quarter of 2008 is the highest in the last six years. It reports that
111 million GPUs were shipped during the quarter just mentioned in comparison to
the 94 million of the previous quarter. Table 2.1 summarizes the quarter-to-quarter
growth rates from 2001 to 2008.

8 year
aver-
age

2001 2002 2003 2004 2005 2006 2007 2008

%
growth
from Q2
to Q3

12.30% −0.48% 18.62% 16.07% 16.20% 11.59% 12.52% 11.58% 17.84%

Table 2.1: Growth rates from quarter 2 to quarter 3 from 2001 to 2008.
(Source: Jon Peddie Research Press Release)

Graphics hardware is now about 40 years old. It was initially developed to sup-
port computer-aided design (CAD) and flight simulation. A good description of the
evolution of graphics hardware with different references to the literature may be
found in Blythe [7]. The last generation of GPUs consists of highly parallel, mul-
tithreaded, many-core processors. Their huge number of streaming processors are
perfectly suited for fine-grained, data-parallel workloads, consisting of thousands of

1Jon Peddie Research is a technically oriented multimedia and graphics research and consulting
firm. It produces quarterly reports focused on the market activity of graphics hardware for desktop
and notebook computing.

3

CHAPTER 2. GRAPHICS PROCESSING UNIT 4

independent threads executing vertex, geometry, and pixel-shader program routines
concurrently. It’s worth highlighting, by the way, that GPU computing is not just
employed for tasks that require graphics strictly speaking. We can find a number
of applications that do not necessarily involve the use of graphics concepts where
GPUs have successfully been utilized. Just as an example, Blythe [7] and Owens et
al. [24] report about promising results in linear algebra, database management, and
financial services. Normally, when referring to such non-graphics employments of the
GPU, it is typical to use the expression General-Purpose computation on GPUs, or
shortly GPGPU2. Notable is the deep interest and effort that the High-Productivity
Computing (HPC3) community is putting into GPGPU. Of course we cannot think
to efficiently exploit a GPU’s capabilities to run every possible application. Even
though we talked about general purpose programming, it does not mean that the
GPUs are now designed as general purpose processors. In Owens et al. [24] we can
find a very clear description of the characteristics that an application must feature
to successfully map onto a GPU. In particular, it has to be an application with
large computational requirements and high parallelizability, where the throughput
is more important than latency.

The present chapter aims at describing what a GPU is and what allows us to use
it for the purpose of our project. To enter into the specific context of our project, in
Section 2.1 we show the current NVIDIA product portfolio. The last two sections
are about the new NVIDIA Tesla architecture processing model (Section 2.2), and
the CUDA programming model (Section 2.3).

2.1 The NVIDIA Landscape

NVIDIA Corporation4 (Figure 2.1) is a multinational company specialized in the
manufacture of graphics processors targeted at different use levels, such as servers,
workstations, desktop computers, and mobile devices. NVIDIA is among the major
vendors of graphics technologies together with Intel and AMD. Peddie Research [25]
shows that in the third quarter of 2008, NVIDIA was the second major supplier of
desktop graphics devices with a market share of 27.8%, second just to Intel who led
with a market share of 49.4%.

Since November 2006, NVIDIA’s GPUs are based on a new graphics and com-
puting architecture, namely the Tesla architecture, and since February 2007 they
are provided with the CUDA C programming environment to simplify many-core
programming. The Tesla architecture and the CUDA environment may result in a
winning combination. In the field of HPC a relevant part of the developers are scien-
tists belonging to different branches, like mathematicians, physicists, biologists, and
engineers. What most of them want are tools with a fast learning curve, easy and
ready to be used efficiently. So the reason we consider the combination described
above as a winning one, is that it tries to fill the gap between the programming
model and the machine’s processing model. This is in general an important require-

2http://www.gpgpu.org
3http://www.hpcwire.com
4http://www.nvidia.com

http://www.gpgpu.org
http://www.hpcwire.com
http://www.nvidia.com

CHAPTER 2. GRAPHICS PROCESSING UNIT 5

Figure 2.1: NVIDIA logo.

ment for high-performance computation, because it helps non-expert users avoid
understanding nontrivial transformations between the model used to program the
system (e.g. a CPU-GPU system), and the model that describes how the machine
actually computes [17].
NVIDIA mainly releases three categories of GPUs, targeting the fields where typi-
cally a very high demand of intensive computation is present: gaming, professional
graphics processing, and High-Performance Computing.

GeForce Family

The GeForce GPUs are designed for gaming applications. The last GeForce series
is the GeForce GTX 200. The top-model card within the series is the GeForce
GTX 2805. It presents 240 streaming processor cores each working at 1.296 GHz.
The card has a dedicated memory of 1GB connected by a 512-bit GDDR3 interface
with a bandwidth of 141.7 GB/s. Since the main target of these cards is the video
games market, an interesting measure is the speed with which a particular card can
perform texture mapping, called texture fill rate. It basically expresses the number
of textured pixels that the GPU can render every second. For the GTX 280, for
instance, the texture fill rate is 48.2 billion/s.

Quadro Family

The Quadro technology features an architecture delivering optimized CAD, DCC
(Digital Content Creation), and visualization application performance. At a glance
it may seem that the Quadro and GeForce families of GPUs are identical. In a way
this is true. Many of the Quadro cards use the same chipset as the GeForce cards.
Just to emphasize, it is even possible, in some special conditions, to soft-mod (i.e.
modify in software) some GeForce cards to allow the system to emulate Quadro
cards6. But there is a critical detail that makes the difference between the two
families. Normally, video game-oriented systems provide a very high throughput,
because of the relevant need for speed. Such an objective is achieved by texturing,
shading or rendering just until an approximated, sub-optimal result. Quadro GPUs
conversely, are designed to complete rendering operations with larger detail. This

5http://www.nvidia.com/object/geforce_gtx_280.html
6http://www.techarp.com/showarticle.aspx?artno=539

http://www.nvidia.com/object/geforce_gtx_280.html
http://www.techarp.com/showarticle.aspx?artno=539

CHAPTER 2. GRAPHICS PROCESSING UNIT 6

makes such cards useful in animation or audio/video editing for example. The latest
Quadro FX 5600 is able to provide up to 76.8 GB/s 7.

Tesla Family

GPUs in the Tesla family of graphics processors are specifically intended for HPC
applications. Cards belonging to this family offer high computational power and big-
ger dedicated memory. As an example, the recent C1060 8 features 240 streaming
processors with a core frequency of 1.296 GHz, similarly to the GeForce GTX 280,
and it is able to perform 933 GFlops. Cards are equipped with 4 GB of dedicated
memory with a bandwidth of 102 GB/s. All the Tesla GPUs lack a direct connection
to display devices. The latter is a confirmation that the Tesla cards are not meant
to be graphics-oriented, but rather a valid support for the HPC community. Nor-
mally, GPUs dedicate some of the global memory to the so-called primary-surface,
which is used to refresh the display output. As an example, for a display with res-
olution 1600x1200 and 32-bit bit depth, the amount of memory allocated on the
GPU’s memory is 7.68 MB. If the resolution or the bit depth change increasing
the memory requirements, the system may have to cannibalize memory allocated to
other applications. In case of a CUDA application for instance, this may mean its
crash. Tesla GPUs instead, removing direct interaction with graphics, avoid such
side-effects that could disrupt the running of huge, critical computations.
As a last remark, we can say that with the Tesla family of GPUs, NVIDIA has bro-
ken the TFlops wall remaining within reasonable physical dimensions. The Tesla
S1070 9 is a system containing four Tesla processors, and as a consequence a total
of 960 computing cores, performing about 4 TFlops. It is moreover interfaced to 16
GB of high-speed memory. The system is by the way relatively small, measuring
4x44x72 cm3 with a weight of 15 kg. Good use of a system like this may even
outperform a huge, cumbersome cluster for certain applications.

2.2 The Tesla Architecture Processing Model

We already introduced the Tesla architecture as the new ground for NVIDIA’s re-
cent graphics cards. It is now time to deepen some aspects related to its processing
model. Before starting we think it is important to clarify a few very important con-
cepts that may otherwise raise confusion. When we use the terms processing model
and programming model, we refer to the definitions given in McCool [17]. The pro-
gramming model is an abstract model used by programmers when implementing a
piece of code, to reason out how to organize the computation. A processing model
on the other hand describes how a physical machine computes. In a way we can say
that the programming model is exposed by the programming language environment,
while the processing model by the architecture vendor specification. The goal of the
programmer is to map effectively and efficiently the application model to the pro-
gramming model. The goal of the compiler is to effectively and efficiently translate

7http://www.nvidia.com/object/quadro_fx_5600_4600.html
8http://www.nvidia.com/object/tesla_c1060.html
9http://www.nvidia.com/object/tesla_s1070.html

http://www.nvidia.com/object/quadro_fx_5600_4600.html
http://www.nvidia.com/object/tesla_c1060.html
http://www.nvidia.com/object/tesla_s1070.html

CHAPTER 2. GRAPHICS PROCESSING UNIT 7

the computation expressed by the programmer into the processing model used by
the target hardware. Figure 2.2 summarizes the concepts developed so far. Indeed,
in this section we use the terms architecture and processing model to refer to the
same concept.
The Tesla architecture is built around some basic, important elements that, com-
bined together, give rise to a model of the underlying processing unit. In the official
CUDA Programming Guide[23] the architecture is briefly but completely described
in the following way: a set of SIMT multiprocessors with on-chip shared memory.
In fact, it is a very clear picture. We will now describe the architecture, focusing on
each of its components and on the concept of SIMT.

Processing
Model Com

piler

Programmer

Programming
Model

Problem
Model

Application
Program

Executable

Figure 2.2: The Problem model at different levels.

2.2.1 Streaming Multiprocessors

The Tesla Architecture is built around a scalable array of multithreaded Streaming
Multiprocessors (SMs). A multiprocessor consists of eight Scalar Processor cores
(SPs), two special function units for transcendentals, a Multithreaded Instruction
Unit (M-IU), and on-chip memory. The SM creates, manages, and executes con-
current threads in hardware with zero scheduling overhead. This is an important
factor to allow very fine-grained decomposition of problems by assigning one thread
to each data element, for instance.

2.2.2 GPU Memories

On a GPU we can localize two distinct kind of memories: on-chip and device mem-
ory.
Each SM has on-chip memory of the following types:

• one set of local 32-bit registers per SP;

• a shared memory that is shared by all SPs with access times comparable to a
L1-cache on a traditional CPU;

CHAPTER 2. GRAPHICS PROCESSING UNIT 8

• a read-only constant cache that is shared by all SPs that speeds up reads from
the constant read-only region of device memory;

• a read-only texture cache that is shared by all SPs and speeds up reads from
the texture read-only region of device memory. The Texture cache is accessed
via the texture unit, that implements several operations as described in the
CUDA Programming Guide [23].

Device memory is a high-speed DRAM memory with higher latency than on-chip
memory (typically hundreds of times slower). Device memory is subdivided in sev-
eral regions. The most important memory spaces there allocated are global, local,
constant and texture memory. Global and local memory spaces are read-write, not
cached areas, while constant and texture memory spaces are read-only and cached.
A couple of comments concerning the memory terminology. Device and global mem-
ory are at this point clearly not synonyms. Global is used to underscore the access
pattern to the memory area. It is a part of the device memory of the GPU. Similarly,
local and shared memory are not the same concept. First, they belong to different
GPU components. Local memory is part of the device memory (slow) while shared
memory is on-chip (fast). Local memory is used by the compiler to keep anything
the developers consider local to the thread but does not fit in faster memory for some
reason, such as no more registers available or arrays too big to fit in registers [9].

2.2.3 The SIMT Paradigm

SIMT (Single Instruction, Multiple Threads) is a new paradigm introduced to man-
age properly the big amount of threads executable on a Tesla-based GPU. Threads
are grouped in warps and mapped to the SPs. One thread is mapped to one SP.
Warps are created, managed, scheduled, and executed by the multiprocessor M-IU.
The number of threads per warp is 32. It is very common to talk about half-warp
since it is in facts the granularity unit for threads execution. An half-warp is either
the first or the second half of a warp. Threads that belong to the same warp start
together at the same program address, maintaining a total freedom to branch and
execute independently. Every instruction issue time, the M-IU selects a warp that
is ready to execute and issues the next instruction to the active threads of the warp.
A warp executes one common instruction at a time, so full efficiency is realized
when all threads in a warp agree on their execution path. However threads are
free to execute differently, but when this happens performance risks to be seriously
injured. The reason is that when there is disagreement among the threads, the
threads’ scheduler has to serialize their execution. When all the independent paths
have been taken, the threads converge back to the same execution path. Of course,
since warps are executed independently serialization is a problem that might occur
within a warp. Branch divergences are not the only reason that may lead to threads
serialization. If an instruction, regardless of its atomicity, executed by a warp writes
to same location in global or shared memory for more than one thread in the warp,
writes are serialized as well. Then, depending whether the instruction is an atomic
or non-atomic one, different warranties are granted about which write will succeed.

CHAPTER 2. GRAPHICS PROCESSING UNIT 9

2.3 The CUDA Programming Model

Recent programming models for GPUs are the results of the evolution of the well-
known graphics pipeline. GPGPU developers were used to face with such a model
when implementing their solutions. There are plenty of descriptions of the graphics
pipeline in the literature, some recent attempts are in Blythe [7], Akenine-Möller and
Ström [4], and Owens et al. [24]. Basically we can describe the graphics pipeline as a
directed flow of data between its input and its output. The input is a set of triangles
which vertices are processed in the first stage of the pipeline, the vertex processor,
applying required transformation such as rotations and translations. Then the raster
stage converts the results from the vertex processing to a collection of pixel fragments
by sampling the triangles over a specified grid. Such fragments are then computed
by the fragment processor which major task is to compute the color of the several
fragments related to each pixel. Texturing, when required, is applied at this point.
Finally the framebuffer is in charge to determine the final color of each pixel in
the final image usually by keeping the closest fragment to the camera for each pixel
location. At the beginning the pipeline as been conceived as a rigid structure, where
the different stages were implemented as fixed functions. Very soon GPU designers
realized that allowing more flexibility would have open the possibility to develop
more complex effects. In this scenario the pipeline assumed a new connotation, and
since the present decade it allows programmability at different level of the processing
flow. Programs running on the GPU are often called shaders, and they are written
with shader languages, generally an extension of traditional programming languages
in order to support vertices and fragments and the interface to the pipeline stages
(e.g. Cg [16]). Figure 2.3 depicts a typical graphics pipeline with shader programs
for vertex and fragments processing.

Input
(CPU)

output
(mem)

Vertex
Processing

Rasterization Fragment
Processing

Frame buffer
operations

GPU

Texture
maps

Vertex data Final image

shader

fixed-function

Figure 2.3: The graphics pipeline.

The next step towards a modern GPU approach was the advent of a unified
shader architecture. With the programmable pipeline described above, developers

CHAPTER 2. GRAPHICS PROCESSING UNIT 10

could take better advantage of the space repartition of the GPU resources, but
still with an unpleasant disadvantage: load balancing. In that context, the slowest
stages burden the whole performance. In a unified shader architecture we find several
shader cores able to operate at every level of the old pipeline model. Each unified
shader core can execute any type of shader and forward the result to another shader
core (itself included), until the entire chain of shaders has been executed. The use of
unified shader cores allows to allocate resources in a smarter way depending on the
specific application, well managing load balancing. Akenine-Möller and Ström [4]
well describe the benefit with a font rendering example, where an application that
has to deal with detailed characters composed of tiny triangles with simple lighting,
may devote more shader units for vertex processing and fewer per-pixel processing.
The CUDA (Compute Unified Device Architecture)10 environment presents a cutting-
edge programming model well-suited for modern GPUs architectures [23]. NVIDIA
developed this programming environment to fit to the processing model of the Tesla
Architecture, so to expose the parallel capabilities of GPUs to the developers.
Again is not our intention to explain everything about CUDA. The purpose here is
to describe what is important to the project development. For a more comprehen-
sive description refer to the CUDA programming Guide [23].

2.3.1 A Heterogeneous Programming Model

CUDA maintains a separated view of the two main actors involved in the compu-
tation, namely the host and the device. The host is the one that executes the main
program, while the device is the coprocessor. A typical scenario sees a CPU as the
host and a GPU as the coprocessor, but in general CUDA abstractions may be use-
ful for programming other kinds of parallel systems [21]. Normally CUDA programs
contain some pieces of code where intensive computation is required as shown in
Figure 2.4. Such pieces of code are encapsulated in what is called a kernel and send
to the device to be computed. From a memory viewpoint, CUDA assumes the exis-
tence of different memories, having host and device maintaining their own DRAM.
Not accidentally the two memories are called host memory and device memory.

2.3.2 The CUDA Software Stack

Figure 2.5 illustrates the CUDA software stack showing the main layers it is com-
posed of. A CUDA application basically lies on three main entities: the CUDA
libraries, the CUDA Runtime API, and the CUDA Driver API.

The CUDA libraries contain efficient mathematical routines of common usage.
One of them has to do with linear algebra, and so it will be further deepened. The
other two layers consist of a low-level API, namely Driver API, and a high-level
API, namely Runtime API, that is implemented on top of the first one.
Both the APIs provides programmers with the tools to proper manage threads,
memory, and kernel invocation on the device. Just the Runtime API is an easier
interface than the Driver API. The Runtime API provides a compact and intuitive

10http://www.nvidia.com/cuda

http://www.nvidia.com/cuda

CHAPTER 2. GRAPHICS PROCESSING UNIT 11

Host

Sequential code

Parallel kernel

Parallel kernel

...

...
..............

...

...
..............

Device

Figure 2.4: Heterogeneous programming paradigm of execution. The host executes
the sequential code until a kernel invocation requires the computation to be moved
onto the device to be run in parallel.

Figure 2.5: The CUDA software stack.(Source: NVIDIA [23])

way to deal with the concepts required to interface to the device. On the other
hand the Driver API is harder to program and debug, but offers a better control,
and is language-independent since it deals with cubin objects (i.e. object code of
kernels written externally). Since these APIs do the same job just at different level,
their use is mutually exclusive. However just looking at few examples of programs
written using the Runtime API and the Driver API is enough to convince yourself
that using the Driver API is not the best decision unless necessary.
In the rest of the report every reference to kernel, thread, and memory management
as well as any other possible interface to the device is intended through the Runtime
API.

The CUDA Linear Algebra Library

CUBLAS (Compute Unified Basic Linear Algebra Subprograms) [22] is an imple-
mentation of BLAS [1] on top of the CUDA Runtime API. It comes has a self-
contained library that does not require any direct interaction at the driver or Run-
time level. So it means that calling the routines the developer will exploit the GPU
to manipulate matrices and vectors without caring about many of the details we

CHAPTER 2. GRAPHICS PROCESSING UNIT 12

will discuss later on in this section like kernel configuration.
Even though it does not have to deal directly with the GPU programming, some-
thing about that transpires. Indeed, the model behind the library appears kind of
wrapper for the heterogeneous paradigm we just described. That is, the developer
must always go on to create and fill matrices and vectors in device memory, call
the required sequence of CUBLAS routines, and finally download the results in host
memory.
CUBLAS presents two main groups of functions: helper functions and BLAS rou-
tines. Helper functions assist in managing data in device memory. It provides
functions for creating and destroying objects, as well as for moving data to or from
GPU memory space.
CUBLAS BLAS routines are organized for maximum compatibility with the usual
BLAS library calls. For this reason BLAS functions are organized in three levels (i.e.
vector-vector, matrix-vector, and matrix-matrix operations), and the name conven-
tion totally recall the BLAS one.
Furthermore, always for compatibility purposes, CUBLAS uses column-major stor-
age with 1-based indexing. This has to be carefully taken into account in order to
not produce confusing, wrong results.

2.3.3 Threads Organization

Computational science applications have often to represent and compute real-world
changes, such as weather and climate forecasting, galaxies evolutions, fluid flows,
protein folding, and so on. Applications such as those just mentioned are typically
based on numerical methods that may require to sample their domains in order to
have a number of discrete data to elaborate.
The CUDA programming model that easily match such mathematical models. CUDA
expresses task and data parallelism through the threads hierarchy. As we said a
kernel is a portion of code executed in parallel by different threads. Threads are
organized in one-, two-, or three-dimensional blocks. This organization provides a
natural way to work in multi-dimensional matrices. Threads within the same block
can share data and synchronize themselves through intrinsic synchronization func-
tions.
However a kernel can be executed by multiple equally-shaped thread blocks. These
multiple blocks are organized in one- or two-dimensional grids. Since threads blocks
can be executed in any order, in parallel or in series, they are required to execute
independently. This independence requirement is the key to write scalable code
as it allows threads blocks to be scheduled in any order across any number of of
cores. While the number of threads per block is limited by physical resources (Sec-
tion 2.3.5), the number of thread blocks per grid is normally related to the size of
the data to be processed.
The programmer has to know a priori the number of threads he wants to dedicate
to a specific kernel, and it has to declare it in terms of grid and block dimensions in
way that syntactically resembles the invocation

kernel <<< dimGrid, dimBlock >>> (...list of parameters...)

CHAPTER 2. GRAPHICS PROCESSING UNIT 13

CUDA provides built-in variables that help identifying a number of useful infor-
mation like the threads and blocks’ indexes and the blocks and grids’ dimensions.
In this way every single thread can compute a unique value able to distinguish it
from all the other threads.
The thread hierarchy together with such a fine control over the threads allows to
define different levels of parallelism. The concurrent threads of a thread block per-
mit a fine-grained data and thread parallelism. Independent thread blocks of a grid
express coarse-grained data parallelism. Independent grids express coarse-grained
task parallelism. Figure 2.6 enriches the execution model of a CUDA program with
the threads organization described so far.

Figure 2.6: Heterogeneous programming with CUDA.(Source: NVIDIA [23])

2.3.4 Memory Organization

Every thread has its own local memory. All the variables within the scope of a
kernel are allocated in such a memory. Aside that, threads can use also shared,
global, texture and constant memory. Data allocated in shared memory is visible

CHAPTER 2. GRAPHICS PROCESSING UNIT 14

to and accessible by all the threads within the same block. Such data has the
same lifetime as the block itself. The global, texture, and constant memory are
persistent across kernel invocations by the same application. Figure 2.7 exemplifies
the concepts.

Figure 2.7: CUDA memory hierarchy.(Source: NVIDIA [23])

2.3.5 Mapping to the Tesla Architecture

At this point we want to describe how the main features of the CUDA programming
model can map to the Tesla architecture.
When a kernel is is invoked the several thread blocks that compose the grid are
enumerated and distributed to SMs with available execution capacity. Every SM
can execute several thread blocks. As we said thread are grouped in warps to be
executed. The way a block is split into warps is predefined and always the same:
each warp contains threads of consecutive IDs with the first warp containing thread
0.
The number of blocks a SM can process at once is related to the configuration of
the specific launched kernel, and in particular to how many registers per thread and
shared memory per block have been declared. This because registers and shared
memory are parted among the thread blocks associated to the SM. A critical point
is that a kernel to be launched requires enough registers and shared memory per

CHAPTER 2. GRAPHICS PROCESSING UNIT 15

SM to process at least one block, otherwise the kernel invocation will fail.
Memory concepts are easily mapped as well. CUDA local memory is mapped to
registers until their are available. In case automatic variables exceed the register
limit they are allocated on the device local memory space. CUDA shared, global,
texture, and constant memory is naturally mapped on the homonym memory spaces
on the device.

2.3.6 Compute Capability

Every device comes with a compute capability number that in a way describes the
matching degree between the device and CUDA, or in other terms between the device
processing model and the CUDA programming model. Simply speaking whether a
feature offered by CUDA can be effectively implemented totally depends on the
compute capability of the beneath device. To make an example, it is possible to
define double-precision floating-point variables within a kernel, but support for those
kind of variables is not provided on devices with compute capability lower than 1.3
(e.g. it would work on GPUs belonging to the GeForce 200 Series).
Compute capability numbers are defined by a major revision number and a minor
revision number. The major revision number indicates the core architecture, while
the minor one corresponds to incremental improvements of the core architecture
with new features.

Chapter 3

Linear Programming

When we talk about Linear Programming (LP) we refer to mathematical models
and techniques used to study and solve a specific family of problems. Such kind of
problems requires to optimize a linear objective function fulfilling a specified set of
constraints.
LP is object of study for an interdisciplinary branch of applied mathematics called
Operational (or Operations) Research. The first models and methods have been
developed during the Second World War with military aims. Some of the most
famous mathematicians at that time contributed to put the foundations for a scien-
tific approach to the problem. George Bernard Dantzig, for example, elaborated in
the United States the Simplex method 3.2 in 1947, right while in Europe John Von
Neumann was developing the duality theory, which we will allude to later on in the
next section.
To give an idea of what a LP problem may look like consider the following imaginary
scenario. The director of a famous HPC-Lab wants to build up a small but powerful
cluster of GPUs. She has a precise target: performance. One day she receives an
offer from one of the most important vendors of graphics processors. Two recent
models in particular attracts her attention: model G, able to compute 700 GFLOPS,
and model T, able to compute 900 GFLOPS. Of course, considering the target, she
would like to buy several cards of model T. Unfortunately, she has to deal with
some constraints coming from the departmental budget and the new environmental
legislation which the lab is subject to. The former allows her to spend no more than
6000e, while the latter to not exceed the 500W limit of power requirement. Model
G costs 500e and requires 250W, while the more powerful model T costs 3400e and
consumes 200W.
The problem above exemplifies a LP problem: the lab director has to maximize the
total performance of the cluster in terms of the number of GPUs of each model she
will decide to buy. At the same time she has to take into account all the constraints
of economical and legislative nature. The problem is presented schematically in Ta-
ble 3.1.

This example is indeed quite simple with respect to other possible, more complex
applications, like for instance the optimization of some design factor in civil or
maritime engineering.
In this chapter we will abstract from a specific real-life context, defining a general

16

CHAPTER 3. LINEAR PROGRAMMING 17

GPU Model G GPU Model T
Performance [GFLOPS] 700 900

Cost constraint [e] 500 3400 6000
Power constraint [W] 250 200 500

Table 3.1: Schematic summary of the Lab setting problem.

mathematical model for a LP problem in Section 3.1, and providing in Section 3.2
methods for solving it. Based on the description of those methods, in the next
chapter we will select the technique that better matches with the requirements of
a GPU-suitable application. Finally, in Section 3.3 we will discuss some theoretical
aspects of the LP complexity.

3.1 Linear Programming Model

As we said LP has become a classical topic embracing different scientific areas.
As a consequence a lot has been written about it. Bertsimas and Tsitsiklis [5] is
considered a very good reference by many in the O.R. field. We give here a more
formal definition of a LP problem. Unfortunately, like in many other scientific fields,
part of the terminology is not universally adopted in literature. Nonetheless, we will
try to be precisely coherent with the terms here adopted throughout the whole
report.
A linear programming problem is constituted by the following fundamental elements:

• a linear objective function or cost function c(·) : Rn → R, i.e. it must satisfy
the relations c(0) = 0 and c(αx+βy) = αc(x)+βc(y), ∀x,y ∈ Rn, ∀α, β ∈ R;

• a finite set, say m, of linear constraints, where every constraint is expressed
like a(x) on b, with a(·) : Rn → R, x ∈ Rn, on∈ {≤,=,≥}, and b ∈ R.

The main goal for a LP problem is to optimize - i.e. either maximize or minimize
- the cost function. A possible representation of a LP problem is the following:

max z = c1x1 + c2x2 + · · ·+ cnxn

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2
...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

x1, x2, · · · , xn ≥ 0

(3.1)

The last set of inequalities in (3.1) constraints the sign of the decision variables
requiring them to be positive, a very reasonable requirements if we think that they

CHAPTER 3. LINEAR PROGRAMMING 18

normally represent real quantities, such as the number of GPUs to buy for the lab.
A LP problem is often expressed in terms of matricial relations and written in a
more compact form. Let c and x be vectors in Rn, b a vector in Rm, and A a
matrix in RmXn, such that

c =
[
c1 · · · cn

]
x =

 x1
...
xn

A =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

 b =

 b1
...
bm

A matrix-based form for the (3.1) can be written as

max cx

Ax ≤ b

x ≥ 0

(3.2)

Considering the dimensions used in the previous definition of a LP problem’s
constituting elements, we adopt the following notation in this report:

• Vectors and matrices are written in bold using respectively small and capital
letters. e.g. x is a vector while A is a matrix.

• All products are written putting the factors side by side.

So, going back to the (3.2), what we did is to express in matricial form all the
linear relations over the real field described in our first definition. To put it another
way, we may say that we performed a number of replacements. First we replaced
the function cost with the multiplication between the vector of costs c and the
vector of decision variables x. Then we exchange the set of inequalities with just
one inequality that involves the product between the matrix A of the constraints
coefficients and the vector of decision variables x, and the vector b of the constraints
known terms.
Just to put in practice, we may try to define the problem of setting up the lab, that
we presented at the beginning of this chapter, using the definitions introduced so
far obtaining the following formulation:

max
[

700 900
] [xG

xT

]
[

500 3400
250 200

] [
xG
xT

]
≤
[

6000
500

]
[
xG
xT

]
≥
[

0
0

] (3.3)

CHAPTER 3. LINEAR PROGRAMMING 19

For the sake of preciseness, we should remark that the representation of the Lab
setting problem is actually not the best representation we may give of the problem.
Indeed, since we are talking about how many GPUs we should buy, a better repre-
sentation would model the decision variables over the set of integer values.
This kind of problems constitute the family of Integer Linear Programming Prob-
lems, a special category treated with ad-hoc techniques that differ from the ones
used to deal with usual LP problems. We will not deal with this class of problems,
but we address to the texts of Wolsey [27] and Bertsimas-Weismantel [6].
Looking again at the problem though, the shown representation is to be considered
a relaxation of the discrete one, that will allow us to handle it in the continuous.
In some texts, the way we expressed our problem is often called general or canonical
form. This is one of possibility to express a LP problem. Another typical form is
the standard form, which involves the same terms simply organized in a different
way:

min cx

Ax = b

x ≥ 0

(3.4)

Of course they are not the only way to see and represent a problem. In general,
passing from one representation to another is possible if we take into account the
following set of equivalences:

max cx ≡ −min − cx∑
j

aijxj = bi ≡

{∑
j aijxj ≤ bi∑
j aijxj ≥ bi∑

j

aijxj ≥ bi ≡
∑
j

−aijxj ≤ −bi∑
j

aijxj ≥ bi ≡
∑
j

aijxj − si = bi, si ≥ 0∑
j

aijxj ≤ bi ≡
∑
j

aijxj + si = bi, si ≥ 0

(3.5)

The term si is called slack variable, since it provides the right value to fill in the
gap between the left- and the right-side of a constraint.
For the purpose of our work we will focus on a third possible form, which can be easily
derived from the canonical form using slack variables to augment the formulation,
making it looking like the following:

max cx

Ax = b

x ≥ 0

(3.6)

This augmentation of the canonical form will turn out useful when we will try to
formulate a numerical solution to the problem, since we will be allowed to manipulate
linear transformations instead of having to deal directly with a set of inequalities.

CHAPTER 3. LINEAR PROGRAMMING 20

3.1.1 Geometric Interpretation

It is useful for a better understanding of LP problems as well as the techniques used
to solve them, to consider what could be a geometric interpretation for them.
As we started from the main element to define formally an LP problem, we may do
the same now, trying to associate to each of them the right geometric meaning. In
the space of the decision variables, constraints given in form of inequalities identify
half-spaces, whereas given as a set of equations they detect hyperplanes. The latter
interpretation can be associated also to level curves of the objective function.
The intersection of all the half-spaces/hyperplanes identified by the set of constraints
is called feasible region. The feasible region is the set of all the points of the hy-
perspace that fulfill the constraints. In algebraic geometry, a region defined by the
intersection of half-spaces is called polyhedron. In the case the polyhedron is bounded
the term polytope is also adopted. Precisely because a polyhedron is the result of the
intersection of half-spaces such set is said to be convex. This basically tells as that
if we take two points within the set, and we take the union of all the possible convex
combinations of them, we will end up with the segment joining the two points 1.
The geometry of a feasible region of a LP problem is often characterized by being a
convex polyhedron. A convex polytope is know as simplex. Examples of simplex are
the point (0-simplex), the line segment (1-simplex), and the triangle (2-simplex).
Normally when dealing with few dimensions, like 2 or 3, the graphics viewpoint gives
an extremely intuitive perspective that can help grasping the concepts introduced
so far.
Let us always consider the same example of the Lab setting. Figure 3.1 reports
graphically the LP problem in (3.3). The area colored in orange is the convex
polytope obtained from the intersection of the four half-spaces generated by the
constraints. The green and the red straight lines are the sets of points satisfying
respectively the costs and power constraints as narrow equalities. They generates
two half-spaces directed towards the center of the Cartesian plane. The other two
half-spaces are generated by the sign constraints on the two decision variables. This
gives us the possibility to limit our study to the first quadrant.
The orange convex polytope is then the feasible region for the problem. Two other
important elements are the vertices of the polytope and the segments linking them,
which are called faces. An important result in LP says that if a solution exists as
finite for a LP problem, than at least one optimal solution coincides with one of the
vertices of the feasible region. Another close proof affirms that if one of the points
within a face is optimal, then all the other (infinite) points in the face are optimal
too.
Looking at the representation in Figure 3.1, we can assess that what stated is con-
firmed by the example. In our case, the vertices set V is composed by four points,
that is V = {(0;0), (0;1.7), (0.67;1.67), (2;0)}. The plot reports four level curves of
the objective function together with an arrow pointing the direction of maximum
growth, which is the gradient of the function. We are looking for maximizing the
objective function. A way to get an optimal solution may be to push the objective
function curve along its growing direction, until we reach one of the boundaries of

1In general a set C ⊂ Rk is convex if ∀x,y ∈ C and ∀λ ∈ [0, 1] the convex combination
λx + (1− λ) y ∈ C.

CHAPTER 3. LINEAR PROGRAMMING 21

the feasible region. The optimal solutions are the points in the intersection between
the curve and the region.
In our example if we push up the objective function curve following the direction of
maximum growth, we reach the situation where the curve intersects the region in
the only point P ≡ (0.67; 1.67) at level 1966.7. This is the optimal solution for the
”relaxed” Lab setting problem, and actually we have that P ∈ V .

curve level 200

curve level 800

curve level 1600

curve level 1966.7

1.76 (0.67; 1.67)

Figure 3.1: Geometric representation of the Lab setting problem.

Of course if we should consider the problem again in a real context, the solution
found would be impractical, since it is not possible to buy a fraction of a GPU. For
this reason we traced a curve level intersecting the point (1;1), giving as a result
1600 GFLOPS. That point is indeed the result we would found if we would study
the Integer LP problem.
So far we have described what a feasible region is and we have given a simple but
practical example. Of course this is not all about. In particular until now we have
considered situations where the feasible region is bounded. This is not always the
case. Sometimes problems in LP have constraints which generate an unbounded
polyhedron as feasible region. Such problems are normally called unbounded prob-
lems. Note that the region is still called feasible, since the points in the region are
actually feasible solutions. Nevertheless, the problem has the big weakness to not
present any maximum limit for the objective function. Such problems are normally
the result of an improper or incomplete analysis of the real investigated case. Fig-
ure 3.2 for instance, represents a LP problem with just two constraints producing
an unbounded feasible region. Following the gradient direction, the objective level
curve may grow without limit.
A third and last case to mention is the one where the feasible region is empty. It
is possible to get such a region from a set of constraints totally incompatible with
each other. In this case there are no solutions at all, and the problem is said to be
an unfeasible problem.

CHAPTER 3. LINEAR PROGRAMMING 22

x+y = 6

Figure 3.2: Geometric representation of an unbounded problem. The problem is
the one of maximizing z = x + y with the only two constraints c1 : x + y ≤ 3 and
c2 : −x+ y ≤ 4.

3.1.2 Duality Theory

Every LP problem expressed in the way we presented, can be associated to another
formulation related to the same model the initial problem is based on. A problem
described as in (3.2) is called primal and it can always be converted in what is called
its dual.
Using the same mathematical entities we used for defining a primal, a dual problem
can derived from the primal and written down as

min bTy

ATy ≥ cT

y ≥ 0

(3.7)

Moreover, it is not difficult to proof that the dual of the dual is the primal. As
we started saying, duality gives a different perspective of the problem. Such a rela-
tionship between the two formulations is not just syntactical. Important theorems
strictly relate them insomuch as certain methods for solving LP problems exploit
both to get some results.
Practically We will not focus extensively on those relations, since we will rely on a
technique that do not involve duality. However, we think it is convenient to mention
at least the most important ones, since some methods described in the next section
are built on top of them.
A first important theorem is the so called weak duality theorem. It states that given
a primal and its dual, if they admit respectively feasible solutions x̄ and ȳ, then
cx̄ ≤ bTȳ. This relation can be made stronger when the feasible solution is also the

CHAPTER 3. LINEAR PROGRAMMING 23

optimal one. Indeed, the strong duality theorem affirms that if the primal admits
optimal solution x̃, then also the dual admits optimal solution ỹ, and cx̃ = bTỹ.
Ultimately, from the previous theorems, it is possible to deduce as a corollary that
the dual provides in a sense an upper bound for the primal. In fact, if the dual would
contain just one solution, that value would limit the solution of the primal. Further-
more, we can also say that if the primal would present an unbounded optimality,
the relative dual would turn out to be unfeasible.

3.2 Solving Linear Programming Problems

Now that we have introduced what a LP problem is, the next step is to find out
how to solve it.
We introduce here two groups of methods, namely simplex-based and interior points
methods. Methods within such groups are the ones commonly used to implement
today’s LP routines. Both the categories work with the representation provided
in previous section, basically traversing the feasible region with two different ap-
proaches.

3.2.1 Simplex-Based Methods

The simplex method, is the first practically implemented method for solving LP
problems. It has been developed by G. B. Dantzig, who is considered the father of
LP, at the end of the 40s, and for years it has been considered ”the way” to deal
with optimization of linear constrained problems.
Has we previously said, if LP solutions exist they lay on vertices of the feasible
region. The simplex method is an iterative method that traversing the faces of the
feasible region, proceeds stepwise towards the optimal solution increasing the value
of the objective function at each step.
Several methods have been then developed based on the same concepts as the sim-
plex method. In this section we present the original simplex method and the revised
matrix-based version, which is well-suited for implementations on a GPU.

The Simplex Method

The simplex method requires to organize the representation of the problem (i.e. the
equations) in a way that ease the application of the method’s operations at each
step. Since understanding the way the basic version of the simplex method works
is critical to understand how other revised versions do it, let us consider again the
Lab setting example. Using slack variables we can rewrite the objective function
and the set of constraint equation as a system of equalities

z − 700xg − 900xt = 0
500xg + 3400xt + s1 = 6000
250xg + 200xt + s2 = 500

Now we can extract the initial simplex tableau

CHAPTER 3. LINEAR PROGRAMMING 24

z xg xt s1 s2 b
1 −700 −900 0 0 0
0 500 3400 1 0 6000
0 250 200 0 1 500

From the tableau it is possible to individuate two partitions of the set of vari-
ables. A first partition is the set of basic variables or simply basis.
A variable is basic if it has just one nonnegative value in its column. The basis
provides at each step of the algorithm a feasible solution. A basic feasible solution
is obtained by setting all the non-basic variables to zero. In the example, at the
beginning the basis is populated by the slack variables.

xg = 0 xt = 0 s1 =
6000

1
s2 =

500

1
z = 6000 · 0 + 500 · 0 = 0

On the other hand, the rest of the variables with more than one nonnegative
value in their columns are called non-basic. Note that the column subdivision in
the above table is not intended to remark the basic/non-basic partition. It just
distinguishes the original variables from the slack ones.
The simplex algorithm for a maximization LP problem is described in Algorithm 1.

Input: Matrix A, vectors b and c. Problem in canonical augmented form.
Output: Optimal solution or unbounded problem message

Tableau T ← CreateTableau(A, b, c);1

Indexes basis← Initialize(T.A);2

while !exist(i) t.c. T.ci > 0 do3

/* Determine the pivot column */4

Index p ← IndexMaximumValue(T.c);5

Determine the pivot equation */6

if !exist(i) t.c. T.Aip > 0 then7

exit(”Problem unbounded”);8

Index r ← i t.c. mini

{
T.bi
T.Aip

, T.Aip > 0
}

;9

/* Elimination by row operation */10

foreach i ∈ T.RowIndexes \ {r} do11

EliminationByRowOperation(T, i, r);12

/*Update the basis */13

Index q ← GetLeavingVariableIndex(T);14

UpdateBasis(basis, p, q);15

exit(GetSolution(T, basis));16

Algorithm 1: A simplex method algorithm.

Let us try to see how the algorithm would work on our tableau. During the
execution of an exception-free step, we can say that the simplex algorithm focus on
three main operations:

CHAPTER 3. LINEAR PROGRAMMING 25

O1 Determine the pivot column
The algorithm requires to select the biggest positive value from the vector of
the objective function coefficients. In the specific case of our example, because
of the way we organized the tableau, we will have to select the column with
the smallest negative value in the first row. This because in (3.2.1) we moved
all the terms from the right-side to the left-side.

O2 Determine the pivot equation
Divide the right side (b column) by the corresponding entries in the pivot
column. Take as the pivot equation the one that provides the smallest ratio.

O3 Elimination by row operation
Determine a new tableau with zeros above and below the pivot. For example,
we may decide to use a technique like the Gauss-Jordan elimination.

Operation O1 is motivated by the fact that we are looking for a value that can
contribute in increasing the objective function.
Operation O2 instead, selects the row that will allow us to move towards a new
vertex of the feasible region with the smallest step-size. This is important insofar it
minimizes the risk to step outside the region.
The last operation redraws the simplex tableau, in the light of the new pivot choice.
Note that the algorithm updates the basis after O3. This is correct. In fact, after
the operation has been applied, the basis changes since the pivot column remains
with just one nonnegative value. The row operation, in addition to elect a new
entering variable, extracts a leaving variable from the basis increasing some of its
column’s values. To put it another way, the update function has to replace the
leaving variable with the new entry.
Let us make it clearer by running one iteration of the algorithm. Since we have
already set up the tableau and initialized the basis, we can start executing the three
main operations we were talking about.

O1 Select column 3 which has cT = 900 as pivot column.

O2 Evaluate ratios:

Row 2: 6000
3400
≈ 1.76 −→ Select row 2 as pivot row.

Row 3: 500
200

= 2.5

O3 Apply the elimination by row operation

z xg xt s1 s2 b
1 −570 0 0.26 0 1560 Row 1+ = 900

3400
Row 2

0 500 3400 1 0 6000
0 220 0 −0.06 1 140 Row 3− = 200

3400
Row 2

As we said after the core operations, also the basis has changed. In particular
xt entered the basis while s1 left it. The new basic feasible solution is therefor

CHAPTER 3. LINEAR PROGRAMMING 26

xg = 0 xt =
6000

3400
≈ 1.76 s1 = 0 s2 =

140

1
z = 1.76 · 900 + 140 · 0 = 1584

Moreover, we said that the simplex method moves along the boundaries of the
feasible region. If we compare the previous result with the graphics representation
in Figure 3.1, we may notice that after the first step, the algorithm moved from
point (0;0) to point (0;1.76).

The Revised Simplex Method

The version of the simplex method just exposed requires specific data structures
to be implemented. As we saw we need to explicitly keep track of indexes and to
update the tableau at each iteration.
The revised version of the simplex algorithm we describe here, tries to formulate
the same algorithm in terms of linear algebra computations. The revised method
has been proposed by Dantzig et al. [8]. Basically the revised algorithm applies the
same conceptual steps as the normal simplex method does, just translated into an
algebraic perspective.
Similarly to Morgan [19], we present the algorithm defining a small dictionary that
should help understanding the translation.
To work with the revised version, we need the problem to be expressed in terms of
matrices as it is in Section 3.6. We consider the augmented canonical form, that
provides us with a system of linear equations.
Furthermore, we need to define mathematical structures able to represent some
fundamental concepts. We need a basis matrix, B, consisting of the columns of A
corresponding to the coefficients of the basic variables. Note that B is a m x m
squared matrix, since we introduce a slack variable for each constraint. The m
nonzero variables in a basic solution, can be represented as a vector xB. Similarly, we
denote the coefficients of the objective function corresponding to the basic variables
with the vector cB.
Now, we saw that the simplex algorithm chooses the pivoting or entering variable
picking up the one that causes the greatest increment in the objective function.
This is done by selecting the most negative entry in the objective row of the tableau.
Even if the tableau, and in particular the objective row, is not explicitly represented,
we can determine the entering variable based on the contribution of the non-basic
variables. Such a contribution is estimated corresponding to each variable as zj−cj =
cBB−1Aj − cj. The variable corresponding to the smallest negative difference is the
entering variable, say xp. So, writing c̃ = cBB−1Aj − cj, we can say that

p = j | c̃j = mint {c̃t} , c̃j < 0

If we cannot find any negative c̃, means that we have reached the optimum (no
contribution can cause improvement).

After having selected the entering variable the algorithm requires to find out the
leaving variable. To do this we need to compute every time the basic solution xB.
Since all the variables outside the basis are set to zero, at each iteration, the system

CHAPTER 3. LINEAR PROGRAMMING 27

Simplex Method Revised Simplex Method
O1: determine the entering vari-
able xp based on the greatest con-
tribution.
If no better improvement is
achievable, optimum found.

Select
xp |c̃p = mint {c̃t} , c̃p < 0
If c̃p ≥ 0 optimum found.

O2: determine the leaving vari-
able xq that provides smallest ra-
tio between known terms and piv-
otal elements.
If not possible the problem is un-
bounded.

Compute xB = B−1b
Compute α = B−1Ap

Select
xq | θq = mint {θt} , αq > 0
If α ≤ 0 the problem is un-
bounded.

O3: update basis and tableau. Update B.

Table 3.2: Normal and revised versions of the main simplex method’s steps.

of equation can be written as BxB = b. From the latter we can easily compute
xB = B−1b. Defining α = B−1Ap, the leaving variable, say xq, is the one with
minimum θ-ratio, where θj = xBj/αj. Precisely

q = j | θj = mint {θt} , αj > 0

If α ≤ 0, the solution is unbounded.

Finally we have to update the basis, that in the revised context means we have to
update the basis matrix B. Table 3.2 summarizes how the main steps of the simplex
method can be revised from an algebraic viewpoint, while Algorithm 2 presents the
revised simplex method.

Several revised versions of the simplex method have been developed. They
mainly differ from each other in their implementation, since the apply exactly the
same concepts introduced so far. Morgan [19] presents and compare the most im-
portant ones, like the Bartel-Golub’s method, the Forrest-Tomlin’s method, and the
Reid’s method.

3.2.2 Interior Point Methods

An alternative approach to simplex-based methods is called interior point method.
In general with this name we can point to a family of methods inspired by Narendra
Karmarkar, that in 1984 developed a new polynomial time algorithm, then Kar-
markar’s algorithm, for solving linear programming problems [13].
The basic idea behind the this alternative optimization process can be given describ-
ing geometrically the difference between the simplex and the interior point methods.
A typical interior point path goes through the feasible region traversing its interior
as shown in Figure 3.3. The green points are the ones obtained by the interior point
method, while the red ones by the simplex method.
The figure reports some relevant features important to recall that we can explain as
follows:

CHAPTER 3. LINEAR PROGRAMMING 28

Input: Matrix A, vectors b and c. Problem in canonical augmented form.
Output: Optimal solution or unbounded problem message

/* Initialize data (Range assignements with Matlab-like notation). */1

B[m][m] ← Initialize(A);2

cB[m] ← c[n−m : n− 1];3

xB[m] ← 0;4

Optimum ← ⊥;5

while !Optimum do6

/* Determine the entering variable */7

Index p ← {j|c̃j == mint (cBB−1At − ct)};8

xB ← B−1b;9

if c̃p ≥ 0 then10

Optimum ← >;11

break;12

/* Determine the leaving variable */13

α ← B−1Ap;14

Index q ←
{
j|θj == mint

(
xBt

αt
, αt > 0

)}
;15

if α ≤ 0 then16

exit(”Problem unbounded”);17

break;18

/*Update the basis */19

B ← UpdateBasis(A, p, q);20

/* Update basis cost */21

cBq ← cp;22

/* Update basis solution */23

xB ← B−1b;24

if Optimum then25

exit(xB, z ← xBcB);26

Algorithm 2: A revised simplex method algorithm.

• starting from an interior point, the method constructs a path that reaches the
optimal solution after a few iterations.

• The method leads to a good estimate of the optimal solution after a few
iterations.

While theoretically this class of methods have been considered from the be-
ginning quite competitive with the classical simplex, practically there is no clear
understanding of which algorithmic class gives the best performance.
Among the different algorithms, the class of primal-dual path-following interior point
methods are widely considered the most efficient [26]. In the last part of this section
we focus on Mehrotra’s algorithm [18, 26] that can be considered the basis for a
class of algorithms called predictor-corrector algorithms.

CHAPTER 3. LINEAR PROGRAMMING 29

c

x0

x1

x2

x'0

x'1

x'2

xopt

Figure 3.3: Polytope of a two-dimensional feasible region. The xi points are deter-
mined by an interior point method, while the x′i ones by a simplex method.

Mehrotra’s Primal-Dual Predictor-Corrector Method

We consider a LP problem as given in (3.4) and its dual (3.7) in an augmented form.
For the sake of readability we present again the two formulations:

(P) min {cx : Ax = b,x ≥ 0} ,
(D) max

{
bTy : ATy + s = cT, s ≥ 0

}
.

We assume, without loss of generality, that there exists a 3-tuple (x0,y0, s0) such
that

Ax0 = b,x0 ≥ 0, ATy0 + s0 = cT, s0 ≥ 0.

This condition is called the interior point condition. The basic idea of primal-
dual interior point methods is to find an optimal solution to (P) and (D) solving the
following system:

Ax = b,x ≥ 0,

ATy + s = cT, s ≥ 0,

xs = µe.

(3.8)

If the interior point condition holds, then for all µ > 0 the (3.8) has a unique solu-
tion called µ-center of the primal-dual pair (P) and (D), denoted by (x(µ),y(µ), s(µ)).
The set of µ-centers with µ > 0 gives the central path of (P) and (D). Since it is
demonstrated that the limit of the central path exists, and because the limit point
satisfies the complementary condition, it yields optimal solution for the problem.
Applying Newton’s method to (3.8), we obtain the following linear system of equa-
tions

A∆x = 0,

AT∆y + ∆s = 0,

x∆s + s∆x = µe− xs,

(3.9)

CHAPTER 3. LINEAR PROGRAMMING 30

where ∆x,∆y,∆s give the Newton step.

Predictor-corrector algorithms deal with (3.9) using different values of µ in the
predictor and corrector phases. In the predictor step, using µ = 0, Mehrotra’s
algorithm operates computing the affine scaling search direction,

A∆xaff = 0,

AT∆yaff + ∆saff = 0,

x∆saff + s∆xaff = −xs,

(3.10)

then it computes the maximum feasible step size αaff that ensures the positivity
constraint,

αaff = max {α | (x(α),y(α), s(α)) ∈ F} , (3.11)

where F =
{

(x,y, s) | (x, s) > 0, Ax = b,ATy + s = cT
}

. Afterwards, it uses
the results coming from the previous step to get the centering direction from

A∆x = 0,

AT∆y + ∆s = 0,

x∆s + s∆x = µce− xs−∆xaff∆saff .

(3.12)

At this stage, µ is set to a specific value µc, which depends on the specific kind
of algorithm in use. Finally the algorithm makes a step in the new direction just
computed.
Algorithm 3 sums up the whole optimization strategy. The term N , which indicates
the specific neighborhood where the algorithm works in, depends also on the specific
version of the Mehrotra’s algorithm.

Input: Problem in the (P) and (D) form. (x0,y0, s0) ∈ N . Accuracy
parameter ε.

Output: Optimal solution.

while evaluateSolution(x,s,ε) do1

/* Predictor step */2

Solve (3.10);3

αaff = max {α | (x(α),y(α), s(α)) ∈ F};4

/* Corrector step */5

µ ← µc;6

Solve (3.12);7

αc = max {α | (x(α),y(α), s(α)) ∈ N};8

step(x + αc∆x,y + αc∆y,s + αc∆s);9

Algorithm 3: A revised simplex method algorithm.

CHAPTER 3. LINEAR PROGRAMMING 31

3.3 Complexity Aspects

Theoretical computer science is an important field that deals with abstract aspects
of computational models. When studying and designing algorithms it is always bet-
ter to ground decisions on solid theoretical basis. This is an important principle not
always taken into account when developing software. It may be extremely helpful
to prevent energy profusion on problems that have already been proof even as un-
solvable by a computer.
Before describing computational complexity issues that concern linear programming
we want to recall the main concepts that will be involved in the discussion.
First the concept of decidability. When we say that a problem is decidable this
means that is possible to write a program able to solve it in a finite time. Decidable
problems can be classified depending on their complexity. The concept of complex-
ity in itself is nonetheless quite arbitrary, so when considering algorithms the most
used acceptations of complexity are those of temporal and spacial complexity. This
means that an algorithm is classified based on the time or the space it requires to be
computed. Moreover, when the analysis is done on parallel algorithms the processor
complexity is also an important term.

For the sake of our discussion two complexity classes are noteworthy: P and
NC. P is the class of problems decidable in sequential time nO(1). Nick’s Class, or
shortly NC, is the class of problems decidable in parallel time (log n)O(1) and proces-
sors nO(1). Parallel computational analysis often refers to P as the class of feasible
parallel problems, and to NC as the class of feasible highly parallel problems.
There is a theoretical results that states that a problem is decidable in sequential
time nO(1) if and only if it is decidable in parallel time nO(1) with processors nO(1)

(For more details consult Greenlaw et al. [11]). The lemma actually tells us that
NC ⊆ P . The latter relation open to a problem that in its formulation resembles
the much more famous P ⊆ NP , which is considered one of the six unsolved mil-
lennium problems2. Indeed, the important question for the parallel community is
whether the inclusion is proper or not.
The problem is still open, but some conjectures are made by theoreticians based
on experiences with two other important concepts, namely the one of reducibility
and of P-completeness. Intuitively, a problem P1 is reducible to P2 if there exists
an algorithm able to compute the solution of every instance of P1 in terms of the
solution of an opportune instance of P2. A problem is said to be P-complete when
it is a P -hard problem itself in P . A problem is P -hard if and only if every problem
P ′ ∈ P is reducible in polynomial time to it.
From empirical experiences, it is common evidence that the two classes do not
coincide. the reason is that it appears that P -complete problems are inherently
sequential, meaning that they are feasible problems without any highly parallel al-
gorithm for its solution.

In 1979 Khachian [14] proofed that linear programming is in P , finding a poly-
nomial time algorithm for it. A similar but improved result arrived a few years later
due to the work of Karmarkar [13]. As Greenlaw et al. [11] shows, we can push the

2http://www.claymath.org/millennium/

http://www.claymath.org/millennium/

CHAPTER 3. LINEAR PROGRAMMING 32

complexity analysis even further, placing LP in the class of P -complete problems.
In general such a conclusion should discourage from looking for a parallel solution.
And this is probably the reason why little effort have been put in searching for a LP
parallel definition. Nevertheless in the next chapter we will argue why we decided
to continue with our study.

Chapter 4

Linear Programming in CUDA

Once introduced GPU technologies, the GPGPU approach, and the mathematical
background behind linear programming, we start in this chapter concentrating on
the CUDA implementation of a LP solver.
A first question we should address and answer is unquestionably the following: why
to climb a mirror? We mentioned that LP is P -complete and so difficultly in NC.
Why then to try to find a parallel solution for it? Mainly for two reasons.
A first reason has ”explorative” nature. Even though realistically we know that
the problem is hardly parallelizable, we may always draw some conclusion about its
quasi-parallelizability. In other words, we cannot exclude that with this study we will
be able to find at least some parts of the algorithm that are suitable for parallelism.
Previous experiences to support LP with heterogeneous resources appeared to us
motivating enough to explore how the problem can be mapped to the new GPGPU
paradigm presented by CUDA.
A second reason instead is more practical. We saw that GPUs are very powerful,
affordable coprocessors. Whatever improvement the GPU would be able to produce,
we think that it could be a step forward to quickly solve LP problems as well as
many other problems reducible to them.
Aside this primary goal, there are some other issues we want to evaluate. First we
want the gap between the algorithm and the implementation as narrow as possible,
according to the new GPGPU approach. The code should easily give the idea of
which algorithm has been implemented. We want also to check if the process of
writing such an easy-to-read code can be modelled in a straightforward fashion. To
put it another way, we want to see how much performance it is possible to gain
applying a simple sequential-parallel programming concepts mapping.
We will therefor operate as follows. In Section 4.1 we will select the LP solving
method to be implemented, defining the algorithm that we will use for both the
sequential and the CUDA solution. Finally, in Section 4.2, we will explain the
implementation strategy.

4.1 Method Selection

Designing LP solver based on GPUs with a better performance than existing, sequen-
tial ones is possible. Jung [12] and Greeff [10] report about good results obtained
implementing respectively a revised version of the simplex method, and a primal-

33

CHAPTER 4. LINEAR PROGRAMMING IN CUDA 34

dual interior point method.
As we already mentioned, even though interior point methods are theoretically
faster, there are no practical outcomes that can state which method is the best
one. Commercial software can be found today based on both the techniques.
What we want is an algorithm within the class of those suitable for GPUs. As a
metric for the decision we base our choice on the characteristics elicited by Owens
at al. [24] already mentioned in the introduction to Chapter 2.
Looking at the description we made in the previous chapter, we can observe that ef-
fectively both the revised simplex method and the Mehrotra’s primal-dual predictor-
corrector method are good candidates:

Computational requirements are large. We want to focus especially on huge-
sized problems, with hundreds of variables and constraints.

Parallelism is substantial. The problem solving strategy involves mainly alge-
braic and reduction operations for which parallel solutions are well known.

Throughput is more important than latency. There are no specific require-
ments on the latency of single operations.

On the other side, the original simplex technique would not perform well, since
it would require the management of ad-hoc data structures together with a number
of pointers.
By the way, to use matrices instead of specific data structures is not totally free from
problems. In particular we refer to physical factors that can become critically limit-
ing. For instance round-off errors, significant digit loss, and widely differing orders
of magnitude are quite common issues when manipulating numbers on a computer.
The process of developing a good LP solver with matrix-based methods is actually
a task in numerical stability apart from the algorithm implementation.
Discarded the basic simplex method, it remains to select a method within the matrix-
based ones. Note that both the simplex-based and the interior point methods pre-
sented in Section 3.2 requires to deal with matrix inversion at a glance. Indeed
the revised simplex method needs to work with the inverse matrix B−1, while the
Mehrotra’s algorithm has to solve linear systems of equations.
Such an expensive operation can be properly overcome with alternative operations
depending on the specific applicative case. Let us consider the case studies pre-
viously mentioned. Jung [12] uses the Cholesky decomposition to efficiently solve
linear systems of equation, while Greeff [10] cleverly notices that the algorithm only
works with B−1. For this reason, it argues that is not required to pass every time
from B, suggesting to compute its inversion at each iteration from the old B−1

and values depending on entering and leaving variables. The precise technique is
described later on in Section 4.2.
Taking into account what said so far, we conclude selecting the revised simplex
method. It presents an algorithm that can be implemented using matrix opera-
tions without any additional non-matrix structures. Compared to the interior point
method it requires less expensive operations to be performed.
In Section 3.2 Algorithm 2 describes a general revised algorithm of the simplex
method. In this section we will try to expand the pseudo-code until a level where

CHAPTER 4. LINEAR PROGRAMMING IN CUDA 35

all the important operations are listed.
Although the description will be done at an abstract level, it will emphasize the
definition of the most important data elements and operations on them. This stage
will support the development of both the sequential and the CUDA implementation.
The new expanded version of the revised simplex method is reported in Algorithm 4.

Input: Matrix A, vectors b and c. Problem in canonical augmented form.
Output: Optimal solution or unbounded problem message

/* Initialize data (Range assignements with Matlab-like notation). */1

B[m][m] ← Im;2

cB[m] ← c[n−m : n− 1];3

xB[m] ← 0;4

Optimum ← ⊥;5

while !Optimum do6

/* Determine the entering variable */7

y[m] ← cBB−1;8

e[n] ← [1 y] · [−c ; A];9

Index p ← {j|ej == mint (et)};10

xB ← B−1b;11

if ep ≥ 0 then12

Optimum ← >;13

break;14

/* Determine the leaving variable */15

α[m] ← B−1Ap;16

for t← 0 to m− 1 do17

θt ← αt > 0 ? xBt

αt
: ∞;18

Index q ← {j|θj == mint (θt)};19

if α ≤ 0 then20

exit(”Problem unbounded”);21

break;22

/* Update the basis */23

E[m][m] ← computeE(α, q);24

B−1 ← EB−1;25

/* Update basis cost */26

cBq ← cp;27

/* Update basis solution */28

xB ← B−1b;29

if Optimum then30

exit(xB, z ← xBcB);31

Algorithm 4: A revised simplex method algorithm.

CHAPTER 4. LINEAR PROGRAMMING IN CUDA 36

4.2 Implementation Strategy

We already mentioned that aside the final goal of writing a LP solver, we want to
assess the methodology of passing from a sequential version of the code to a par-
allel one. We want to assess how much performance we can gain through a simple
sequential-parallel programming concepts mapping.
Before starting describing the mapping let us analyze how Algorithm 4 is imple-
mented in practice.
The sequential version of the LP solver is implemented in C and together with the
CUDA parallel one is reported in Appendix A.
The main data structures are matrices and arrays. They are defined as 0-index,
row-major arrays in central memory.
Routines can be categorized in two sub-classes: algebraic and not-algebraic routines.
The first group of routines is implemented using BLAS, while the second one defin-
ing an ad-hoc set of functions.
For passing to the parallel version we adopt the mapping summarized in Table 4.1.
Later on in the section we summarize notes and comments related to the main
implementation features.

Sequential Version Parallel Version
Array in central memory. Array in device memory.
BLAS algebraic routine. CUBLAS algebraic routine.
Non-algebraic routine. Non-algebraic routine supported by

or totally implemented as CUDA kernels.

Table 4.1: Mapping between sequential and parallel implementation concepts.

4.2.1 Data Structures

We gives a specular vision of how data is managed respectively in the sequential and
parallel versions of the LP solver.
The problem is represented in the same way for both the versions. It consists of
three main data structures: the constraints matrix, the costs array, and the known
terms array.

Sequential Version

Matrices are managed as arrays. Arrays are accessed using the typical C mode, i.e.
0-index, row-major.
Where possible, loops have been replaced by algebraic operations, thereby intro-
ducing matrices. The most evident example of this is the computation of the
contributions, which in Algorithm 4 is substituted with the multiplication e[n] ←
[1y] · [−c; A].

Parallel Version

CUBLAS library manages matrices in Fortran style, making column-major accesses.
In order to be CUBLAS-compliant and, at the same time, to maintain the C con-

CHAPTER 4. LINEAR PROGRAMMING IN CUDA 37

vention, accesses to matrix’s elements is done through the macro

#define R2C(i,j,s) (((j)*(s))+(i)),

where the stripe s has to be set to the number of rows of the matrix in use.

4.2.2 Kernels Configuration

Kernels work mainly on matrices, and each thread works with single values. Matrices
are associated to a bidimensional grid and split in regular sub-matrices, associating
each sub-matrix to a bidimensional block.
Blocks’ dimensions are multiple of the warp size.

4.2.3 Non-Algebraic Routines: Computing Entering Vari-
able

Sequential Version

Looking for the entering variable is implemented with two matrix-matrix multi-
plications, an array movement, and a minimum search. The portion of code in
question is shown in Figure 4.1). There the minimum search function is wrapped in
entering index().

...

// y = cb*Binv

cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,

1, m, m, 1, cb, m, Binv, m, 0, y, m);

memcpy(&yb[1], y, m*sizeof(float));

// e = [1 y]*[-c ; A]

cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,

1, n, m+1, 1, yb, n, D, n, 0, e, n);

ev = entering_index(e, n);

...

Figure 4.1: Portion of code for computing the entering variable.

Parallel Version

The parallel version is obtained applying the transformation previously described.
Therefor the piece of code for computing the entering variable is composed by two
CUBLAS calls, a data movement in global memory, and a minimum search.
The minimum search is implemented as a reduction kernel (Figure 4.2). The kernel
is called over and over until a single value is reached. Figure 4.3 shows its logic with
a small example.
Since the search space is passed through more than once, blocks load their portion
of data in shared memory. Shared memory accesses are made with an odd stripe so
to avoid bank conflicts.

CHAPTER 4. LINEAR PROGRAMMING IN CUDA 38

...

//Each block loads its elements into shared mem,

//padding if not multiple of BS

__shared__ float sf[BS];

sf[tid] = (j<n) ? f[j] : FLT_MAX;

__syncthreads();

...

for(int s=blockDim.x/2; s>0; s>>=1)

{

if(tid < s) sf[tid] = sf[tid] > sf[tid+s]

? sf[tid+s] : sf[tid];

__syncthreads();

}

if(tid == 0) min[blockIdx.x] = sf[0];

...

Figure 4.2: Portion of array loaded in shared memory and reduction process for the
search of the minimum value.

4.2.4 Non-Algebraic Routines: Computing Leaving Vari-
able

Looking for the leaving variable requires a set of instructions in a way similar to the
one required by the entering variable search task. It requires to extract a column
from a matrix (data movement), multiply the resulting array by a different matrix,
compute a element-wise division of two arrays, and operate another minimum search.

grid 0

grid 1

block 0 block 1

block 0

E
x
e
cu

ti
o
n

 t
im

e

Synchronization

Figure 4.3: Reduction routine.

CHAPTER 4. LINEAR PROGRAMMING IN CUDA 39

4.2.5 Non-Algebraic Routines: Computing B−1

We have already mentioned that the matrix inversion operation is avoidable. In
fact the normal matrix B is not used at all during the computation. A method
to compute its inverse matrix without dealing with inversion itself would be quite
welcome.
Greeff [10] references a technique where B−1 is computed multiplying a matrix
E by the actual value of B−1. This approach is the one effectively used in our
implementation and it has already been taken into account when we formulated
Algorithm 4.
E is a m x m matrix depending on entering and leaving variables. It is obtained
starting from a m x m identity matrix. Let p and q be the entering and leaving
index respectively. We apply the following substitution to the qth column of Im:

Eiq =

{
− αi

αq
i!=q,

1
αq

i = q.

Chapter 5

Experimental Results

With this chapter we have reached the final stage of the project development. Now
we want to describe some results obtained running the LP solvers. We will describe
the hardware and software environment where the experiment has been carried out.
We will focus our attention on the methodology, defining which elements should
be object of our analysis, and describing the tools involved in the test. Finally,
observing the results, we will draw out some reflections.

5.1 The Experimental Environment

The experiment has been run on a CPU/GPU heterogeneous system. The CPU is a
64-bit Intel Core2 Quad (Q9550) 2.83 GHz, with 12 MB cache size, and bus working
at 1333 MHz. The GPU is an NVIDIA GeForce GTX 280. The model has been
described in Section 2.1.
The central system and the GPU communicate through PCI-Express 2.0. The GPU
is connected to a 16-lanes slot (x16). Since each lane has a bandwidth of 0.5GB/s,
the CPU-GPU system can transfer ub to 8GB/s.
The operating system is Ubuntu 8.04 with Linux kernel 2.6.24-22. The CPU appli-
cation has been compiled using gcc version 4.2.4. The system has a BLAS library
optimized by ATLAS version 3.6.0. The GPU software is developed with CUDA
version 2.0.

5.2 Methodology

Both the serial version and the host code have been compiled with -O3 optimization
flag. The experiment has been run with 1000 different LP problems. Such problems
are built upon random values. Problems size grows progressively. The biggest
problem present a 2000 x 4000 constraints matrix. Problems are built with the
same number of constraints and variables. Additional slack variables are added
to generate a problem in augmented canonical form. For the biggest generated
problem for instance, it means that it involves itself 2000 variables subjected to
2000 constraints, and other 2000 slack variables are added to generate the problem
formulation required to compute the solution.
From now on, we will refer to the number of constraints to express the dimension

40

CHAPTER 5. EXPERIMENTAL RESULTS 41

of a problem.
For each execution the main temporal parameters have been captured producing
two different outputs.
A first output is a list of comma separated values (csv format) which summarizes the
executions. Practically the file contains for each execution the number of constraints,
the number of variables1, the dimension of the constraints matrix, the elapsed time,
and the optimum value found (if any).
The second output file, contains relevant times and speedups in a tabular format
useful to support graphical plotting of the results.

5.2.1 Analysis Objectives

A very important dimension in performance analysis is certainly the time. Using
milliseconds may not be sufficient to produce good estimates. We decided to enlarge
the precision.
The OS provides developers with a library call able to retrieve the time of a system-
wide realtime clock. The time is represented with seconds and nanoseconds since
the Epoch2.
Such a routine, namely clock gettime(), returns the instant at the time of the call
on the specified clock in the timespec format:

struct timespec {

time_t tv_sec; /* seconds */

long tv_nsec; /* nanoseconds */

};

A brief comment on the structure and how to manage it is worth doing. The field
tv nsec are the nanoseconds from the last elapsed second. It is important to keep
this in mind when trying to compute the difference between to points in time where
the most recent instant counts less nanoseconds than the least recent one.
We managed to do it in the way reported in Figure 5.1.

Main target of our analysis are elapsed time and speedup of the two versions of
the solver and some of their parts. Elapsed times are specially important because it
is the time effectively perceived by a potential user of the solver.
The speedup will be computed for each timed part as ts/tp, where ts is the sequential
execution time and tp the parallel one.

5.2.2 Tools

Aside the important tools that compose the software environment that we men-
tioned in the previous section, we developed a couple of applications to support the
practical execution of the experiment.
A first application, called popmat, given the file name and the number of constraints

1Since the problem is given in input as an augmented canonical form, the number of variables
is comprised of slack variables.

2Unix and POSIX systems count time since 00:00:00 UTC on January 1, 1970. Such a starting
point is often called the Epoch.

CHAPTER 5. EXPERIMENTAL RESULTS 42

...

clock_gettime(CLOCK_REALTIME, &start);

...

clock_gettime(CLOCK_REALTIME, &end);

nsec = end.tv_nsec-start.tv_nsec;

if(nsec < 0)

{

nsec = 1E9+nsec;

end.tv_sec-=1;

}

printf("Elapsed time: %.9f\n",

(double)(end.tv_sec-start.tv_sec)+(double)(nsec*1E-9));

...

Figure 5.1: Timing technique.

and variables in canonical form, produces a file that contains the problem in aug-
mented standard form.
There are also matgen and clock, two python scripts responsible to instantiate the
problems, launch the tasks and capture the output, creating the files described at
the beginning of this section.
Python and C code for the applications can be found in Appendix B. To plot the
different diagrams we used Gnuplot3.

5.3 Results Elicitation and Analysis

A first performance result is shown in Figure 5.2. It represents the elapsed time
for the execution of both the versions of the LP solver. It presents a clear trend
during the execution of matrices with less then 900 constraints. After that point it
starts alternating good and very bad performance (even around 7s right after a few
executions). Looking closer at the output files it is possible to see that it is an effect
due to a lack of preciseness.
Significant deviation from expected results has been observed for values close to
zero. At two points in Algorithm 4 it is necessary to compare variables to zero.
Both the CPU and the CUDA implementations were too numerically inaccurate
to allow a direct comparison with zero. For this purpose variables are compared
with approximated values in the neighborhood of zero. Experimentally we found
two different zero tolerances for the GPU and the CPU. With the CPU we used a
tolerance ε = 10−4, while we used ε = 7x10−5 with the GPU.
So the CPU version turned out to be in some cases more precise than the GPU one.
Optimal values retrieved by the GPU appeared to be identical to those found by
the CPU until the fifth or the sixth decimal digit.
For problems where the optimal value is close to zero often the GPU cannot even

3http://gnuplot.info/

http://gnuplot.info/

CHAPTER 5. EXPERIMENTAL RESULTS 43

conclude the computation, protracting it (and creating huge delays) until a point
where the result is NaN.

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
la

p
se

d
 T

im
e

 (
s)

Number of variables and constraints

LP Solver Execution Time

CPU
GPU

Figure 5.2: Elapsed time for the two versions of the LP solver.

To better investigate the reason why the serial solver performs better for prob-
lems with less than 900 constraints, we may look at Figure 5.3. It shows a gap of
approximately 0.9s between the serial and the CUDA execution time. At this point
could be relevant to verify the time required by smaller parts of the two programs.
We acquired times for the three main task required by the revised algorithm, i.e.
entering variable search (Figure 5.4), leaving variable search (Figure 5.5), and in-
verse basis updating (Figure 5.6).
Analysing the data we can note that the entering value task performs practically
always worse on the GPU within a range of 0.1s.

The task is in turn composed by an algebraic (BLAS-implemented) and a not-
algebraic subsets of instructions. Since the CUBLAS routines contribute just for the
0.004% over the total amount of time in the CUDA version, we can conclude that
the biggest delay comes from the entering variable retrieval. The other two tasks
give better results, in particular the basis updating one. It always requires less than
10−4s.

Nevertheless, the entering variable retrieval task cannot be responsible for the 1s
gap between serial and parallel version for small to medium-sized problems. Indeed,
its delay contribution is still too small (0.5%). Actually, even summing up all the
retrieved times for all the three program sub-parts we still have a huge gap (≈ 0.9s).
The only remaining part not yet assessed, is the one related to allocation, dealloca-
tion, and movement of data between central memory and device memory. Timing
those parts we can realize that they exactly represent the reason of the 0.9s remain-
ing gap.

Data is allocated in main memory using the cudaMallocHost() function in order
to use pinned memory and set everything up for DMA transfers. With this expedient

CHAPTER 5. EXPERIMENTAL RESULTS 44

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500 600 700 800 900 1000

E
la

p
se

d
 T

im
e

 (
s)

Number of variables and constraints

LP Solver Execution Time

CPU
GPU

Figure 5.3: Elapsed time for the two versions of the LP solver until 1000 constraints.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
la

p
se

d
 T

im
e
 (

s)

Number of variables and constraints

Entering Variable Search Execution Time

CPU
GPU

Figure 5.4: Time to search for the entering variable.

we save time in transferring data, that requires at most times on the order of 10−3.
Anyway the routine requires an almost constant latency of 0.9s independently from
the problem size. That is exactly the amount of time that can be better perceived
when working with smaller problems.

5.3.1 Speedup Analysis

Figure 5.7 shows the overall speedup, while Figures 5.8, 5.9, 5.10 the local speedups
for the three main sub-tasks analyzed so far. The first figure, that shows the over-
all speedup, puts in evidence a speedup curve growing faster and faster for bigger
problems. It begins with a slow step up until a 0.5X factor around 1400 constraints.
From that point the speedup factor grows quicker, reaching values between 2X and

CHAPTER 5. EXPERIMENTAL RESULTS 45

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
la

p
se

d
 T

im
e

 (
s)

Number of variables and constraints

Leaving Variable Search Execution Time

CPU
GPU

Figure 5.5: Time to search for the leaving variable.

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
la

p
se

d
 T

im
e

 (
s)

Number of variables and constraints

Basis Updating Execution Time

CPU
GPU

Figure 5.6: Time to update and inverse the basis.

2.5X around 2000 constraints. The CUDA version starts outperforming the serial
one from problems with 1600-1800 constraints.
Looking carefully at the revised algorithm, we may notice that in some way the
GPU cannot be fully exploited if we completely support the algorithm control flow.
Many steps present data-dependency relations that can kill GPU occupancy for
small problems. Moreover, there at least two main closure points where there is to
transfer just a couple of values, i.e. when entering and leaving variable are found so
to test their signs.

The basis updating task in particular exhibits a speedup curve that grows for
increasing problem dimensions. It has to build the E matrix and to multiply it by
B−1. The matrix-matrix multiplication can be done efficiently both by the serial

CHAPTER 5. EXPERIMENTAL RESULTS 46

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
p
e

e
d

u
p

 [
ts

/t
p
]

Number of variables and constraints

LP Solver Speedup

Speedup

Figure 5.7: Overall speedup.

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
p
e
e
d
u
p

 [
ts

/t
p
]

Number of variables and constraints

Entering Variable Search Speedup

Speedup

Figure 5.8: Local speedup for the entering variable search task.

BLAS and by CUBLAS. On the other hand, The embarassingly parallel task of
building E finds rich soil in the GPU execution.

5.3.2 A Few Reflections

From the preciseness analysis we found that in some kind of computations a lack
in preciseness apart from giving wrong or less precise results, may also decrease the
whole application performance.
Even though some procedures like the entering variable retrieval have been found
improvable, they are not the main bottleneck. A possible improvement may be ob-
tained designing a bigger, more compact data structure that may better exploit the
transfer bandwidth.

CHAPTER 5. EXPERIMENTAL RESULTS 47

0

0.5

1

1.5

2

2.5

3

3.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
p
e

e
d

u
p

 [
ts

/t
p
]

Number of variables and constraints

Leaving Variable Search Speedup

Speedup

Figure 5.9: Local speedup for the leaving variable search task.

0

10000

20000

30000

40000

50000

60000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
p
e
e
d
u
p

 [
ts

/t
p
]

Number of variables and constraints

Basis Updating Speedup

Speedup

Figure 5.10: Local speedup for the basis updating task.

Finally, observing the whole experiment, we can say that the starting assumption
of doing GPGPU using solutions shareable with the serial programming paradigm,
does not produce great performance. This approach can sometimes dangerously
strangle the powerful computing capability of a GPU. From our experiment, we
noticed that this happens specially in presence of strong data dependencies in the
control flow. Redefining the solution so to remove single value comparisons for ex-
ample, may perform much better.

Chapter 6

Conclusions and Future Work

In this chapter we recap the main concepts exposed throughout the report, draw
our conclusions and list some potential future work.

We started focusing on recent technologies in the GPGPU area, namely the Tesla
architecture and the CUDA programming model. CUDA exposes some important
key abstractions, such as a hierarchy of synchronizable threads and different levels of
memory, that bring to several advantages. Two of them we think are quite relevant
since they represent the main difference between the old and the new concept of
GPGPU.
A first advantage given by the CUDA programming model is that it allows pro-
grammers to directly concentrate on the problem decomposition. Concentrating on
details such as graphics aspects, was the main stumbling rock for developers not
experts in graphics programming. A second positive aspect comes from the fact
that the CUDA programming model fits quite well to the Tesla processing model.
This is an important aspect that can help programmers to better exploit hardware
capabilities for producing efficient code. Those are two properties that make the
CUDA programming environment a good framework for high performance software
development.

Afterwards we introduced the linear programming topics. We gave a formal
definition for a linear programming problem, together with its geometrical inter-
pretation. We deepen the two main classes of methods used today to face linear
programming problem resolution: simplex-based methods, and interior point meth-
ods.
We considered both the classic and the revised definition of the simplex method,
and the Mehrotra’s primal-dual predictor-corrector method. Among all the pre-
sented techniques both the revised simplex method and the Mehrotra’s method
present a solving algorithm suited for GPUs. Some simplifications in the numerical
computation of the revised simplex method are possible, and make it, in our opinion,
preferable to the Mehrotra’s approach.

We then implemented both a sequential and a CUDA versions based on a com-
mon, execution-context independent model of the solving technique. With this we
mean that we did not rewrite the algorithm so to pander to specific characteristics of

48

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 49

one or the other execution-context. We simply defined the algorithm in a traditional
sequential fashion, we implemented the serial Atlas-based version of the application,
and finally we wrote the CUDA version based on a straightforward mapping between
sequential and parallel programming concepts.
Although it may appear a näıve approach, it was a first attempt to evaluate how
much it was possible to gain by simply pairing CUDA with a potentially paralleliz-
able algorithm.

6.1 Conclusions

The project aimed at developing a parallel, GPU-supported version of an established
algorithm for solving linear programming problems. A first conclusion is about the
time devoted to the development process. Using the new GPGPU approach pro-
vided by CUDA, implementing the application took almost as much as the process
of writing the serial code. More expensive is instead the debugging, which is still
poorly supported. Discovering bugs and errors in a CUDA kernel may require to
create extra and/or ad-hoc data structures to move partial computations back and
forth to the device. Code readability and comprehensibility are quite improved with
respect to past graphics-based examples.
Compared to the sequential application and to previous solutions developed with the
older GPGPU methodology, experimental outcomes confirmed that the application
written with CUDA scales reasonably well, solving large problems with thousands
of variables and constraints. Greeff [10] reports about the impossibility to solve
problems with more than 200 variables with its solution. The CUDA version had a
performance increase between 2 and 2.5 times over the serial version. However, for
smaller problems (less then 900 variables) the serial Atlas-based version still proved
to be the best choice. In the light of linear programming P -completeness such a
result looks quite appreciable. Local speedup of specific part of the application
showed the extreme versatility of GPUs to compute embarassingly parallel tasks,
turning out in speedup factors on the order of 1-4·104.
Great attention has to be paid when designing the communication between the
central system and the GPU device, which is still probably the main bottleneck in
heterogeneous software development. Performance is strongly related to a good data
transfer design.
Another important conclusion regards the preciseness factor. It turned out to still
be quite critical, specially for performance in those parts where the workload strictly
depends on precision, such as comparisons that may anticipate the end of the com-
putation. We used different tolerances to approximate zero with near-zero floating
point values. The CPU defeated the GPU from this point of view, being an order
of magnitude more precise than the graphics unit.
Finally, it is worth remarking that even though the GPU-supported version is slower
than the serial one for smaller problems, the use of the GPU helps offloading the
CPU. This is undoubtedly a positive effect, even more if the application is used in
a multithreaded environment.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 50

6.2 Future Work

As we mentioned, we applied a simple mapping approach to pass from the serial to
the CUDA version of the application. The fact that the GPU only shows speedups
above certain problem sizes, should motivate a better redefinition of the solving
approach, considering the heterogeneous execution context directly from the algo-
rithm design stage. Furthermore, a redesign of the data structures in view of a more
efficient data transfer has also to be taken into account.
It would be interesting also to keep going with the development of optimization
software based on GPU in the light of the most recent GPGPU novelties, such as
those presented in this report or new ones likely to become effective standards, like
OpenCL [3]. It should include the implementation of alternative solving methods
like interior point methods, trying to verify which method is less influenced by the
precision factor.
We finally think that standardization is also an important goal. The tool should
be able to manage problems stored in standard formats accepted by the most used
commercial and academic solvers, like the MPS [20] or CPLEX [2] formats. This
may allow to compare the application with other efficient software and eventually
promote a wider adoption.

Bibliography

[1] “BLAS - basic linear algebra subprograms,” http://www.netlib.org/blas/index.
html, last seen Jan. 2008.

[2] “ILOG CPLEX,” http://www.ilog.com/products/cplex/, last seen Jan. 2008.

[3] “OpenCL,” http://www.khronos.org/opencl/, last seen Jan. 2008.

[4] T. Akenine-Möller and J. Ström, “Graphics processing units for handhelds,”
Proceedings of the IEEE, vol. 96, no. 5, pp. 779–789, May 2008.

[5] D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimization. Athena
Scientific, 1997.

[6] D. Bertsimas and R. Weismantel, Optimization Over Integers. Dynamic Ideas,
2005.

[7] D. Blythe, “Rise of the graphics processor,” Proceedings of the IEEE, vol. 96,
no. 5, pp. 761–778, May 2008.

[8] G. B. Dantzig and W. Orchard-Hays, “Alternate algorithm for the revised sim-
plex method: Using a product form of the inverse,” RAND, Nov. 1953.

[9] R. Farber, “CUDA, supercomputing for the masses,” http://www.ddj.com/
architect/207200659, Apr. 2008, last seen Jan. 2008.

[10] G. Greeff, “The revised simplex algorithm on a GPU,” University of Stellen-
bosch, Tech. Rep., Feb. 2005.

[11] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo, Limits to Parallel Computation:
P-Completeness Theory. Oxford University Press, 1995.

[12] J. H. Junk and D. P. O’Leary, “Implementing an interior point method for
linear programs on a CPU-GPU system,” Electronic Transaction on Numerical
Analysis, vol. 28, pp. 174–189, 2008.

[13] N. Karmarkar, “A new polynomial-time algorithm for linear programming,”
Combinatorica, vol. 4, no. 4, pp. 373–395, 1984.

[14] L. G. Khachian, “A polynomial time algorithm for linear programming,” Dok-
lady Akademii Nauk SSSR, vol. 244, no. 5, pp. 1093–1096, 1979, english trans-
lation in Soviet Mathematics Doklady, vol. 20, pp. 191-194.

51

http://www.netlib.org/blas/index.html
http://www.netlib.org/blas/index.html
http://www.ilog.com/products/cplex/
http://www.khronos.org/opencl/
http://www.ddj.com/architect/207200659
http://www.ddj.com/architect/207200659

BIBLIOGRAPHY 52

[15] J. L. Manferdelli, N. K. Govindaraju, and C. Crall, “Challenges and opportu-
nities in many-core computing,” Proceedings of the IEEE, vol. 96, no. 5, pp.
808–815, May 2008.

[16] W. R. Mark, R. S. Glanville, K. Akeley, and M. Kilgard, “Cg: a system for
programming graphics hardware in a C-like language,” ACM Transactions on
Graphics, vol. 22, no. 3, pp. 896–907, 2003.

[17] M. D. McCool, “Scalable programming models for massively multicore proces-
sors,” Proceedings of the IEEE, vol. 96, no. 5, pp. 816–831, May 2008.

[18] S. Mehrotra, “On the implementation of a primal-dual interior point method,”
SIAM Journal on Optimization, vol. 2, pp. 575–601, 1992.

[19] S. S. Morgan, “A comparison of simplex method algorithms,” Master’s thesis,
University of Florida, Jan. 1997.

[20] B. Murtagh, Advanced Linear Programming: Computation and Practice.
McGraw-Hill, 1981.

[21] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel program-
ming with CUDA,” ACM Queue, vol. 6, no. 2, pp. 40–53, March/April 2008.

[22] CUDA - CUBLAS Library 2.0, NVIDIA Corporation.

[23] NVIDIA CUDA Programming Guide Version 2.0, NVIDIA Corporation.

[24] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips,
“GPU computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899, May
2008.

[25] J. Peddie, “GPU market defies gravity - so far,” http://www.jonpeddie.com/
press-releases/gpu market defies gravity so far/, Oct. 2008, last seen Jan. 2008.

[26] M. Salahi, J. Peng, and T. Terlaky, “On mehrotra-type predictor-corrector
algorithms,” SIAM Journal on Optimization, vol. 18, no. 4, pp. 1377–1397,
Oct. 2007.

[27] L. A. Wolsey, Integer Programming. Wiley, 1998.

http://www.jonpeddie.com/press-releases/gpu_market_defies_gravity_so_far/
http://www.jonpeddie.com/press-releases/gpu_market_defies_gravity_so_far/

Appendix A

Linear Programming Solvers

A.1 Serial Version

A.1.1 Main Module: lpsolver.c

#include "matman.h"

#include "liblp.h"

#include <sys/types.h>

#include <time.h>

#include <cblas.h>

#define MAX_ITER 1000

/**

* Arrays’ indexes follow the C convention (0 <= i < N)

**/

// Main problem arrays: costs and constrains

float *c, *A, *b;

// Binv: Basis matrix inverse

// newBinv: temporary matrix inverse for swap purposes

// E: used to compute the inversion using just one mm multiplication

// newBinv = E * Binv

float *Binv, *newBinv, *E;

// e: cost contributions vector used to determine the entering variable

// D, y, yb: arrays used to compute the cost contributions vector

// D = [-c ; A] y = cb * Binv yb = [1 y] e = yb * D

float *D, *y, *yb, *e;

float *I; // Identity matrix Im

// xb: current basis

53

APPENDIX A. LINEAR PROGRAMMING SOLVERS 54

// cb: basis costs

// xb = Binv * b

float *cb, *xb;

// A_e: entering variable column of constraint factors

// alpha: the pivotal vector used to determine the leaving variable

// theta: Increases vector

// alpha = Binv * A_e

float *A_e, *alpha, *theta;

// Vector of flags indicating valid increases

// (valid alpha[i]) <==> (theta_flag[i] == 1)

int *theta_flag;

// Vector containing basis variables’ indexes

int *bi;

// Constraints matrix dimensions m and n.

// Indexes of the entering and leaving variables.

int m, n, ev, lv;

// Cost to optimize

// z = c * x

float z;

void help();

/****************** MAIN *********************/

int main(int argc, char **argv)

{

int i, opt, ret;

FILE *sourcefile;

struct timespec start, end, ev_start, ev_end, lv_start, lv_end,

b_start, b_end;

struct timespec blas_end;

long nsec;

switch(argc)

{

case 2:

if(strcmp(argv[1],"-h")==0 || strcmp(argv[1],"--help")==0)

{

help();

} else

if((sourcefile = fopen(argv[1], "r")) == NULL)

{

APPENDIX A. LINEAR PROGRAMMING SOLVERS 55

printf("Error opening %s\n", argv[2]);

return 1;

}

break;

default:

printf("Wrong parameter sequence.\n");

return 1;

}

clock_gettime(CLOCK_REALTIME, &start);

// read m and n

fscanf(sourcefile, "%d%d", &m, &n);

if(m>n)

{

printf("Error: it should be n>=m\n");

return 1;

}

printf("m=%d n=%d\n", m, n);

printf("Size: %d\n", m*n);

//Initialize all arrays

// c

allocate_array(&c, 1, n);

read_array(sourcefile, c, 1, n);

// b

allocate_array(&b, m, 1);

read_array(sourcefile, b, m, 1);

// A

allocate_array(&A, m, n);

read_array(sourcefile, A, m, n);

//Close source file

fclose(sourcefile);

// Im

create_identity_matrix(&I, m);

// Binv, newBinv, E

allocate_array(&Binv, m, m);

allocate_array(&newBinv, m, m);

allocate_array(&E, m, m);

// Initialize Binv = Im

memcpy(Binv, I, m*m*sizeof(float));

APPENDIX A. LINEAR PROGRAMMING SOLVERS 56

// D, y, yb, e

allocate_array(&D, m+1, n);

allocate_array(&y, 1, m);

allocate_array(&yb, 1, m+1);

allocate_array(&e, 1, n);

// Set first element of yb = 1

yb[0] = 1;

// Initialize D = [-c ; A]

memcpy(D, c, n*sizeof(float));

cblas_sscal(n, -1, D, 1);

memcpy(&D[n], A, m*n*sizeof(float));

// cb, xb

allocate_array(&cb, 1, m);

allocate_array(&xb, m, 1);

// Initialize with the last m elements of c

memcpy(cb, &c[n-m], m*sizeof(float));

memcpy(xb, b, m*sizeof(float));

// A_e, alpha, theta

allocate_array(&A_e, m, 1);

allocate_array(&alpha, m, 1);

allocate_array(&theta, 1, m);

// theta_flag & bi

allocate_int_array(&theta_flag, 1, m);

allocate_int_array(&bi, 1, m);

// Initialize with the basis indexes

for(i=0; i < m; i++)

bi[i] = (n-m)+i;

// Optimization loop

i=0;

do {

/* Timing */

clock_gettime(CLOCK_REALTIME, &ev_start);

/* Timing */

// y = cb*Binv

cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,

1, m, m, 1, cb, m, Binv, m, 0, y, m);

memcpy(&yb[1], y, m*sizeof(float));

// e = [1 y]*[-c ; A]

APPENDIX A. LINEAR PROGRAMMING SOLVERS 57

cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,

1, n, m+1, 1, yb, n, D, n, 0, e, n);

/* Timing */

clock_gettime(CLOCK_REALTIME, &blas_end);

/* Timing */

ev = entering_index(e, n);

/* Timing */

clock_gettime(CLOCK_REALTIME, &ev_end);

/* Timing */

if(e[ev] >= -EPS)

{

opt = 1;

break;

}

// alpha = Binv*A_e

/* Timing */

clock_gettime(CLOCK_REALTIME, &lv_start);

/* Timing */

extract_column(A, A_e, ev, n, m);

cblas_sgemv(CblasRowMajor, CblasNoTrans, m, m, 1,

Binv, m, A_e, 1, 0, alpha, 1);

compute_theta(xb, alpha, theta, theta_flag, m);

lv = leaving_index(theta, theta_flag, m);

/* Timing */

clock_gettime(CLOCK_REALTIME, &lv_end);

/* Timing */

if(lv < 0)

{

opt = 2;

break;

}

/* Timing */

clock_gettime(CLOCK_REALTIME, &b_start);

/* Timing */

if(compute_E(E, alpha, I, m, lv))

{

opt = 3;

break;

}

// Binv = E*Binv

cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,

m, m, m, 1, E, m, Binv, m, 0, newBinv, m);

memcpy(Binv, newBinv, m*m*sizeof(float));

/* Timing */

APPENDIX A. LINEAR PROGRAMMING SOLVERS 58

clock_gettime(CLOCK_REALTIME, &b_end);

/* Timing */

// Update cb

bi[lv] = ev;

cb[lv] = c[ev];

// xb=Binv*b

cblas_sgemv(CblasRowMajor, CblasNoTrans, m, m, 1,

Binv, m, b, 1, 0, xb, 1);

i++;

} while(i<MAX_ITER);

if(opt == 1)

{

cblas_sgemv(CblasRowMajor,CblasNoTrans,

1, m, 1, cb, m, xb, 1, 0, &z, 1);

printf("Optimum found: %f\n", z);

for(i=0; i<m; i++)

printf("x_%d = %f\n", bi[i], xb[i]);

} else if(opt == 2)

printf("Problem unbounded.\n");

else printf("Problem unsolvable: either qth==0 or loop too long.\n");

// Deallocate arrays

free_array(A);

free_array(b);

free_array(c);

free_array(D);

free_array(E);

free_array(I);

free_array(A_e);

free_array(Binv);

free_array(newBinv);

free_array(cb);

free_array(xb);

free_array(y);

free_array(yb);

free_array(e);

free_array(alpha);

free_array(theta);

free_array(theta_flag);

free_array(bi);

clock_gettime(CLOCK_REALTIME, &end);

//Overall time

nsec = end.tv_nsec-start.tv_nsec;

APPENDIX A. LINEAR PROGRAMMING SOLVERS 59

if(nsec < 0)

{

nsec = 1E9+nsec;

end.tv_sec-=1;

}

printf("Elapsed time: %.9f\n",

(double)(end.tv_sec-start.tv_sec)+(double)(nsec*1E-9));

//BLAS entering variable computation time

nsec = blas_end.tv_nsec-ev_start.tv_nsec;

if(nsec < 0)

{

nsec = 1E9+nsec;

blas_end.tv_sec-=1;

}

printf("BLAS entering variable computation time: %.9f\n",

(double)(blas_end.tv_sec-ev_start.tv_sec)+(double)(nsec*1E-9));

//Entering variable computation time

nsec = ev_end.tv_nsec-ev_start.tv_nsec;

if(nsec < 0)

{

nsec = 1E9+nsec;

ev_end.tv_sec-=1;

}

printf("Entering variable computation time: %.9f\n",

(double)(ev_end.tv_sec-ev_start.tv_sec)+(double)(nsec*1E-9));

//Leaving variable computation time

nsec = lv_end.tv_nsec-lv_start.tv_nsec;

if(nsec < 0)

{

nsec = 1E9+nsec;

lv_end.tv_sec-=1;

}

printf("Leaving variable computation time: %.9f\n",

(double)(lv_end.tv_sec-lv_start.tv_sec)+(double)(nsec*1E-9));

//Binv updating time

nsec = b_end.tv_nsec-b_start.tv_nsec;

if(nsec < 0)

{

nsec = 1E9+nsec;

APPENDIX A. LINEAR PROGRAMMING SOLVERS 60

b_end.tv_sec-=1;

}

printf("Binv updating time: %.9f\n",

(double)(b_end.tv_sec-b_start.tv_sec)+(double)(nsec*1E-9));

return 0;

}

void help()

{

printf("Input format:\n");

printf("M N <vector c> <vector b> <matrix A>\n");

}

A.1.2 liblp.c

#include "liblp.h"

#include "matman.h"

int entering_index(float *v, int size)

{

int i;

int min_i = 0;

for(i = 1; i < size; i++)

if(v[i] < v[min_i])

min_i = i;

return min_i;

}

int leaving_index(float *t, int *flag, int size)

{

int i;

int minpos_i = -1;

for(i=0; i< size; i++)

{

if(minpos_i < 0)

{

if((flag[i] > 0) && (t[i] >= -EPS))

minpos_i=i;

} else

{

if((flag[i] > 0) && (t[i] >= -EPS) && (t[i] < t[minpos_i]))

minpos_i=i;

}

}

APPENDIX A. LINEAR PROGRAMMING SOLVERS 61

return minpos_i;

}

void compute_theta(float *x, float *a, float *t, int *flag, int size)

{

int i;

for(i = 0; i < size; i++)

if(a[i] > 0)

{

flag[i]=1;

t[i]=x[i]/a[i];

} else flag[i]=0;

}

int compute_E(float *E, float *a, float *I, int size, int li)

{

int i;

float qth = a[li];

if((qth >= -EPS) && (qth <= EPS))

{

printf("qth == 0....exit...\n");

return 1;

}

memcpy(E, I, size*size*sizeof(float));

for(i = 0; i < size; i++)

a[i] = -a[i]/qth;

a[li]=1/qth;

for(i = 0; i < size; i++)

E[(i*size)+li] = a[i];

return 0;

}

void extract_column(float *M, float *v, int start_i, int stride, int size)

{

int i;

for(i = 0; i<size; i++)

v[i] = M[start_i+(i*stride)];

}

void create_identity_matrix(float **m, int size)

{

APPENDIX A. LINEAR PROGRAMMING SOLVERS 62

int i;

allocate_array(m, size, size);

for(i=0; i<size; i++)

(*m)[i*size+i] = 1;

}

A.1.3 matman.c

#include "matman.h"

/**

* Allocate array of float initialized to all bits 0.

* Returns 1 if there is an error, 0 otherwise

*/

int allocate_array(float **a, int m, int n)

{

if((*a = (float *)calloc(m*n, sizeof(float))) == NULL)

return 1;

return 0;

}

/**

* Allocate array of int initialized to all bits 0.

* Returns 1 if there is an error, 0 otherwise

*/

int allocate_int_array(int **a, int m, int n)

{

if((*a = (int *) calloc(m * n, sizeof(int))) == NULL)

return 1;

return 0;

}

// Print an array of float in the proper format

void display_array(char *name, float *a, int m, int n)

{

int i, j;

printf("Array %s:\n", name);

for(i=0;i<m;i++)

{

for(j=0; j<n;j++)

printf("%f ", a[(i*n)+j]);

printf("\n");

}

}

APPENDIX A. LINEAR PROGRAMMING SOLVERS 63

//Print an array of integer in the proper format

void display_int_array(char *name, int *a, int m, int n)

{

int i, j;

printf("Int array %s:\n", name);

for(i=0;i<m;i++)

{

for(j=0; j<n;j++)

printf("%d ", a[(i*n)+j]);

printf("\n");

}

}

/**

* Read array from standard input.

*/

int read_array(FILE *file, float *a, int m, int n)

{

int i, dim;

dim = m*n;

//Data from the standard input.

for(i = 0; i < dim; i++)

{

fscanf(file, "%f", &a[i]); //Get the ith-element of the matrix from

} //the command line, converting it

//from text to float

return 0;

}

// Release allocated memory

void free_array(void *a)

{

free(a);

}

A.2 CUDA Version

A.2.1 Main Module: culpsolver.cpp

#include "cumatman.h"

#include "culiblp.h"

#include <sys/types.h>

#include <time.h>

APPENDIX A. LINEAR PROGRAMMING SOLVERS 64

/**

* Arrays’ indexes follow the C convention (0 <= i < N)

**/

// Main problem arrays: costs and constrains

float *c, *A, *b, *xb;

int *bi;

float z;

struct timespec ev_start, ev_end, lv_start, lv_end, b_start,

b_end, alloc_start, alloc_end, dealloc_start, dealloc_end, init_start, init_end;

struct timespec blas_end;

void help();

/****************** MAIN *********************/

int main(int argc, char **argv)

{

int i, m, n;

FILE *sourcefile;

struct timespec start, end, read_start, read_end, hostall_start, hostall_end;

long nsec;

switch(argc)

{

case 2:

if(strcmp(argv[1],"-h")==0 || strcmp(argv[1],"--help")==0)

{

help();

} else

if((sourcefile = fopen(argv[1], "r")) == NULL)

{

printf("Error opening %s\n", argv[2]);

return 1;

}

break;

default:

printf("Wrong parameter sequence.\n");

return 1;

}

clock_gettime(CLOCK_REALTIME, &start);

// read m and n

fscanf(sourcefile, "%d%d", &m, &n);

APPENDIX A. LINEAR PROGRAMMING SOLVERS 65

if(m>n)

{

printf("Error: it should be n>=m\n");

return 1;

}

printf("m=%d n=%d\n", m, n);

printf("Size: %d\n", m*n);

//Initialize all arrays

clock_gettime(CLOCK_REALTIME, &hostall_start);

allocate_array(&c, 1, n);

allocate_array(&b, m, 1);

allocate_array(&A, m, n);

clock_gettime(CLOCK_REALTIME, &hostall_end);

clock_gettime(CLOCK_REALTIME, &read_start);

// c

read_array(sourcefile, c, 1, n);

// b

read_array(sourcefile, b, m, 1);

// A

read_array(sourcefile, A, m, n);

clock_gettime(CLOCK_REALTIME, &read_end);

//Close source file

fclose(sourcefile);

// xb

allocate_array(&xb, 1, m);

// bi

allocate_int_array(&bi, 1, m);

z = lpsolve(A, b, c, xb, bi, m, n);

if(isnan(z))

printf("Problem unsolvable: either qth==0 or loop too long.\n");

else if(isinf(z))

printf("Problem unbounded.\n");

else {

printf("Optimum found: %f\n", z);

for(i=0; i<m; i++)

APPENDIX A. LINEAR PROGRAMMING SOLVERS 66

printf("x_%d = %f\n", bi[i], xb[i]);

}

// Deallocate arrays

free_array(A);

free_array(b);

free_array(c);

free_array(xb);

free_array(bi);

clock_gettime(CLOCK_REALTIME, &end);

nsec = end.tv_nsec-start.tv_nsec;

if(nsec < 0)

{

nsec = 1E9+nsec;

end.tv_sec-=1;

}

printf("Elapsed time: %.9f\n",

(double)(end.tv_sec-start.tv_sec)+(double)(nsec*1E-9));

//Read computation time

nsec = read_end.tv_nsec-read_start.tv_nsec;

if(nsec < 0)

{

nsec = 1E9+nsec;

read_end.tv_sec-=1;

}

printf("Read time: %.9f\n",

(double)(read_end.tv_sec-read_start.tv_sec)+(double)(nsec*1E-9));

//Host alloc computation time

nsec = hostall_end.tv_nsec-hostall_start.tv_nsec;

if(nsec < 0)

{

nsec = 1E9+nsec;

hostall_end.tv_sec-=1;

}

printf("Host allocation time: %.9f\n",

(double)(hostall_end.tv_sec-hostall_start.tv_sec)+(double)(nsec*1E-9));

//BLAS entering variable computation time

nsec = blas_end.tv_nsec-ev_start.tv_nsec;

if(nsec < 0)

{

APPENDIX A. LINEAR PROGRAMMING SOLVERS 67

nsec = 1E9+nsec;

blas_end.tv_sec-=1;

}

printf("BLAS entering variable computation time: %.9f\n",

(double)(blas_end.tv_sec-ev_start.tv_sec)+(double)(nsec*1E-9));

//Entering variable computation time

nsec = ev_end.tv_nsec-ev_start.tv_nsec;

if(nsec < 0)

{

nsec = 1E9+nsec;

ev_end.tv_sec-=1;

}

printf("Entering variable computation time: %.9f\n",

(double)(ev_end.tv_sec-ev_start.tv_sec)+(double)(nsec*1E-9));

//Alloc computation time

nsec = alloc_end.tv_nsec-alloc_start.tv_nsec;

if(nsec < 0)

{

nsec = 1E9+nsec;

alloc_end.tv_sec-=1;

}

printf("Alloc time: %.9f\n",

(double)(alloc_end.tv_sec-alloc_start.tv_sec)+(double)(nsec*1E-9));

//Dealloc computation time

nsec = dealloc_end.tv_nsec-dealloc_start.tv_nsec;

if(nsec < 0)

{

nsec = 1E9+nsec;

dealloc_end.tv_sec-=1;

}

printf("Dealloc time: %.9f\n",

(double)(dealloc_end.tv_sec-dealloc_start.tv_sec)+(double)(nsec*1E-9));

//Init computation time

nsec = init_end.tv_nsec-init_start.tv_nsec;

if(nsec < 0)

{

nsec = 1E9+nsec;

init_end.tv_sec-=1;

}

APPENDIX A. LINEAR PROGRAMMING SOLVERS 68

printf("Init time: %.9f\n",

(double)(init_end.tv_sec-init_start.tv_sec)+(double)(nsec*1E-9));

//Leaving variable computation time

nsec = lv_end.tv_nsec-lv_start.tv_nsec;

if(nsec < 0)

{

nsec = 1E9+nsec;

lv_end.tv_sec-=1;

}

printf("Leaving variable computation time: %.9f\n",

(double)(lv_end.tv_sec-lv_start.tv_sec)+(double)(nsec*1E-9));

//Binv updating time

nsec = b_end.tv_nsec-b_start.tv_nsec;

if(nsec < 0)

{

nsec = 1E9+nsec;

b_end.tv_sec-=1;

}

printf("Binv updating time: %.9f\n",

(double)(b_end.tv_sec-b_start.tv_sec)+(double)(nsec*1E-9));

return 0;

}

void help()

{

printf("Input format:\n");

printf("M N <vector c> <vector b> <matrix A>\n");

}

A.2.2 culiblp.cu

#include <stdio.h>

#include "culiblp.h"

#include "cumatman.h"

int kn, km, km1;

int *devidx;

float *devred, *devtemp;

APPENDIX A. LINEAR PROGRAMMING SOLVERS 69

// test stuff

float *tmm, *tmn, *tm1n, *t1m, *t1n, *t1m1;

int *it1m;

// test stuff

float lpsolve(float *A, float *b, float *c, float *xb, int *bi, int m, int n)

{

int i, opt;

cublasStatus stat;

float *devc, *devA, *devb;

// Binv: Basis matrix inverse

// newBinv: temporary matrix inverse for swap purposes

// E: used to compute the inversion using just one mm multiplication

// newBinv = E * Binv

float *devBinv, *devnewBinv, *devE;

// e: cost contributions vector used to determine the entering variable

// D, y, yb: arrays used to compute the cost contributions vector

// D = [-c ; A] y = cb * Binv yb = [1 y] e = yb * D

float *devD, *devy, *devyb, *deve;

// xb: current basis

// cb: basis costs

// xb = Binv * b

float *devcb, *devxb;

// A_e: entering variable column of constraint factors

// alpha: the pivotal vector used to determine the leaving variable

// theta: Increases vector

// alpha = Binv * A_e

float *devA_e, *devalpha, *devtheta;

// Vector of flags indicating valid increases

// (valid alpha[i]) <==> (theta_flag[i] == 1)

int *devtheta_flag;

// Vector containing basis variables’ indexes

int *devbi;

//Counter for unbounded solution checking

int *devnum_max;

// Indexes of the entering and leaving variables.

APPENDIX A. LINEAR PROGRAMMING SOLVERS 70

int ei, li;

// Cost to optimize

// z = c * x

float z;

//Proper dimensions for kernel grids

kn = (int)ceil((float)n/BS);

km = (int)ceil((float)m/BS);

km1 = (int)ceil((float)(m+1)/BS);

//CUBLAS initialization

/* Timing */

clock_gettime(CLOCK_REALTIME, &alloc_start);

/* Timing */

stat = cublasInit();

if(stat != CUBLAS_STATUS_SUCCESS)

{

printf("Device memory allocation failed.\n");

return 1;

}

// c

stat = cublasAlloc(n, sizeof(*c), (void **)&devc);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_ALLOC_FAILED)

printf("Memory allocation failed: lack of resources.\n");

else printf("Error in allocation.\n");

return 1;

}

// b

stat = cublasAlloc(m, sizeof(*b), (void **)&devb);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_ALLOC_FAILED)

printf("Memory allocation failed: lack of resources.\n");

else printf("Error in allocation.\n");

return 1;

}

// A

stat = cublasAlloc(m*n, sizeof(*A), (void **)&devA);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_ALLOC_FAILED)

APPENDIX A. LINEAR PROGRAMMING SOLVERS 71

printf("Memory allocation failed: lack of resources.\n");

else printf("Error in allocation.\n");

return 1;

}

// Binv, newBinv, E

stat = cublasAlloc(m*m, sizeof(*devBinv), (void **)&devBinv);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_ALLOC_FAILED)

printf("Memory allocation failed: lack of resources.\n");

else printf("Error in allocation.\n");

return 1;

}

stat = cublasAlloc(m*m, sizeof(*devnewBinv), (void **)&devnewBinv);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_ALLOC_FAILED)

printf("Memory allocation failed: lack of resources.\n");

else printf("Error in allocation.\n");

return 1;

}

stat = cublasAlloc(m*m, sizeof(*devE), (void **)&devE);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_ALLOC_FAILED)

printf("Memory allocation failed: lack of resources.\n");

else printf("Error in allocation.\n");

return 1;

}

// D, y, yb, e

stat = cublasAlloc((m+1)*n, sizeof(*devD), (void **)&devD);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_ALLOC_FAILED)

printf("Memory allocation failed: lack of resources.\n");

else printf("Error in allocation.\n");

return 1;

}

stat = cublasAlloc(m, sizeof(*devy), (void **)&devy);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_ALLOC_FAILED)

APPENDIX A. LINEAR PROGRAMMING SOLVERS 72

printf("Memory allocation failed: lack of resources.\n");

else printf("Error in allocation.\n");

return 1;

}

stat = cublasAlloc(m+1, sizeof(*devyb), (void **)&devyb);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_ALLOC_FAILED)

printf("Memory allocation failed: lack of resources.\n");

else printf("Error in allocation.\n");

return 1;

}

stat = cublasAlloc(n, sizeof(*deve), (void **)&deve);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_ALLOC_FAILED)

printf("Memory allocation failed: lack of resources.\n");

else printf("Error in allocation.\n");

return 1;

}

// cb, xb

stat = cublasAlloc(m, sizeof(*devcb), (void **)&devcb);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_ALLOC_FAILED)

printf("Memory allocation failed: lack of resources.\n");

else printf("Error in allocation.\n");

return 1;

}

stat = cublasAlloc(n, sizeof(*devxb), (void **)&devxb);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_ALLOC_FAILED)

printf("Memory allocation failed: lack of resources.\n");

else printf("Error in allocation.\n");

return 1;

}

// A_e, alpha, theta

stat = cublasAlloc(m, sizeof(*devA_e), (void **)&devA_e);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_ALLOC_FAILED)

APPENDIX A. LINEAR PROGRAMMING SOLVERS 73

printf("Memory allocation failed: lack of resources.\n");

else printf("Error in allocation.\n");

return 1;

}

stat = cublasAlloc(m, sizeof(*devalpha), (void **)&devalpha);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_ALLOC_FAILED)

printf("Memory allocation failed: lack of resources.\n");

else printf("Error in allocation.\n");

return 1;

}

stat = cublasAlloc(m, sizeof(*devtheta), (void **)&devtheta);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_ALLOC_FAILED)

printf("Memory allocation failed: lack of resources.\n");

else printf("Error in allocation.\n");

return 1;

}

// red, temp, idx

stat = cublasAlloc(km, sizeof(*devred), (void **)&devred);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_ALLOC_FAILED)

printf("Memory allocation failed: lack of resources.\n");

else printf("Error in allocation.\n");

return 1;

}

stat = cublasAlloc(km, sizeof(*devtemp), (void **)&devtemp);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_ALLOC_FAILED)

printf("Memory allocation failed: lack of resources.\n");

else printf("Error in allocation.\n");

return 1;

}

stat = cublasAlloc(1, sizeof(*devidx), (void **)&devidx);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_ALLOC_FAILED)

printf("Memory allocation failed: lack of resources.\n");

APPENDIX A. LINEAR PROGRAMMING SOLVERS 74

else printf("Error in allocation.\n");

return 1;

}

// num_max

stat = cublasAlloc(1, sizeof(*devnum_max), (void **)&devnum_max);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_ALLOC_FAILED)

printf("Memory allocation failed: lack of resources.\n");

else printf("Error in allocation.\n");

return 1;

}

// theta_flag & bi

stat = cublasAlloc(m, sizeof(*devtheta_flag), (void **)&devtheta_flag);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_ALLOC_FAILED)

printf("Memory allocation failed: lack of resources.\n");

else printf("Error in allocation.\n");

return 1;

}

stat = cublasAlloc(m, sizeof(*devbi), (void **)&devbi);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_ALLOC_FAILED)

printf("Memory allocation failed: lack of resources.\n");

else printf("Error in allocation.\n");

return 1;

}

/* Timing */

clock_gettime(CLOCK_REALTIME, &alloc_end);

/* Timing */

/* Timing */

clock_gettime(CLOCK_REALTIME, &init_start);

/* Timing */

//Move A,b,c(,yb,D) on device

stat = cublasSetMatrix(m, n, sizeof(*A), A, m, devA, m);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_MAPPING_ERROR)

printf("Error accessing device memory.\n");

else printf("Setting error.\n");

return 1;

APPENDIX A. LINEAR PROGRAMMING SOLVERS 75

}

stat = cublasSetVector(m, sizeof(*b), b, 1, devb, 1);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_MAPPING_ERROR)

printf("Error accessing device memory.\n");

else printf("Setting error.\n");

return 1;

}

stat = cublasSetVector(n, sizeof(*c), c, 1, devc, 1);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_MAPPING_ERROR)

printf("Error accessing device memory.\n");

else printf("Setting error.\n");

return 1;

}

//Initialize yb

zeros<<<km1, BS>>>(devyb, 1, m);

init_yb<<<1, BS>>>(devyb);

//Initialize D

init_cInD<<<kn, BS>>>(devc, devD, m+1, n);

init_AInD<<<dim3(kn, km1), dim3(BS, BS)>>>(devA, devD, m, n);

//Initialize devBinv <- Im

init_I<<<dim3(km, km), dim3(BS, BS)>>>(devBinv, m);

//devcb <- devc[n-m] to devc[n]

cublasScopy(m, &devc[n-m], 1, devcb, 1);

//devxb <- devb

cublasScopy(m, devb, 1, devxb, 1);

//devbi[i] = (n-m)+i

init_bi<<<km, BS>>>(devbi, m, n);

/* Timing */

clock_gettime(CLOCK_REALTIME, &init_end);

/* Timing */

i=0;

do {

/* Timing */

APPENDIX A. LINEAR PROGRAMMING SOLVERS 76

clock_gettime(CLOCK_REALTIME, &ev_start);

/* Timing */

// y = cb*Binv

cublasSgemm(’N’, ’N’, 1, m, m, 1.0f, devcb, 1, devBinv, m, 0.0f, devy, 1);

cublasScopy(m, devy, 1, &devyb[1], 1);

// e = [1 y]*[-c ; A]

cublasSgemm(’N’, ’N’, 1, n, m+1, 1.0f, devyb, 1, devD, m+1, 0.0f, deve, 1);

/* Timing */

clock_gettime(CLOCK_REALTIME, &blas_end);

/* Timing */

ei = entering_index(deve, n);

/* Timing */

clock_gettime(CLOCK_REALTIME, &ev_end);

/* Timing */

if(ei < 0)

{

opt = 1;

break;

}

// alpha = Binv*A_e

/* Timing */

clock_gettime(CLOCK_REALTIME, &lv_start);

/* Timing */

extract_column(devA, devA_e, ei, n, m);

cublasSgemv(’N’, m, m, 1.0f, devBinv, m, devA_e, 1, 0.0f, devalpha, 1);

int num_max;

cudaMemset(devnum_max, 0, 1);

compute_theta<<<km, BS>>>(devxb, devalpha, devtheta,

devtheta_flag, m, devnum_max);

cudaMemcpy(&num_max, devnum_max, sizeof(int), cudaMemcpyDeviceToHost);

if(num_max == m)

{

opt = 2;

break;

}

li = leaving_index(devtheta, devtheta_flag, m);

/* Timing */

clock_gettime(CLOCK_REALTIME, &lv_end);

/* Timing */

/* Timing */

clock_gettime(CLOCK_REALTIME, &b_start);

/* Timing */

APPENDIX A. LINEAR PROGRAMMING SOLVERS 77

if(compute_E(devE, devalpha, m, li))

{

opt = 3;

break;

}

// Binv = E*Binv

cublasSgemm(’N’, ’N’, m, m, m, 1.0f, devE, m, devBinv, m, 0.0f,

devnewBinv, m);

cublasScopy(m*m, devnewBinv, 1, devBinv, 1);

/* Timing */

clock_gettime(CLOCK_REALTIME, &b_end);

/* Timing */

//bi[lv] = ev;

//cb[lv] = c[ev];

update_bi_cb<<<km, BS>>>(devbi, devcb, devc, li, ei);

// xb=Binv*b

cublasSgemv(’N’, m, m, 1.0f, devBinv, m, devb, 1, 0.0f, devxb, 1);

i++;

} while(i<MAX_ITER);

if(opt == 1)

{

z = cublasSdot(m, devcb, 1, devxb, 1);

stat = cublasGetVector(m, sizeof(*devxb), devxb, 1, xb, 1);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_MAPPING_ERROR)

printf("Error accessing device memory.\n");

else printf("Setting error.\n");

return 1;

}

stat = cublasGetVector(m, sizeof(*devbi), devbi, 1, bi, 1);

if(stat != CUBLAS_STATUS_SUCCESS)

{

if(stat == CUBLAS_STATUS_MAPPING_ERROR)

printf("Error accessing device memory.\n");

else printf("Setting error.\n");

return 1;

}

} else if(opt == 2)

z = INFINITY;

else z = NAN;

APPENDIX A. LINEAR PROGRAMMING SOLVERS 78

/* Timing */

clock_gettime(CLOCK_REALTIME, &dealloc_start);

/* Timing */

cublasFree(devc);

cublasFree(devb);

cublasFree(devA);

cublasFree(devBinv);

cublasFree(devnewBinv);

cublasFree(devE);

cublasFree(devD);

cublasFree(devy);

cublasFree(devyb);

cublasFree(deve);

cublasFree(devcb);

cublasFree(devxb);

cublasFree(devA_e);

cublasFree(devalpha);

cublasFree(devtheta);

cublasFree(devnum_max);

cublasFree(devtheta_flag);

cublasFree(devbi);

cublasFree(devidx);

cublasFree(devtemp);

cublasFree(devred);

cublasShutdown();

/* Timing */

clock_gettime(CLOCK_REALTIME, &dealloc_end);

/* Timing */

return z;

}

/************** WRAPPERS ***********************/

int entering_index(float *e, int n)

{

float val_min;

int min_i = get_min_idx(e, n, &val_min);

return (val_min >= -EPS) ? -1 : min_i;

}

void extract_column(float *M, float *v, int start_i, int stride, int size)

{

cublasScopy(size, &M[R2C(0,start_i,size)], 1, v, 1);

}

APPENDIX A. LINEAR PROGRAMMING SOLVERS 79

int leaving_index(float *t, int *flag, int size)

{

return get_min_idx(t, size, NULL);

}

int compute_E(float *E, float *alpha, int m, int li)

{

float qth, *devqth; // = a[li];

cudaMalloc((void **)&devqth, sizeof(float));

get_val<<<km, BS>>>(alpha, li, devqth);

cudaMemcpy(&qth, devqth, sizeof(float), cudaMemcpyDeviceToHost);

if((qth >= -EPS) && (qth <= EPS))

{

printf("qth == 0....exit...\n");

return 1;

}

init_I<<<dim3(km, km), dim3(BS, BS)>>>(E, m);

compute_new_E<<<km, BS>>>(E, alpha, m, li, qth);

return 0;

}

int get_min_idx(float *a, int n, float *val)

{

int numBlocks = (int)ceil((float)n/BS);

int size = n;

int min_idx = -1;

cublasScopy(size, a, 1, devtemp, 1);

do

{

reduce_min<<<numBlocks, BS>>>(devtemp, size, devred);

size = numBlocks;

if(numBlocks > 1)

{

cublasScopy(size, devred, 1, devtemp, 1);

numBlocks = (int)ceil((float)numBlocks/BS);

}

APPENDIX A. LINEAR PROGRAMMING SOLVERS 80

} while(size > 1);

numBlocks = (int)ceil((float)n/BS);

get_idx<<<numBlocks, BS>>>(a, devidx, devred, n);

cudaMemcpy(&min_idx, devidx, sizeof(int), cudaMemcpyDeviceToHost);

if(val != NULL)

cudaMemcpy(val, devred, sizeof(float), cudaMemcpyDeviceToHost);

return min_idx;

}

/************* KERNELS ***********************/

__global__ void zeros(float *a, int m, int n)

{

int i = blockIdx.y*blockDim.y + threadIdx.y;

int j = blockIdx.x*blockDim.x + threadIdx.x;

int s = gridDim.x*blockDim.x;

int id = AT(i,j,s);

if(id<m*n)

{

i = id/n;

j = id%n;

a[R2C(i,j,m)] = 0;

}

}

__global__ void reduce_min(float *f, int n, float *min)

{

int tid = threadIdx.x;

int j = blockIdx.x*blockDim.x + tid;

//Each block loads its elements into shared mem,

//padding if not multiple of BS

__shared__ float sf[BS];

sf[tid] = (j<n) ? f[j] : FLT_MAX;

__syncthreads();

//Apply reduction

for(int s=blockDim.x/2; s>0; s>>=1)

{

if(tid < s) sf[tid] = sf[tid] > sf[tid+s] ? sf[tid+s] : sf[tid];

__syncthreads();

}

APPENDIX A. LINEAR PROGRAMMING SOLVERS 81

if(tid == 0) min[blockIdx.x] = sf[0];

}

__global__ void get_val(float *f, int index, float *val)

{

int j = blockIdx.x*blockDim.x + threadIdx.x;

if(j == index) *val = f[j];

}

__global__ void get_idx(float *f, int *index, float *val, int n)

{

int j = blockIdx.x*blockDim.x + threadIdx.x;

if(j == 0)

index[0] = -1;

__syncthreads();

if(j < n)

{

float diff = f[j]-val[0];

if(diff>=-EPS && diff<=EPS) atomicCAS(index, -1, j);

}

}

__global__ void init_yb(float *yb)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

if(i == 0) yb[0] = 1;

}

__global__ void init_cInD(float *c, float *D, int m, int n)

{

int i = blockIdx.y*blockDim.y + threadIdx.y;

int j = blockIdx.x*blockDim.x + threadIdx.x;

int s = gridDim.x*blockDim.x;

int id = AT(i,j,s);

if(id<n)

{

APPENDIX A. LINEAR PROGRAMMING SOLVERS 82

i = id/n;

j = id%n;

D[R2C(i,j,m)] = -c[id];

}

}

__global__ void init_AInD(float *A, float *D, int m, int n)

{

int i = blockIdx.y*blockDim.y + threadIdx.y;

int j = blockIdx.x*blockDim.x + threadIdx.x;

int s = gridDim.x*blockDim.x;

int id = AT(i,j,s);

if(id<m*n)

{

i = id/n;

j = id%n;

D[R2C(i+1,j,m+1)] = A[R2C(i,j,m)];

}

}

__global__ void init_I(float *I, int m)

{

int i = blockIdx.y*blockDim.y + threadIdx.y;

int j = blockIdx.x*blockDim.x + threadIdx.x;

int s = gridDim.x*blockDim.x;

int id = AT(i,j,s);

if(id<m*m)

{

i = id/m;

j = id%m;

I[R2C(i,j,m)] = (float)(i==j);

}

}

__global__ void init_bi(int *bi, int m, int n)

{

int i = blockIdx.y*blockDim.y + threadIdx.y;

int j = blockIdx.x*blockDim.x + threadIdx.x;

APPENDIX A. LINEAR PROGRAMMING SOLVERS 83

int s = gridDim.x*blockDim.x;

int id = AT(i,j,s);

if(id<m)

bi[id] = (n-m)+id;

}

//num_max counts how many alpha[i] are <= 0

__global__ void compute_theta(float *xb, float *alpha, float *theta,

int *theta_flag, int m, int *num_max)

{

int i = blockIdx.y*blockDim.y + threadIdx.y;

int j = blockIdx.x*blockDim.x + threadIdx.x;

int s = gridDim.x*blockDim.x;

int id = AT(i,j,s);

if(id<m)

{

int cond = (alpha[id]>0);

theta_flag[id]= cond;

theta[id]=xb[id]/alpha[id]*cond + FLT_MAX*(1-cond);

atomicAdd(num_max, 1-cond);

}

}

__global__ void compute_new_E(float *E, float *alpha, int m,

int li, float qth)

{

int i = blockIdx.y*blockDim.y + threadIdx.y;

int j = blockIdx.x*blockDim.x + threadIdx.x;

int s = gridDim.x*blockDim.x;

int id = AT(i,j,s);

if(id<m)

{

alpha[id] = -alpha[id]/qth;

if(id==li) alpha[id]=1/qth;

E[R2C(id, li, m)] = alpha[id];

}

}

__global__ void update_bi_cb(int *bi, float *cb, float *c,

APPENDIX A. LINEAR PROGRAMMING SOLVERS 84

int li, int ei)

{

int j = blockIdx.x*blockDim.x + threadIdx.x;

//bi[lv] = ev;

//cb[lv] = c[ev];

if(j == li)

{

bi[j] = ei;

cb[j] = c[ei];

}

}

A.2.3 cumatman.cu

#include "cumatman.h"

/**

* Allocate array of float initialized to all bits 0.

* Returns 1 if there is an error, 0 otherwise

*/

int allocate_array(float **a, int m, int n)

{

cudaMallocHost((void **)a, m*n*sizeof(float));

// if((*a = (float *)calloc(m*n, sizeof(float))) == NULL)

// return 1;

return 0;

}

/**

* Allocate array of int initialized to all bits 0.

* Returns 1 if there is an error, 0 otherwise

*/

int allocate_int_array(int **a, int m, int n)

{

cudaMallocHost((void **)a, m*n*sizeof(int));

// if((*a = (int *) calloc(m * n, sizeof(int))) == NULL)

// return 1;

return 0;

}

// Print an array of float in the proper format

void display_array(const char *name, float *a, int m, int n)

{

int i, j;

printf("Array %s:\n", name);

APPENDIX A. LINEAR PROGRAMMING SOLVERS 85

for(i=0;i<m;i++)

{

for(j=0; j<n;j++)

printf("%f ", a[R2C(i,j,m)]);

printf("\n");

}

}

//Print an array of integer in the proper format

void display_int_array(const char *name, int *a, int m, int n)

{

int i, j;

printf("Int array %s:\n", name);

for(i=0;i<m;i++)

{

for(j=0; j<n;j++)

printf("%d ", a[R2C(i,j,m)]);

printf("\n");

}

}

/**

* Read array from standard input.

*/

int read_array(FILE *file, float *a, int m, int n)

{

int i,j;

//Data from the standard input.

for(i=0; i<m; i++)

for(j=0; j<n; j++)

{

fscanf(file, "%f", &a[R2C(i,j,m)]); //Get the ith-element of the matrix from

} //the command line, converting it

//from text to float

return 0;

}

// Release allocated memory

void free_array(void *a)

{

cudaFreeHost(a);

}

Appendix B

Tools

B.1 popmat.c

The application accept as an input a file name and the number of constraints and
variables. It generates a LP problem in canonical augmented form, containing ran-
dom values between 0 and MAX.

/**

* popmat.c

* Program for creating LP input files.

*/

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#define MAX 100

int main(int argc, char* argv[]) {

FILE *file;

int i, j, m, n;

if(argc < 3) {

fprintf(stderr, "usage: popmat filename m n\n");

exit(1);

}

file = fopen(argv[1], "w");

m = atoi(argv[2]);

n = atoi(argv[3]);

fprintf(file, "%d %d ", m, m+n);

fprintf(stderr, "m n written.\n");

srand(clock());

86

APPENDIX B. TOOLS 87

for(i = 0; i < n; i++) {

fprintf(file, "%f ", (float)(rand()%MAX));

}

for(i = 0; i < m; i++) {

fprintf(file, "%f ", (float)0);

}

fprintf(stderr, "c written.\n");

for(i = 0; i < m; i++) {

fprintf(file, "%f ", (float)(rand()%MAX));

}

fprintf(stderr, "b written.\n");

for(i = 0; i < m; i++) {

for(j = 0; j < n; j++) {

fprintf(file, "%f ", (float)(rand()%MAX));

}

for(j = 0; j < m; j++) {

fprintf(file, "%f ", (float)(i==j));

}

}

fprintf(stderr, "A written.\n");

fclose(file);

return 0;

}

B.2 matgen.py

Given a file name matgen.py produces a LP problem set of progressively bigger
dimensions.

#!/usr/bin/python

#----------------------------

Config section

#----------------------------

#Set the list of programs to be run

program="popmat"

#Define the directory containing the programs to be run (relative to this script)

programsDir="./"

#Define the number of executions for each program with each matrix

iterations= 1000

#Name of the output file

outFileDir="./matrices/"

#---

Do not edit beyond this line

#---

APPENDIX B. TOOLS 88

from popen2 import popen4

import sys

def main():

m = 2

n = 2

for iteration in range(iterations):

cmdLine=programsDir + program + " "+ outFileDir

+ sys.argv[1] + str(iteration) + ".in " + str(m) + " " + str(n)

print "Execution of program: "+ cmdLine

execOut,execIn = popen4(cmdLine)

output = execOut.read()

m = m+2

n = n+2

print "Done"

#--

#Execution starts here

#--

if __name__=="__main__":

main()

B.3 clock.py

The script, given a set of LP problems, is responsible to launch them, expect for
their output, and save the results in different formats for further analysis.

#!/usr/bin/python

#----------------------------

Config section

#----------------------------

#Set the list of programs to be run

programs=["lpsolver","culpsolver"]

#Define the directory containing the programs to be run

(relative to this script)

programsDir="./"

#Define the number of executions for each program with each matrix

iterations= 1

#Name of the output file

outFileName="results.csv"

dataFileName="results.dat"

innerFileName="inner_results.dat"

#---

Do not edit beyond this line

#---

from popen2 import popen4

APPENDIX B. TOOLS 89

import re

import sys

def getFileList(wildcardedFileNames):

"""Gets the list of files from command line. If some

filenames contain

wildcards, they are divided in single file names"""

import glob

fileList=[]

"""Each fileName from the command line can contain

wildcards, therefore it may be a list of files.

This two "for" extract the list of files in every

group and adds the files, one by one, to the list

of file names."""

for fileName in wildcardedFileNames:

tmpList=glob.glob(fileName)

for oneFile in tmpList:

fileList.append(oneFile)

return fileList

def main():

#Get the file list

files=sys.argv[1:]

fileList=getFileList(files)

#print fileList

#Open the output file and prepare its heading

print "Preparing the output file..."

OUTFILE=file(outFileName,"w")

DATAFILE=file(dataFileName, "w")

INNERFILE=file(innerFileName, "w")

OUTFILE.write("Program;Matrix file name;

constraints;

variables;Matrix size;Elapsed time[ns];Optimum\n")

DATAFILE.write("# constraints;# variables;Matrix size;

lpsolver time[ns];culpsolver time[ns];Speedup\n")

INNERFILE.write("# constraints;# variables;Matrix size;

lpsolver ev_time[ns];lpsolver lv_time[ns];

lpsolver b_time[ns];

culpsolver ev_time[ns];culpsolver lv_time[ns];

culpsolver b_time[ns];ev_speedup;lv_speedup;

b_speedup\n")

print "Done"

APPENDIX B. TOOLS 90

#Prepare the extraction regexp

varRE=re.compile("m=(\d+) n=(\d+)")

sizeRE=re.compile("Size: (\d+)")

elapsedRE=re.compile("Elapsed time: (\d+.\d+)")

optRE=re.compile("Optimum found: (\d+.\d+)")

evRE=re.compile("Entering variable computation time: (\d+.\d+)")

lvRE=re.compile("Leaving variable computation time: (\d+.\d+)")

bRE=re.compile("Binv updating time: (\d+.\d+)")

noptRE=re.compile("^Problem")

for fileName in fileList:

for iteration in range(iterations):

opt = []

times = []

evTimes = []

lvTimes = []

bTimes = []

for p in [0,1]:

cmdLine=programsDir + programs[p] + " " + fileName

print "Execution #"+str(iteration+1)+" of program: "

+ programs[p] + " with matrix in " + fileName

execOUT,execIN= popen4(cmdLine)

print "Waiting for the results of the determinant

calculation"

output= execOUT.read()

print "Extracting informations from the output"

#Extract

numCons=varRE.search(output).group(1)

numVar=varRE.search(output).group(2)

size=sizeRE.search(output).group(1)

times.append(elapsedRE.search(output).group(1))

evTimes.append(evRE.search(output).group(1))

lvTimes.append(lvRE.search(output).group(1))

bres = bRE.search(output)

if type(bres) == type(noptRE.search("Problem")):

bTimes.append(bres.group(1))

else:

bTimes.append("NaN")

res = optRE.search(output)

if type(res) == type(noptRE.search("Problem")):

opt.append(res.group(1))

else:

opt.append("NaN")

if p==0:

DATAFILE.write(str(numCons)+"\t"+str(numVar)

+"\t"+str(size)+"\t"+str(times[0])+"\t")

APPENDIX B. TOOLS 91

INNERFILE.write(str(numCons)+"\t"+str(numVar)

+"\t"+str(size)+"\t"+str(evTimes[0])+"\t"

+str(lvTimes[0])+"\t"+str(bTimes[0])+"\t")

else:

DATAFILE.write(str(times[1])+"\t"

+str(float(times[0])/float(times[1]))+"\n")

INNERFILE.write(str(evTimes[1])+"\t"+str(lvTimes[1])

+"\t"+str(bTimes[1])+"\t"

+str(float(evTimes[0])/float(evTimes[1]))

+"\t"+str(float(lvTimes[0])/float(lvTimes[1]))+"\t"

+str(float(bTimes[0])/float(bTimes[1]))+"\n")

OUTFILE.write (programs[p]+";"+fileName+";"+str(numCons)

+";"+str(numVar)+";"+str(size)+";"+str(times[p])

+";"+str(opt[p])+"\n")

if opt[0] == opt[1]:

OUTFILE.write("Fitting: OK\n");

else:

OUTFILE.write("Fitting: KO\n");

print "Done"

print "Data saved in "+ dataFileName

print "Summary saved in "+ outFileName

print "Inner data saved in "+ innerFileName

OUTFILE.close()

DATAFILE.close()

INNERFILE.close()

#--

#Execution starts here

#--

if __name__=="__main__":

main()

	Preface
	Abstract
	Table of Contents
	Introduction
	Project Goals
	Report Outline

	Graphics Processing Unit
	The NVIDIA Landscape
	The Tesla Architecture Processing Model
	Streaming Multiprocessors
	GPU Memories
	The SIMT Paradigm

	The CUDA Programming Model
	A Heterogeneous Programming Model
	The CUDA Software Stack
	Threads Organization
	Memory Organization
	Mapping to the Tesla Architecture
	Compute Capability

	Linear Programming
	Linear Programming Model
	Geometric Interpretation
	Duality Theory

	Solving Linear Programming Problems
	Simplex-Based Methods
	Interior Point Methods

	Complexity Aspects

	Linear Programming in CUDA
	Method Selection
	Implementation Strategy
	Data Structures
	Kernels Configuration
	Non-Algebraic Routines: Computing Entering Variable
	Non-Algebraic Routines: Computing Leaving Variable
	Non-Algebraic Routines: Computing B-1

	Experimental Results
	The Experimental Environment
	Methodology
	Analysis Objectives
	Tools

	Results Elicitation and Analysis
	Speedup Analysis
	A Few Reflections

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Linear Programming Solvers
	Serial Version
	Main Module: lpsolver.c
	liblp.c
	matman.c

	CUDA Version
	Main Module: culpsolver.cpp
	culiblp.cu
	cumatman.cu

	Tools
	popmat.c
	matgen.py
	clock.py

