
Master of Science in Computer Science
June 2011
Anne Cathrine Elster, IDI

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Auto-tunable GPU BLAS

Jarle Erdal Steinsland

Problem description

This project focuses on developing techniques for auto-tunable BLAS. In par-
ticular, it looks at such BLAS not only for CUDA, but also OpenCL. One
or more such BLAS routine(s) will be developed and tested in the framework.

Assignment given: 17. January 2011
Supervisor: Dr. Anne Cathrine Elster, IDI

i

ii

Abstract

OpenCL is fast becoming the preferred framework used to make programs
for heterogeneous platforms consisting of at least one CPU and one or more
accelerators. The GPU being readily available in almost all computers, it is
the most common accelerator in use.

Good libraries are important to reduce development time and to make
particular development environments, such as OpenCL, useful for the masses.
All OpenCL programs can execute on any device that have support for it,
however to achieve optimal performance, a OpenCL program must be opti-
mized for a specific device.

Auto-tuning is a strategy to automatically generate and find a good per-
forming program for a specific device, without requiring the user to perform
optimizations manually.

BLAS contains routines that are useful for many algorithms suited for
GPUs, and is a good candidate for a library that can prove useful for many
OpenCL programmers.

We have chosen, in this thesis, to implement the matrix multiplication
routine from BLAS as it is important for the performance of many higher-
level linear algebra algorithms to have a fast implementation of matrix mul-
tiplication. The exact operation we have implemented is C = alpha∗A∗B+

beta ∗ C, were A, B and C are MxK, KxN and MxN matrices respectively.
In this thesis, we implement an auto-tuning framework that generates

source code for OpenCL kernels and find the best one for the device it is
being executed on.

We compare our version with ViennaCL, a OpenCL BLAS library, and
the vendor provided BLAS libraries provided by AMD and NVIDIA. Our

iii

version provides approximately 85% of the performance of the vendor specific
library provided by NVIDIA, in general, and gives a speedup over the native
library provided by AMD. This speedup is usually between 1.5 and 2. On
both platforms our version outperforms ViennaCL by a large margin.

iv

Acknowledgements

I wish to thank Dr. Anne Cathrine Elster for being my supervisor. I would
also like to thank NVIDIA for donating GPUs to the HPC-Lab at IDI, NTNU
through Dr. Elster’s membership in their Professor Partnership program. Fi-
nally I would like to thank my friends and family for their support through
my work on this thesis.

Trondheim, June 2011

Jarle Erdal Steinsland

v

vi

List of Algorithms

1 Pseudocode of no memory blocking version. 26
2 Pseudocode of both matrices blocked in local memory version. 26
3 Pseudocode of one matrix blocked in local memory and one

matrix blocked in private memory. 27
4 Pseudocode of both matrices blocked in private memory. . . . 28
5 Pseudocode of both matrices blocked in both local memory

and private memory. 30
6 Pseudocode for search function. 31

vii

viii

List of Figures

2.1 Conceptual Diagram of OpenCL Platform Model 6

2.2 Conceptual Diagram of OpenCL Architecture and Memory
Model . 7

2.3 An NDRange index space divided into work-groups and work-
items . 9

2.4 Diagram of the AMD Evergreen GPU Architecture 12

2.5 Diagram of an Evergreen Stream Core 13

2.6 Diagram of the AMD Northern Island GPU Architecture . . . 14

2.7 Diagram of a Northern Island Stream Core 15

2.8 Diagram of the NVIDIA Fermi GPU Architecture 16

2.9 Diagram of a Fermi streaming multiprocessor and core 19

3.1 Class Diagram of the Auto-tuning Framework 22

3.2 Schematic of no memory blocking version. 25

3.3 Schematic of local memory blocking version. 32

3.4 Schematic of one matrix blocked in local memory and one
matrix blocked in private memory. 33

3.5 Schematic of both matrices blocked in private memory. 34

3.6 Schematic of both matrices blocked in local memory and in
private memory. 35

4.1 Graph of executions with different matrix sizes on the AMD
HD5750 GPU. 39

4.2 Graph of executions with different matrix sizes on the AMD
HD5870 GPU. 40

ix

4.3 Graph of executions with different matrix sizes on the NVIDA
C2070 GPU. 41

x

List of Tables

4.1 Table describing the system with the AMD HD5750 GPU. . . 37
4.2 Table describing the system with the AMD HD5870 GPU. . . 38
4.3 Table describing the system with the NVIDIA C2070 GPU. . . 38
4.4 Table listing the time it took to generate and search for the

best kernel on the different systems. 40

xi

xii

Contents

Abstract iii

Acknowledgements v

List of algorithms vii

List of figures x

List of tables xi

1 Introduction 1

1.1 Outline . 2

2 Background 3

2.1 Auto-tuning System . 3

2.2 Basic Linear Algebra Subprograms 4

2.3 Open Computing Language 5

2.4 AMD Architecture . 11

2.5 NVIDIA Architecture . 15

2.6 Previous Work . 18

3 Implementation 21

3.1 The Framework . 21

3.2 The Code Generator . 23

3.3 The Search . 29

xiii

4 Benchmarks and Results 37
4.1 System Configurations . 37
4.2 Benchmarks . 38

5 Conclusion 43
5.1 Future Work . 44

A Selected Source Code I

xiv

Chapter 1

Introduction

OpenCL is becoming the preferred framework used to create programs that
execute on heterogeneous platforms. A heterogeneous platform consists of at
least one CPU and one accelerator. GPUs are the most common and easily
available accelerator.

For a framework such as OpenCL to be useful to a large number of people,
it is necessary to have libraries available to perform commonly used functions
while achieving good performance across all devices used. All programs writ-
ten in OpenCL can run on all devices that support OpenCL, but to get good
performance, they must be optimized for the specific devices. This makes
creating such libraries a difficult and time consuming task.

Auto-tuning is a strategy that have been used with success in the past on
CPUs, and several studies suggest that it would work well on GPUs as well.

BLAS is one such library that provide functionality that is heavily used in
many algorithms that are well suited for the GPU. Having a good perform-
ing BLAS library implemented in OpenCL would therefore be an important
addition to anyone using OpenCL to program GPUs.

General matrix multiplication is one of the routines in BLAS that is most
important to achieve good performance in other higher-level linear algebra
algorithms. It if for this reason that we have chosen matrix multiplication as
the routine to be implemented in an auto-tuning framework, in this thesis.
More specifically, we chose to implement the operation C = alpha ∗A ∗B +

1

beta ∗ C, where A is a MxK matrix, B is a KxN matrix and C is a MxN
matrix. Alpha and beta are scalars.

1.1 Outline

The rest of the thesis is organized as follows:

Chapter 2 contains background information related to this thesis and a brief
overview of related work.

Chapter 3 describes our implementation of an auto-tuning framework. It
also goes into specific detail on the code generator generating the matrix
multiplication kernels and how the framework searches for the best solution.

Chapter 4 contains benchmarks and results from executing the kernel chosen
by the auto-tuning framework on different GPUs.

Chapter 5 concludes the thesis and presents future work.

Appendix A presents the source code selected by the auto-tuning framework
for the different GPUs.

2

Chapter 2

Background

This chapter presents background information and previous work. More
specifically, we start off by describing what is meant by an auto-tuning sys-
tem and what components it consists of. Then we present BLAS and intro-
duce OpenCL and the abstractions and models used within that framework,
before we describe the graphics processing unit (GPU) architecture of the
two major vendors, AMD and NVIDIA, and the characteristics of these that
affect performance. Finally, we present some of the previous work that is
related to this thesis.

2.1 Auto-tuning System

An auto-tuning system, or a system for automated empirical optimization of
software (AEOS) as it is called in [1], consists of three main parts[1]:

1. A method of adapting software to differing environments

2. Robust, context-sensitive timers

3. Appropriate search heuristic

Auto-tuning as a strategy for finding good ways to perform an operation
for a particular architecture relies on being able to perform the particular

3

operation in many different ways. There are mainly two different ways of
providing this.

The first and simplest way is to have a fixed code or algorithm with
parameters in it. By changing these parameters different versions of the code
is generated. The other way is to have a highly parameterized code generator
that can generate a vast number of ways to perform the same operation.

A timer is needed to find the best code version. A particular code version
is chosen for a particular architecture by executing the different code versions
on that architecture, measuring their execution time and choosing the best
one. As the load of the machine can vary at any given time, the timers must
be robust enough to not be affected and produce correct timings irrespective
of machine load.

Dependent on how how many possible code variations there are, searching
through all of them can be time consuming. The job of the search heuristic
is to search through the different code versions and find the best one without
taking to much time. The more possible code versions, the more important
it is for the search heuristic to be able to prune the search tree quickly.

2.2 Basic Linear Algebra Subprograms

Basic Linear Algebra Subprograms (BLAS) is an application programming
interface (API) for linear algebra libraries[2]. The functionality provided
by BLAS is separated into three levels. BLAS level 1, contains functions
to perform scalar, vector and vector-vector operations[3]. The level 2 BLAS
provides functions for matrix-vector operations and level 3 supplies functions
for matrix-matrix operations.

The reference implementation for BLAS is available as a free download
at [4]. In addition to the reference implementation, several vendor specific
implementations are available. See [3] for a list of some of them.

4

2.3 Open Computing Language

The Open Computing Language (OpenCL) is a framework for developing
programs that perform general-purpose computations on all available pro-
cessors and accelerators in a heterogeneous platform[5]. It was originally
developed by Apple and was later made into a proposal in cooperation with
AMD, IBM, Intel, and Nvidia before it was submitted to the Khronos Group.
On November 18, 2008, the specification for OpenCL 1.0 was released. Ver-
sion 1.1 of the OpenCL specification was released on June 14, 2020 and added
features for added flexibility for the programmer and increased performance.

The OpenCL framework consists of the OpenCL C Language Specification
and the OpenCL Runtime API Specification[6]. The OpenCL Specification[7]
use a collection of four models to describe the underlying ideas of OpenCL.
These models are the platform model, the memory model, the execution
model and the programming model.

2.3.1 The Platform Model

The platform model is comprised of a host that have one or more devices
connected to it. The host executes the application and issues commands to
the connected devices to perform computations on them.

A device is further split into one or more compute units and the compute
units are split into processing elements, see Figure 2.1. It is the processing
elements that perform the actual computations that the host have requested.

2.3.2 The Memory Model

The memory available to work-items executing a kernel1 on a OpenCL device
is divided into four separate memory spaces. These are global, constant, local
and private memory. In addition there are OpenCL images, which reside in
global memory, but have some special properties that regular global memory
buffers do not. See Figure 2.2 for a conceptual diagram of the OpenCL device

1An OpenCL kernel is a function that is executed on a OpenCL device.

5

Host

Processing Element
Compute Unit
Device

Figure 2.1: Conceptual Diagram of OpenCL Platform Model[7].

architecture and how the different memory spaces are related to the platform
model.

It is the host that allocates global memory on the device by creating
memory objects. Once created, the host can issue commands to the device
to perform various operations on these memory objects. For instance, it can
issue a command to copy data from the host memory to the memory object
in global memory on the device.

Global Memory

All global memory is available to all work-items on a device and both reading
and writing is supported. If it is supported by the device, reads and writes
to global memory are cached.

OpenCL images are a special type of global memory buffers. Unlike
regular global memory buffers, which store their elements sequentially, images
store their elements in a format that is hidden from the user. Therefore, reads
and writes to images must be done by using the built-in functions supplied
by OpenCL for this purpose.

6

Private
Memory 1

Private
Memory N

Processing
Element 1

Processing
Element N

Compute Unit 1

Private
Memory 1

Private
Memory N

Processing
Element 1

Processing
Element N

Compute Unit N

Compute Device

Local
Memory 1

Local
Memory N

Global / Constant Memory Data Cache

Global Memory

Constant Memory

Compute Device Memory

Figure 2.2: Conceptual Diagram of OpenCL Architecture and How the Mem-
ory Model Relates to it[7].

Constant Memory

Constant memory is located in a region of global memory and can as a result
be read by all work-items executing a kernel on a device. It have the special
property that is does not change during the execution of a kernel. Thus,
reads from constant memory can be optimized for quick access on devices
that support it. For instance through a special constant memory cache.

As constant memory can only be read by the work-items on a device, it
is both allocated and initialized by the host.

Local Memory

Local memory can either be a separate dedicated memory region on the
device or it can be located in a region of global memory. Local memory is
only accessible to work-items within a work-group. Thus, local memory is a
good candidate for data that is shared among work-items in a work-group.

7

This is especially true on devices where local memory resides in a separate
dedicated memory region, as this memory region is often implemented by
memory chips with lower access times than those used for global memory[8].

Private Memory

Private memory is a region of memory that is accessible by a single work-
item. It is the default memory space used for variables in a kernel when no
other memory space is specified and is usually used for temporary storage of
values that are specific only to one work-item.

Memory Consistency

According to the OpenCL Specification[7], the OpenCL memory model have
a relaxed consistency. This means that there is no guarantee that the memory
state is consistent for all work-items at all times. As a result, if two work-
items reads the same location in memory at the same time, the value read
by the first work-item can be different from the value read by the second.

The memory consistency guarantees given by OpenCL are:

• Global and local memory is consistent for all work-items within a work-
group at a barrier

• Memory load and store consistency within a work-item

2.3.3 The Execution Model

The OpenCL execution model divides the execution of an OpenCL program
in two. There is the part of the program that executes on the host and there
is the part that executes on a device. The part that executes on the host is
no different from any other program and follows the execution model that is
used on the host architecture.

To submit a kernel for execution on a device the host must create an
OpenCL context by using functions provided by the OpenCL Runtime API.
An OpenCL context is an object that contains the resources needed to exe-
cute a kernel. These resources being the devices the host intends to execute

8

kernels on, the kernels to be execute, the program object that contains the
source code and executable for the kernels and the memory buffers needed
by the kernels.

When the host have created the context, it must create an OpenCL
command-queue that is used to schedule kernels for execution and other
commands to a device.

An index space, called an NDRange, is defined when the host submits
a kernel for execution on a device. For each point in this index space, one
instance of the kernel is executed. Each such instance is called a work-item
and is uniquely identifiable by its index. The index space is further divided
into a more coarser index space. Each point in this coarser index space is
called a work-group and each work-group is a collection of work-items from
the larger index space. The work-groups are uniquely identifiable by their
index in the coarse-grained index space and each work-item within a work-
group is also uniquely identifiable within the work-group. See Figure 2.3.

work-item work-item

work-item work-item

work-group

N
D

R
an

ge
 y

NDRange x

Figure 2.3: An NDRange index space divided into work-groups and work-
items[7].

9

2.3.4 The Programming Model

There are two types of programming models that are supported by OpenCL.
These are, the data parallel and task parallel programming models. In addi-
tion any hybrid of these are also supported.

In the data parallel programming model, a series of computations is de-
fined and is then performed on several several elements in memory. How the
mapping of memory elements to work-items is done is defined by the index
space that is generated when a kernel is scheduled for execution.

The task parallel programing model is the equivalent of the data parallel
programming model with an index space with one work-group and one work-
item. Only one instance of a kernel is executed on a device and parallelism
is achieved by using vector datatypes and by scheduling several tasks at the
same time.

2.3.5 The OpenCL C Programming Language

OpenCL kernels are written in the OpenCL C programming language. The
OpenCL C programming language is based on the ISO/IEC 9899:1999 C
language specification[7], also known as C99.

The features that where removed from C99 are[9]:

• Standard headers

• Function pointers

• Recursion

• Variable length arrays

• Bit fields

The features that where added are[9]:

• Vector types

• Synchronization

10

• Address space qualifiers

• Many built in functions (e.g. work-item manipulation, math)

2.4 AMD Architecture

The first graphics processing units (GPUs) of AMDs Evergreen architecture
was released in the fall of 2009 and the rest followed with the last being
released in February 2010[10].

A GPU consists of several compute units (also called SIMD Engines) and
each compute unit comprise 16 stream cores, which consists of five processing
elements, depending of the GPU model2[11]. See Figure 2.4 for a diagram of
the GPU architecture and Figure 2.5 for a diagram of a stream core. At each
cycle, every stream core within a compute unit perform the same instruc-
tion in a lock-step fashion. These instructions are issued to the processing
elements by one very long instruction word (VLIW).

All of the processing elements can perform single-precision floating point
operations and the fifth processing element in a stream core can also execute
transcendental operations3. To perform double-precision operations, two or
four of the non-transcendental operations capable processing elements are
combined.

Every compute unit have 32 kB of local, on-chip memory called local data
share (LDS) and a 8 kB L1 cache. L2 cache is shared by several compute
units. The local data share is divided into 32 memory banks4, that are four
bytes wide and 256 bytes deep. One memory operation can be performed
for each bank each cycle, but if more than one operation maps to the same
memory bank, a bank conflict occurs and the operations are serialized.

A compute unit also have 256 kB of registers available. The register
space comprise 16384 general purpose registers, where one register contains
four 32-bit values.

2The low-end GPUs have only four.
3E.g. sqrt, log, sin, cos
4The lower-end GPUs only have 16 memory banks.

11

Figure 2.4: Diagram of the AMD Evergreen GPU Architecture[12].

The first GPUs of AMDs Northern Island architecture were released in
October 2010[14]. The remainder of the GPUs from this series were released
toward the end of the year and in the spring of 2011, with the last one being
released in April.

The low and mid-end devices kept the 5-way VLIW of the Evergreen
architecture, but the high-end devices switched to a 4-way VLIW instead as
studies showed that the usage rate of the processing elements were only 3.4
in games[13]. In the 4-way VLIW design, the processing element capable
of computing transcendental functions were removed and its functionality
distributed to the remaining four processing elements. The memory cache
and local data share stayed the same as for the Evergreen architecture. For
a diagram over the Northern Island architecture, see Figure 2.6. Figure 2.7

12

Figure 2.5: Diagram of a Evergreen Stream Core[13].

shows a diagram of a Northern Island stream core.

2.4.1 OpenCL on AMD GPUs

When work-items are executed on a GPU they are divided into groups of
64 work-items called wavefronts5 that runs in lockstep on a compute unit.
Every work-group is divided into an integer number of wavefronts and to
achieve optimal performance, the number of work-items within a work-group
should be divisible with the wavefront size.

As a kernel is being executed, a work-group is assigned to a single com-
pute unit and a work-item runs on a stream-core. Four work-items from the
wavefront being executed are pipelined on one stream core to hide memory
latencies. At each cycle, 16 of the work-items in a wavefront execute one in-
struction. When a wavefront is looked at as a whole, this give the appearance
that one instruction is executed every four cycles. If the execution paths of

5A wavefront is 32 work-items on low-end GPUs.

13

Figure 2.6: Diagram of the AMD Northern Island GPU Architecture[13].

work-items within a wavefront diverges, their execution are serialized.

Private memory usage in kernels is mapped to the general purpose regis-
ters as much as possible. If not enough registers are available, the compiler
will generate spill code and remaining private memory need is placed in global
memory.

It is the local data share that is used for OpenCL local memory. Ensuring
that all memory banks are used and that there are no bank conflicts, are the
most important aspects with regards to achieving optimal performance.

To achieve good performance with global memory, it is important to
ensure that memory reads are coalesced. Coalesced reads occur when con-
secutive work-items in a wavefront read consecutive elements from memory.
Coalesced writes writes can also give better write performance, however, this
is of less importance as the difference is quite small[11].

14

Figure 2.7: Diagram of a Northern Island Stream Core[12].

2.5 NVIDIA Architecture

The first GPUs of NVIDIAs Fermi architecture were released in April of 2010,
with the rest following throughout the spring and fall[15].

A GPU consists of several graphics processing clusters (GPC). Each
graphics processing cluster is made up of four streaming multiprocessors,
which comprise 32 cores[16]. See Figure 2.8. In addition to the 32 cores, each
streaming multiprocessor also contains four special function units that can
perform transcendental functions and 16 load load and store units enabling
a streaming multiprocessor to calculate 16 source and destination memory
addresses per clock cycle. Each core contains a fully pipelined integer arith-
metic logic unit and a floating point unit. See Figure 2.9.

All streaming multiprocessors have 32768 32-bit registers and 64kB of on-
chip memory[17]. The on-chip memory can be configured as 16kB of shared
memory and 48kB of L1 cache or as 48kB of shared memory and 16kB of
L1 cache. Additionally, all the streaming multiprocessors share 768kB of L2
cache.

NVIDIA released the first GPU of an updated Fermi architecture in

15

Figure 2.8: Diagram of the NVIDIA Fermi GPU Architecture[16].

November of 2010. The rest of the GPUs in this line of GPUs were re-
leased in the following months and the last ones being released in May of
2011[18].

This updated Fermi architecture were a notable update, with respects
to performance and power management, compared to the original. Each
streaming multiprocessor consists of up to 48 cores, each able to perform up to
two floating point operations per clock cycle. Every streaming multiprocessor
also contains up to eight special function units, each capable of up to four
operations per clock cycle.

2.5.1 Compute Unified Device Architecture

The Compute Unified Device Architecture (CUDA) is NVIDIAs hardware
and software architecture that makes it possible for NVIDIA GPUs to execute
programs that are not graphics programs[17]. CUDA provides both a low-
level and a high-level API to interface with the GPU, as well as the C for

16

CUDA programming language to write kernels to be executed on a GPU[19].

A kernel written in C for CUDA is executed on a NVIDIA GPU by a set
of threads. The threads are divided into groups, called thread blocks, and
the thread blocks are organized in a grid.

A thread block executes on a single streaming multiprocessor and a thread
runs on a core. All threads within a grid execute the same kernel.

When a thread block is scheduled for execution, its threads are divided
into groups of 32 threads, called a warp, that execute the kernel concurrently.

2.5.2 OpenCL on NVIDIA GPUs

The CUDA architecture and the OpenCL architecture are quite similar[20].
A streaming multiprocessor equate an OpenCL compute unit and a CUDA
thread correspond with an OpenCL work-item. Also, a CUDA thread block
matches an OpenCL work-group.

When work-items are executed on a GPU, they are, as threads are in
CUDA, divided into warps. Each work-group contains an integer number
of warps. A work-group runs on a streaming multiprocessor and a work-
item runs on a single core. All work-items within a warp execute the same
instruction in lockstep. If the code path of work-items within a warp diverges,
they are serialized. The number of work-items within a work-group should
be divisible by the warp size for optimal performance.

OpenCL private memory maps to registers on the GPU. If a work-item
needs more registers than is available, spill code is generated by the compiler
and the extra memory needed is placed in a region of global memory.

Local memory in OpenCL maps to shared memory on the GPU. Avoiding
bank conflicts is the key to achieve optimal performance when using local
memory.

When work-items within a warp access global memory, the memory ac-
cess is coalesced into as few memory transactions as possible. How many
transactions that is issued is dependent on the size of the elements accessed
and the memory access pattern of the work-items.

17

2.6 Previous Work

In GATLAS[21], they implement the BLAS routines gemm, gemv and saxpy
in OpenCL. They use auto-tuning to find optimum kernels for AMD GPUs.
[22] presents gemm kernels for AMD GPUs. These kernels are implemented
in IL, the native, low-level, assembly-like language for programming AMD
GPUs. In [23], they improve their previous gemm implementation in CUDA
C and optimize it for the Fermi architecture. They do this by adding an
additional level of blocking. Namely, they use register blocking in addition
to shared memory blocking. [24] optimize a gemm kernel implemented in
CUDA C for the Fermi architecture by using auto-tuning.

18

Figure 2.9: Diagram of a Fermi streaming multiprocessor and core[16].

19

20

Chapter 3

Implementation

In this chapter, we present the details of our implementation. First, we
describe our auto-tuning framework in general. Then, we describe our code
generator. Finally, we describe our search for the best kernel.

3.1 The Framework

Our auto-tuning framework were implemented in C++ and consisted of five
classes in addition to the main function and some support functions related
to initializing OpenCL and querying the system. See Figure 3.1 for a class
diagram of the framework.

The Device class acted as an abstraction for an OpenCL device. It held
all the information OpenCL provides for a device and methods to fetch them.
The purpose of the class were to be used later to guide the code generator
and by the auto-tuner, so that it would know which device to execute the
kernels on. Additionally, it also contained functionality to output the device
information for debugging purposes.

As the Device class were an abstraction for an OpenCL device, the Plat-
form class were an abstraction for an OpenCL platform. It held the infor-
mation provided by OpenCL for the platform and methods to retrieve that
information. In addition, it also contained a list of the devices associated
with it. The main purpose of the class were to hold the information about

21

Main Platform

Device

Generator Kernel AutoTuner

1 1..*

1

1..*

1

1

1
1

11..*

Figure 3.1: Class Diagram of the Auto-tuning Framework.

the OpenCL platforms and associated devices in the initial stages of the exe-
cution of the application, to allow the user to choose which device from which
platform to generate kernels for.

The Kernel class were a wrapper for the kernels generated by the code
generator. It contained the source code for a kernel that had been generated
by the code generator, as well as the information required to execute the
kernel on a device and methods to get this information when needed. More
specifically, the information contained in the kernel class were the kernel
name, the dimensions of the work-group to be used and the blocking size,
needed to calculate the dimensions of the NDRange. Furthermore, the Kernel
class contained functionality to output the kernel to a file and information
about execution time on a device, used by the search.

The functionality related to the generation of kernels, were located in the
Generator class. It contained one entry point method that took a Device
object as input and returned a list of Kernel objects. Moreover, it contained
the methods and supporting functions that generated the source code for this
kernels. The methods that generated source code returned the source code
in the form of a string that were then given as input when creating a Kernel
object to be returned.

22

The AutoTuner class contained the functionality to perform the search
for the best performing kernel. The search method took a Device object and
a list of Kernel objects as input and gave one Kernel object as output. Addi-
tionally it contained supporting methods to allocate and initialize memory on
the OpenCL device and functionality to reset the device if a kernel should,
for some reason, crash or perform an illegal operation. It also contained
functionality to test the validity of the output from the kernel for debugging
purposed.

The remaining functionality of our framework consisted of functions to
query the system for OpenCL platforms and devices and a function to allow
the user to choose the device to generate a kernel for, in the event that several
platforms and devices existed in the system.

The sequence of steps involved in our auto-tuning framework were the
following:

1. Query system for platforms.

2. For all platforms: query for devices.

3. If user have started the program with the flag to choose a device, present
the user with available devices. Otherwise, choose first device.

4. Send the device chosen as input to the code generator.

5. Send the list of kernels returned by the code generator as input to the
search method.

6. Output the kernel returned by the search method to file.

7. Exit application.

3.2 The Code Generator

The code generator generated source code for five main versions of kernels.
The difference between the different versions were the blocking scheme they
employed. These versions consisted of:

23

1. No memory blocking.

2. Both matrix A and B blocked into local memory.

3. Matrix A blocked into shared memory and matrix B blocked into pri-
vate memory.

4. Both matrix A and B blocked into private memory.

5. Both matrix A and B blocked into local memory. Both matrices blocked
further into private memory.

Common to all versions were that the matrix C were divided into blocks
in all of them, private memory were used to hold the temporary values before
being written back to global memory and loops are unrolled. Each block were
calculated by one work-group. Also, the generator assumed a row-major
ordering of the matrices.

3.2.1 No Memory Blocking

This were the simplest version. The parameters used to generate the different
kernel versions of this main version of kernels were the size of the block of
the matrix C and the number of work-items to be used by each work-group.
The number of work-items used per work-group had to be divisible by the
number of elements in the block of the matrix C.

Depending on how many work-items were used to calculate one block of
the matrix C, each work-item calculated one or more elements of C. For each
element of C calculated, each work-item read one row from A and one column
from B. See Figure 3.2 for a schematic of this version. The pseudocode for
this version can be seen in Algorithm 1.

3.2.2 Both Matrices in Local Memory

The parameters to this version were, in addition to the blocking size and
number of work-items to be used per work-group, if the blocks of local mem-
ory should be padded, to possibly avoid bank conflicts, and if they should be
transposed when read from global to local memory.

24

Figure 3.2: Schematic of no memory blocking version. In this reduced ver-
sion, C is divided into blocks of 4x4 elements, which are computed by 4x2
work-items. Each work-item computes two elements. The work-item com-
puting the blue and purple element of C reads the entire red and green row
of A and the entire red column of B.

Each work-item calculated one or more elements of C, depending on how
many work-items there were per block. For each block of matrix A and B,
each work-item read one or more elements from global memory and placed
them in local memory. Care was taken to ensure that reads from global mem-
ory were coalesced. Each work-item then read elements from local memory
to calculate their respective elements of C. See Figure 3.3 for a schematic of
this version. Also, the pseudocode for this version can be seen in Algorithm
2.

25

Algorithm 1 Pseudocode of no memory blocking version.
Find your index in the index space
Move pointers of A, B and C to correct position
a_end← a+ k
Allocate private memory for elements of C
repeat
for all Elements of C do
c_element+ = a_element ∗ b_element

end for
Increment pointers to A and B

until Pointer to A >= a_end
for all Elements of C do
C = alpha ∗ c_element+ beta ∗ C

end for

Algorithm 2 Pseudocode of both matrices blocked in local memory version.
Find your index in the index space
Move pointers of A, B and C to correct position
a_end← a+ k
Allocate local memory for block of A and B
Allocate private memory for elements of C
repeat
Read block of A into local memory
Read block of B into local memory
for all Elements of C do
c_element+ = a_element ∗ b_element

end for
Increment pointers to A and B

until Pointer to A >= a_end
for all Elements of C do
C = alpha ∗ c_element+ beta ∗ C

end for

26

3.2.3 One Matrix in Local Memory and One in Private

Memory

For this version, the parameters were blocking size, register blocking size,
number of work-items per work-group and if padding were to be used for the
local memory.

Here, each work-item calculated one column of the block of the matrix C.
Depending on the number of work-items in a work-group and the blocking
size used for the matrix A, a work-item read one or more elements from
A and placed it in local memory. Also here, care was taken so that reads
from global memory were coalesced. Each work-item also read one or more
elements from a column of B, depending on the register block size used. See
Figure 3.4 for a schematic of this version and Algorithm 3 for the pseudocode.

Algorithm 3 Pseudocode of one matrix blocked in local memory and one
matrix blocked in private memory.
Find your index in the index space
Move pointers of A, B and C to correct position
a_end← a+ k
Allocate local memory for block of A
Allocate private memory for block of B
Allocate private memory for elements of C
repeat
Read block of A into local memory
for i = 1→ localmemoryblocksize/privatememoryblocksize do
Read block of B into private memory
for all Elements of C do
c_element+ = a_element ∗ b_element

end for
Increment pointer to B

end for
Increment pointer to A

until Pointer to A >= a_end
for all Elements of C do
C = alpha ∗ c_element+ beta ∗ C

end for

27

3.2.4 Both Matrices in Private Memory

In this version, the parameters were blocking size, register blocking size and
number of work-items per work-group.

Depending on the number of work-items there were per block, each work-
item calculated one or more elements of C. Each work-item read the register
blocking size number of elements from B into private memory and depending
on how many elements of C each work-item calculated, one of more times
the register blocking size number of elements from A into private memory. A
work-item, then read the register blocking size number of elements from the
private memory block of A and B for each element of C it were to compute.
Figure 3.5 contains a schematic of this version. See also Algorithm 4 for the
pseudocode.

Algorithm 4 Pseudocode of both matrices blocked in private memory.
Find your index in the index space
Move pointers of A, B and C to correct position
a_end← a+ k
Allocate private memory for blocks of A and B
Allocate private memory for elements of C
repeat
Read block of A into private memory
Read block of B into private memory
for all Elements of C do
c_element+ = a_element ∗ b_element

end for
Increment pointer to A
Increment pointer to B

until Pointer to A >= a_end
for all Elements of C do
C = alpha ∗ c_element+ beta ∗ C

end for

28

3.2.5 Both Matrices in Local Memory and Private Mem-

ory

The parameters for this version were blocking size, register blocking size,
number of work-items per work-group, if the blocks of local memory should
be padded and if they should be transposed when read from global memory.

Each work-item calculated one or more elements of C, depending on how
many work-items there were per block. Also depending on the number of
work-items per block, a work-item read one or more elements of A and B from
global memory and placed them in local memory. Care was taken to ensure
that memory reads from global memory were coalesced. Then each work-
item read register blocking size number of elements from the local memory
blocks of A and B and placed them in the private memory blocks. Then, a
work-item read the register blocking size number of elements from the private
memory block of A and B for each element of C it were to compute. See
Figure 3.6 for a schematic of this version and Algorithm 5 for the pseudocode.

3.3 The Search

In stead of generating all possible kernels and then prune the search tree
afterwards, our code generator used the information about a device that
OpenCL provides to minimize the number of kernels generated and to ensure
that it only generated valid kernels. This reduced the search space to few
enough kernels that a simple linear search were able to find the best kernel
in a reasonable amount of time.

When all the kernels had been generated they were passed along to the
search function, that compiled the kernel source code into OpenCL programs
and created OpenCL kernel objects from them.

Each kernel were executed on the device a number of times, each execution
being timed. Then the median time was chosen as the time for the kernel.
This was done to ensure that no kernel was excluded for having the misfortune
of being executed at the same time as the OpenCL runtime were performing
some behind the scenes operation, causing the kernel execution time to be

29

Algorithm 5 Pseudocode of both matrices blocked in both local memory
and private memory.
Find your index in the index space
Move pointers of A, B and C to correct position
a_end← a+ k
Allocate local memory for block of A and B
Allocate private memory for block of A and B
Allocate private memory for elements of C
repeat
Read block of A into local memory
Read block of B into local memory
for i = 1→ localmemoryblocksize/privatememoryblocksize do
Read block of B into private memory
for all Elements of C do

Read block of A into private memory
Increment pointer to local memory block of A
c_element+ = a_element ∗ b_element

end for
Increment pointer to local memory block of B

end for
Increment pointer to A
Increment pointer to B

until Pointer to A >= a_end
for all Elements of C do
C = alpha ∗ c_element+ beta ∗ C

end for

30

higher than it normally would have been.
To measure the execution time of a kernel, we used the built in facilities

in OpenCL to get profiling information from OpenCL commands. This way
we could be sure that we had the most accurate timings of kernel executions
that was possible.

See Algorithm 6 for the pseudo code for the search function.

Algorithm 6 Pseudocode for search function.
Create memory buffers for matrix A, B and C
Copy initial data to memory buffers
Create a OpenCL CommandQueue
for all Kernel objects do
Read kernel source code
Create OpenCL program
Compile OpenCL program
Create OpenCL kernel
Set kernel arguments
for i = 1→ 5 do
Submit kernel to CommandQueue
Get timing results and add to list for this kernel

end for
Get the median timing result from list for this kernel
if mediantime ≤ currentbesttime then
Set best kernel to current kernel

end if
end for
return best kernel

31

Figure 3.3: Schematic of local memory blocking version. In this reduced
version, C is divided into blocks of 4x4 elements, which are computed by
4x2 work-items. Each work-item computes two elements, e.g. the blue and
purple. The red blocks in A and B are the blocks that are read into local
memory. Each work-item read two elements of A and two elements of B and
places them in local memory. Each work-item then reads one row from the
local memory block of A and one column of the local memory block of B for
each element of C it computes.

32

Figure 3.4: Schematic of one matrix blocked in local memory and one matrix
blocked in private memory. In this reduced version, C is divided into blocks
of 4x4 elements, which are computed by 4 work-items. Each work-item com-
putes one column of the block of C, e.g. the blue column. The red block of A
is a block that is read into local memory and the green block of B is a block
that is read into private memory. Each work-item reads two elements of A
and places them in local memory and reads two elements of B and places
them in private memory. Each work-item then reads one row from the local
memory block of A and the elements in private memory for the block of B
for each element of C it computes.

33

Figure 3.5: Schematic of both matrices blocked in private memory. In this
reduced version, C is divided into blocks of 4x4 elements, which are computed
by 4x2 work-items. Each work-item computes two elements of C, e.g the blue
and purple. The two red blocks of A and the green block of B are read into
private memory. Each work-item then reads the elements of one of the blocks
of A from private memory and the elements of the block of B from private
memory. The same is done to calculate the other element of C, only the
elements of the other block of A is read from private memory instead.

34

Figure 3.6: Schematic of both matrices blocked in local memory and in pri-
vate memory. In this reduced version, C is divided into blocks of 4x4 ele-
ments, which are computed by 4x2 work-items. Each work-item computes
two elements of C, e.g the blue and purple. The red blocks of A and B are
the blocks that are read into local memory. Then each-work item read the
green blocks of A and B from their local memory block into private memory,
before they read the elements of one of the green blocks of A and the green
block of B to compute the first element of C. The same is repeated for the
second element, only the second green block of A is read instead

35

36

Chapter 4

Benchmarks and Results

In this chapter, we test out program on different GPUs. We start with
presenting the different system configurations that we performed the tests
on. Finally we present the results from running the generated kernels on
different matrix sizes.

4.1 System Configurations

We have run our program on three different GPUs, AMD HD5750, AMD
HD5870 and NVIDIA C2070. The configuration for these three systems can
be seen in Table 4.1, Table 4.2 and Table 4.3 respectively.

System 1
Processor Intel core i5 @ 2,8GHz
Memory 8GB
GPU AMD HD5750
Driver version 8.812.0.0
Operating System Windows 7 (64bit)

Table 4.1: Table describing the system with the AMD HD5750 GPU.

37

System 2
Processor Intel core i5 @ 2,67GHz
Memory 4GB
GPU AMD HD5870
Driver version 8.821.0.0
Operating System Windows 7 (64bit)

Table 4.2: Table describing the system with the AMD HD5870 GPU.

System 3
Processor Intel core i7 @ 3,2GHz
Memory 24GB
GPU NVIDIA C2070
Driver version CUDA Toolkit 3.2.16
Operating System Ubuntu 10.04 LTS (64bit)

Table 4.3: Table describing the system with the NVIDIA C2070 GPU.

4.2 Benchmarks

We ran our program on the three systems described in Section 4.1 and exe-
cuted the kernel that was output with different matrix sizes containing floats
as input.

For comparison with the results from our program, we have used a few
different libraries. The first used for comparison were ViennaCL[25]. Vi-
ennaCL is a full implementation of the BLAS API in OpenCL, capable of
running on all OpenCL devices.

The second library we used for comparison were the native library sup-
plied from the vendor of the respective GPU. For the AMD GPUs this were
ACML-GPU[26] and for the NVIDIA GPU this were CUBLAS[27].

As we were unable to compile the ACML-GPU on the system with the
AMD HD5870 GPU, results from this library is not provided. The ACML-
GPU is only supported with 64-bit operating systems and although the sys-
tem with the AMD HD5870 GPU were running Windows 7 64-bit edition,
there was some 32-bit/64-bit compatibility issues when we tried to compile

38

the library. We were never able to resolve this issue in the allotted time.

0GFLOPS

18GFLOPS

35GFLOPS

53GFLOPS

70GFLOPS

88GFLOPS

105GFLOPS

123GFLOPS

140GFLOPS

512 1024 1536 2048 2560 3072

System 1 gpublas
acml
viennacl

Figure 4.1: Graph of executions with different matrix sizes on the AMD
HD5750 GPU.

As you can see from Figure 4.1, our program achieved a speedup of be-
tween 1,09 and 14,67 over ACML-GPU. The lowest speed up were achieved
at the matrix size of 2048, where the ACML-GPU had its peek and our gen-
erated version had a low-point. For the other matrix sizes the speedup were
roughly between 1,5 and 2. Our version also performed considerably better
than ViennaCL.

Figure 4.2 gives the result of running our generated version and ViennaCL
on the AMD HD5870 GPU. From looking at the pattern of the graph for our
version, one can see that it showed similar characteristics to the one in Figure
4.1.

As can be seen from Figure 4.3, our generated kernel showed different
characteristics on the NVIDIA GPU than it did on the GPUs from AMD.
It quickly came up to a performance of approximately 260GFLOPS. Com-
pared to CUBLAS, our generated kernel had between 60% and 97% of the
performance. Our kernel had 60% of CUBLAS’ performance at the matrix

39

0GFLOPS

94GFLOPS

188GFLOPS

281GFLOPS

375GFLOPS

469GFLOPS

563GFLOPS

656GFLOPS

750GFLOPS

512 1024 1536 2048 2560 3072

System 2 gpublas
viennacl

Figure 4.2: Graph of executions with different matrix sizes on the AMD
HD5870 GPU.

size when CUBLAS had a spike and had 97% of CUBLAS’ performance with
the matrix size of 512. For the rest of the matrix sizes though, our generated
kernel performed at approximately 85% of CUBLAS. Also on the NVIDIA
GPU, our generated kernel performed considerably better than ViennaCL.

The time it took to generate and find the best kernels varied among the
different GPUs. See Table 4.4.

System Time
System 1 148s
System 2 96s
System 3 3017s

Table 4.4: Table listing the time it took to generate and search for the best
kernel on the different systems.

40

0GFLOPS

56GFLOPS

113GFLOPS

169GFLOPS

225GFLOPS

281GFLOPS

338GFLOPS

394GFLOPS

450GFLOPS

512 1024 1536 2048 2560 3072

System 3 gpublas
cublas
viennacl

Figure 4.3: Graph of executions with different matrix sizes on the NVIDIA
C2070 GPU.

41

42

Chapter 5

Conclusion

We have, in this thesis, implemented an auto-tuning framework that gener-
ates source code for OpenCL kernels, intended to be executed on a GPU. We
use information about the GPU intended to run the kernels generated that is
provided by OpenCL to guide the code generator in its choice of parameter
values. When the kernels have been generated our auto-tuning framework
searches for the best kernel and outputs it to file.

Our code generator is able to generate kernels that uses a vast number
of blocking schemes and several blocking sizes. Along with differing number
of work-items and arrangement of work-items, this gives enough different
possible kernel variants that it should be able to find good performing kernels
for most GPUs.

As can be seen from Section 4.2, the performance of the kernels chosen
by our auto-tuning framework vary depending on which vendors GPUs our
program is run on. Compared to the native libraries from AMD and NVIDIA
our auto-tuning framework performs better on AMD GPUs than it does on
GPUs from NVIDIA.

The reasons for this can be one of several. It could be that our generator
as it is now, generates kernels that map better to the AMD GPU architec-
ture than it does the NVIDIA GPU architecture. It could also be that as
NVIDIA have had GPUs capable of executing programs other than graphics
programs for longer than AMD have, the native libraries supplied by NVIDIA

43

is more mature than the ones supplied by AMD, making it easier to achieve
good performance compared to the AMD library than it is compared to the
NVIDIA library. It could also be some sort of combination of the two.

Table 4.4 shows the time it took to generate and find the best kernel on
the different GPUs. As you can see, the time it took on the NVIDIA GPU
vastly exceeds the time it took on the AMD GPUs. This is due to some
strange behavior that we observed when running our auto-tuning framework
on the NVIDIA GPU. For some reason, when trying to compile some of
the kernels on the NVIDIA GPU the compiler fails and returns an undefined
error code1.Whenever this undefined error occur, the compilation stage of the
search method takes considerably more time than it does when the kernels
compiles without error.

This error occurs for a large number of kernels and accounts for most
of the time difference between the AMD and NVIDIA GPUs for generating
and finding the best kernel. As all the kernels that does not compile on the
NVIDIA GPU compiles and execute without problems on the AMD GPUs,
we believe that this is a bug in NVIDIAs current OpenCL compiler. However,
further investigations are needed.

Our goal for this thesis were to create an auto-tuning framework that gen-
erated OpenCL kernels that performed matrix multiplication on GPUs and
had good performance on different GPUs. As we achieve better performance
than the currently available OpenCL BLAS library and also what we think
is good performance compared to he native vendor supplied BLAS libraries,
we consider this goal to be achieved.

5.1 Future Work

Currently our code generator only generates kernels for matrix multiplication
where the matrices A and B are in their original form. To expand its usability,
the code generator should be expanded to generate kernels for the versions
of matrix multiplication where A or B or both are transposed as well.

1By undefined error code, we mean an error code that is not specified in the OpenCL
Specification.

44

The kernels generated by our code generator is at the moment only able
to handle matrices of sizes that are multiples of the blocking size employed.
This is easily circumvented by padding the matrices with zeroes. Whether
this is the best strategy or if some sort of clean-up code should be used
instead is something that needs further investigation.

Matrix multiplication is only one of many functions in BLAS. We be-
lieve that it is important to have a BLAS library in OpenCL that achieves
good performance on GPUs from multiple vendors is important to ensure
that OpenCL becomes the preferred framework for programming GPUs and
is not put in the shadow of native, vendor specific alternatives like CUDA.
Therefore, expansion of the auto-tuning framework to generate and find op-
timal kernels for other BLAS routines is also warranted.

45

46

Bibliography

[1] R. Clint Whaley, Antoine Petitet, Jack J. Dongarra Auto-
mated Empirical Optimization of Software and the ATLAS Project
http://www.netlib.org, September 19, 2000

[2] Wikipedia, BLAS [web] http://en.wikipedia.org/w/index.php?title=
Basic_Linear_Algebra_Subprograms&oldid=420631241 [cited at 19.
June 2011]

[3] netlib.org BLAS FAQ [web] http://www.netlib.org/blas/faq.html [cited
at 19. June 2011]

[4] netlib.org BLAS [web] http://www.netlib.org/blas/ [cited at 19. June
2011]

[5] Wikipedia, OpenCL [web] http://en.wikipedia.org/w/index.php?title=OpenCL
&oldid=434928181 [cited at 19. June 2011]

[6] Ryoji Tsuchiyama, Takashi Nakamura, Takuro Iizuka, Akihiro Asahara,
Satoshi Miki, Satoru Tagawa. The OpenCL Programming Book, Fixs-
tars Corporation, 2010.

[7] Khronos Group, The OpenCL Specification Version: 1.0 [Web]
http://www.khronos.org/registry/cl/specs/opencl-1.0.pdf [cited at 19.
June 2011]

[8] Jens Breitbart, Claudia Fohry OpenCL - An effective programming
model for data parallel computations at the Cell Broadband Engine Par-
allel & Distributed Processing, Workshops and Phd Forum (IPDPSW),
2010 IEEE International Symposium on 19-23 April 2010

47

[9] Benedict R. Gaster OpenCL Overview [web]
http://www.khronos.org/developers/library/overview/opencl_overview.pdf
[cited at 19. June 2011]

[10] Wikipedia, Evergreen (GPU family) [web]
http://en.wikipedia.org/w/index.php?title=Evergreen_(GPU_family)
&oldid=434320559 [cited at 19. June 2011]

[11] AMD Accelerated Parallel Processing OpenCL Programming Guide
[web] [cited at 19. June 2011]

[12] Chris Angelini AMD Radeon HD 6990 4 GB Re-
view: Antilles Makes (Too Much) Noise [web]
http://www.tomshardware.com/reviews/radeon-hd-6990-antilles-
crossfire,2878.html [cited at 19. June 2011]

[13] Chris Angelini Building Cayman By Improving Cypress [web]
http://www.tomshardware.com/reviews/radeon-hd-6970-radeon-hd-
6950-cayman,2818-2.html [cited at 19. June 2011]

[14] Wikipedia, Northern Islands (GPU family) [web]
http://en.wikipedia.org/w/index.php?title=Northern_Islands_(GPU_family)
&oldid=435021695 [cited at 19. June 2011]

[15] Wikipedia, GeForce 400 Series [web]
http://en.wikipedia.org/w/index.php?title=GeForce_400_Series
&oldid=432077009 [cited at 19. June 2011]

[16] Olin Coles NVIDIA GF100 GPU Fermi Graphics Architecture
[web] http://benchmarkreviews.com/index.php?option=com_content
&task=view&id=440&Itemid=63 [cited at 19. June 2011]

[17] NVIDIA, Whitepaper NVIDIA’s Next Genera-
tion CUDA Compute Architecture: Fermi [web]
http://www.nvidia.com/content/PDF/fermi_white_papers/ NVIDI-
AFermiComputeArchitectureWhitepaper.pdf [cited on 19. June 2011]

48

[18] Wikipedia, GeForce 500 Series [web]
http://en.wikipedia.org/w/index.php?title=GeForce_500_Series
&oldid=434673700 [cited on 19. June 2011]

[19] Wikipedia, CUDA [web] http://en.wikipedia.org/w/index.php?title=CUDA
&oldid=435074425 [cited on 19. June 2011]

[20] NVIDIA, OpenCL Programming Guide for the CUDA Architecture
[web] http://developer.download.nvidia.com/compute/cuda/3_2_prod/
toolkit/docs/OpenCL_Programming_Guide.pdf [cited on 19. June
2011]

[21] Chris Jang GATLAS GPU Automatically Tuned Linear Algebra Soft-
ware [web] http://golem5.org/gatlas/ [cited on 19. June 2011]

[22] Naohito Nakasato A Fast GEMM Implementation On a Cypress GPU
ACM SIGMETRICS Performance Evaluation Review - Special issue on
the 1st international workshop on performance modeling, benchmark-
ing and simulation of high performance computing systems (PMBS 10),
Volume 38 Issue 4, March 2011

[23] Rajib Nath, Stanimire Tomov, Jack Dongarra An Improved MAGMA
GEMM for Fermi GPUs http://www.netlib.org, July 10, 2010

[24] Xiang Cui, Yifeng Chen, Changyou Zhang, Hong Mei Auto-tuning
Dense Matrix Multiplication for GPGPU with Cache Parallel and Dis-
tributed Systems (ICPADS), 2010 IEEE 16th International Conference
on 8-10 December 2010, p.237-242

[25] ViennaCL [web] http://viennacl.sourceforge.net/ [cited on 19. June
2011]

[26] AMD Core Math Library for Graphic Processors (ACML-GPU)
http://developer.amd.com/libraries/acmlgpu/Pages/default.aspx [cited
on 19. June 2011]

49

[27] NVIDIA, CUDA CUBLAS Library [web]
http://developer.download.nvidia.com/compute/cuda/3_2_prod/
toolkit/docs/CUBLAS_Library.pdf [cited on 19. June 2011]

50

Appendix A

Selected Source Code

We will here present the source code of the kernels generated for the different
GPUs. Interestingly enough, the auto-tuning framework chose the same
kernel for both the AMD HD5750 and the AMD HD5870. The source code
for the AMD GPUs are presented in A.1 and the source code for the NVIDIA
GPU is presented in A.2. The rest of the source code for the auto-tuning
framework is available upon request.

1 __kernel __attribute__ ((reqd_work_group_size
(16 , 4 , 1)))

2 void gemm(__global f l o a t ∗a , __global f l o a t ∗b ,
__global f l o a t ∗c ,

3 i n t m, i n t n , i n t k ,
4 f l o a t alpha , f l o a t beta)
5 {
6 const i n t bidx = get_group_id (0) ;
7 const i n t bidy = get_group_id (1) ;
8 const i n t idx = get_local_id (0) ;
9 const i n t idy = get_local_id (1) ;
10 a += (bidy ∗ 16 + idy) ∗ k + idx ;
11 b += bidx ∗ 64 + idx + idy ∗ 16 ;
12 c += bidx ∗ 64 + bidy ∗ 16 ∗ n + idx + idy ∗

16 ;

I

13 __global f l o a t ∗a_end = a + k ;
14 __local f l o a t block_a [1 6] [1 6+1] ;
15 f l o a t c_reg [1 6] = {0 .0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f

, 0 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f ,
0 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f } ;

16 do {
17 f l o a t b_reg [4] = {b [0 ∗ n] , b [1 ∗ n] , b [2 ∗ n] ,

b [3 ∗ n] } ;
18 block_a [idy + 0 ∗ 4] [idx] = a [0 ∗ 4 ∗ k] ;
19 block_a [idy + 1 ∗ 4] [idx] = a [1 ∗ 4 ∗ k] ;
20 block_a [idy + 2 ∗ 4] [idx] = a [2 ∗ 4 ∗ k] ;
21 block_a [idy + 3 ∗ 4] [idx] = a [3 ∗ 4 ∗ k] ;
22 b a r r i e r (CLK_LOCAL_MEM_FENCE) ;
23 b += 4∗n ;
24 c_reg [0] += block_a [0] [0] ∗ b_reg [0] ;
25 c_reg [1] += block_a [0] [1] ∗ b_reg [0] ;
26 c_reg [2] += block_a [0] [2] ∗ b_reg [0] ;
27 c_reg [3] += block_a [0] [3] ∗ b_reg [0] ;
28 c_reg [4] += block_a [0] [4] ∗ b_reg [0] ;
29 c_reg [5] += block_a [0] [5] ∗ b_reg [0] ;
30 c_reg [6] += block_a [0] [6] ∗ b_reg [0] ;
31 c_reg [7] += block_a [0] [7] ∗ b_reg [0] ;
32 c_reg [8] += block_a [0] [8] ∗ b_reg [0] ;
33 c_reg [9] += block_a [0] [9] ∗ b_reg [0] ;
34 c_reg [1 0] += block_a [0] [1 0] ∗ b_reg [0] ;
35 c_reg [1 1] += block_a [0] [1 1] ∗ b_reg [0] ;
36 c_reg [1 2] += block_a [0] [1 2] ∗ b_reg [0] ;
37 c_reg [1 3] += block_a [0] [1 3] ∗ b_reg [0] ;
38 c_reg [1 4] += block_a [0] [1 4] ∗ b_reg [0] ;
39 c_reg [1 5] += block_a [0] [1 5] ∗ b_reg [0] ;
40 b_reg [0] = b [0 ∗ n] ;
41 c_reg [0] += block_a [1] [0] ∗ b_reg [1] ;
42 c_reg [1] += block_a [1] [1] ∗ b_reg [1] ;

II

43 c_reg [2] += block_a [1] [2] ∗ b_reg [1] ;
44 c_reg [3] += block_a [1] [3] ∗ b_reg [1] ;
45 c_reg [4] += block_a [1] [4] ∗ b_reg [1] ;
46 c_reg [5] += block_a [1] [5] ∗ b_reg [1] ;
47 c_reg [6] += block_a [1] [6] ∗ b_reg [1] ;
48 c_reg [7] += block_a [1] [7] ∗ b_reg [1] ;
49 c_reg [8] += block_a [1] [8] ∗ b_reg [1] ;
50 c_reg [9] += block_a [1] [9] ∗ b_reg [1] ;
51 c_reg [1 0] += block_a [1] [1 0] ∗ b_reg [1] ;
52 c_reg [1 1] += block_a [1] [1 1] ∗ b_reg [1] ;
53 c_reg [1 2] += block_a [1] [1 2] ∗ b_reg [1] ;
54 c_reg [1 3] += block_a [1] [1 3] ∗ b_reg [1] ;
55 c_reg [1 4] += block_a [1] [1 4] ∗ b_reg [1] ;
56 c_reg [1 5] += block_a [1] [1 5] ∗ b_reg [1] ;
57 b_reg [1] = b [1 ∗ n] ;
58 c_reg [0] += block_a [2] [0] ∗ b_reg [2] ;
59 c_reg [1] += block_a [2] [1] ∗ b_reg [2] ;
60 c_reg [2] += block_a [2] [2] ∗ b_reg [2] ;
61 c_reg [3] += block_a [2] [3] ∗ b_reg [2] ;
62 c_reg [4] += block_a [2] [4] ∗ b_reg [2] ;
63 c_reg [5] += block_a [2] [5] ∗ b_reg [2] ;
64 c_reg [6] += block_a [2] [6] ∗ b_reg [2] ;
65 c_reg [7] += block_a [2] [7] ∗ b_reg [2] ;
66 c_reg [8] += block_a [2] [8] ∗ b_reg [2] ;
67 c_reg [9] += block_a [2] [9] ∗ b_reg [2] ;
68 c_reg [1 0] += block_a [2] [1 0] ∗ b_reg [2] ;
69 c_reg [1 1] += block_a [2] [1 1] ∗ b_reg [2] ;
70 c_reg [1 2] += block_a [2] [1 2] ∗ b_reg [2] ;
71 c_reg [1 3] += block_a [2] [1 3] ∗ b_reg [2] ;
72 c_reg [1 4] += block_a [2] [1 4] ∗ b_reg [2] ;
73 c_reg [1 5] += block_a [2] [1 5] ∗ b_reg [2] ;
74 b_reg [2] = b [2 ∗ n] ;
75 c_reg [0] += block_a [3] [0] ∗ b_reg [3] ;

III

76 c_reg [1] += block_a [3] [1] ∗ b_reg [3] ;
77 c_reg [2] += block_a [3] [2] ∗ b_reg [3] ;
78 c_reg [3] += block_a [3] [3] ∗ b_reg [3] ;
79 c_reg [4] += block_a [3] [4] ∗ b_reg [3] ;
80 c_reg [5] += block_a [3] [5] ∗ b_reg [3] ;
81 c_reg [6] += block_a [3] [6] ∗ b_reg [3] ;
82 c_reg [7] += block_a [3] [7] ∗ b_reg [3] ;
83 c_reg [8] += block_a [3] [8] ∗ b_reg [3] ;
84 c_reg [9] += block_a [3] [9] ∗ b_reg [3] ;
85 c_reg [1 0] += block_a [3] [1 0] ∗ b_reg [3] ;
86 c_reg [1 1] += block_a [3] [1 1] ∗ b_reg [3] ;
87 c_reg [1 2] += block_a [3] [1 2] ∗ b_reg [3] ;
88 c_reg [1 3] += block_a [3] [1 3] ∗ b_reg [3] ;
89 c_reg [1 4] += block_a [3] [1 4] ∗ b_reg [3] ;
90 c_reg [1 5] += block_a [3] [1 5] ∗ b_reg [3] ;
91 b_reg [3] = b [3 ∗ n] ;
92 b += 4∗n ;
93 c_reg [0] += block_a [0] [0] ∗ b_reg [0] ;
94 c_reg [1] += block_a [0] [1] ∗ b_reg [0] ;
95 c_reg [2] += block_a [0] [2] ∗ b_reg [0] ;
96 c_reg [3] += block_a [0] [3] ∗ b_reg [0] ;
97 c_reg [4] += block_a [0] [4] ∗ b_reg [0] ;
98 c_reg [5] += block_a [0] [5] ∗ b_reg [0] ;
99 c_reg [6] += block_a [0] [6] ∗ b_reg [0] ;
100 c_reg [7] += block_a [0] [7] ∗ b_reg [0] ;
101 c_reg [8] += block_a [0] [8] ∗ b_reg [0] ;
102 c_reg [9] += block_a [0] [9] ∗ b_reg [0] ;
103 c_reg [1 0] += block_a [0] [1 0] ∗ b_reg [0] ;
104 c_reg [1 1] += block_a [0] [1 1] ∗ b_reg [0] ;
105 c_reg [1 2] += block_a [0] [1 2] ∗ b_reg [0] ;
106 c_reg [1 3] += block_a [0] [1 3] ∗ b_reg [0] ;
107 c_reg [1 4] += block_a [0] [1 4] ∗ b_reg [0] ;
108 c_reg [1 5] += block_a [0] [1 5] ∗ b_reg [0] ;

IV

109 b_reg [0] = b [0 ∗ n] ;
110 c_reg [0] += block_a [1] [0] ∗ b_reg [1] ;
111 c_reg [1] += block_a [1] [1] ∗ b_reg [1] ;
112 c_reg [2] += block_a [1] [2] ∗ b_reg [1] ;
113 c_reg [3] += block_a [1] [3] ∗ b_reg [1] ;
114 c_reg [4] += block_a [1] [4] ∗ b_reg [1] ;
115 c_reg [5] += block_a [1] [5] ∗ b_reg [1] ;
116 c_reg [6] += block_a [1] [6] ∗ b_reg [1] ;
117 c_reg [7] += block_a [1] [7] ∗ b_reg [1] ;
118 c_reg [8] += block_a [1] [8] ∗ b_reg [1] ;
119 c_reg [9] += block_a [1] [9] ∗ b_reg [1] ;
120 c_reg [1 0] += block_a [1] [1 0] ∗ b_reg [1] ;
121 c_reg [1 1] += block_a [1] [1 1] ∗ b_reg [1] ;
122 c_reg [1 2] += block_a [1] [1 2] ∗ b_reg [1] ;
123 c_reg [1 3] += block_a [1] [1 3] ∗ b_reg [1] ;
124 c_reg [1 4] += block_a [1] [1 4] ∗ b_reg [1] ;
125 c_reg [1 5] += block_a [1] [1 5] ∗ b_reg [1] ;
126 b_reg [1] = b [1 ∗ n] ;
127 c_reg [0] += block_a [2] [0] ∗ b_reg [2] ;
128 c_reg [1] += block_a [2] [1] ∗ b_reg [2] ;
129 c_reg [2] += block_a [2] [2] ∗ b_reg [2] ;
130 c_reg [3] += block_a [2] [3] ∗ b_reg [2] ;
131 c_reg [4] += block_a [2] [4] ∗ b_reg [2] ;
132 c_reg [5] += block_a [2] [5] ∗ b_reg [2] ;
133 c_reg [6] += block_a [2] [6] ∗ b_reg [2] ;
134 c_reg [7] += block_a [2] [7] ∗ b_reg [2] ;
135 c_reg [8] += block_a [2] [8] ∗ b_reg [2] ;
136 c_reg [9] += block_a [2] [9] ∗ b_reg [2] ;
137 c_reg [1 0] += block_a [2] [1 0] ∗ b_reg [2] ;
138 c_reg [1 1] += block_a [2] [1 1] ∗ b_reg [2] ;
139 c_reg [1 2] += block_a [2] [1 2] ∗ b_reg [2] ;
140 c_reg [1 3] += block_a [2] [1 3] ∗ b_reg [2] ;
141 c_reg [1 4] += block_a [2] [1 4] ∗ b_reg [2] ;

V

142 c_reg [1 5] += block_a [2] [1 5] ∗ b_reg [2] ;
143 b_reg [2] = b [2 ∗ n] ;
144 c_reg [0] += block_a [3] [0] ∗ b_reg [3] ;
145 c_reg [1] += block_a [3] [1] ∗ b_reg [3] ;
146 c_reg [2] += block_a [3] [2] ∗ b_reg [3] ;
147 c_reg [3] += block_a [3] [3] ∗ b_reg [3] ;
148 c_reg [4] += block_a [3] [4] ∗ b_reg [3] ;
149 c_reg [5] += block_a [3] [5] ∗ b_reg [3] ;
150 c_reg [6] += block_a [3] [6] ∗ b_reg [3] ;
151 c_reg [7] += block_a [3] [7] ∗ b_reg [3] ;
152 c_reg [8] += block_a [3] [8] ∗ b_reg [3] ;
153 c_reg [9] += block_a [3] [9] ∗ b_reg [3] ;
154 c_reg [1 0] += block_a [3] [1 0] ∗ b_reg [3] ;
155 c_reg [1 1] += block_a [3] [1 1] ∗ b_reg [3] ;
156 c_reg [1 2] += block_a [3] [1 2] ∗ b_reg [3] ;
157 c_reg [1 3] += block_a [3] [1 3] ∗ b_reg [3] ;
158 c_reg [1 4] += block_a [3] [1 4] ∗ b_reg [3] ;
159 c_reg [1 5] += block_a [3] [1 5] ∗ b_reg [3] ;
160 b_reg [3] = b [3 ∗ n] ;
161 b += 4∗n ;
162 c_reg [0] += block_a [0] [0] ∗ b_reg [0] ;
163 c_reg [1] += block_a [0] [1] ∗ b_reg [0] ;
164 c_reg [2] += block_a [0] [2] ∗ b_reg [0] ;
165 c_reg [3] += block_a [0] [3] ∗ b_reg [0] ;
166 c_reg [4] += block_a [0] [4] ∗ b_reg [0] ;
167 c_reg [5] += block_a [0] [5] ∗ b_reg [0] ;
168 c_reg [6] += block_a [0] [6] ∗ b_reg [0] ;
169 c_reg [7] += block_a [0] [7] ∗ b_reg [0] ;
170 c_reg [8] += block_a [0] [8] ∗ b_reg [0] ;
171 c_reg [9] += block_a [0] [9] ∗ b_reg [0] ;
172 c_reg [1 0] += block_a [0] [1 0] ∗ b_reg [0] ;
173 c_reg [1 1] += block_a [0] [1 1] ∗ b_reg [0] ;
174 c_reg [1 2] += block_a [0] [1 2] ∗ b_reg [0] ;

VI

175 c_reg [1 3] += block_a [0] [1 3] ∗ b_reg [0] ;
176 c_reg [1 4] += block_a [0] [1 4] ∗ b_reg [0] ;
177 c_reg [1 5] += block_a [0] [1 5] ∗ b_reg [0] ;
178 b_reg [0] = b [0 ∗ n] ;
179 c_reg [0] += block_a [1] [0] ∗ b_reg [1] ;
180 c_reg [1] += block_a [1] [1] ∗ b_reg [1] ;
181 c_reg [2] += block_a [1] [2] ∗ b_reg [1] ;
182 c_reg [3] += block_a [1] [3] ∗ b_reg [1] ;
183 c_reg [4] += block_a [1] [4] ∗ b_reg [1] ;
184 c_reg [5] += block_a [1] [5] ∗ b_reg [1] ;
185 c_reg [6] += block_a [1] [6] ∗ b_reg [1] ;
186 c_reg [7] += block_a [1] [7] ∗ b_reg [1] ;
187 c_reg [8] += block_a [1] [8] ∗ b_reg [1] ;
188 c_reg [9] += block_a [1] [9] ∗ b_reg [1] ;
189 c_reg [1 0] += block_a [1] [1 0] ∗ b_reg [1] ;
190 c_reg [1 1] += block_a [1] [1 1] ∗ b_reg [1] ;
191 c_reg [1 2] += block_a [1] [1 2] ∗ b_reg [1] ;
192 c_reg [1 3] += block_a [1] [1 3] ∗ b_reg [1] ;
193 c_reg [1 4] += block_a [1] [1 4] ∗ b_reg [1] ;
194 c_reg [1 5] += block_a [1] [1 5] ∗ b_reg [1] ;
195 b_reg [1] = b [1 ∗ n] ;
196 c_reg [0] += block_a [2] [0] ∗ b_reg [2] ;
197 c_reg [1] += block_a [2] [1] ∗ b_reg [2] ;
198 c_reg [2] += block_a [2] [2] ∗ b_reg [2] ;
199 c_reg [3] += block_a [2] [3] ∗ b_reg [2] ;
200 c_reg [4] += block_a [2] [4] ∗ b_reg [2] ;
201 c_reg [5] += block_a [2] [5] ∗ b_reg [2] ;
202 c_reg [6] += block_a [2] [6] ∗ b_reg [2] ;
203 c_reg [7] += block_a [2] [7] ∗ b_reg [2] ;
204 c_reg [8] += block_a [2] [8] ∗ b_reg [2] ;
205 c_reg [9] += block_a [2] [9] ∗ b_reg [2] ;
206 c_reg [1 0] += block_a [2] [1 0] ∗ b_reg [2] ;
207 c_reg [1 1] += block_a [2] [1 1] ∗ b_reg [2] ;

VII

208 c_reg [1 2] += block_a [2] [1 2] ∗ b_reg [2] ;
209 c_reg [1 3] += block_a [2] [1 3] ∗ b_reg [2] ;
210 c_reg [1 4] += block_a [2] [1 4] ∗ b_reg [2] ;
211 c_reg [1 5] += block_a [2] [1 5] ∗ b_reg [2] ;
212 b_reg [2] = b [2 ∗ n] ;
213 c_reg [0] += block_a [3] [0] ∗ b_reg [3] ;
214 c_reg [1] += block_a [3] [1] ∗ b_reg [3] ;
215 c_reg [2] += block_a [3] [2] ∗ b_reg [3] ;
216 c_reg [3] += block_a [3] [3] ∗ b_reg [3] ;
217 c_reg [4] += block_a [3] [4] ∗ b_reg [3] ;
218 c_reg [5] += block_a [3] [5] ∗ b_reg [3] ;
219 c_reg [6] += block_a [3] [6] ∗ b_reg [3] ;
220 c_reg [7] += block_a [3] [7] ∗ b_reg [3] ;
221 c_reg [8] += block_a [3] [8] ∗ b_reg [3] ;
222 c_reg [9] += block_a [3] [9] ∗ b_reg [3] ;
223 c_reg [1 0] += block_a [3] [1 0] ∗ b_reg [3] ;
224 c_reg [1 1] += block_a [3] [1 1] ∗ b_reg [3] ;
225 c_reg [1 2] += block_a [3] [1 2] ∗ b_reg [3] ;
226 c_reg [1 3] += block_a [3] [1 3] ∗ b_reg [3] ;
227 c_reg [1 4] += block_a [3] [1 4] ∗ b_reg [3] ;
228 c_reg [1 5] += block_a [3] [1 5] ∗ b_reg [3] ;
229 b_reg [3] = b [3 ∗ n] ;
230 b += 4∗n ;
231 c_reg [0] += block_a [0] [0] ∗ b_reg [0] ;
232 c_reg [1] += block_a [0] [1] ∗ b_reg [0] ;
233 c_reg [2] += block_a [0] [2] ∗ b_reg [0] ;
234 c_reg [3] += block_a [0] [3] ∗ b_reg [0] ;
235 c_reg [4] += block_a [0] [4] ∗ b_reg [0] ;
236 c_reg [5] += block_a [0] [5] ∗ b_reg [0] ;
237 c_reg [6] += block_a [0] [6] ∗ b_reg [0] ;
238 c_reg [7] += block_a [0] [7] ∗ b_reg [0] ;
239 c_reg [8] += block_a [0] [8] ∗ b_reg [0] ;
240 c_reg [9] += block_a [0] [9] ∗ b_reg [0] ;

VIII

241 c_reg [1 0] += block_a [0] [1 0] ∗ b_reg [0] ;
242 c_reg [1 1] += block_a [0] [1 1] ∗ b_reg [0] ;
243 c_reg [1 2] += block_a [0] [1 2] ∗ b_reg [0] ;
244 c_reg [1 3] += block_a [0] [1 3] ∗ b_reg [0] ;
245 c_reg [1 4] += block_a [0] [1 4] ∗ b_reg [0] ;
246 c_reg [1 5] += block_a [0] [1 5] ∗ b_reg [0] ;
247 b_reg [0] = b [0 ∗ n] ;
248 c_reg [0] += block_a [1] [0] ∗ b_reg [1] ;
249 c_reg [1] += block_a [1] [1] ∗ b_reg [1] ;
250 c_reg [2] += block_a [1] [2] ∗ b_reg [1] ;
251 c_reg [3] += block_a [1] [3] ∗ b_reg [1] ;
252 c_reg [4] += block_a [1] [4] ∗ b_reg [1] ;
253 c_reg [5] += block_a [1] [5] ∗ b_reg [1] ;
254 c_reg [6] += block_a [1] [6] ∗ b_reg [1] ;
255 c_reg [7] += block_a [1] [7] ∗ b_reg [1] ;
256 c_reg [8] += block_a [1] [8] ∗ b_reg [1] ;
257 c_reg [9] += block_a [1] [9] ∗ b_reg [1] ;
258 c_reg [1 0] += block_a [1] [1 0] ∗ b_reg [1] ;
259 c_reg [1 1] += block_a [1] [1 1] ∗ b_reg [1] ;
260 c_reg [1 2] += block_a [1] [1 2] ∗ b_reg [1] ;
261 c_reg [1 3] += block_a [1] [1 3] ∗ b_reg [1] ;
262 c_reg [1 4] += block_a [1] [1 4] ∗ b_reg [1] ;
263 c_reg [1 5] += block_a [1] [1 5] ∗ b_reg [1] ;
264 b_reg [1] = b [1 ∗ n] ;
265 c_reg [0] += block_a [2] [0] ∗ b_reg [2] ;
266 c_reg [1] += block_a [2] [1] ∗ b_reg [2] ;
267 c_reg [2] += block_a [2] [2] ∗ b_reg [2] ;
268 c_reg [3] += block_a [2] [3] ∗ b_reg [2] ;
269 c_reg [4] += block_a [2] [4] ∗ b_reg [2] ;
270 c_reg [5] += block_a [2] [5] ∗ b_reg [2] ;
271 c_reg [6] += block_a [2] [6] ∗ b_reg [2] ;
272 c_reg [7] += block_a [2] [7] ∗ b_reg [2] ;
273 c_reg [8] += block_a [2] [8] ∗ b_reg [2] ;

IX

274 c_reg [9] += block_a [2] [9] ∗ b_reg [2] ;
275 c_reg [1 0] += block_a [2] [1 0] ∗ b_reg [2] ;
276 c_reg [1 1] += block_a [2] [1 1] ∗ b_reg [2] ;
277 c_reg [1 2] += block_a [2] [1 2] ∗ b_reg [2] ;
278 c_reg [1 3] += block_a [2] [1 3] ∗ b_reg [2] ;
279 c_reg [1 4] += block_a [2] [1 4] ∗ b_reg [2] ;
280 c_reg [1 5] += block_a [2] [1 5] ∗ b_reg [2] ;
281 b_reg [2] = b [2 ∗ n] ;
282 c_reg [0] += block_a [3] [0] ∗ b_reg [3] ;
283 c_reg [1] += block_a [3] [1] ∗ b_reg [3] ;
284 c_reg [2] += block_a [3] [2] ∗ b_reg [3] ;
285 c_reg [3] += block_a [3] [3] ∗ b_reg [3] ;
286 c_reg [4] += block_a [3] [4] ∗ b_reg [3] ;
287 c_reg [5] += block_a [3] [5] ∗ b_reg [3] ;
288 c_reg [6] += block_a [3] [6] ∗ b_reg [3] ;
289 c_reg [7] += block_a [3] [7] ∗ b_reg [3] ;
290 c_reg [8] += block_a [3] [8] ∗ b_reg [3] ;
291 c_reg [9] += block_a [3] [9] ∗ b_reg [3] ;
292 c_reg [1 0] += block_a [3] [1 0] ∗ b_reg [3] ;
293 c_reg [1 1] += block_a [3] [1 1] ∗ b_reg [3] ;
294 c_reg [1 2] += block_a [3] [1 2] ∗ b_reg [3] ;
295 c_reg [1 3] += block_a [3] [1 3] ∗ b_reg [3] ;
296 c_reg [1 4] += block_a [3] [1 4] ∗ b_reg [3] ;
297 c_reg [1 5] += block_a [3] [1 5] ∗ b_reg [3] ;
298 b_reg [3] = b [3 ∗ n] ;
299 a += 16 ;
300 b a r r i e r (CLK_LOCAL_MEM_FENCE) ;
301 } whi l e (a < a_end) ;
302 c [0] = alpha ∗ c_reg [0] + beta ∗ c [0] ;
303 c += n ;
304 c [0] = alpha ∗ c_reg [1] + beta ∗ c [0] ;
305 c += n ;
306 c [0] = alpha ∗ c_reg [2] + beta ∗ c [0] ;

X

307 c += n ;
308 c [0] = alpha ∗ c_reg [3] + beta ∗ c [0] ;
309 c += n ;
310 c [0] = alpha ∗ c_reg [4] + beta ∗ c [0] ;
311 c += n ;
312 c [0] = alpha ∗ c_reg [5] + beta ∗ c [0] ;
313 c += n ;
314 c [0] = alpha ∗ c_reg [6] + beta ∗ c [0] ;
315 c += n ;
316 c [0] = alpha ∗ c_reg [7] + beta ∗ c [0] ;
317 c += n ;
318 c [0] = alpha ∗ c_reg [8] + beta ∗ c [0] ;
319 c += n ;
320 c [0] = alpha ∗ c_reg [9] + beta ∗ c [0] ;
321 c += n ;
322 c [0] = alpha ∗ c_reg [1 0] + beta ∗ c [0] ;
323 c += n ;
324 c [0] = alpha ∗ c_reg [1 1] + beta ∗ c [0] ;
325 c += n ;
326 c [0] = alpha ∗ c_reg [1 2] + beta ∗ c [0] ;
327 c += n ;
328 c [0] = alpha ∗ c_reg [1 3] + beta ∗ c [0] ;
329 c += n ;
330 c [0] = alpha ∗ c_reg [1 4] + beta ∗ c [0] ;
331 c += n ;
332 c [0] = alpha ∗ c_reg [1 5] + beta ∗ c [0] ;
333 c += n ;
334 }

Listing A.1: Source code for kernel chosen for AMD GPUs.

1 __kernel __attribute__ ((reqd_work_group_size (8 ,
8 , 1)))

XI

2 void gemm(__global f l o a t ∗a , __global f l o a t ∗b ,
__global f l o a t ∗c ,

3 i n t m, i n t n , i n t k ,
4 f l o a t alpha , f l o a t beta)
5 {
6 const i n t bidx = get_group_id (0) ;
7 const i n t bidy = get_group_id (1) ;
8 const i n t idx = get_local_id (0) ;
9 const i n t idy = get_local_id (1) ;
10 a += (bidy ∗ 8 + idy) ∗ k ;
11 b += bidx ∗ 8 + idx ;
12 c += (bidy ∗ 8 + idy) ∗ n + bidx ∗ 8 + idx ;
13 __global f l o a t ∗a_end = a + k ;
14 f l o a t a_reg [2] ;
15 f l o a t b_reg [2] ;
16 f l o a t c_reg [1] = {0 . 0 } ;
17 do {
18 b_reg [0] = b [0 ∗ n] ;
19 b_reg [1] = b [1 ∗ n] ;
20 a_reg [0] = a [0 ∗ 1 ∗ k + 0] ;
21 a_reg [1] = a [0 ∗ 1 ∗ k + 1] ;
22 c_reg [0] += a_reg [0] ∗ b_reg [0] ;
23 c_reg [0] += a_reg [1] ∗ b_reg [1] ;
24 a += 2 ;
25 b += 2 ∗ n ;
26 } whi l e (a < a_end) ;
27 c [0] = alpha ∗ c_reg [0] + beta ∗ c [0] ;
28 c += 1 ∗ n ;
29 }

Listing A.2: Source code for kernel chosen for NVIDIA GPU.

XII

	Title Page
	Abstract
	Acknowledgements
	List of algorithms
	List of figures
	List of tables
	Introduction
	Outline

	Background
	Auto-tuning System
	Basic Linear Algebra Subprograms
	Open Computing Language
	AMD Architecture
	NVIDIA Architecture
	Previous Work

	Implementation
	The Framework
	The Code Generator
	The Search

	Benchmarks and Results
	System Configurations
	Benchmarks

	Conclusion
	Future Work

	Selected Source Code

